Files
Odin/core/fmt/fmt.odin

3434 lines
93 KiB
Odin

package fmt
import "base:intrinsics"
import "base:runtime"
import "core:math"
import "core:math/bits"
import "core:mem"
import "core:io"
import "core:reflect"
import "core:strconv"
import "core:strings"
import "core:time"
import "core:unicode/utf8"
// Internal data structure that stores the required information for formatted printing
Info :: struct {
using state: Info_State,
writer: io.Writer,
arg: any, // Temporary
indirection_level: int,
record_level: int,
optional_len: Maybe(int),
use_nul_termination: bool,
n: int, // bytes written
}
Info_State :: struct {
minus: bool,
plus: bool,
space: bool,
zero: bool,
hash: bool,
width_set: bool,
prec_set: bool,
ignore_user_formatters: bool,
in_bad: bool,
width: int,
prec: int,
indent: int,
parent_struct: any,
}
// Custom formatter signature. It returns true if the formatting was successful and false when it could not be done
User_Formatter :: #type proc(fi: ^Info, arg: any, verb: rune) -> bool
// Example User Formatter:
// SomeType :: struct {
// value: int,
// }
// // Custom Formatter for SomeType
// User_Formatter :: proc(fi: ^fmt.Info, arg: any, verb: rune) -> bool {
// m := cast(^SomeType)arg.data
// switch verb {
// case 'v', 'd':
// fmt.fmt_int(fi, u64(m.value), true, 8 * size_of(SomeType), verb)
// case:
// return false
// }
// return true
// }
// main :: proc() {
// // Ensure the fmt._user_formatters map is initialized
// fmt.set_user_formatters(new(map[typeid]fmt.User_Formatter))
// err := fmt.register_user_formatter(type_info_of(SomeType).id, User_Formatter)
// assert(err == .None)
// // Use the custom formatter
// x := SomeType{42}
// fmt.println("Custom type value: ", x)
// }
Register_User_Formatter_Error :: enum {
None,
No_User_Formatter,
Formatter_Previously_Found,
}
// NOTE(bill): This is a pointer to prevent accidental additions
// it is prefixed with `_` rather than marked with a private attribute so that users can access it if necessary
_user_formatters: ^map[typeid]User_Formatter
// Sets user-defined formatters for custom print formatting of specific types
//
// Inputs:
// - m: A pointer to a map of typeids to User_Formatter structs.
//
// NOTE: Must be called before using register_user_formatter.
//
set_user_formatters :: proc(m: ^map[typeid]User_Formatter) {
assert(_user_formatters == nil, "set_user_formatters must not be called more than once.")
_user_formatters = m
}
// Registers a user-defined formatter for a specific typeid
//
// Inputs:
// - id: The typeid of the custom type.
// - formatter: The User_Formatter function for the custom type.
//
// Returns: A Register_User_Formatter_Error value indicating the success or failure of the operation.
//
// WARNING: set_user_formatters must be called before using this procedure.
//
register_user_formatter :: proc(id: typeid, formatter: User_Formatter) -> Register_User_Formatter_Error {
if _user_formatters == nil {
return .No_User_Formatter
}
if prev, found := _user_formatters[id]; found && prev != nil {
return .Formatter_Previously_Found
}
_user_formatters[id] = formatter
return .None
}
// Creates a formatted string
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - args: A variadic list of arguments to be formatted.
// - sep: An optional separator string (default is a single space).
// - allocator: (default: context.allocator)
//
// Returns: A formatted string.
//
@(require_results)
aprint :: proc(args: ..any, sep := " ", allocator := context.allocator) -> string {
str: strings.Builder
strings.builder_init(&str, allocator)
return sbprint(&str, ..args, sep=sep)
}
// Creates a formatted string with a newline character at the end
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - args: A variadic list of arguments to be formatted.
// - sep: An optional separator string (default is a single space).
// - allocator: (default: context.allocator)
//
// Returns: A formatted string with a newline character at the end.
//
@(require_results)
aprintln :: proc(args: ..any, sep := " ", allocator := context.allocator) -> string {
str: strings.Builder
strings.builder_init(&str, allocator)
return sbprintln(&str, ..args, sep=sep)
}
// Creates a formatted string using a format string and arguments
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - fmt: A format string with placeholders for the provided arguments.
// - args: A variadic list of arguments to be formatted.
// - allocator: (default: context.allocator)
// - newline: Whether the string should end with a newline. (See `aprintfln`.)
//
// Returns: A formatted string. The returned string must be freed accordingly.
//
@(require_results)
aprintf :: proc(fmt: string, args: ..any, allocator := context.allocator, newline := false) -> string {
str: strings.Builder
strings.builder_init(&str, allocator)
return sbprintf(&str, fmt, ..args, newline=newline)
}
// Creates a formatted string using a format string and arguments, followed by a newline.
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - fmt: A format string with placeholders for the provided arguments.
// - args: A variadic list of arguments to be formatted.
// - allocator: (default: context.allocator)
//
// Returns: A formatted string. The returned string must be freed accordingly.
//
@(require_results)
aprintfln :: proc(fmt: string, args: ..any, allocator := context.allocator) -> string {
return aprintf(fmt, ..args, allocator=allocator, newline=true)
}
// Creates a formatted string
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - args: A variadic list of arguments to be formatted.
// - sep: An optional separator string (default is a single space).
//
// Returns: A formatted string.
//
@(require_results)
tprint :: proc(args: ..any, sep := " ") -> string {
str: strings.Builder
strings.builder_init(&str, context.temp_allocator)
return sbprint(&str, ..args, sep=sep)
}
// Creates a formatted string with a newline character at the end
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - args: A variadic list of arguments to be formatted.
// - sep: An optional separator string (default is a single space).
//
// Returns: A formatted string with a newline character at the end.
//
@(require_results)
tprintln :: proc(args: ..any, sep := " ") -> string {
str: strings.Builder
strings.builder_init(&str, context.temp_allocator)
return sbprintln(&str, ..args, sep=sep)
}
// Creates a formatted string using a format string and arguments
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - fmt: A format string with placeholders for the provided arguments.
// - args: A variadic list of arguments to be formatted.
// - newline: Whether the string should end with a newline. (See `tprintfln`.)
//
// Returns: A formatted string.
//
@(require_results)
tprintf :: proc(fmt: string, args: ..any, newline := false) -> string {
str: strings.Builder
strings.builder_init(&str, context.temp_allocator)
return sbprintf(&str, fmt, ..args, newline=newline)
}
// Creates a formatted string using a format string and arguments, followed by a newline.
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - fmt: A format string with placeholders for the provided arguments.
// - args: A variadic list of arguments to be formatted.
//
// Returns: A formatted string.
//
@(require_results)
tprintfln :: proc(fmt: string, args: ..any) -> string {
return tprintf(fmt, ..args, newline=true)
}
// Creates a formatted string using a supplied buffer as the backing array. Writes into the buffer.
//
// Inputs:
// - buf: The backing buffer
// - args: A variadic list of arguments to be formatted
// - sep: An optional separator string (default is a single space)
//
// Returns: A formatted string
//
bprint :: proc(buf: []byte, args: ..any, sep := " ") -> string {
sb := strings.builder_from_bytes(buf)
return sbprint(&sb, ..args, sep=sep)
}
// Creates a formatted string using a supplied buffer as the backing array, appends newline. Writes into the buffer.
//
// Inputs:
// - buf: The backing buffer
// - args: A variadic list of arguments to be formatted
// - sep: An optional separator string (default is a single space)
//
// Returns: A formatted string with a newline character at the end
//
bprintln :: proc(buf: []byte, args: ..any, sep := " ") -> string {
sb := strings.builder_from_bytes(buf)
return sbprintln(&sb, ..args, sep=sep)
}
// Creates a formatted string using a supplied buffer as the backing array. Writes into the buffer.
//
// Inputs:
// - buf: The backing buffer
// - fmt: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - newline: Whether the string should end with a newline. (See `bprintfln`.)
//
// Returns: A formatted string
//
bprintf :: proc(buf: []byte, fmt: string, args: ..any, newline := false) -> string {
sb := strings.builder_from_bytes(buf)
return sbprintf(&sb, fmt, ..args, newline=newline)
}
// Creates a formatted string using a supplied buffer as the backing array, followed by a newline. Writes into the buffer.
//
// Inputs:
// - buf: The backing buffer
// - fmt: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
//
// Returns: A formatted string
//
bprintfln :: proc(buf: []byte, fmt: string, args: ..any) -> string {
return bprintf(buf, fmt, ..args, newline=true)
}
// Runtime assertion with a formatted message
//
// Inputs:
// - condition: The boolean condition to be asserted
// - fmt: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - loc: The location of the caller
//
@(disabled=ODIN_DISABLE_ASSERT)
assertf :: proc(condition: bool, fmt: string, args: ..any, loc := #caller_location) {
if !condition {
// NOTE(dragos): We are using the same trick as in builtin.assert
// to improve performance to make the CPU not
// execute speculatively, making it about an order of
// magnitude faster
@(cold)
internal :: proc(loc: runtime.Source_Code_Location, fmt: string, args: ..any) {
p := context.assertion_failure_proc
if p == nil {
p = runtime.default_assertion_failure_proc
}
message := tprintf(fmt, ..args)
p("runtime assertion", message, loc)
}
internal(loc, fmt, ..args)
}
}
// Runtime ensure with a formatted message
//
// Inputs:
// - condition: The boolean condition to be asserted
// - fmt: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - loc: The location of the caller
//
ensuref :: proc(condition: bool, fmt: string, args: ..any, loc := #caller_location) {
if !condition {
@(cold)
internal :: proc(loc: runtime.Source_Code_Location, fmt: string, args: ..any) {
p := context.assertion_failure_proc
if p == nil {
p = runtime.default_assertion_failure_proc
}
message := tprintf(fmt, ..args)
p("unsatisfied ensure", message, loc)
}
internal(loc, fmt, ..args)
}
}
// Runtime panic with a formatted message
//
// Inputs:
// - fmt: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - loc: The location of the caller
//
panicf :: proc(fmt: string, args: ..any, loc := #caller_location) -> ! {
p := context.assertion_failure_proc
if p == nil {
p = runtime.default_assertion_failure_proc
}
message := tprintf(fmt, ..args)
p("panic", message, loc)
}
// Creates a formatted C string
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - args: A variadic list of arguments to be formatted.
// - sep: An optional separator string (default is a single space).
// - allocator: (default: context.allocator)
//
// Returns: A formatted C string.
//
@(require_results)
caprint :: proc(args: ..any, sep := " ", allocator := context.allocator) -> cstring {
str: strings.Builder
strings.builder_init(&str, allocator)
sbprint(&str, ..args, sep=sep)
strings.write_byte(&str, 0)
s := strings.to_string(str)
return cstring(raw_data(s))
}
// Creates a formatted C string
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - format: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - allocator: (default: context.allocator)
// - newline: Whether the string should end with a newline. (See `caprintfln`.)
//
// Returns: A formatted C string
//
@(require_results)
caprintf :: proc(format: string, args: ..any, allocator := context.allocator, newline := false) -> cstring {
str: strings.Builder
strings.builder_init(&str, allocator)
sbprintf(&str, format, ..args, newline=newline)
strings.write_byte(&str, 0)
s := strings.to_string(str)
return cstring(raw_data(s))
}
// Creates a formatted C string, followed by a newline.
//
// *Allocates Using Provided Allocator*
//
// Inputs:
// - format: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - allocator: (default: context.allocator)
//
// Returns: A formatted C string
//
@(require_results)
caprintfln :: proc(format: string, args: ..any, allocator := context.allocator) -> cstring {
return caprintf(format, ..args, allocator=allocator, newline=true)
}
// Creates a formatted C string
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - args: A variadic list of arguments to be formatted.
// - sep: An optional separator string (default is a single space).
//
// Returns: A formatted C string.
//
@(require_results)
ctprint :: proc(args: ..any, sep := " ") -> cstring {
return caprint(args=args, sep=sep, allocator=context.temp_allocator)
}
// Creates a formatted C string
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - format: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
// - newline: Whether the string should end with a newline. (See `ctprintfln`.)
//
// Returns: A formatted C string
//
@(require_results)
ctprintf :: proc(format: string, args: ..any, newline := false) -> cstring {
return caprintf(format=format, args=args, allocator=context.temp_allocator, newline=newline)
}
// Creates a formatted C string, followed by a newline.
//
// *Allocates Using Context's Temporary Allocator*
//
// Inputs:
// - format: A format string with placeholders for the provided arguments
// - args: A variadic list of arguments to be formatted
//
// Returns: A formatted C string
//
@(require_results)
ctprintfln :: proc(format: string, args: ..any) -> cstring {
return caprintf(format=format, args=args, allocator=context.temp_allocator, newline=true)
}
// Formats using the default print settings and writes to the given strings.Builder
//
// Inputs:
// - buf: A pointer to a strings.Builder to store the formatted string
// - args: A variadic list of arguments to be formatted
// - sep: An optional separator string (default is a single space)
//
// Returns: A formatted string
//
sbprint :: proc(buf: ^strings.Builder, args: ..any, sep := " ") -> string {
wprint(strings.to_writer(buf), ..args, sep=sep, flush=true)
return strings.to_string(buf^)
}
// Formats and writes to a strings.Builder buffer using the default print settings
//
// Inputs:
// - buf: A pointer to a strings.Builder buffer
// - args: A variadic list of arguments to be formatted
// - sep: An optional separator string (default is a single space)
//
// Returns: The resulting formatted string
//
sbprintln :: proc(buf: ^strings.Builder, args: ..any, sep := " ") -> string {
wprintln(strings.to_writer(buf), ..args, sep=sep, flush=true)
return strings.to_string(buf^)
}
// Formats and writes to a strings.Builder buffer according to the specified format string
//
// Inputs:
// - buf: A pointer to a strings.Builder buffer
// - fmt: The format string
// - args: A variadic list of arguments to be formatted
// - newline: Whether a trailing newline should be written. (See `sbprintfln`.)
//
// Returns: The resulting formatted string
//
sbprintf :: proc(buf: ^strings.Builder, fmt: string, args: ..any, newline := false) -> string {
wprintf(strings.to_writer(buf), fmt, ..args, flush=true, newline=newline)
return strings.to_string(buf^)
}
// Formats and writes to a strings.Builder buffer according to the specified format string, followed by a newline.
//
// Inputs:
// - buf: A pointer to a strings.Builder to store the formatted string
// - args: A variadic list of arguments to be formatted
//
// Returns: A formatted string
//
sbprintfln :: proc(buf: ^strings.Builder, format: string, args: ..any) -> string {
return sbprintf(buf, format, ..args, newline=true)
}
// Formats and writes to an io.Writer using the default print settings
//
// Inputs:
// - w: An io.Writer to write to
// - args: A variadic list of arguments to be formatted
// - sep: An optional separator string (default is a single space)
//
// Returns: The number of bytes written
//
wprint :: proc(w: io.Writer, args: ..any, sep := " ", flush := true) -> int {
fi: Info
fi.writer = w
// NOTE(bill): Old approach
// prev_string := false;
// for arg, i in args {
// is_string := arg != nil && reflect.is_string(type_info_of(arg.id));
// if i > 0 && !is_string && !prev_string {
// io.write_byte(writer, ' ');
// }
// fmt_value(&fi, args[i], 'v');
// prev_string = is_string;
// }
// NOTE(bill, 2020-06-19): I have found that the previous approach was not what people were expecting
// and were expecting `*print` to be the same `*println` except for the added newline
// so I am going to keep the same behaviour as `*println` for `*print`
for _, i in args {
if i > 0 {
io.write_string(fi.writer, sep, &fi.n)
}
fmt_value(&fi, args[i], 'v')
}
if flush {
io.flush(w)
}
return fi.n
}
// Formats and writes to an io.Writer using the default print settings with a newline character at the end
//
// Inputs:
// - w: An io.Writer to write to
// - args: A variadic list of arguments to be formatted
// - sep: An optional separator string (default is a single space)
//
// Returns: The number of bytes written
//
wprintln :: proc(w: io.Writer, args: ..any, sep := " ", flush := true) -> int {
fi: Info
fi.writer = w
for _, i in args {
if i > 0 {
io.write_string(fi.writer, sep, &fi.n)
}
fmt_value(&fi, args[i], 'v')
}
io.write_byte(fi.writer, '\n', &fi.n)
if flush {
io.flush(w)
}
return fi.n
}
// Formats and writes to an io.Writer according to the specified format string
//
// Inputs:
// - w: An io.Writer to write to
// - fmt: The format string
// - args: A variadic list of arguments to be formatted
// - newline: Whether a trailing newline should be written. (See `wprintfln`.)
//
// Returns: The number of bytes written
//
wprintf :: proc(w: io.Writer, fmt: string, args: ..any, flush := true, newline := false) -> int {
MAX_CHECKED_ARGS :: 64
assert(len(args) <= MAX_CHECKED_ARGS, "number of args > 64 is unsupported")
parse_options :: proc(fi: ^Info, fmt: string, index, end: int, unused_args: ^bit_set[0 ..< MAX_CHECKED_ARGS], args: ..any) -> int {
i := index
// Prefix
prefix_loop: for ; i < end; i += 1 {
switch fmt[i] {
case '+':
fi.plus = true
case '-':
fi.minus = true
fi.zero = false
case ' ':
fi.space = true
case '#':
fi.hash = true
case '0':
fi.zero = !fi.minus
case:
break prefix_loop
}
}
// Width
if i < end && fmt[i] == '*' {
i += 1
width_index, _, index_ok := _arg_number(fmt, &i, len(args))
if !index_ok {
width_index, index_ok = error_check_arg(fi, false, unused_args^)
}
if index_ok {
unused_args^ -= {width_index}
fi.width, _, fi.width_set = int_from_arg(args, width_index)
if !fi.width_set {
io.write_string(fi.writer, "%!(BAD WIDTH)", &fi.n)
}
if fi.width < 0 {
fi.width = -fi.width
fi.minus = true
fi.zero = false
}
}
} else {
fi.width, i, fi.width_set = _parse_int(fmt, i)
}
// Precision
if i < end && fmt[i] == '.' {
i += 1
if i < end && fmt[i] == '*' {
i += 1
precision_index, _, index_ok := _arg_number(fmt, &i, len(args))
if !index_ok {
precision_index, index_ok = error_check_arg(fi, false, unused_args^)
}
if index_ok {
unused_args^ -= {precision_index}
fi.prec, _, fi.prec_set = int_from_arg(args, precision_index)
if fi.prec < 0 {
fi.prec = 0
fi.prec_set = false
}
if !fi.prec_set {
io.write_string(fi.writer, "%!(BAD PRECISION)", &fi.n)
}
}
} else {
prev_i := i
fi.prec, i, fi.prec_set = _parse_int(fmt, i)
if i == prev_i {
fi.prec = 0
fi.prec_set = true
}
}
}
return i
}
error_check_arg :: proc(fi: ^Info, arg_parsed: bool, unused_args: bit_set[0 ..< MAX_CHECKED_ARGS]) -> (int, bool) {
if !arg_parsed {
for index in unused_args {
return index, true
}
io.write_string(fi.writer, "%!(MISSING ARGUMENT)", &fi.n)
} else {
io.write_string(fi.writer, "%!(BAD ARGUMENT NUMBER)", &fi.n)
}
return 0, false
}
fi: Info
end := len(fmt)
unused_args: bit_set[0 ..< MAX_CHECKED_ARGS]
for _, i in args {
unused_args += {i}
}
loop: for i := 0; i < end; /**/ {
fi = Info{writer = w, n = fi.n}
prev_i := i
for i < end && !(fmt[i] == '%' || fmt[i] == '{' || fmt[i] == '}') {
i += 1
}
if i > prev_i {
io.write_string(fi.writer, fmt[prev_i:i], &fi.n)
}
if i >= end {
break loop
}
char := fmt[i]
// Process a "char"
i += 1
if char == '}' {
if i < end && fmt[i] == char {
// Skip extra one
i += 1
}
io.write_byte(fi.writer, char, &fi.n)
continue loop
} else if char == '{' {
if i < end && fmt[i] == char {
// Skip extra one
i += 1
io.write_byte(fi.writer, char, &fi.n)
continue loop
}
}
if char == '%' {
if i < end && fmt[i] == '%' {
io.write_byte(fi.writer, '%', &fi.n)
i += 1
continue loop
}
i = parse_options(&fi, fmt, i, end, &unused_args, ..args)
arg_index, arg_parsed, index_ok := _arg_number(fmt, &i, len(args))
if !index_ok {
arg_index, index_ok = error_check_arg(&fi, arg_parsed, unused_args)
}
if i >= end {
io.write_string(fi.writer, "%!(NO VERB)", &fi.n)
break loop
} else if fmt[i] == ' ' {
io.write_string(fi.writer, "%!(NO VERB)", &fi.n)
continue loop
}
verb, w := utf8.decode_rune_in_string(fmt[i:])
i += w
if index_ok {
unused_args -= {arg_index}
fmt_arg(&fi, args[arg_index], verb)
}
} else if char == '{' {
arg_index: int
arg_parsed, index_ok: bool
if i < end && fmt[i] != '}' && fmt[i] != ':' {
arg_index, i, arg_parsed = _parse_int(fmt, i)
if arg_parsed {
index_ok = 0 <= arg_index && arg_index < len(args)
}
}
if !index_ok {
arg_index, index_ok = error_check_arg(&fi, arg_parsed, unused_args)
}
verb: rune = 'v'
if i < end && fmt[i] == ':' {
i += 1
i = parse_options(&fi, fmt, i, end, &unused_args, ..args)
if i >= end {
io.write_string(fi.writer, "%!(NO VERB)", &fi.n)
break loop
} else if fmt[i] == '}' {
i += 1
io.write_string(fi.writer, "%!(NO VERB)", &fi.n)
continue
}
w: int = 1
verb, w = utf8.decode_rune_in_string(fmt[i:])
i += w
}
if i >= end {
io.write_string(fi.writer, "%!(MISSING CLOSE BRACE)", &fi.n)
break loop
}
brace, w := utf8.decode_rune_in_string(fmt[i:])
i += w
switch {
case brace != '}':
io.write_string(fi.writer, "%!(MISSING CLOSE BRACE)", &fi.n)
case index_ok:
fmt_arg(&fi, args[arg_index], verb)
unused_args -= {arg_index}
}
}
}
if unused_args != nil {
// Use default options when formatting extra arguments.
extra_fi := Info { writer = fi.writer, n = fi.n }
io.write_string(extra_fi.writer, "%!(EXTRA ", &extra_fi.n)
first_printed := false
for index in unused_args {
if first_printed {
io.write_string(extra_fi.writer, ", ", &extra_fi.n)
}
arg := args[index]
if arg == nil {
io.write_string(extra_fi.writer, "<nil>", &extra_fi.n)
} else {
fmt_arg(&extra_fi, arg, 'v')
}
first_printed = true
}
io.write_byte(extra_fi.writer, ')', &extra_fi.n)
fi.n = extra_fi.n
}
if newline {
io.write_byte(w, '\n', &fi.n)
}
if flush {
io.flush(w)
}
return fi.n
}
// Formats and writes to an io.Writer according to the specified format string, followed by a newline.
//
// Inputs:
// - w: The io.Writer to write to.
// - args: A variadic list of arguments to be formatted.
//
// Returns: The number of bytes written.
//
wprintfln :: proc(w: io.Writer, format: string, args: ..any, flush := true) -> int {
return wprintf(w, format, ..args, flush=flush, newline=true)
}
// Writes a ^runtime.Type_Info value to an io.Writer
//
// Inputs:
// - w: An io.Writer to write to
// - info: A pointer to a runtime.Type_Info value
//
// Returns: The number of bytes written and an io.Error if encountered
//
wprint_type :: proc(w: io.Writer, info: ^runtime.Type_Info, flush := true) -> (int, io.Error) {
n, err := reflect.write_type(w, info)
if flush {
io.flush(w)
}
return n, err
}
// Writes a typeid value to an io.Writer
//
// Inputs:
// - w: An io.Writer to write to
// - id: A typeid value
//
// Returns: The number of bytes written and an io.Error if encountered
//
wprint_typeid :: proc(w: io.Writer, id: typeid, flush := true) -> (int, io.Error) {
n, err := reflect.write_type(w, type_info_of(id))
if flush {
io.flush(w)
}
return n, err
}
// Parses an integer from a given string starting at a specified offset
//
// Inputs:
// - s: The string to parse the integer from
// - offset: The position in the string to start parsing the integer
//
// Returns:
// - result: The parsed integer
// - new_offset: The position in the string after parsing the integer
// - ok: A boolean indicating if the parsing was successful
//
_parse_int :: proc(s: string, offset: int) -> (result: int, new_offset: int, ok: bool) {
is_digit :: #force_inline proc(r: byte) -> bool { return '0' <= r && r <= '9' }
new_offset = offset
for new_offset < len(s) {
c := s[new_offset]
is_digit(c) or_break
new_offset += 1
result *= 10
result += int(c)-'0'
}
ok = new_offset > offset
return
}
// Parses an argument number from a format string and determines if it's valid
//
// Inputs:
// - format: The format string to parse
// - offset: A pointer to the current position in the format string
// - arg_count: The total number of arguments
//
// Returns:
// - index: The parsed argument index
// - parsed: A boolean indicating if an argument number was parsed
// - ok: A boolean indicating if the parsed argument number is within arg_count
//
_arg_number :: proc(format: string, offset: ^int, arg_count: int) -> (index: int, parsed, ok: bool) {
parse_arg_number :: proc(format: string) -> (int, int, bool) {
if len(format) < 3 {
return 0, 1, false
}
for i in 1..<len(format) {
if format[i] == ']' {
value, new_index, ok := _parse_int(format, 1)
if !ok || new_index != i {
return 0, i+1, false
}
return value, i+1, true
}
}
return 0, 1, false
}
i := offset^
if len(format) <= i || format[i] != '[' {
return 0, false, false
}
width: int
index, width, parsed = parse_arg_number(format[i:])
offset^ = i + width
ok = parsed && 0 <= index && index < arg_count
return
}
// Retrieves an integer from a list of any type at the specified index
//
// Inputs:
// - args: A list of values of any type
// - arg_index: The index to retrieve the integer from
//
// Returns:
// - int: The integer value at the specified index
// - new_arg_index: The new argument index
// - ok: A boolean indicating if the conversion to integer was successful
//
int_from_arg :: proc(args: []any, arg_index: int) -> (int, int, bool) {
num := 0
new_arg_index := arg_index
ok := true
if arg_index < len(args) {
num, ok = reflect.as_int(args[arg_index])
}
if ok {
new_arg_index += 1
}
return num, new_arg_index, ok
}
// Writes a bad verb error message
//
// Inputs:
// - fi: A pointer to an Info structure
// - verb: The invalid format verb
//
fmt_bad_verb :: proc(fi: ^Info, verb: rune) {
prev_in_bad := fi.in_bad
defer fi.in_bad = prev_in_bad
fi.in_bad = true
io.write_string(fi.writer, "%!", &fi.n)
io.write_rune(fi.writer, verb, &fi.n)
io.write_byte(fi.writer, '(', &fi.n)
if arg := fi.arg; arg != nil {
reflect.write_typeid(fi.writer, arg.id, &fi.n)
io.write_byte(fi.writer, '=', &fi.n)
fmt_value(fi, arg, 'v')
} else {
io.write_string(fi.writer, "<nil>", &fi.n)
}
io.write_byte(fi.writer, ')', &fi.n)
}
// Formats a boolean value according to the specified format verb
//
// Inputs:
// - fi: A pointer to an Info structure
// - b: The boolean value to format
// - verb: The format verb
//
fmt_bool :: proc(fi: ^Info, b: bool, verb: rune) {
switch verb {
case 't', 'v', 'w':
fmt_string(fi, b ? "true" : "false", 's')
case:
fmt_bad_verb(fi, verb)
}
}
// Writes padding characters for formatting
//
// Inputs:
// - fi: A pointer to an Info structure
// - width: The number of padding characters to write
//
fmt_write_padding :: proc(fi: ^Info, width: int) {
if width <= 0 {
return
}
pad_byte: byte = ' '
if !fi.space {
pad_byte = '0'
}
for i := 0; i < width; i += 1 {
io.write_byte(fi.writer, pad_byte, &fi.n)
}
}
// Formats an integer value with specified base, sign, bit size, and digits
//
// Inputs:
// - fi: A pointer to an Info structure
// - u: The integer value to format
// - base: The base for integer formatting
// - is_signed: A boolean indicating if the integer is signed
// - bit_size: The bit size of the integer
// - digits: A string containing the digits for formatting
//
// WARNING: May panic if the width and precision are too big, causing a buffer overrun
//
_fmt_int :: proc(fi: ^Info, u: u64, base: int, is_signed: bool, bit_size: int, digits: string) {
_, neg := strconv.is_integer_negative(u, is_signed, bit_size)
BUF_SIZE :: 256
if fi.width_set || fi.prec_set {
width := fi.width + fi.prec + 3 // 3 extra bytes for sign and prefix
if width > BUF_SIZE {
// TODO(bill):????
panic("_fmt_int: buffer overrun. Width and precision too big")
}
}
buf: [BUF_SIZE]byte
start := 0
if fi.hash && !is_signed {
switch base {
case 2:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'b', &fi.n)
start = 2
case 8:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'o', &fi.n)
start = 2
case 12:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'o', &fi.n)
start = 2
case 16:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'x', &fi.n)
start = 2
}
}
prec := 0
if fi.prec_set {
prec = fi.prec
if prec == 0 && u == 0 {
prev_zero := fi.zero
fi.zero = false
fmt_write_padding(fi, fi.width)
fi.zero = prev_zero
return
}
} else if fi.zero && fi.width_set {
prec = fi.width
if neg || fi.plus {
// There needs to be space for the "sign"
prec -= 1
}
}
switch base {
case 2, 8, 10, 12, 16:
break
case:
panic("_fmt_int: unknown base, whoops")
}
flags: strconv.Int_Flags
if fi.hash && !fi.zero && start == 0 { flags += {.Prefix} }
if fi.plus { flags += {.Plus} }
s := strconv.write_bits(buf[start:], u, base, is_signed, bit_size, digits, flags)
prev_zero := fi.zero
defer fi.zero = prev_zero
fi.zero = false
_pad(fi, s)
}
// Formats an int128 value based on the provided formatting options.
//
// Inputs:
// - fi: A pointer to the Info struct containing formatting options.
// - u: The int128 value to be formatted.
// - base: The base to be used for formatting the integer (e.g. 2, 8, 10, 12, 16).
// - is_signed: Whether the value should be treated as signed or unsigned.
// - bit_size: The number of bits of the value (e.g. 64, 128).
// - digits: A string containing the digit characters to use for the formatted integer.
//
// WARNING: Panics if the formatting options result in a buffer overrun.
//
_fmt_int_128 :: proc(fi: ^Info, u: u128, base: int, is_signed: bool, bit_size: int, digits: string) {
_, neg := strconv.is_integer_negative_128(u, is_signed, bit_size)
BUF_SIZE :: 256
if fi.width_set || fi.prec_set {
width := fi.width + fi.prec + 3 // 3 extra bytes for sign and prefix
if width > BUF_SIZE {
// TODO(bill):????
panic("_fmt_int: buffer overrun. Width and precision too big")
}
}
buf: [256]byte
start := 0
if fi.hash && !is_signed {
switch base {
case 2:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'b', &fi.n)
start = 2
case 8:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'o', &fi.n)
start = 2
case 12:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'o', &fi.n)
start = 2
case 16:
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, 'x', &fi.n)
start = 2
}
}
prec := 0
if fi.prec_set {
prec = fi.prec
if prec == 0 && u == 0 {
prev_zero := fi.zero
fi.zero = false
fmt_write_padding(fi, fi.width)
fi.zero = prev_zero
return
}
} else if fi.zero && fi.width_set {
prec = fi.width
if neg || fi.plus {
// There needs to be space for the "sign"
prec -= 1
}
}
switch base {
case 2, 8, 10, 12, 16:
break
case:
panic("_fmt_int: unknown base, whoops")
}
flags: strconv.Int_Flags
if fi.hash && !fi.zero && start == 0 { flags += {.Prefix} }
if fi.plus { flags += {.Plus} }
s := strconv.write_bits_128(buf[start:], u, base, is_signed, bit_size, digits, flags)
if fi.hash && fi.zero && fi.indent == 0 {
c: byte = 0
switch base {
case 2: c = 'b'
case 8: c = 'o'
case 12: c = 'z'
case 16: c = 'x'
}
if c != 0 {
io.write_byte(fi.writer, '0', &fi.n)
io.write_byte(fi.writer, c, &fi.n)
}
}
prev_zero := fi.zero
defer fi.zero = prev_zero
fi.zero = false
_pad(fi, s)
}
// Units of measurements:
__MEMORY_LOWER := " b kib mib gib tib pib eib"
__MEMORY_UPPER := " B KiB MiB GiB TiB PiB EiB"
// Formats an integer value as bytes with the best representation.
//
// Inputs:
// - fi: A pointer to an Info structure
// - u: The integer value to format
// - is_signed: A boolean indicating if the integer is signed
// - bit_size: The bit size of the integer
// - digits: A string containing the digits for formatting
//
_fmt_memory :: proc(fi: ^Info, u: u64, is_signed: bool, bit_size: int, units: string) {
abs, neg := strconv.is_integer_negative(u, is_signed, bit_size)
// Default to a precision of 2, but if less than a kb, 0
prec := fi.prec if (fi.prec_set || abs < mem.Kilobyte) else 2
div, off, unit_len := 1, 0, 1
for n := abs; n >= mem.Kilobyte; n /= mem.Kilobyte {
div *= mem.Kilobyte
off += 4
// First iteration is slightly different because you go from
// units of length 1 to units of length 2.
if unit_len == 1 {
off = 2
unit_len = 3
}
}
// If hash, we add a space between the value and the suffix.
if fi.hash {
unit_len += 1
} else {
off += 1
}
amt := f64(abs) / f64(div)
if neg {
amt = -amt
}
buf: [256]byte
str := strconv.write_float(buf[:], amt, 'f', prec, 64)
// Add the unit at the end.
copy(buf[len(str):], units[off:off+unit_len])
str = string(buf[:len(str)+unit_len])
if !fi.plus {
// Strip sign from "+<value>" but not "+Inf".
if str[0] == '+' && str[1] != 'I' {
str = str[1:]
}
}
_pad(fi, str)
}
// Hex Values:
__DIGITS_LOWER := "0123456789abcdefx"
__DIGITS_UPPER := "0123456789ABCDEFX"
// Formats a rune value according to the specified formatting verb.
//
// Inputs:
// - fi: A pointer to the Info struct containing formatting options.
// - r: The rune value to be formatted.
// - verb: The formatting verb to use (e.g. 'c', 'r', 'v', 'q').
//
fmt_rune :: proc(fi: ^Info, r: rune, verb: rune) {
switch verb {
case 'c', 'r', 'v':
io.write_rune(fi.writer, r, &fi.n)
case 'q', 'w':
fi.n += io.write_quoted_rune(fi.writer, r)
case:
fmt_int(fi, u64(u32(r)), false, 32, verb)
}
}
// Formats an integer value according to the specified formatting verb.
//
// Inputs:
// - fi: A pointer to the Info struct containing formatting options.
// - u: The integer value to be formatted.
// - is_signed: Whether the value should be treated as signed or unsigned.
// - bit_size: The number of bits of the value (e.g. 32, 64).
// - verb: The formatting verb to use (e.g. 'v', 'b', 'o', 'i', 'd', 'z', 'x', 'X', 'c', 'r', 'U').
//
fmt_int :: proc(fi: ^Info, u: u64, is_signed: bool, bit_size: int, verb: rune) {
switch verb {
case 'v', 'w':
_fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER)
case 'b': _fmt_int(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER)
case 'o': _fmt_int(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER)
case 'i', 'd': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER)
case 'z': _fmt_int(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER)
case 'x': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER)
case 'X': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER)
case 'c', 'r':
fmt_rune(fi, rune(u), verb)
case 'U':
r := rune(u)
if r < 0 || r > utf8.MAX_RUNE {
fmt_bad_verb(fi, verb)
} else {
io.write_string(fi.writer, "U+", &fi.n)
_fmt_int(fi, u, 16, false, bit_size, __DIGITS_UPPER)
}
case 'm': _fmt_memory(fi, u, is_signed, bit_size, __MEMORY_LOWER)
case 'M': _fmt_memory(fi, u, is_signed, bit_size, __MEMORY_UPPER)
case:
fmt_bad_verb(fi, verb)
}
}
// Formats an int128 value according to the specified formatting verb.
//
// Inputs:
// - fi: A pointer to the Info struct containing formatting options.
// - u: The int128 value to be formatted.
// - is_signed: Whether the value should be treated as signed or unsigned.
// - bit_size: The number of bits of the value (e.g. 64, 128).
// - verb: The formatting verb to use (e.g. 'v', 'b', 'o', 'i', 'd', 'z', 'x', 'X', 'c', 'r', 'U').
//
fmt_int_128 :: proc(fi: ^Info, u: u128, is_signed: bool, bit_size: int, verb: rune) {
switch verb {
case 'v', 'w':
_fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER)
case 'b': _fmt_int_128(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER)
case 'o': _fmt_int_128(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER)
case 'i', 'd': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER)
case 'z': _fmt_int_128(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER)
case 'x': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER)
case 'X': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER)
case 'c', 'r':
fmt_rune(fi, rune(u), verb)
case 'U':
r := rune(u)
if r < 0 || r > utf8.MAX_RUNE {
fmt_bad_verb(fi, verb)
} else {
io.write_string(fi.writer, "U+", &fi.n)
_fmt_int_128(fi, u, 16, false, bit_size, __DIGITS_UPPER)
}
case:
fmt_bad_verb(fi, verb)
}
}
// Pads a formatted string with the appropriate padding, based on the provided formatting options.
//
// Inputs:
// - fi: A pointer to the Info struct containing formatting options.
// - s: The string to be padded.
//
_pad :: proc(fi: ^Info, s: string) {
if !fi.width_set {
io.write_string(fi.writer, s, &fi.n)
return
}
width := fi.width - utf8.rune_count_in_string(s)
if fi.minus { // right pad
io.write_string(fi.writer, s, &fi.n)
fmt_write_padding(fi, width)
} else if !fi.space && s != "" && (s[0] == '-' || s[0] == '+') {
// left pad accounting for zero pad of negative number
io.write_byte(fi.writer, s[0], &fi.n)
fmt_write_padding(fi, width)
io.write_string(fi.writer, s[1:], &fi.n)
} else { // left pad
fmt_write_padding(fi, width)
io.write_string(fi.writer, s, &fi.n)
}
}
// Formats a floating-point number with a specific format and precision.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - v: The floating-point number to format.
// - bit_size: The size of the floating-point number in bits (16, 32, or 64).
// - verb: The format specifier character.
// - float_fmt: The byte format used for formatting the float (either 'f' or 'e').
//
// NOTE: Can return "NaN", "+Inf", "-Inf", "+<value>", or "-<value>".
//
_fmt_float_as :: proc(fi: ^Info, v: f64, bit_size: int, verb: rune, float_fmt: byte, prec: int) {
prec := prec
if fi.prec_set {
prec = fi.prec
}
buf: [386]byte
// Can return "NaN", "+Inf", "-Inf", "+<value>", "-<value>".
str := strconv.write_float(buf[:], v, float_fmt, prec, bit_size)
if !fi.plus {
// Strip sign from "+<value>" but not "+Inf".
if str[0] == '+' && str[1] != 'I' {
str = str[1:]
}
}
_pad(fi, str)
}
// Formats a floating-point number with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - v: The floating-point number to format.
// - bit_size: The size of the floating-point number in bits (16, 32, or 64).
// - verb: The format specifier character.
//
fmt_float :: proc(fi: ^Info, v: f64, bit_size: int, verb: rune) {
switch verb {
case 'g', 'G', 'v', 'w':
_fmt_float_as(fi, v, bit_size, verb, 'g', -1)
case 'f', 'F':
_fmt_float_as(fi, v, bit_size, verb, 'f', 3)
case 'e':
// BUG(): "%.3e" returns "3.000e+00"
_fmt_float_as(fi, v, bit_size, verb, 'e', 6)
case 'E':
// BUG(): "%.3E" returns "3.000E+00"
_fmt_float_as(fi, v, bit_size, verb, 'E', 6)
case 'h', 'H':
prev_fi := fi^
defer fi^ = prev_fi
fi.hash = false
fi.width = bit_size
fi.zero = true
fi.plus = false
u: u64
switch bit_size {
case 16: u = u64(transmute(u16)f16(v))
case 32: u = u64(transmute(u32)f32(v))
case 64: u = transmute(u64)v
case: panic("Unhandled float size")
}
io.write_string(fi.writer, "0h", &fi.n)
_fmt_int(fi, u, 16, false, bit_size, __DIGITS_LOWER if verb == 'h' else __DIGITS_UPPER)
case:
fmt_bad_verb(fi, verb)
}
}
// Formats a string with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - s: The string to format.
// - verb: The format specifier character (e.g. 's', 'v', 'q', 'x', 'X').
//
fmt_string :: proc(fi: ^Info, s: string, verb: rune) {
s, verb := s, verb
if ol, ok := fi.optional_len.?; ok {
s = s[:clamp(ol, 0, len(s))]
}
if !fi.in_bad && fi.record_level > 0 && verb == 'v' {
verb = 'q'
}
switch verb {
case 's', 'v':
if fi.width_set {
if fi.width > len(s) {
if fi.minus {
io.write_string(fi.writer, s, &fi.n)
}
for _ in 0..<fi.width - len(s) {
io.write_byte(fi.writer, ' ', &fi.n)
}
if !fi.minus {
io.write_string(fi.writer, s, &fi.n)
}
} else {
io.write_string(fi.writer, s, &fi.n)
}
} else {
io.write_string(fi.writer, s, &fi.n)
}
case 'q', 'w': // quoted string
io.write_quoted_string(fi.writer, s, '"', &fi.n)
case 'x', 'X':
space := fi.space
fi.space = false
defer fi.space = space
for i in 0..<len(s) {
if i > 0 && space {
io.write_byte(fi.writer, ' ', &fi.n)
}
char_set := __DIGITS_UPPER
if verb == 'x' {
char_set = __DIGITS_LOWER
}
_fmt_int(fi, u64(s[i]), 16, false, 8, char_set)
}
case:
fmt_bad_verb(fi, verb)
}
}
// Formats a C-style string with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - s: The C-style string to format.
// - verb: The format specifier character (Ref fmt_string).
//
fmt_cstring :: proc(fi: ^Info, s: cstring, verb: rune) {
fmt_string(fi, string(s), verb)
}
// Formats a string UTF-16 with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - s: The string to format.
// - verb: The format specifier character (e.g. 's', 'v', 'q', 'x', 'X').
//
fmt_string16 :: proc(fi: ^Info, s: string16, verb: rune) {
s, verb := s, verb
if ol, ok := fi.optional_len.?; ok {
s = s[:clamp(ol, 0, len(s))]
}
if !fi.in_bad && fi.record_level > 0 && verb == 'v' {
verb = 'q'
}
switch verb {
case 's', 'v':
if fi.width_set {
if fi.width > len(s) {
if fi.minus {
io.write_string16(fi.writer, s, &fi.n)
}
for _ in 0..<fi.width - len(s) {
io.write_byte(fi.writer, ' ', &fi.n)
}
if !fi.minus {
io.write_string16(fi.writer, s, &fi.n)
}
} else {
io.write_string16(fi.writer, s, &fi.n)
}
} else {
io.write_string16(fi.writer, s, &fi.n)
}
case 'q', 'w': // quoted string
io.write_quoted_string16(fi.writer, s, '"', &fi.n)
case 'x', 'X':
space := fi.space
fi.space = false
defer fi.space = space
for i in 0..<len(s) {
if i > 0 && space {
io.write_byte(fi.writer, ' ', &fi.n)
}
char_set := __DIGITS_UPPER
if verb == 'x' {
char_set = __DIGITS_LOWER
}
_fmt_int(fi, u64(s[i]), 16, false, bit_size=16, digits=char_set)
}
case:
fmt_bad_verb(fi, verb)
}
}
// Formats a C-style UTF-16 string with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - s: The C-style string to format.
// - verb: The format specifier character (Ref fmt_string).
//
fmt_cstring16 :: proc(fi: ^Info, s: cstring16, verb: rune) {
fmt_string16(fi, string16(s), verb)
}
// Formats a raw pointer with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - p: The raw pointer to format.
// - verb: The format specifier character (e.g. 'p', 'v', 'b', 'o', 'i', 'd', 'z', 'x', 'X').
//
fmt_pointer :: proc(fi: ^Info, p: rawptr, verb: rune) {
u := u64(uintptr(p))
switch verb {
case 'p', 'v', 'w':
if !fi.hash {
io.write_string(fi.writer, "0x", &fi.n)
}
_fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER)
case 'b': _fmt_int(fi, u, 2, false, 8*size_of(rawptr), __DIGITS_UPPER)
case 'o': _fmt_int(fi, u, 8, false, 8*size_of(rawptr), __DIGITS_UPPER)
case 'i', 'd': _fmt_int(fi, u, 10, false, 8*size_of(rawptr), __DIGITS_UPPER)
case 'z': _fmt_int(fi, u, 12, false, 8*size_of(rawptr), __DIGITS_UPPER)
case 'x': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_LOWER)
case 'X': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER)
case:
fmt_bad_verb(fi, verb)
}
}
// Formats a Structure of Arrays (SoA) pointer with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - p: The SoA pointer to format.
// - verb: The format specifier character.
//
fmt_soa_pointer :: proc(fi: ^Info, p: runtime.Raw_Soa_Pointer, verb: rune) {
io.write_string(fi.writer, "#soa{data=0x", &fi.n)
_fmt_int(fi, u64(uintptr(p.data)), 16, false, 8*size_of(rawptr), __DIGITS_UPPER)
io.write_string(fi.writer, ", index=", &fi.n)
_fmt_int(fi, u64(p.index), 10, false, 8*size_of(rawptr), __DIGITS_UPPER)
io.write_string(fi.writer, "}", &fi.n)
}
// String representation of an enum value.
//
// Inputs:
// - val: The enum value.
//
// Returns: The string representation of the enum value and a boolean indicating success.
//
@(require_results)
enum_value_to_string :: proc(val: any) -> (string, bool) {
return reflect.enum_name_from_value_any(val)
}
// Returns the enum value of a string representation.
//
// $T: The typeid of the enum type.
// Inputs:
// - s: The string representation of the enum value.
//
// Returns: The enum value and a boolean indicating success.
//
string_to_enum_value :: proc($T: typeid, s: string) -> (T, bool) {
ti := runtime.type_info_base(type_info_of(T))
if e, ok := ti.variant.(runtime.Type_Info_Enum); ok {
for str, idx in e.names {
if s == str {
// NOTE(bill): Unsafe cast
ptr := cast(^T)&e.values[idx]
return ptr^, true
}
}
}
return T{}, false
}
// Formats an enum value with a specific format.
//
// Inputs:
// - fi: Pointer to the Info struct containing format settings.
// - v: The enum value to format.
// - verb: The format specifier character (e.g. 'i','d','f','s','v','q','w').
//
fmt_enum :: proc(fi: ^Info, v: any, verb: rune) {
if v.id == nil || v.data == nil {
io.write_string(fi.writer, "<nil>", &fi.n)
return
}
type_info := type_info_of(v.id)
#partial switch &e in type_info.variant {
case: fmt_bad_verb(fi, verb)
case runtime.Type_Info_Enum:
switch verb {
case: fmt_bad_verb(fi, verb)
case 'i', 'd', 'f':
fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, verb)
case 's', 'v', 'q':
if str, ok := enum_value_to_string(v); ok {
fmt_string(fi, str, verb)
} else {
io.write_string(fi.writer, "%!(BAD ENUM VALUE=", &fi.n)
fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, 'i')
io.write_string(fi.writer, ")", &fi.n)
}
case 'w':
if str, ok := enum_value_to_string(v); ok {
io.write_byte(fi.writer, '.', &fi.n)
io.write_string(fi.writer, str, &fi.n)
} else {
io.write_string(fi.writer, "%!(BAD ENUM VALUE=", &fi.n)
fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, 'i')
io.write_string(fi.writer, ")", &fi.n)
}
}
}
}
// Converts a stored enum value to a string representation
//
// Inputs:
// - enum_type: A pointer to the runtime.Type_Info of the enumeration.
// - ev: The runtime.Type_Info_Enum_Value of the stored enum value.
// - offset: An optional integer to adjust the enumeration value (default is 0).
//
// Returns: A tuple containing the string representation of the enum value and a bool indicating success.
//
stored_enum_value_to_string :: proc(enum_type: ^runtime.Type_Info, ev: runtime.Type_Info_Enum_Value, offset: int = 0) -> (string, bool) {
et := runtime.type_info_base(enum_type)
ev := ev
ev += runtime.Type_Info_Enum_Value(offset)
#partial switch &e in et.variant {
case: return "", false
case runtime.Type_Info_Enum:
if reflect.is_string(e.base) {
for val, idx in e.values {
if val == ev {
return e.names[idx], true
}
}
} else if len(e.values) == 0 {
return "", true
} else {
for val, idx in e.values {
if val == ev {
return e.names[idx], true
}
}
}
return "", false
}
return "", false
}
// Formats a bit set and writes it to the provided Info structure
//
// Inputs:
// - fi: A pointer to the Info structure where the formatted bit set will be written.
// - v: The bit set value to be formatted.
// - name: An optional string for the name of the bit set (default is an empty string).
// - verb: An optional verb to adjust format.
//
fmt_bit_set :: proc(fi: ^Info, v: any, name: string = "", verb: rune = 'v') {
is_bit_set_different_endian_to_platform :: proc(ti: ^runtime.Type_Info) -> bool {
if ti == nil {
return false
}
t := runtime.type_info_base(ti)
#partial switch &info in t.variant {
case runtime.Type_Info_Integer:
switch info.endianness {
case .Platform: return false
case .Little: return ODIN_ENDIAN != .Little
case .Big: return ODIN_ENDIAN != .Big
}
}
return false
}
byte_swap :: bits.byte_swap
type_info := type_info_of(v.id)
#partial switch &info in type_info.variant {
case runtime.Type_Info_Named:
val := v
val.id = info.base.id
fmt_bit_set(fi, val, info.name, verb)
case runtime.Type_Info_Bit_Set:
bits: u128
bit_size := u128(8*type_info.size)
do_byte_swap := is_bit_set_different_endian_to_platform(info.underlying)
as_arg := verb == 'b' || verb == 'o' || verb == 'd' || verb == 'i' || verb == 'z' || verb == 'x' || verb == 'X'
if as_arg && !fi.width_set {
fi.width_set = true
fi.width = int(bit_size)
}
switch bit_size {
case 0: bits = 0
case 8:
x := (^u8)(v.data)^
if as_arg {
fmt_arg(fi, x, verb)
return
}
bits = u128(x)
case 16:
x := (^u16)(v.data)^
if do_byte_swap { x = byte_swap(x) }
if as_arg {
fmt_arg(fi, x, verb)
return
}
bits = u128(x)
case 32:
x := (^u32)(v.data)^
if do_byte_swap { x = byte_swap(x) }
if as_arg {
fmt_arg(fi, x, verb)
return
}
bits = u128(x)
case 64:
x := (^u64)(v.data)^
if do_byte_swap { x = byte_swap(x) }
if as_arg {
fmt_arg(fi, x, verb)
return
}
bits = u128(x)
case 128:
x := (^u128)(v.data)^
if do_byte_swap { x = byte_swap(x) }
if as_arg {
fmt_arg(fi, x, verb)
return
}
bits = x
case: panic("unknown bit_size size")
}
et := runtime.type_info_base(info.elem)
if verb != 'w' {
if name != "" {
io.write_string(fi.writer, name, &fi.n)
} else {
reflect.write_type(fi.writer, type_info, &fi.n)
}
}
io.write_byte(fi.writer, '{', &fi.n)
defer io.write_byte(fi.writer, '}', &fi.n)
e, is_enum := et.variant.(runtime.Type_Info_Enum)
commas := 0
loop: for i in transmute(bit_set[0..<128])bits {
i := i64(i) + info.lower
if commas > 0 {
io.write_string(fi.writer, ", ", &fi.n)
}
if is_enum {
enum_name: string
if ti_named, is_named := info.elem.variant.(runtime.Type_Info_Named); is_named {
enum_name = ti_named.name
}
for ev, evi in e.values {
v := u64(ev)
if v == u64(i) {
if verb == 'w' {
io.write_string(fi.writer, enum_name, &fi.n)
io.write_byte(fi.writer, '.', &fi.n)
}
io.write_string(fi.writer, e.names[evi], &fi.n)
commas += 1
continue loop
}
}
}
io.write_i64(fi.writer, i, 10, &fi.n)
commas += 1
}
}
}
// Writes the specified number of indents to the provided Info structure
//
// Inputs:
// - fi: A pointer to the Info structure where the indents will be written.
//
fmt_write_indent :: proc(fi: ^Info) {
for _ in 0..<fi.indent {
io.write_byte(fi.writer, '\t', &fi.n)
}
}
// Formats an array and writes it to the provided Info structure
//
// Inputs:
// - fi: A pointer to the Info structure where the formatted array will be written.
// - array_data: A raw pointer to the array data.
// - count: The number of elements in the array.
// - elem_size: The size of each element in the array.
// - elem_id: The typeid of the array elements.
// - verb: The formatting verb to be used for the array elements.
//
fmt_write_array :: proc(fi: ^Info, array_data: rawptr, count: int, elem_size: int, elem_id: typeid, verb: rune) {
io.write_byte(fi.writer, '[' if verb != 'w' else '{', &fi.n)
defer io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n)
if count <= 0 {
return
}
fi.record_level += 1
defer fi.record_level -= 1
if fi.hash {
io.write_byte(fi.writer, '\n', &fi.n)
defer fmt_write_indent(fi)
indent := fi.indent
fi.indent += 1
defer fi.indent = indent
for i in 0..<count {
fmt_write_indent(fi)
data := uintptr(array_data) + uintptr(i*elem_size)
fmt_arg(fi, any{rawptr(data), elem_id}, verb)
io.write_string(fi.writer, ",\n", &fi.n)
}
} else {
for i in 0..<count {
if i > 0 { io.write_string(fi.writer, ", ", &fi.n) }
data := uintptr(array_data) + uintptr(i*elem_size)
fmt_arg(fi, any{rawptr(data), elem_id}, verb)
}
}
}
// Handles struct tag processing for formatting
//
// Inputs:
// - data: A raw pointer to the data being processed
// - info: Type information about the struct
// - idx: The index of the tag in the struct
// - verb: A mutable pointer to the rune representing the format verb
// - optional_len: A mutable pointer to an integer holding the optional length (if applicable)
// - use_nul_termination: A mutable pointer to a boolean flag indicating if NUL termination is used
//
// Returns: A boolean value indicating whether to continue processing the tag
//
@(private)
handle_tag :: proc(state: ^Info_State, data: rawptr, info: reflect.Type_Info_Struct, idx: int, verb: ^rune, optional_len: ^int, use_nul_termination: ^bool) -> (do_continue: bool) {
handle_optional_len :: proc(data: rawptr, info: reflect.Type_Info_Struct, field_name: string, optional_len: ^int) {
if optional_len == nil {
return
}
for f, i in info.names[:info.field_count] {
if f != field_name {
continue
}
ptr := rawptr(uintptr(data) + info.offsets[i])
field := any{ptr, info.types[i].id}
if new_len, iok := reflect.as_int(field); iok {
optional_len^ = max(new_len, 0)
}
break
}
}
tag := info.tags[idx]
if vt, ok := reflect.struct_tag_lookup(reflect.Struct_Tag(tag), "fmt"); ok {
value := strings.trim_space(string(vt))
switch value {
case "": return false
case "-": return true
}
fi := state
head, _, tail := strings.partition(value, ",")
i := 0
prefix_loop: for ; i < len(head); i += 1 {
switch head[i] {
case '+':
fi.plus = true
case '-':
fi.minus = true
fi.zero = false
case ' ':
fi.space = true
case '#':
fi.hash = true
case '0':
fi.zero = !fi.minus
case:
break prefix_loop
}
}
fi.width, i, fi.width_set = _parse_int(head, i)
if i < len(head) && head[i] == '.' {
i += 1
prev_i := i
fi.prec, i, fi.prec_set = _parse_int(head, i)
if i == prev_i {
fi.prec = 0
fi.prec_set = true
}
}
r: rune
if i >= len(head) || head[i] == ' ' {
r = 'v'
} else {
r, _ = utf8.decode_rune_in_string(head[i:])
}
if verb^ == 'w' {
// TODO(bill): is this a good idea overriding that field tags if 'w' is used?
switch r {
case 's': r = 'q'
case: r = 'w'
}
}
verb^ = r
if tail != "" {
field_name := tail
if field_name == "0" {
if use_nul_termination != nil {
use_nul_termination^ = true
}
} else {
switch r {
case 's', 'q':
handle_optional_len(data, info, field_name, optional_len)
case 'v', 'w':
#partial switch reflect.type_kind(info.types[idx].id) {
case .String, .Multi_Pointer, .Array, .Slice, .Dynamic_Array:
handle_optional_len(data, info, field_name, optional_len)
}
}
}
}
}
return
}
__handle_raw_union_tag :: proc(fi: ^Info, v: any, the_verb: rune, info: runtime.Type_Info_Struct, type_name: string) -> (ok: bool) {
ut := type_info_of(v.id)
if !reflect.is_raw_union(ut) {
return false
}
tag_name: string
for tag in info.tags[:info.field_count] {
rut := reflect.struct_tag_lookup(reflect.Struct_Tag(tag), "raw_union_tag") or_continue
head_tag, match, _ := strings.partition(string(rut), "=")
if match != "=" {
continue
}
if tag_name == "" {
tag_name = head_tag
} else if tag_name != head_tag {
return false
}
}
if tag_name == "" {
return false
}
tag := reflect.struct_field_value_by_name(fi.state.parent_struct, tag_name, true)
if tag == nil {
// try the current type just in case the tag is also stored here
tag = reflect.struct_field_value_by_name(v, tag_name, false)
}
if tag == nil {
return false
}
tag_info := reflect.type_info_base(type_info_of(tag.id))
#partial switch ti in tag_info.variant {
case reflect.Type_Info_Enum:
tag_string := reflect.enum_string(tag)
for tag, index in info.tags[:info.field_count] {
rut_list := reflect.struct_tag_lookup(reflect.Struct_Tag(tag), "raw_union_tag") or_continue
for rut in strings.split_iterator(&rut_list, ",") {
head_tag, match, tail_name := strings.partition(string(rut), "=")
if head_tag != tag_name || match != "=" {
continue
}
// just ignore the `A.` prefix for `A.B` stuff entirely
if _, _, try_tail_name := strings.partition(string(rut), "."); try_tail_name != "" {
tail_name = try_tail_name
}
if tail_name == tag_string {
io.write_string(fi.writer, "#raw_union(.", &fi.n)
io.write_string(fi.writer, tag_string, &fi.n)
io.write_string(fi.writer, ") ", &fi.n)
fmt_arg(fi, any{v.data, info.types[index].id}, the_verb)
return true
}
}
}
}
return false
}
@(private)
fmt_soa_struct_internal :: proc(fi: ^Info, v: any, the_verb: rune, info: runtime.Type_Info_Struct, type_name: string, hash: bool, indent: int) {
is_empty := info.field_count == 0
fi.indent += 1
defer fi.indent -= 1
base_type_name: string
if v, ok := info.soa_base_type.variant.(runtime.Type_Info_Named); ok {
base_type_name = v.name
}
actual_field_count := info.field_count
n := uintptr(info.soa_len)
if info.soa_kind == .Slice {
actual_field_count = info.field_count-1 // len
n = uintptr((^int)(uintptr(v.data) + info.offsets[actual_field_count])^)
} else if info.soa_kind == .Dynamic {
actual_field_count = info.field_count-3 // len, cap, allocator
n = uintptr((^int)(uintptr(v.data) + info.offsets[actual_field_count])^)
}
if hash && n > 0 {
io.write_byte(fi.writer, '\n', &fi.n)
}
for index in 0..<n {
if !hash && index > 0 { io.write_string(fi.writer, ", ", &fi.n) }
field_count := -1
if !hash && field_count > 0 { io.write_string(fi.writer, ", ", &fi.n) }
if hash {
fi.indent -= 1
fmt_write_indent(fi)
fi.indent += 1
}
io.write_string(fi.writer, base_type_name, &fi.n)
io.write_byte(fi.writer, '{', &fi.n)
if hash && !is_empty { io.write_byte(fi.writer, '\n', &fi.n) }
defer {
if hash && !is_empty {
fi.indent -= 1
fmt_write_indent(fi)
fi.indent += 1
}
io.write_byte(fi.writer, '}', &fi.n)
if hash { io.write_string(fi.writer, ",\n", &fi.n) }
}
fi.record_level += 1
defer fi.record_level -= 1
for i in 0..<actual_field_count {
verb := 'v'
name := info.names[i]
field_count += 1
if !hash && field_count > 0 { io.write_string(fi.writer, ", ", &fi.n) }
if hash {
fmt_write_indent(fi)
}
io.write_string(fi.writer, name, &fi.n)
io.write_string(fi.writer, " = ", &fi.n)
if info.soa_kind == .Fixed {
t := info.types[i].variant.(runtime.Type_Info_Array).elem
t_size := uintptr(t.size)
if reflect.is_any(t) {
io.write_string(fi.writer, "any{}", &fi.n)
} else {
data := rawptr(uintptr(v.data) + info.offsets[i] + index*t_size)
fmt_arg(fi, any{data, t.id}, verb)
}
} else {
t := info.types[i].variant.(runtime.Type_Info_Multi_Pointer).elem
t_size := uintptr(t.size)
if reflect.is_any(t) {
io.write_string(fi.writer, "any{}", &fi.n)
} else {
field_ptr := (^^byte)(uintptr(v.data) + info.offsets[i])^
data := rawptr(uintptr(field_ptr) + index*t_size)
fmt_arg(fi, any{data, t.id}, verb)
}
}
if hash { io.write_string(fi.writer, ",\n", &fi.n) }
}
}
if hash && n > 0 {
for _ in 0..<indent { io.write_byte(fi.writer, '\t', &fi.n) }
}
}
// Formats a struct for output, handling various struct types (e.g., SOA, raw unions)
//
// Inputs:
// - fi: A mutable pointer to an Info struct containing formatting state
// - v: The value to be formatted
// - the_verb: The formatting verb to be used (e.g. 'v')
// - info: Type information about the struct
// - type_name: The name of the type being formatted
//
fmt_struct :: proc(fi: ^Info, v: any, the_verb: rune, info: runtime.Type_Info_Struct, type_name: string) {
if the_verb != 'v' && the_verb != 'w' {
fmt_bad_verb(fi, the_verb)
return
}
if .raw_union in info.flags {
if __handle_raw_union_tag(fi, v, the_verb, info, type_name) {
return
}
if type_name == "" {
io.write_string(fi.writer, "(#raw_union)", &fi.n)
} else {
io.write_string(fi.writer, type_name, &fi.n)
io.write_string(fi.writer, "{}", &fi.n)
}
return
}
is_soa := info.soa_kind != .None
io.write_string(fi.writer, type_name, &fi.n)
io.write_byte(fi.writer, '[' if is_soa && the_verb == 'v' else '{', &fi.n)
fi.record_level += 1
defer fi.record_level -= 1
hash := fi.hash; defer fi.hash = hash
indent := fi.indent; defer fi.indent -= 1
do_trailing_comma := hash
// fi.hash = false;
fi.indent += 1
is_empty := info.field_count == 0
if !is_soa && hash && !is_empty {
io.write_byte(fi.writer, '\n', &fi.n)
}
defer {
if !is_soa && hash && !is_empty {
for _ in 0..<indent { io.write_byte(fi.writer, '\t', &fi.n) }
}
io.write_byte(fi.writer, ']' if is_soa && the_verb == 'v' else '}', &fi.n)
}
if is_soa {
fmt_soa_struct_internal(fi, v, the_verb, info, type_name, hash, indent)
} else {
field_count := -1
for name, i in info.names[:info.field_count] {
optional_len: int = -1
use_nul_termination: bool = false
verb := the_verb if the_verb == 'w' else 'v'
new_state := fi.state
new_state.parent_struct = v
if handle_tag(&new_state, v.data, info, i, &verb, &optional_len, &use_nul_termination) {
continue
}
field_count += 1
if optional_len >= 0 {
fi.optional_len = optional_len
}
defer if optional_len >= 0 {
fi.optional_len = nil
}
fi.use_nul_termination = use_nul_termination
defer fi.use_nul_termination = false
if !do_trailing_comma && field_count > 0 { io.write_string(fi.writer, ", ") }
if hash {
fmt_write_indent(fi)
}
io.write_string(fi.writer, name, &fi.n)
io.write_string(fi.writer, " = ", &fi.n)
if t := info.types[i]; reflect.is_any(t) {
io.write_string(fi.writer, "any{}", &fi.n)
} else {
prev_state := fi.state
fi.state = new_state
data := rawptr(uintptr(v.data) + info.offsets[i])
fmt_arg(fi, any{data, t.id}, verb)
fi.state = prev_state
}
if do_trailing_comma { io.write_string(fi.writer, ",\n", &fi.n) }
}
}
}
// Searches for the first NUL-terminated element in a given buffer
//
// Inputs:
// - ptr: The raw pointer to the buffer.
// - elem_size: The size of each element in the buffer.
// - max_n: The maximum number of elements to search (use -1 for no limit).
//
// Returns: The number of elements before the first NUL-terminated element.
//
@(private)
search_nul_termination :: proc(ptr: rawptr, elem_size: int, max_n: int) -> (n: int) {
for p := uintptr(ptr); max_n < 0 || n < max_n; p += uintptr(elem_size) {
if mem.check_zero_ptr(rawptr(p), elem_size) {
break
}
n += 1
}
return n
}
// Formats a NUL-terminated array into a string representation
//
// Inputs:
// - fi: Pointer to the formatting Info struct.
// - data: The raw pointer to the array data.
// - max_n: The maximum number of elements to process.
// - elem_size: The size of each element in the array.
// - elem: Pointer to the type information of the array element.
// - verb: The formatting verb.
//
fmt_array_nul_terminated :: proc(fi: ^Info, data: rawptr, max_n: int, elem_size: int, elem: ^reflect.Type_Info, verb: rune) {
if data == nil {
io.write_string(fi.writer, "<nil>", &fi.n)
return
}
n := search_nul_termination(data, elem_size, max_n)
fmt_array(fi, data, n, elem_size, elem, verb)
}
// Formats an array into a string representation
//
// Inputs:
// - fi: Pointer to the formatting Info struct.
// - data: The raw pointer to the array data.
// - n: The number of elements in the array.
// - elem_size: The size of each element in the array.
// - elem: Pointer to the type information of the array element.
// - verb: The formatting verb (e.g. 's','q','p','w').
//
fmt_array :: proc(fi: ^Info, data: rawptr, n: int, elem_size: int, elem: ^reflect.Type_Info, verb: rune) {
if data == nil && n > 0 {
io.write_string(fi.writer, "nil")
return
}
if verb == 's' || verb == 'q' {
print_utf16 :: proc(fi: ^Info, s: []$T) where size_of(T) == 2, intrinsics.type_is_integer(T) {
REPLACEMENT_CHAR :: '\ufffd'
_surr1 :: 0xd800
_surr2 :: 0xdc00
_surr3 :: 0xe000
_surr_self :: 0x10000
for i := 0; i < len(s); i += 1 {
r := rune(REPLACEMENT_CHAR)
switch c := s[i]; {
case c < _surr1, _surr3 <= c:
r = rune(c)
case _surr1 <= c && c < _surr2 && i+1 < len(s) &&
_surr2 <= s[i+1] && s[i+1] < _surr3:
r1, r2 := rune(c), rune(s[i+1])
if _surr1 <= r1 && r1 < _surr2 && _surr2 <= r2 && r2 < _surr3 {
r = (r1-_surr1)<<10 | (r2 - _surr2) + _surr_self
}
i += 1
}
io.write_rune(fi.writer, r, &fi.n)
}
}
print_utf32 :: proc(fi: ^Info, s: []$T) where size_of(T) == 4 {
for r in s {
io.write_rune(fi.writer, rune(r), &fi.n)
}
}
switch reflect.type_info_base(elem).id {
case byte: fmt_string(fi, string (([^]byte)(data)[:n]), verb); return
case u16: fmt_string16(fi, string16(([^]u16) (data)[:n]), verb); return
case u16le: print_utf16(fi, ([^]u16le)(data)[:n]); return
case u16be: print_utf16(fi, ([^]u16be)(data)[:n]); return
case u32: print_utf32(fi, ([^]u32)(data)[:n]); return
case u32le: print_utf32(fi, ([^]u32le)(data)[:n]); return
case u32be: print_utf32(fi, ([^]u32be)(data)[:n]); return
case rune: print_utf32(fi, ([^]rune)(data)[:n]); return
}
}
if verb == 'p' {
fmt_pointer(fi, data, 'p')
} else {
fmt_write_array(fi, data, n, elem_size, elem.id, verb)
}
}
@(private)
fmt_named_buitlin_custom_formatters :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Named) -> bool {
switch a in v {
case runtime.Source_Code_Location:
io.write_string(fi.writer, a.file_path, &fi.n)
when ODIN_ERROR_POS_STYLE == .Default {
io.write_byte(fi.writer, '(', &fi.n)
io.write_int(fi.writer, int(a.line), 10, &fi.n)
if a.column != 0 {
io.write_byte(fi.writer, ':', &fi.n)
io.write_int(fi.writer, int(a.column), 10, &fi.n)
}
io.write_byte(fi.writer, ')', &fi.n)
} else when ODIN_ERROR_POS_STYLE == .Unix {
io.write_byte(fi.writer, ':', &fi.n)
io.write_int(fi.writer, int(a.line), 10, &fi.n)
if a.column != 0 {
io.write_byte(fi.writer, ':', &fi.n)
io.write_int(fi.writer, int(a.column), 10, &fi.n)
}
io.write_byte(fi.writer, ':', &fi.n)
} else {
#panic("Unhandled ODIN_ERROR_POS_STYLE")
}
return true
case time.Duration:
ffrac :: proc(buf: []byte, v: u64, prec: int) -> (nw: int, nv: u64) {
v := v
w := len(buf)
print := false
for _ in 0..<prec {
digit := v % 10
print = print || digit != 0
if print {
w -= 1
buf[w] = byte(digit) + '0'
}
v /= 10
}
if print {
w -= 1
buf[w] = '.'
}
return w, v
}
fint :: proc(buf: []byte, v: u64) -> int {
v := v
w := len(buf)
if v == 0 {
w -= 1
buf[w] = '0'
} else {
for v > 0 {
w -= 1
buf[w] = byte(v%10) + '0'
v /= 10
}
}
return w
}
buf: [32]byte
w := len(buf)
u := u64(a)
neg := a < 0
if neg {
u = -u
}
if u < u64(time.Second) {
prec: int
w -= 1
buf[w] = 's'
w -= 1
switch {
case u == 0:
io.write_string(fi.writer, "0s", &fi.n)
return true
case u < u64(time.Microsecond):
prec = 0
buf[w] = 'n'
case u < u64(time.Millisecond):
prec = 3
// U+00B5 'µ' micro sign == 0xC2 0xB5
w -= 1 // Need room for two bytes
copy(buf[w:], "µ")
case:
prec = 6
buf[w] = 'm'
}
w, u = ffrac(buf[:w], u, prec)
w = fint(buf[:w], u)
} else {
w -= 1
buf[w] = 's'
w, u = ffrac(buf[:w], u, 9)
w = fint(buf[:w], u%60)
u /= 60
if u > 0 {
w -= 1
buf[w] = 'm'
w = fint(buf[:w], u%60)
u /= 60
if u > 0 {
w -= 1
buf[w] = 'h'
w = fint(buf[:w], u)
}
}
}
if neg {
w -= 1
buf[w] = '-'
}
io.write_string(fi.writer, string(buf[w:]), &fi.n)
return true
case time.Time:
write_padded_number :: proc(fi: ^Info, i: i64, width: int) {
n := width-1
for x := i; x >= 10; x /= 10 {
n -= 1
}
for _ in 0..<n {
io.write_byte(fi.writer, '0', &fi.n)
}
io.write_i64(fi.writer, i, 10, &fi.n)
}
t := a
y, mon, d := time.date(t)
h, min, s := time.clock(t)
ns := (t._nsec - (t._nsec/1e9 + time.UNIX_TO_ABSOLUTE)*1e9) % 1e9
write_padded_number(fi, i64(y), 4)
io.write_byte(fi.writer, '-', &fi.n)
write_padded_number(fi, i64(mon), 2)
io.write_byte(fi.writer, '-', &fi.n)
write_padded_number(fi, i64(d), 2)
io.write_byte(fi.writer, ' ', &fi.n)
write_padded_number(fi, i64(h), 2)
io.write_byte(fi.writer, ':', &fi.n)
write_padded_number(fi, i64(min), 2)
io.write_byte(fi.writer, ':', &fi.n)
write_padded_number(fi, i64(s), 2)
io.write_byte(fi.writer, '.', &fi.n)
write_padded_number(fi, (ns), 9)
io.write_string(fi.writer, " +0000 UTC", &fi.n)
return true
}
return false
}
// Formats a named type into a string representation
//
// Inputs:
// - fi: Pointer to the formatting Info struct.
// - v: The value to format.
// - verb: The formatting verb.
// - info: The named type information.
//
// NOTE: This procedure supports built-in custom formatters for core library types such as runtime.Source_Code_Location, time.Duration, and time.Time.
//
fmt_named :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Named) {
// Built-in Custom Formatters for core library types
if verb != 'w' && fmt_named_buitlin_custom_formatters(fi, v, verb, info) {
return
}
#partial switch &b in info.base.variant {
case runtime.Type_Info_Struct:
fmt_struct(fi, v, verb, b, info.name)
case runtime.Type_Info_Bit_Field:
fmt_bit_field(fi, v, verb, b, info.name)
case runtime.Type_Info_Bit_Set:
fmt_bit_set(fi, v, verb = verb)
case:
if verb == 'w' {
#partial switch _ in info.base.variant {
case runtime.Type_Info_Array,
runtime.Type_Info_Enumerated_Array,
runtime.Type_Info_Dynamic_Array,
runtime.Type_Info_Slice,
runtime.Type_Info_Struct,
runtime.Type_Info_Enum,
runtime.Type_Info_Map,
runtime.Type_Info_Bit_Set,
runtime.Type_Info_Simd_Vector,
runtime.Type_Info_Matrix,
runtime.Type_Info_Bit_Field:
io.write_string(fi.writer, info.name, &fi.n)
}
}
fmt_value(fi, any{v.data, info.base.id}, verb)
}
}
// Formats a union type into a string representation
//
// Inputs:
// - fi: Pointer to the formatting Info struct.
// - v: The value to format.
// - verb: The formatting verb.
// - info: The union type information.
// - type_size: The size of the union type.
//
fmt_union :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Union, type_size: int) {
if type_size == 0 {
io.write_string(fi.writer, "nil", &fi.n)
return
}
if reflect.type_info_union_is_pure_maybe(info) {
if v.data == nil {
io.write_string(fi.writer, "nil", &fi.n)
} else {
id := info.variants[0].id
fmt_arg(fi, any{v.data, id}, verb)
}
return
}
tag: i64 = -1
tag_ptr := uintptr(v.data) + info.tag_offset
tag_any := any{rawptr(tag_ptr), info.tag_type.id}
switch i in tag_any {
case u8: tag = i64(i)
case i8: tag = i64(i)
case u16: tag = i64(i)
case i16: tag = i64(i)
case u32: tag = i64(i)
case i32: tag = i64(i)
case u64: tag = i64(i)
case i64: tag = i
case: panic("Invalid union tag type")
}
assert(tag >= 0)
if v.data == nil {
io.write_string(fi.writer, "nil", &fi.n)
} else if info.no_nil {
id := info.variants[tag].id
fmt_arg(fi, any{v.data, id}, verb)
} else if tag == 0 {
io.write_string(fi.writer, "nil", &fi.n)
} else {
id := info.variants[tag-1].id
fmt_arg(fi, any{v.data, id}, verb)
}
}
// Formats a matrix as a string
//
// Inputs:
// - fi: A pointer to an Info struct containing formatting information.
// - v: The matrix value to be formatted.
// - verb: The formatting verb rune.
// - info: A runtime.Type_Info_Matrix struct containing matrix type information.
//
fmt_matrix :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Matrix) {
if verb == 'w' {
io.write_byte(fi.writer, '{', &fi.n)
} else {
io.write_string(fi.writer, "matrix", &fi.n)
io.write_byte(fi.writer, '[', &fi.n)
}
defer io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n)
fi.indent += 1
if fi.hash {
// Printed as it is written
io.write_byte(fi.writer, '\n', &fi.n)
for row in 0..<info.row_count {
fmt_write_indent(fi)
for col in 0..<info.column_count {
if col > 0 { io.write_string(fi.writer, ", ", &fi.n) }
offset: int
switch info.layout {
case .Column_Major: offset = (row + col*info.elem_stride)*info.elem_size
case .Row_Major: offset = (col + row*info.elem_stride)*info.elem_size
}
data := uintptr(v.data) + uintptr(offset)
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb)
}
io.write_string(fi.writer, ",\n", &fi.n)
}
} else {
// Printed in Row-Major layout to match text layout
row_separator := ", " if verb == 'w' else "; "
for row in 0..<info.row_count {
if row > 0 { io.write_string(fi.writer, row_separator, &fi.n) }
for col in 0..<info.column_count {
if col > 0 { io.write_string(fi.writer, ", ", &fi.n) }
offset: int
switch info.layout {
case .Column_Major: offset = (row + col*info.elem_stride)*info.elem_size
case .Row_Major: offset = (col + row*info.elem_stride)*info.elem_size
}
data := uintptr(v.data) + uintptr(offset)
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb)
}
}
}
fi.indent -= 1
if fi.hash {
fmt_write_indent(fi)
}
}
fmt_bit_field :: proc(fi: ^Info, v: any, verb: rune, info: runtime.Type_Info_Bit_Field, type_name: string) {
read_bits :: proc(ptr: [^]byte, offset, size: uintptr) -> (res: u64) {
for i in 0..<size {
j := i+offset
B := ptr[j/8]
k := j&7
if B & (u8(1)<<k) != 0 {
res |= u64(1)<<u64(i)
}
}
return
}
handle_bit_field_tag :: proc(data: rawptr, info: reflect.Type_Info_Bit_Field, idx: int, verb: ^rune) -> (do_continue: bool) {
tag := info.tags[idx]
if vt, ok := reflect.struct_tag_lookup(reflect.Struct_Tag(tag), "fmt"); ok {
value := strings.trim_space(string(vt))
switch value {
case "": return false
case "-": return true
}
r, w := utf8.decode_rune_in_string(value)
value = value[w:]
if value == "" || value[0] == ',' {
verb^ = r
}
}
return false
}
io.write_string(fi.writer, type_name if len(type_name) != 0 || verb == 'w' else "bit_field", &fi.n)
io.write_byte(fi.writer, '{', &fi.n)
hash := fi.hash; defer fi.hash = hash
indent := fi.indent; defer fi.indent -= 1
do_trailing_comma := hash
fi.indent += 1
if hash {
io.write_byte(fi.writer, '\n', &fi.n)
}
defer {
if hash {
for _ in 0..<indent { io.write_byte(fi.writer, '\t', &fi.n) }
}
io.write_byte(fi.writer, '}', &fi.n)
}
field_count := -1
for name, i in info.names[:info.field_count] {
field_verb := verb
if handle_bit_field_tag(v.data, info, i, &field_verb) {
continue
}
field_count += 1
if !do_trailing_comma && field_count > 0 {
io.write_string(fi.writer, ", ")
}
if hash {
fmt_write_indent(fi)
}
io.write_string(fi.writer, name, &fi.n)
io.write_string(fi.writer, " = ", &fi.n)
bit_offset := info.bit_offsets[i]
bit_size := info.bit_sizes[i]
type := info.types[i]
value := read_bits(([^]byte)(v.data), bit_offset, bit_size)
if reflect.is_endian_big(type) {
value <<= u64(8*type.size) - u64(bit_size)
}
if !reflect.is_unsigned(runtime.type_info_core(type)) {
// Sign Extension
m := u64(1<<(bit_size-1))
value = (value ~ m) - m
}
fmt_value(fi, any{&value, type.id}, field_verb)
if do_trailing_comma { io.write_string(fi.writer, ",\n", &fi.n) }
}
}
@(private)
fmt_pointer_from_value :: proc(fi: ^Info, v: any, info: runtime.Type_Info_Pointer, verb: rune) {
if v.id == typeid_of(^runtime.Type_Info) {
reflect.write_type(fi.writer, (^^runtime.Type_Info)(v.data)^, &fi.n)
} else {
ptr := (^rawptr)(v.data)^
if verb != 'p' && info.elem != nil {
a := any{ptr, info.elem.id}
elem := runtime.type_info_base(info.elem)
if elem != nil {
#partial switch &e in elem.variant {
case runtime.Type_Info_Array,
runtime.Type_Info_Slice,
runtime.Type_Info_Dynamic_Array,
runtime.Type_Info_Map:
if ptr == nil {
io.write_string(fi.writer, "<nil>", &fi.n)
return
}
if fi.indirection_level < 1 {
fi.indirection_level += 1
defer fi.indirection_level -= 1
io.write_byte(fi.writer, '&')
fmt_value(fi, a, verb)
return
}
case runtime.Type_Info_Struct,
runtime.Type_Info_Union,
runtime.Type_Info_Bit_Field:
if ptr == nil {
io.write_string(fi.writer, "<nil>", &fi.n)
return
}
if fi.indirection_level < 1 {
fi.indirection_level += 1
defer fi.indirection_level -= 1
io.write_byte(fi.writer, '&', &fi.n)
fmt_value(fi, a, verb)
return
}
}
}
}
fmt_pointer(fi, ptr, verb)
}
}
@(private)
fmt_multi_pointer :: proc(fi: ^Info, v: any, info: runtime.Type_Info_Multi_Pointer, verb: rune) {
ptr := (^rawptr)(v.data)^
if ptr == nil {
io.write_string(fi.writer, "<nil>", &fi.n)
return
}
if verb != 'p' && info.elem != nil {
a := any{ptr, info.elem.id}
elem := runtime.type_info_base(info.elem)
if elem != nil {
if n, ok := fi.optional_len.?; ok {
fi.optional_len = nil
fmt_array(fi, ptr, n, elem.size, elem, verb)
return
} else if fi.use_nul_termination {
fi.use_nul_termination = false
fmt_array_nul_terminated(fi, ptr, -1, elem.size, elem, verb)
return
}
#partial switch &e in elem.variant {
case runtime.Type_Info_Integer:
switch verb {
case 's', 'q':
switch elem.id {
case u8:
fmt_cstring(fi, cstring(ptr), verb)
return
case u16, u32, rune:
n := search_nul_termination(ptr, elem.size, -1)
fmt_array(fi, ptr, n, elem.size, elem, verb)
return
}
}
case runtime.Type_Info_Array,
runtime.Type_Info_Slice,
runtime.Type_Info_Dynamic_Array,
runtime.Type_Info_Map:
if fi.indirection_level < 1 {
fi.indirection_level += 1
defer fi.indirection_level -= 1
io.write_byte(fi.writer, '&', &fi.n)
fmt_value(fi, a, verb)
return
}
case runtime.Type_Info_Struct,
runtime.Type_Info_Union:
if fi.indirection_level < 1 {
fi.indirection_level += 1
defer fi.indirection_level -= 1
io.write_byte(fi.writer, '&', &fi.n)
fmt_value(fi, a, verb)
return
}
}
}
}
fmt_pointer(fi, ptr, verb)
}
fmt_enumerated_array :: proc(fi: ^Info, v: any, info: runtime.Type_Info_Enumerated_Array, verb: rune) {
fi.record_level += 1
defer fi.record_level -= 1
if fi.hash {
io.write_byte(fi.writer, '[' if verb != 'w' else '{', &fi.n)
io.write_byte(fi.writer, '\n', &fi.n)
defer {
fmt_write_indent(fi)
io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n)
}
indent := fi.indent
fi.indent += 1
defer fi.indent = indent
for i in 0..<info.count {
fmt_write_indent(fi)
idx, ok := stored_enum_value_to_string(info.index, info.min_value, i)
if ok {
io.write_byte(fi.writer, '.', &fi.n)
io.write_string(fi.writer, idx, &fi.n)
} else {
io.write_i64(fi.writer, i64(info.min_value)+i64(i), 10, &fi.n)
}
io.write_string(fi.writer, " = ", &fi.n)
data := uintptr(v.data) + uintptr(i*info.elem_size)
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb)
io.write_string(fi.writer, ",\n", &fi.n)
}
} else {
io.write_byte(fi.writer, '[' if verb != 'w' else '{', &fi.n)
defer io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n)
for i in 0..<info.count {
if i > 0 { io.write_string(fi.writer, ", ", &fi.n) }
idx, ok := stored_enum_value_to_string(info.index, info.min_value, i)
if ok {
io.write_byte(fi.writer, '.', &fi.n)
io.write_string(fi.writer, idx, &fi.n)
} else {
io.write_i64(fi.writer, i64(info.min_value)+i64(i), 10, &fi.n)
}
io.write_string(fi.writer, " = ", &fi.n)
data := uintptr(v.data) + uintptr(i*info.elem_size)
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb)
}
}
}
fmt_map :: proc(fi: ^Info, v: any, info: runtime.Type_Info_Map, verb: rune) {
switch verb {
case:
fmt_bad_verb(fi, verb)
case 'v', 'w':
if verb == 'v' {
io.write_string(fi.writer, "map", &fi.n)
}
io.write_byte(fi.writer, '[' if verb != 'w' else '{', &fi.n)
defer io.write_byte(fi.writer, ']' if verb != 'w' else '}', &fi.n)
hash := fi.hash; defer fi.hash = hash
indent := fi.indent; defer fi.indent -= 1
do_trailing_comma := hash
fi.indent += 1
if hash {
io.write_byte(fi.writer, '\n', &fi.n)
}
defer {
if hash {
for _ in 0..<indent { io.write_byte(fi.writer, '\t', &fi.n) }
}
}
m := (^mem.Raw_Map)(v.data)
if m != nil {
if info.map_info == nil {
return
}
map_cap := uintptr(runtime.map_cap(m^))
ks, vs, hs, _, _ := runtime.map_kvh_data_dynamic(m^, info.map_info)
j := 0
for bucket_index in 0..<map_cap {
runtime.map_hash_is_valid(hs[bucket_index]) or_continue
if !do_trailing_comma && j > 0 { io.write_string(fi.writer, ", ") }
if hash {
fmt_write_indent(fi)
}
j += 1
key := runtime.map_cell_index_dynamic(ks, info.map_info.ks, bucket_index)
value := runtime.map_cell_index_dynamic(vs, info.map_info.vs, bucket_index)
fmt_arg(&Info{writer = fi.writer}, any{rawptr(key), info.key.id}, verb)
if hash {
io.write_string(fi.writer, " = ", &fi.n)
} else {
io.write_string(fi.writer, "=", &fi.n)
}
fmt_arg(fi, any{rawptr(value), info.value.id}, verb)
if do_trailing_comma { io.write_string(fi.writer, ",\n", &fi.n) }
}
}
}
}
// Formats a value based on its type and formatting verb
//
// Inputs:
// - fi: A pointer to an Info struct containing formatting information.
// - v: The value to be formatted.
// - verb: The formatting verb rune.
//
// NOTE: Uses user formatters if available and not ignored.
//
fmt_value :: proc(fi: ^Info, v: any, verb: rune) {
if v.data == nil || v.id == nil {
io.write_string(fi.writer, "<nil>", &fi.n)
return
}
if _user_formatters != nil && !fi.ignore_user_formatters {
formatter := _user_formatters[v.id]
if formatter != nil {
if ok := formatter(fi, v, verb); !ok {
fi.ignore_user_formatters = true
fmt_bad_verb(fi, verb)
}
return
}
}
fi.ignore_user_formatters = false
type_info := type_info_of(v.id)
switch &info in type_info.variant {
case runtime.Type_Info_Any:
// Ignore
case runtime.Type_Info_Parameters:
// Ignore
case runtime.Type_Info_Named:
fmt_named(fi, v, verb, info)
case runtime.Type_Info_Boolean,
runtime.Type_Info_Integer,
runtime.Type_Info_Rune,
runtime.Type_Info_Float,
runtime.Type_Info_Complex,
runtime.Type_Info_Quaternion,
runtime.Type_Info_String:
fmt_arg(fi, v, verb)
case runtime.Type_Info_Pointer:
fmt_pointer_from_value(fi, v, info, verb)
case runtime.Type_Info_Soa_Pointer:
ptr := (^runtime.Raw_Soa_Pointer)(v.data)^
fmt_soa_pointer(fi, ptr, verb)
case runtime.Type_Info_Multi_Pointer:
fmt_multi_pointer(fi, v, info, verb)
case runtime.Type_Info_Enumerated_Array:
fmt_enumerated_array(fi, v, info, verb)
case runtime.Type_Info_Array:
n := info.count
ptr := v.data
if ol, ok := fi.optional_len.?; ok {
fi.optional_len = nil
n = min(n, ol)
} else if fi.use_nul_termination {
fi.use_nul_termination = false
fmt_array_nul_terminated(fi, ptr, n, info.elem_size, info.elem, verb)
return
}
fmt_array(fi, ptr, n, info.elem_size, info.elem, verb)
case runtime.Type_Info_Slice:
slice := cast(^mem.Raw_Slice)v.data
n := slice.len
ptr := slice.data
if ol, ok := fi.optional_len.?; ok {
fi.optional_len = nil
n = min(n, ol)
} else if fi.use_nul_termination {
fi.use_nul_termination = false
fmt_array_nul_terminated(fi, ptr, n, info.elem_size, info.elem, verb)
return
}
fmt_array(fi, ptr, n, info.elem_size, info.elem, verb)
case runtime.Type_Info_Dynamic_Array:
array := cast(^mem.Raw_Dynamic_Array)v.data
n := array.len
ptr := array.data
if ol, ok := fi.optional_len.?; ok {
fi.optional_len = nil
n = min(n, ol)
} else if fi.use_nul_termination {
fi.use_nul_termination = false
fmt_array_nul_terminated(fi, ptr, n, info.elem_size, info.elem, verb)
return
}
fmt_array(fi, ptr, n, info.elem_size, info.elem, verb)
case runtime.Type_Info_Simd_Vector:
io.write_byte(fi.writer, '<', &fi.n)
defer io.write_byte(fi.writer, '>', &fi.n)
for i in 0..<info.count {
if i > 0 { io.write_string(fi.writer, ", ", &fi.n) }
data := uintptr(v.data) + uintptr(i*info.elem_size)
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb)
}
case runtime.Type_Info_Map:
fmt_map(fi, v, info, verb)
case runtime.Type_Info_Struct:
fmt_struct(fi, v, verb, info, "")
case runtime.Type_Info_Union:
fmt_union(fi, v, verb, info, type_info.size)
case runtime.Type_Info_Enum:
fmt_enum(fi, v, verb)
case runtime.Type_Info_Procedure:
ptr := (^rawptr)(v.data)^
if ptr == nil {
io.write_string(fi.writer, "nil", &fi.n)
} else {
reflect.write_typeid(fi.writer, v.id, &fi.n)
io.write_string(fi.writer, " @ ", &fi.n)
fmt_pointer(fi, ptr, 'p')
}
case runtime.Type_Info_Type_Id:
id := (^typeid)(v.data)^
reflect.write_typeid(fi.writer, id, &fi.n)
case runtime.Type_Info_Bit_Set:
fmt_bit_set(fi, v, verb = verb)
case runtime.Type_Info_Matrix:
fmt_matrix(fi, v, verb, info)
case runtime.Type_Info_Bit_Field:
fmt_bit_field(fi, v, verb, info, "")
}
}
// This proc helps keep some of the code around whether or not to print an
// intermediate plus sign in complexes and quaternions more readable.
@(private)
_cq_should_print_intermediate_plus :: proc "contextless" (fi: ^Info, f: f64) -> bool {
if !fi.plus && f >= 0 {
#partial switch math.classify(f) {
case .Neg_Zero, .Inf:
// These two classes print their own signs.
return false
case:
return true
}
}
return false
}
// Formats a complex number based on the given formatting verb
//
// Inputs:
// - fi: A pointer to an Info struct containing formatting information.
// - c: The complex128 value to be formatted.
// - bits: The number of bits in the complex number (32 or 64).
// - verb: The formatting verb rune ('f', 'F', 'v', 'h', 'H', 'w').
//
fmt_complex :: proc(fi: ^Info, c: complex128, bits: int, verb: rune) {
switch verb {
case 'f', 'F', 'v', 'h', 'H', 'w':
r, i := real(c), imag(c)
fmt_float(fi, r, bits/2, verb)
if _cq_should_print_intermediate_plus(fi, i) {
io.write_rune(fi.writer, '+', &fi.n)
}
fmt_float(fi, i, bits/2, verb)
io.write_rune(fi.writer, 'i', &fi.n)
case:
fmt_bad_verb(fi, verb)
return
}
}
// Formats a quaternion number based on the given formatting verb
//
// Inputs:
// - fi: A pointer to an Info struct containing formatting information.
// - q: The quaternion256 value to be formatted.
// - bits: The number of bits in the quaternion number (64, 128, or 256).
// - verb: The formatting verb rune ('f', 'F', 'v', 'h', 'H', 'w').
//
fmt_quaternion :: proc(fi: ^Info, q: quaternion256, bits: int, verb: rune) {
switch verb {
case 'f', 'F', 'v', 'h', 'H', 'w':
r, i, j, k := real(q), imag(q), jmag(q), kmag(q)
fmt_float(fi, r, bits/4, verb)
if _cq_should_print_intermediate_plus(fi, i) {
io.write_rune(fi.writer, '+', &fi.n)
}
fmt_float(fi, i, bits/4, verb)
io.write_rune(fi.writer, 'i', &fi.n)
if _cq_should_print_intermediate_plus(fi, j) {
io.write_rune(fi.writer, '+', &fi.n)
}
fmt_float(fi, j, bits/4, verb)
io.write_rune(fi.writer, 'j', &fi.n)
if _cq_should_print_intermediate_plus(fi, k) {
io.write_rune(fi.writer, '+', &fi.n)
}
fmt_float(fi, k, bits/4, verb)
io.write_rune(fi.writer, 'k', &fi.n)
case:
fmt_bad_verb(fi, verb)
return
}
}
// Formats an argument based on its type and the given formatting verb
//
// Inputs:
// - fi: A pointer to an Info struct containing formatting information.
// - arg: The value to be formatted.
// - verb: The formatting verb rune (e.g. 'T').
//
// NOTE: Uses user formatters if available and not ignored.
//
fmt_arg :: proc(fi: ^Info, arg: any, verb: rune) {
if arg == nil {
io.write_string(fi.writer, "<nil>")
return
}
fi.arg = arg
if verb == 'T' {
ti := type_info_of(arg.id)
switch a in arg {
case ^runtime.Type_Info: ti = a
}
reflect.write_type(fi.writer, ti, &fi.n)
return
}
if _user_formatters != nil {
formatter := _user_formatters[arg.id]
if formatter != nil {
if ok := formatter(fi, arg, verb); !ok {
fmt_bad_verb(fi, verb)
}
return
}
}
arg_info := type_info_of(arg.id)
if info, ok := arg_info.variant.(runtime.Type_Info_Named); ok {
fmt_named(fi, arg, verb, info)
return
}
base_arg := arg
base_arg.id = runtime.typeid_base(base_arg.id)
switch &a in base_arg {
case bool: fmt_bool(fi, a, verb)
case b8: fmt_bool(fi, bool(a), verb)
case b16: fmt_bool(fi, bool(a), verb)
case b32: fmt_bool(fi, bool(a), verb)
case b64: fmt_bool(fi, bool(a), verb)
case any: fmt_arg(fi, a, verb)
case rune: fmt_rune(fi, a, verb)
case f16: fmt_float(fi, f64(a), 16, verb)
case f32: fmt_float(fi, f64(a), 32, verb)
case f64: fmt_float(fi, a, 64, verb)
case f16le: fmt_float(fi, f64(a), 16, verb)
case f32le: fmt_float(fi, f64(a), 32, verb)
case f64le: fmt_float(fi, f64(a), 64, verb)
case f16be: fmt_float(fi, f64(a), 16, verb)
case f32be: fmt_float(fi, f64(a), 32, verb)
case f64be: fmt_float(fi, f64(a), 64, verb)
case complex32: fmt_complex(fi, complex128(a), 32, verb)
case complex64: fmt_complex(fi, complex128(a), 64, verb)
case complex128: fmt_complex(fi, a, 128, verb)
case quaternion64: fmt_quaternion(fi, quaternion256(a), 64, verb)
case quaternion128: fmt_quaternion(fi, quaternion256(a), 128, verb)
case quaternion256: fmt_quaternion(fi, a, 256, verb)
case i8: fmt_int(fi, u64(a), true, 8, verb)
case u8: fmt_int(fi, u64(a), false, 8, verb)
case i16: fmt_int(fi, u64(a), true, 16, verb)
case u16: fmt_int(fi, u64(a), false, 16, verb)
case i32: fmt_int(fi, u64(a), true, 32, verb)
case u32: fmt_int(fi, u64(a), false, 32, verb)
case i64: fmt_int(fi, u64(a), true, 64, verb)
case u64: fmt_int(fi, a, false, 64, verb)
case int: fmt_int(fi, u64(a), true, 8*size_of(int), verb)
case uint: fmt_int(fi, u64(a), false, 8*size_of(uint), verb)
case uintptr: fmt_int(fi, u64(a), false, 8*size_of(uintptr), verb)
case string: fmt_string(fi, a, verb)
case cstring: fmt_cstring(fi, a, verb)
case string16: fmt_string16(fi, a, verb)
case cstring16: fmt_cstring16(fi, a, verb)
case typeid: reflect.write_typeid(fi.writer, a, &fi.n)
case i16le: fmt_int(fi, u64(a), true, 16, verb)
case u16le: fmt_int(fi, u64(a), false, 16, verb)
case i32le: fmt_int(fi, u64(a), true, 32, verb)
case u32le: fmt_int(fi, u64(a), false, 32, verb)
case i64le: fmt_int(fi, u64(a), true, 64, verb)
case u64le: fmt_int(fi, u64(a), false, 64, verb)
case i16be: fmt_int(fi, u64(a), true, 16, verb)
case u16be: fmt_int(fi, u64(a), false, 16, verb)
case i32be: fmt_int(fi, u64(a), true, 32, verb)
case u32be: fmt_int(fi, u64(a), false, 32, verb)
case i64be: fmt_int(fi, u64(a), true, 64, verb)
case u64be: fmt_int(fi, u64(a), false, 64, verb)
case i128: fmt_int_128(fi, u128(a), true, 128, verb)
case u128: fmt_int_128(fi, a, false, 128, verb)
case i128le: fmt_int_128(fi, u128(a), true, 128, verb)
case u128le: fmt_int_128(fi, u128(a), false, 128, verb)
case i128be: fmt_int_128(fi, u128(a), true, 128, verb)
case u128be: fmt_int_128(fi, u128(a), false, 128, verb)
case: fmt_value(fi, arg, verb)
}
}