Files
Odin/core/net/socket_linux.odin

392 lines
12 KiB
Odin

package net
// +build linux
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's BSD-3 license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
flysand: Move dependency from core:os to core:sys/linux
Feoramund: FreeBSD platform code
*/
import "core:c"
import "core:time"
import "core:sys/linux"
Socket_Option :: enum c.int {
Reuse_Address = c.int(linux.Socket_Option.REUSEADDR),
Keep_Alive = c.int(linux.Socket_Option.KEEPALIVE),
Out_Of_Bounds_Data_Inline = c.int(linux.Socket_Option.OOBINLINE),
TCP_Nodelay = c.int(linux.Socket_TCP_Option.NODELAY),
Linger = c.int(linux.Socket_Option.LINGER),
Receive_Buffer_Size = c.int(linux.Socket_Option.RCVBUF),
Send_Buffer_Size = c.int(linux.Socket_Option.SNDBUF),
Receive_Timeout = c.int(linux.Socket_Option.RCVTIMEO),
Send_Timeout = c.int(linux.Socket_Option.SNDTIMEO),
}
// Wrappers and unwrappers for system-native types
@(private="file")
_unwrap_os_socket :: proc "contextless" (sock: Any_Socket)->linux.Fd {
return linux.Fd(any_socket_to_socket(sock))
}
@(private="file")
_wrap_os_socket :: proc "contextless" (sock: linux.Fd, protocol: Socket_Protocol)->Any_Socket {
switch protocol {
case .TCP: return TCP_Socket(Socket(sock))
case .UDP: return UDP_Socket(Socket(sock))
case:
unreachable()
}
}
@(private="file")
_unwrap_os_family :: proc "contextless" (family: Address_Family)->linux.Address_Family {
switch family {
case .IP4: return .INET
case .IP6: return .INET6
case:
unreachable()
}
}
@(private="file")
_unwrap_os_proto_socktype :: proc "contextless" (protocol: Socket_Protocol)->(linux.Protocol, linux.Socket_Type) {
switch protocol {
case .TCP: return .TCP, .STREAM
case .UDP: return .UDP, .DGRAM
case:
unreachable()
}
}
@(private="file")
_unwrap_os_addr :: proc "contextless" (endpoint: Endpoint)->(linux.Sock_Addr_Any) {
switch address in endpoint.address {
case IP4_Address:
return {
ipv4 = {
sin_family = .INET,
sin_port = u16be(endpoint.port),
sin_addr = ([4]u8)(endpoint.address.(IP4_Address)),
},
}
case IP6_Address:
return {
ipv6 = {
sin6_port = u16be(endpoint.port),
sin6_addr = transmute([16]u8)endpoint.address.(IP6_Address),
sin6_family = .INET6,
},
}
case:
unreachable()
}
}
@(private="file")
_wrap_os_addr :: proc "contextless" (addr: linux.Sock_Addr_Any)->(Endpoint) {
#partial switch addr.family {
case .INET:
return {
address = cast(IP4_Address) addr.sin_addr,
port = cast(int) addr.sin_port,
}
case .INET6:
return {
port = cast(int) addr.sin6_port,
address = transmute(IP6_Address) addr.sin6_addr,
}
case:
unreachable()
}
}
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (Any_Socket, Network_Error) {
family := _unwrap_os_family(family)
proto, socktype := _unwrap_os_proto_socktype(protocol)
sock, errno := linux.socket(family, socktype, {.CLOEXEC}, proto)
if errno != .NONE {
return {}, Create_Socket_Error(errno)
}
return _wrap_os_socket(sock, protocol), nil
}
@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (TCP_Socket, Network_Error) {
errno: linux.Errno
if endpoint.port == 0 {
return 0, .Port_Required
}
// Create new TCP socket
os_sock: linux.Fd
os_sock, errno = linux.socket(_unwrap_os_family(family_from_endpoint(endpoint)), .STREAM, {.CLOEXEC}, .TCP)
if errno != .NONE {
// TODO(flysand): should return invalid file descriptor here casted as TCP_Socket
return {}, Create_Socket_Error(errno)
}
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
reuse_addr: b32 = true
_ = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &reuse_addr)
addr := _unwrap_os_addr(endpoint)
errno = linux.connect(linux.Fd(os_sock), &addr)
if errno != .NONE {
return cast(TCP_Socket) os_sock, Dial_Error(errno)
}
// NOTE(tetra): Not vital to succeed; error ignored
no_delay: b32 = cast(b32) options.no_delay
_ = linux.setsockopt(os_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &no_delay)
return cast(TCP_Socket) os_sock, nil
}
@(private)
_bind :: proc(sock: Any_Socket, endpoint: Endpoint) -> (Network_Error) {
addr := _unwrap_os_addr(endpoint)
errno := linux.bind(_unwrap_os_socket(sock), &addr)
if errno != .NONE {
return Bind_Error(errno)
}
return nil
}
@(private)
_listen_tcp :: proc(endpoint: Endpoint, backlog := 1000) -> (TCP_Socket, Network_Error) {
errno: linux.Errno
assert(backlog > 0 && i32(backlog) < max(i32))
// Figure out the address family and address of the endpoint
ep_family := _unwrap_os_family(family_from_endpoint(endpoint))
ep_address := _unwrap_os_addr(endpoint)
// Create TCP socket
os_sock: linux.Fd
os_sock, errno = linux.socket(ep_family, .STREAM, {.CLOEXEC}, .TCP)
if errno != .NONE {
// TODO(flysand): should return invalid file descriptor here casted as TCP_Socket
return {}, Create_Socket_Error(errno)
}
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
//
// TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
do_reuse_addr: b32 = true
errno = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &do_reuse_addr)
if errno != .NONE {
return cast(TCP_Socket) os_sock, Listen_Error(errno)
}
// Bind the socket to endpoint address
errno = linux.bind(os_sock, &ep_address)
if errno != .NONE {
return cast(TCP_Socket) os_sock, Bind_Error(errno)
}
// Listen on bound socket
errno = linux.listen(os_sock, cast(i32) backlog)
if errno != .NONE {
return cast(TCP_Socket) os_sock, Listen_Error(errno)
}
return cast(TCP_Socket) os_sock, nil
}
@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (tcp_client: TCP_Socket, endpoint: Endpoint, err: Network_Error) {
addr: linux.Sock_Addr_Any
client_sock, errno := linux.accept(linux.Fd(sock), &addr)
if errno != .NONE {
return {}, {}, Accept_Error(errno)
}
// NOTE(tetra): Not vital to succeed; error ignored
val: b32 = cast(b32) options.no_delay
_ = linux.setsockopt(client_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &val)
return TCP_Socket(client_sock), _wrap_os_addr(addr), nil
}
@(private)
_close :: proc(sock: Any_Socket) {
linux.close(_unwrap_os_socket(sock))
}
@(private)
_recv_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
if len(buf) <= 0 {
return 0, nil
}
bytes_read, errno := linux.recv(linux.Fd(tcp_sock), buf, {})
if errno != .NONE {
return 0, TCP_Recv_Error(errno)
}
return int(bytes_read), nil
}
@(private)
_recv_udp :: proc(udp_sock: UDP_Socket, buf: []byte) -> (int, Endpoint, Network_Error) {
if len(buf) <= 0 {
// NOTE(flysand): It was returning no error, I didn't change anything
return 0, {}, {}
}
// NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
// and no error is returned.
// However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
// We can use this fact to detect this condition and return .Buffer_Too_Small.
from_addr: linux.Sock_Addr_Any
bytes_read, errno := linux.recvfrom(linux.Fd(udp_sock), buf, {.TRUNC}, &from_addr)
if errno != .NONE {
return 0, {}, UDP_Recv_Error(errno)
}
if bytes_read > len(buf) {
// NOTE(tetra): The buffer has been filled, with a partial message.
return len(buf), {}, .Buffer_Too_Small
}
return bytes_read, _wrap_os_addr(from_addr), nil
}
@(private)
_send_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
total_written := 0
for total_written < len(buf) {
limit := min(int(max(i32)), len(buf) - total_written)
remaining := buf[total_written:][:limit]
res, errno := linux.send(linux.Fd(tcp_sock), remaining, {.NOSIGNAL})
if errno == .EPIPE {
// If the peer is disconnected when we are trying to send we will get an `EPIPE` error,
// so we turn that into a clearer error
return total_written, TCP_Send_Error.Connection_Closed
} else if errno != .NONE {
return total_written, TCP_Send_Error(errno)
}
total_written += int(res)
}
return total_written, nil
}
@(private)
_send_udp :: proc(udp_sock: UDP_Socket, buf: []byte, to: Endpoint) -> (int, Network_Error) {
to_addr := _unwrap_os_addr(to)
bytes_written, errno := linux.sendto(linux.Fd(udp_sock), buf, {}, &to_addr)
if errno != .NONE {
return bytes_written, UDP_Send_Error(errno)
}
return int(bytes_written), nil
}
@(private)
_shutdown :: proc(sock: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
os_sock := _unwrap_os_socket(sock)
errno := linux.shutdown(os_sock, cast(linux.Shutdown_How) manner)
if errno != .NONE {
return Shutdown_Error(errno)
}
return nil
}
// TODO(flysand): Figure out what we want to do with this on core:sys/ level.
@(private)
_set_option :: proc(sock: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
level: int
if option == .TCP_Nodelay {
level = int(linux.SOL_TCP)
} else {
level = int(linux.SOL_SOCKET)
}
os_sock := _unwrap_os_socket(sock)
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
// it _has_ to be a b32.
// I haven't tested if you can give more than that. <-- (flysand) probably not, posix explicitly specifies an int
bool_value: b32
int_value: i32
timeval_value: linux.Time_Val
errno: linux.Errno
switch option {
case
.Reuse_Address,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay:
// TODO: verify whether these are options or not on Linux
// .Broadcast, <-- yes
// .Conditional_Accept,
// .Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
errno = linux.setsockopt(os_sock, level, int(option), &bool_value)
case
.Linger,
.Send_Timeout,
.Receive_Timeout:
t, ok := value.(time.Duration)
if !ok {
panic("set_option() value must be a time.Duration here", loc)
}
micros := cast(i64) (time.duration_microseconds(t))
timeval_value.microseconds = cast(int) (micros % 1e6)
timeval_value.seconds = cast(int) ((micros - i64(timeval_value.microseconds)) / 1e6)
errno = linux.setsockopt(os_sock, level, int(option), &timeval_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
// TODO: check for out of range values and return .Value_Out_Of_Range?
switch i in value {
case i8, u8: i2 := i; int_value = i32((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = i32((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = i32((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = i32((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = i32((^u128)(&i2)^)
case int, uint: i2 := i; int_value = i32((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
errno = linux.setsockopt(os_sock, level, int(option), &int_value)
}
if errno != .NONE {
return Socket_Option_Error(errno)
}
return nil
}
@(private)
_set_blocking :: proc(sock: Any_Socket, should_block: bool) -> (err: Network_Error) {
errno: linux.Errno
flags: linux.Open_Flags
os_sock := _unwrap_os_socket(sock)
flags, errno = linux.fcntl(os_sock, linux.F_GETFL)
if errno != .NONE {
return Set_Blocking_Error(errno)
}
if should_block {
flags -= {.NONBLOCK}
} else {
flags += {.NONBLOCK}
}
errno = linux.fcntl(os_sock, linux.F_SETFL, flags)
if errno != .NONE {
return Set_Blocking_Error(errno)
}
return nil
}