Files
Odin/core/math/big/internal.odin
2025-11-27 10:24:22 +00:00

2955 lines
73 KiB
Odin

package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's license.
========================== Low-level routines ==========================
IMPORTANT: `internal_*` procedures make certain assumptions about their input.
The public functions that call them are expected to satisfy their sanity check requirements.
This allows `internal_*` call `internal_*` without paying this overhead multiple times.
Where errors can occur, they are of course still checked and returned as appropriate.
When importing `math:core/big` to implement an involved algorithm of your own, you are welcome
to use these procedures instead of their public counterparts.
Most inputs and outputs are expected to be passed an initialized `Int`, for example.
Exceptions include `quotient` and `remainder`, which are allowed to be `nil` when the calling code doesn't need them.
Check the comments above each `internal_*` implementation to see what constraints it expects to have met.
We pass the custom allocator to procedures by default using the pattern `context.allocator = allocator`.
This way we don't have to add `, allocator` at the end of each call.
TODO: Handle +/- Infinity and NaN.
*/
import "base:builtin"
import "base:intrinsics"
import "core:mem"
import rnd "core:math/rand"
/*
Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.
Assumptions:
`dest`, `a` and `b` != `nil` and have been initalized.
*/
internal_int_add_unsigned :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
dest := dest; x := a; y := b
context.allocator = allocator
old_used, min_used, max_used, i: int
if x.used < y.used {
x, y = y, x
}
min_used = y.used
max_used = x.used
old_used = dest.used
internal_grow(dest, max(max_used + 1, _DEFAULT_DIGIT_COUNT)) or_return
dest.used = max_used + 1
/*
All parameters have been initialized.
*/
/* Zero the carry */
carry := DIGIT(0)
#no_bounds_check for i = 0; i < min_used; i += 1 {
/*
Compute the sum one _DIGIT at a time.
dest[i] = a[i] + b[i] + carry;
*/
dest.digit[i] = x.digit[i] + y.digit[i] + carry
/*
Compute carry
*/
carry = dest.digit[i] >> _DIGIT_BITS
/*
Mask away carry from result digit.
*/
dest.digit[i] &= _MASK
}
if min_used != max_used {
/*
Now copy higher words, if any, in A+B.
If A or B has more digits, add those in.
*/
#no_bounds_check for ; i < max_used; i += 1 {
dest.digit[i] = x.digit[i] + carry
/*
Compute carry
*/
carry = dest.digit[i] >> _DIGIT_BITS
/*
Mask away carry from result digit.
*/
dest.digit[i] &= _MASK
}
}
/*
Add remaining carry.
*/
dest.digit[i] = carry
/*
Zero remainder.
*/
internal_zero_unused(dest, old_used)
/*
Adjust dest.used based on leading zeroes.
*/
return internal_clamp(dest)
}
internal_add_unsigned :: proc { internal_int_add_unsigned, }
/*
Low-level addition, signed. Handbook of Applied Cryptography, algorithm 14.7.
Assumptions:
`dest`, `a` and `b` != `nil` and have been initalized.
*/
internal_int_add_signed :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
x := a; y := b
context.allocator = allocator
/*
Handle both negative or both positive.
*/
if x.sign == y.sign {
dest.sign = x.sign
return #force_inline internal_int_add_unsigned(dest, x, y)
}
/*
One positive, the other negative.
Subtract the one with the greater magnitude from the other.
The result gets the sign of the one with the greater magnitude.
*/
if #force_inline internal_lt_abs(a, b) {
x, y = y, x
}
dest.sign = x.sign
return #force_inline internal_int_sub_unsigned(dest, x, y)
}
internal_add_signed :: proc { internal_int_add_signed, }
/*
Low-level addition Int+DIGIT, signed. Handbook of Applied Cryptography, algorithm 14.7.
Assumptions:
`dest` and `a` != `nil` and have been initalized.
`dest` is large enough (a.used + 1) to fit result.
*/
internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
internal_grow(dest, a.used + 1) or_return
/*
Fast paths for destination and input Int being the same.
*/
if dest == a {
/*
Fast path for dest.digit[0] + digit fits in dest.digit[0] without overflow.
*/
if dest.sign == .Zero_or_Positive && (dest.digit[0] + digit < _DIGIT_MAX) {
dest.digit[0] += digit
dest.used += 1
return internal_clamp(dest)
}
/*
Can be subtracted from dest.digit[0] without underflow.
*/
if a.sign == .Negative && (dest.digit[0] > digit) {
dest.digit[0] -= digit
dest.used += 1
return internal_clamp(dest)
}
}
/*
If `a` is negative and `|a|` >= `digit`, call `dest = |a| - digit`
*/
if a.sign == .Negative && (a.used > 1 || a.digit[0] >= digit) {
/*
Temporarily fix `a`'s sign.
*/
a.sign = .Zero_or_Positive
/*
dest = |a| - digit
*/
if err = #force_inline internal_int_add_digit(dest, a, digit); err != nil {
/*
Restore a's sign.
*/
a.sign = .Negative
return err
}
/*
Restore sign and set `dest` sign.
*/
a.sign = .Negative
dest.sign = .Negative
return internal_clamp(dest)
}
/*
Remember the currently used number of digits in `dest`.
*/
old_used := dest.used
/*
If `a` is positive
*/
if a.sign == .Zero_or_Positive {
/*
Add digits, use `carry`.
*/
i: int
carry := digit
#no_bounds_check for i = 0; i < a.used; i += 1 {
dest.digit[i] = a.digit[i] + carry
carry = dest.digit[i] >> _DIGIT_BITS
dest.digit[i] &= _MASK
}
/*
Set final carry.
*/
dest.digit[i] = carry
/*
Set `dest` size.
*/
dest.used = a.used + 1
} else {
/*
`a` was negative and |a| < digit.
*/
dest.used = 1
/*
The result is a single DIGIT.
*/
dest.digit[0] = digit - a.digit[0] if a.used == 1 else digit
}
/*
Sign is always positive.
*/
dest.sign = .Zero_or_Positive
/*
Zero remainder.
*/
internal_zero_unused(dest, old_used)
/*
Adjust dest.used based on leading zeroes.
*/
return internal_clamp(dest)
}
internal_add :: proc { internal_int_add_signed, internal_int_add_digit, }
internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_add(dest, dest, 1)
}
internal_incr :: proc { internal_int_incr, }
/*
Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
Handbook of Applied Cryptography, algorithm 14.9.
Assumptions:
`dest`, `number` and `decrease` != `nil` and have been initalized.
*/
internal_int_sub_unsigned :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
dest := dest; x := number; y := decrease
old_used := dest.used
min_used := y.used
max_used := x.used
i: int
grow(dest, max(max_used, _DEFAULT_DIGIT_COUNT)) or_return
dest.used = max_used
/*
All parameters have been initialized.
*/
borrow := DIGIT(0)
#no_bounds_check for i = 0; i < min_used; i += 1 {
dest.digit[i] = (x.digit[i] - y.digit[i] - borrow)
/*
borrow = carry bit of dest[i]
Note this saves performing an AND operation since if a carry does occur,
it will propagate all the way to the MSB.
As a result a single shift is enough to get the carry.
*/
borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1)
/*
Clear borrow from dest[i].
*/
dest.digit[i] &= _MASK
}
/*
Now copy higher words if any, e.g. if A has more digits than B
*/
#no_bounds_check for ; i < max_used; i += 1 {
dest.digit[i] = x.digit[i] - borrow
/*
borrow = carry bit of dest[i]
Note this saves performing an AND operation since if a carry does occur,
it will propagate all the way to the MSB.
As a result a single shift is enough to get the carry.
*/
borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1)
/*
Clear borrow from dest[i].
*/
dest.digit[i] &= _MASK
}
/*
Zero remainder.
*/
internal_zero_unused(dest, old_used)
/*
Adjust dest.used based on leading zeroes.
*/
return internal_clamp(dest)
}
internal_sub_unsigned :: proc { internal_int_sub_unsigned, }
/*
Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9.
dest = number - decrease. Assumes |number| > |decrease|.
Assumptions:
`dest`, `number` and `decrease` != `nil` and have been initalized.
*/
internal_int_sub_signed :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
number := number; decrease := decrease
if number.sign != decrease.sign {
/*
Subtract a negative from a positive, OR subtract a positive from a negative.
In either case, ADD their magnitudes and use the sign of the first number.
*/
dest.sign = number.sign
return #force_inline internal_int_add_unsigned(dest, number, decrease)
}
/*
Subtract a positive from a positive, OR negative from a negative.
First, take the difference between their magnitudes, then...
*/
if #force_inline internal_lt_abs(number, decrease) {
/*
The second has a larger magnitude.
The result has the *opposite* sign from the first number.
*/
dest.sign = .Negative if number.sign == .Zero_or_Positive else .Zero_or_Positive
number, decrease = decrease, number
} else {
/*
The first has a larger or equal magnitude.
Copy the sign from the first.
*/
dest.sign = number.sign
}
return #force_inline internal_int_sub_unsigned(dest, number, decrease)
}
/*
Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9.
dest = number - decrease. Assumes |number| > |decrease|.
Assumptions:
`dest`, `number` != `nil` and have been initalized.
`dest` is large enough (number.used + 1) to fit result.
*/
internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
internal_grow(dest, number.used + 1) or_return
dest := dest; digit := digit
/*
All parameters have been initialized.
Fast paths for destination and input Int being the same.
*/
if dest == number {
/*
Fast path for `dest` is negative and unsigned addition doesn't overflow the lowest digit.
*/
if dest.sign == .Negative && (dest.digit[0] + digit < _DIGIT_MAX) {
dest.digit[0] += digit
return nil
}
/*
Can be subtracted from dest.digit[0] without underflow.
*/
if number.sign == .Zero_or_Positive && (dest.digit[0] > digit) {
dest.digit[0] -= digit
return nil
}
}
/*
If `a` is negative, just do an unsigned addition (with fudged signs).
*/
if number.sign == .Negative {
t := number
t.sign = .Zero_or_Positive
err = #force_inline internal_int_add_digit(dest, t, digit)
dest.sign = .Negative
internal_clamp(dest)
return err
}
old_used := dest.used
/*
if `a`<= digit, simply fix the single digit.
*/
if number.used == 1 && (number.digit[0] <= digit) || number.used == 0 {
dest.digit[0] = digit - number.digit[0] if number.used == 1 else digit
dest.sign = .Negative
dest.used = 1
} else {
dest.sign = .Zero_or_Positive
dest.used = number.used
/*
Subtract with carry.
*/
carry := digit
#no_bounds_check for i := 0; i < number.used; i += 1 {
dest.digit[i] = number.digit[i] - carry
carry = dest.digit[i] >> (_DIGIT_TYPE_BITS - 1)
dest.digit[i] &= _MASK
}
}
/*
Zero remainder.
*/
internal_zero_unused(dest, old_used)
/*
Adjust dest.used based on leading zeroes.
*/
return internal_clamp(dest)
}
internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, }
internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_sub(dest, dest, 1)
}
internal_decr :: proc { internal_int_decr, }
/*
dest = src / 2
dest = src >> 1
Assumes `dest` and `src` not to be `nil` and have been initialized.
We make no allocations here.
*/
internal_int_shr1 :: proc(dest, src: ^Int) -> (err: Error) {
old_used := dest.used; dest.used = src.used
/*
Carry
*/
fwd_carry := DIGIT(0)
#no_bounds_check for x := dest.used - 1; x >= 0; x -= 1 {
/*
Get the carry for the next iteration.
*/
src_digit := src.digit[x]
carry := src_digit & 1
/*
Shift the current digit, add in carry and store.
*/
dest.digit[x] = (src_digit >> 1) | (fwd_carry << (_DIGIT_BITS - 1))
/*
Forward carry to next iteration.
*/
fwd_carry = carry
}
/*
Zero remainder.
*/
internal_zero_unused(dest, old_used)
/*
Adjust dest.used based on leading zeroes.
*/
dest.sign = src.sign
return internal_clamp(dest)
}
/*
dest = src * 2
dest = src << 1
*/
internal_int_shl1 :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
internal_copy(dest, src) or_return
/*
Grow `dest` to accommodate the additional bits.
*/
digits_needed := dest.used + 1
internal_grow(dest, digits_needed) or_return
dest.used = digits_needed
mask := (DIGIT(1) << uint(1)) - DIGIT(1)
shift := DIGIT(_DIGIT_BITS - 1)
carry := DIGIT(0)
#no_bounds_check for x:= 0; x < dest.used; x+= 1 {
fwd_carry := (dest.digit[x] >> shift) & mask
dest.digit[x] = (dest.digit[x] << uint(1) | carry) & _MASK
carry = fwd_carry
}
/*
Use final carry.
*/
if carry != 0 {
dest.digit[dest.used] = carry
dest.used += 1
}
return internal_clamp(dest)
}
/*
Multiply bigint `a` with int `d` and put the result in `dest`.
Like `internal_int_mul_digit` but with an integer as the small input.
*/
internal_int_mul_integer :: proc(dest, a: ^Int, b: $T, allocator := context.allocator) -> (err: Error)
where intrinsics.type_is_integer(T), T != DIGIT {
context.allocator = allocator
t := &Int{}
defer internal_destroy(t)
/*
DIGIT might be smaller than a long, which excludes the use of `internal_int_mul_digit` here.
*/
internal_set(t, b) or_return
internal_mul(dest, a, t) or_return
return
}
/*
Multiply by a DIGIT.
*/
internal_int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
assert_if_nil(dest, src)
if multiplier == 0 {
return internal_zero(dest)
}
if multiplier == 1 {
return internal_copy(dest, src)
}
/*
Power of two?
*/
if multiplier == 2 {
return #force_inline internal_int_shl1(dest, src)
}
if #force_inline platform_int_is_power_of_two(int(multiplier)) {
ix := internal_log(multiplier, 2) or_return
return internal_shl(dest, src, ix)
}
/*
Ensure `dest` is big enough to hold `src` * `multiplier`.
*/
grow(dest, max(src.used + 1, _DEFAULT_DIGIT_COUNT)) or_return
/*
Save the original used count.
*/
old_used := dest.used
/*
Set the sign.
*/
dest.sign = src.sign
/*
Set up carry.
*/
carry := _WORD(0)
/*
Compute columns.
*/
ix := 0
#no_bounds_check for ; ix < src.used; ix += 1 {
/*
Compute product and carry sum for this term
*/
product := carry + _WORD(src.digit[ix]) * _WORD(multiplier)
/*
Mask off higher bits to get a single DIGIT.
*/
dest.digit[ix] = DIGIT(product & _WORD(_MASK))
/*
Send carry into next iteration
*/
carry = product >> _DIGIT_BITS
}
/*
Store final carry [if any] and increment used.
*/
dest.digit[ix] = DIGIT(carry)
dest.used = src.used + 1
/*
Zero remainder.
*/
internal_zero_unused(dest, old_used)
return internal_clamp(dest)
}
/*
High level multiplication (handles sign).
*/
internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
Early out for `multiplier` is zero; Set `dest` to zero.
*/
if multiplier.used == 0 || src.used == 0 { return internal_zero(dest) }
neg := src.sign != multiplier.sign
if src == multiplier {
/*
Do we need to square?
*/
if src.used >= SQR_TOOM_CUTOFF {
/*
Use Toom-Cook?
*/
err = #force_inline _private_int_sqr_toom(dest, src)
} else if src.used >= SQR_KARATSUBA_CUTOFF {
/*
Karatsuba?
*/
err = #force_inline _private_int_sqr_karatsuba(dest, src)
} else if ((src.used * 2) + 1) < _WARRAY && src.used < (_MAX_COMBA / 2) {
/*
Fast comba?
*/
err = #force_inline _private_int_sqr_comba(dest, src)
} else {
err = #force_inline _private_int_sqr(dest, src)
}
} else {
/*
Can we use the balance method? Check sizes.
* The smaller one needs to be larger than the Karatsuba cut-off.
* The bigger one needs to be at least about one `_MUL_KARATSUBA_CUTOFF` bigger
* to make some sense, but it depends on architecture, OS, position of the stars... so YMMV.
* Using it to cut the input into slices small enough for _mul_comba
* was actually slower on the author's machine, but YMMV.
*/
min_used := min(src.used, multiplier.used)
max_used := max(src.used, multiplier.used)
digits := src.used + multiplier.used + 1
if min_used >= MUL_KARATSUBA_CUTOFF && (max_used / 2) >= MUL_KARATSUBA_CUTOFF && max_used >= (2 * min_used) {
/*
Not much effect was observed below a ratio of 1:2, but again: YMMV.
*/
err = _private_int_mul_balance(dest, src, multiplier)
} else if min_used >= MUL_TOOM_CUTOFF {
/*
Toom path commented out until it no longer fails Factorial 10k or 100k,
as reveaved in the long test.
*/
err = #force_inline _private_int_mul_toom(dest, src, multiplier)
} else if min_used >= MUL_KARATSUBA_CUTOFF {
err = #force_inline _private_int_mul_karatsuba(dest, src, multiplier)
} else if digits < _WARRAY && min_used <= _MAX_COMBA {
/*
Can we use the fast multiplier?
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
err = #force_inline _private_int_mul_comba(dest, src, multiplier, digits)
} else {
err = #force_inline _private_int_mul(dest, src, multiplier, digits)
}
}
dest.sign = .Negative if dest.used > 0 && neg else .Zero_or_Positive
return err
}
internal_mul :: proc { internal_int_mul, internal_int_mul_digit, internal_int_mul_integer }
internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res: Error) {
/*
We call `internal_mul` and not e.g. `_private_int_sqr` because the former
will dispatch to the optimal implementation depending on the source.
*/
return #force_inline internal_mul(dest, src, src, allocator)
}
/*
divmod.
Both the quotient and remainder are optional and may be passed a nil.
`numerator` and `denominator` are expected not to be `nil` and have been initialized.
*/
internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
if denominator.used == 0 { return .Division_by_Zero }
/*
If numerator < denominator then quotient = 0, remainder = numerator.
*/
if #force_inline internal_lt_abs(numerator, denominator) {
if remainder != nil {
internal_copy(remainder, numerator) or_return
}
if quotient != nil {
internal_zero(quotient)
}
return nil
}
if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used / 3) * 2) {
assert(denominator.used >= 160 && numerator.used >= 240, "MUL_KARATSUBA_CUTOFF global not properly set.")
return _private_int_div_recursive(quotient, remainder, numerator, denominator)
} else {
return #force_inline _private_int_div_school(quotient, remainder, numerator, denominator)
/*
NOTE(Jeroen): We no longer need or use `_private_int_div_small`.
We'll keep it around for a bit until we're reasonably certain div_school is bug free.
*/
// err = _private_int_div_small(quotient, remainder, numerator, denominator)
}
}
/*
Single digit division (based on routine from MPI).
The quotient is optional and may be passed a nil.
*/
internal_int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {
context.allocator = allocator
/*
Cannot divide by zero.
*/
if denominator == 0 { return 0, .Division_by_Zero }
/*
Quick outs.
*/
if denominator == 1 || numerator.used == 0 {
if quotient != nil {
return 0, internal_copy(quotient, numerator)
}
return 0, err
}
/*
Power of two?
*/
if denominator == 2 {
if numerator.used > 0 && numerator.digit[0] & 1 != 0 {
// Remainder is 1 if numerator is odd.
remainder = 1
}
if quotient == nil {
return remainder, nil
}
return remainder, internal_shr(quotient, numerator, 1)
}
ix: int
if platform_int_is_power_of_two(int(denominator)) {
ix = 1
for ix < _DIGIT_BITS && denominator != (1 << uint(ix)) {
ix += 1
}
remainder = numerator.digit[0] & ((1 << uint(ix)) - 1)
if quotient == nil {
return remainder, nil
}
return remainder, internal_shr(quotient, numerator, int(ix))
}
/*
Three?
*/
if denominator == 3 {
return _private_int_div_3(quotient, numerator)
}
/*
No easy answer [c'est la vie]. Just division.
*/
q := &Int{}
internal_grow(q, numerator.used) or_return
q.used = numerator.used
q.sign = numerator.sign
w := _WORD(0)
for ix = numerator.used - 1; ix >= 0; ix -= 1 {
t := DIGIT(0)
w = (w << _WORD(_DIGIT_BITS) | _WORD(numerator.digit[ix]))
if w >= _WORD(denominator) {
t = DIGIT(w / _WORD(denominator))
w -= _WORD(t) * _WORD(denominator)
}
q.digit[ix] = t
}
remainder = DIGIT(w)
if quotient != nil {
internal_clamp(q)
internal_swap(q, quotient)
}
internal_destroy(q)
return remainder, nil
}
internal_divmod :: proc { internal_int_divmod, internal_int_divmod_digit, }
/*
Asssumes quotient, numerator and denominator to have been initialized and not to be nil.
*/
internal_int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_int_divmod(quotient, nil, numerator, denominator, allocator)
}
internal_div :: proc { internal_int_div, }
/*
remainder = numerator % denominator.
0 <= remainder < denominator if denominator > 0
denominator < remainder <= 0 if denominator < 0
Asssumes quotient, numerator and denominator to have been initialized and not to be nil.
*/
internal_int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
#force_inline internal_int_divmod(nil, remainder, numerator, denominator, allocator) or_return
if remainder.used == 0 || denominator.sign == remainder.sign { return nil }
return #force_inline internal_add(remainder, remainder, denominator, allocator)
}
internal_int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {
return internal_int_divmod_digit(nil, numerator, denominator, allocator)
}
internal_mod :: proc{ internal_int_mod, internal_int_mod_digit, }
/*
remainder = (number + addend) % modulus.
*/
internal_int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
#force_inline internal_add(remainder, number, addend, allocator) or_return
return #force_inline internal_mod(remainder, remainder, modulus, allocator)
}
internal_addmod :: proc { internal_int_addmod, }
/*
remainder = (number - decrease) % modulus.
*/
internal_int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
#force_inline internal_sub(remainder, number, decrease, allocator) or_return
return #force_inline internal_mod(remainder, remainder, modulus, allocator)
}
internal_submod :: proc { internal_int_submod, }
/*
remainder = (number * multiplicand) % modulus.
*/
internal_int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
#force_inline internal_mul(remainder, number, multiplicand, allocator) or_return
return #force_inline internal_mod(remainder, remainder, modulus, allocator)
}
internal_mulmod :: proc { internal_int_mulmod, }
/*
remainder = (number * number) % modulus.
*/
internal_int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
#force_inline internal_sqr(remainder, number, allocator) or_return
return #force_inline internal_mod(remainder, remainder, modulus, allocator)
}
internal_sqrmod :: proc { internal_int_sqrmod, }
/*
TODO: Use Sterling's Approximation to estimate log2(N!) to size the result.
This way we'll have to reallocate less, possibly not at all.
*/
internal_int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
if n >= FACTORIAL_BINARY_SPLIT_CUTOFF {
return _private_int_factorial_binary_split(res, n)
}
i := len(_factorial_table)
if n < i {
return #force_inline internal_set(res, _factorial_table[n])
}
#force_inline internal_set(res, _factorial_table[i - 1]) or_return
for {
if err = #force_inline internal_mul(res, res, DIGIT(i)); err != nil || i == n {
return err
}
i += 1
}
return nil
}
/*
Returns GCD, LCM or both.
Assumes `a` and `b` to have been initialized.
`res_gcd` and `res_lcm` can be nil or ^Int depending on which results are desired.
*/
internal_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
if res_gcd == nil && res_lcm == nil { return nil }
return #force_inline _private_int_gcd_lcm(res_gcd, res_lcm, a, b, allocator)
}
internal_int_gcd :: proc(res_gcd, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline _private_int_gcd_lcm(res_gcd, nil, a, b, allocator)
}
internal_int_lcm :: proc(res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline _private_int_gcd_lcm(nil, res_lcm, a, b, allocator)
}
/*
remainder = numerator % (1 << bits)
Assumes `remainder` and `numerator` both not to be `nil` and `bits` to be >= 0.
*/
internal_int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
/*
Everything is divisible by 1 << 0 == 1, so this returns 0.
*/
if bits == 0 { return internal_zero(remainder) }
/*
If the modulus is larger than the value, return the value.
*/
internal_copy(remainder, numerator) or_return
if bits >= (numerator.used * _DIGIT_BITS) {
return
}
/*
Zero digits above the last digit of the modulus.
*/
zero_count := (bits / _DIGIT_BITS)
zero_count += 0 if (bits % _DIGIT_BITS == 0) else 1
/*
Zero remainder. Special case, can't use `internal_zero_unused`.
*/
if zero_count > 0 {
mem.zero_slice(remainder.digit[zero_count:])
}
/*
Clear the digit that is not completely outside/inside the modulus.
*/
remainder.digit[bits / _DIGIT_BITS] &= DIGIT(1 << DIGIT(bits % _DIGIT_BITS)) - DIGIT(1)
return internal_clamp(remainder)
}
/*
============================= Low-level helpers =============================
`internal_*` helpers don't return an `Error` like their public counterparts do,
because they expect not to be passed `nil` or uninitialized inputs.
This makes them more suitable for `internal_*` functions and some of the
public ones that have already satisfied these constraints.
*/
/*
This procedure returns the allocated capacity of an Int.
Assumes `a` not to be `nil`.
*/
internal_int_allocated_cap :: #force_inline proc(a: ^Int) -> (cap: int) {
raw := transmute(mem.Raw_Dynamic_Array)a.digit
return raw.cap
}
/*
This procedure will return `true` if the `Int` is initialized, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_initialized :: #force_inline proc(a: ^Int) -> (initialized: bool) {
return internal_int_allocated_cap(a) >= _MIN_DIGIT_COUNT
}
internal_is_initialized :: proc { internal_int_is_initialized, }
/*
This procedure will return `true` if the `Int` is zero, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_zero :: #force_inline proc(a: ^Int) -> (zero: bool) {
return a.used == 0
}
internal_is_zero :: proc {
internal_rat_is_zero,
internal_int_is_zero,
}
/*
This procedure will return `true` if the `Int` is positive, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_positive :: #force_inline proc(a: ^Int) -> (positive: bool) {
return a.sign == .Zero_or_Positive
}
internal_is_positive :: proc { internal_int_is_positive, }
/*
This procedure will return `true` if the `Int` is negative, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_negative :: #force_inline proc(a: ^Int) -> (negative: bool) {
return a.sign == .Negative
}
internal_is_negative :: proc { internal_int_is_negative, }
/*
This procedure will return `true` if the `Int` is even, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_even :: #force_inline proc(a: ^Int) -> (even: bool) {
if internal_is_zero(a) { return true }
/*
`a.used` > 0 here, because the above handled `is_zero`.
We don't need to explicitly test it.
*/
return a.digit[0] & 1 == 0
}
internal_is_even :: proc { internal_int_is_even, }
/*
This procedure will return `true` if the `Int` is even, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_odd :: #force_inline proc(a: ^Int) -> (odd: bool) {
return !internal_int_is_even(a)
}
internal_is_odd :: proc { internal_int_is_odd, }
/*
This procedure will return `true` if the `Int` is a power of two, `false` if not.
Assumes `a` not to be `nil`.
*/
internal_int_is_power_of_two :: #force_inline proc(a: ^Int) -> (power_of_two: bool) {
/*
Early out for Int == 0.
*/
if #force_inline internal_is_zero(a) { return true }
/*
For an `Int` to be a power of two, its bottom limb has to be a power of two.
*/
if ! #force_inline platform_int_is_power_of_two(int(a.digit[a.used - 1])) { return false }
/*
We've established that the bottom limb is a power of two.
If it's the only limb, that makes the entire Int a power of two.
*/
if a.used == 1 { return true }
/*
For an `Int` to be a power of two, all limbs except the top one have to be zero.
*/
for i := 1; i < a.used && a.digit[i - 1] != 0; i += 1 { return false }
return true
}
internal_is_power_of_two :: proc { internal_int_is_power_of_two, }
/*
Compare two `Int`s, signed.
Returns -1 if `a` < `b`, 0 if `a` == `b` and 1 if `b` > `a`.
Expects `a` and `b` both to be valid `Int`s, i.e. initialized and not `nil`.
*/
internal_int_compare :: #force_inline proc(a, b: ^Int) -> (comparison: int) {
assert_if_nil(a, b)
a_is_negative := #force_inline internal_is_negative(a)
/*
Compare based on sign.
*/
if a.sign != b.sign { return -1 if a_is_negative else +1 }
/*
If `a` is negative, compare in the opposite direction */
if a_is_negative { return #force_inline internal_compare_magnitude(b, a) }
return #force_inline internal_compare_magnitude(a, b)
}
internal_compare :: proc { internal_int_compare, internal_int_compare_digit, }
internal_cmp :: internal_compare
/*
Compare an `Int` to an unsigned number upto `DIGIT & _MASK`.
Returns -1 if `a` < `b`, 0 if `a` == `b` and 1 if `b` > `a`.
Expects: `a` and `b` both to be valid `Int`s, i.e. initialized and not `nil`.
*/
internal_int_compare_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (comparison: int) {
assert_if_nil(a)
a_is_negative := #force_inline internal_is_negative(a)
switch {
/*
Compare based on sign first.
*/
case a_is_negative: return -1
/*
Then compare on magnitude.
*/
case a.used > 1: return +1
/*
We have only one digit. Compare it against `b`.
*/
case a.digit[0] < b: return -1
case a.digit[0] == b: return 0
case a.digit[0] > b: return +1
/*
Unreachable.
Just here because Odin complains about a missing return value at the bottom of the proc otherwise.
*/
case: return
}
}
internal_compare_digit :: proc { internal_int_compare_digit, }
internal_cmp_digit :: internal_compare_digit
/*
Compare the magnitude of two `Int`s, unsigned.
*/
internal_int_compare_magnitude :: #force_inline proc(a, b: ^Int) -> (comparison: int) {
assert_if_nil(a, b)
// Compare based on used digits.
if a.used != b.used {
return +1 if a.used > b.used else -1
}
// Same number of used digits, compare based on their value.
#no_bounds_check for n := a.used - 1; n >= 0; n -= 1 {
if a.digit[n] != b.digit[n] {
return +1 if a.digit[n] > b.digit[n] else -1
}
}
return 0
}
internal_compare_magnitude :: proc { internal_int_compare_magnitude, }
internal_cmp_mag :: internal_compare_magnitude
/*
bool := a < b
*/
internal_int_less_than :: #force_inline proc(a, b: ^Int) -> (less_than: bool) {
return internal_cmp(a, b) < 0
}
/*
bool := a < b
*/
internal_int_less_than_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (less_than: bool) {
return internal_cmp_digit(a, b) < 0
}
/*
bool := |a| < |b|
Compares the magnitudes only, ignores the sign.
*/
internal_int_less_than_abs :: #force_inline proc(a, b: ^Int) -> (less_than: bool) {
return internal_cmp_mag(a, b) < 0
}
internal_less_than :: proc {
internal_int_less_than,
internal_int_less_than_digit,
}
internal_lt :: internal_less_than
internal_less_than_abs :: proc {
internal_int_less_than_abs,
}
internal_lt_abs :: internal_less_than_abs
/*
bool := a <= b
*/
internal_int_less_than_or_equal :: #force_inline proc(a, b: ^Int) -> (less_than_or_equal: bool) {
return internal_cmp(a, b) <= 0
}
/*
bool := a <= b
*/
internal_int_less_than_or_equal_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (less_than_or_equal: bool) {
return internal_cmp_digit(a, b) <= 0
}
/*
bool := |a| <= |b|
Compares the magnitudes only, ignores the sign.
*/
internal_int_less_than_or_equal_abs :: #force_inline proc(a, b: ^Int) -> (less_than_or_equal: bool) {
return internal_cmp_mag(a, b) <= 0
}
internal_less_than_or_equal :: proc {
internal_int_less_than_or_equal,
internal_int_less_than_or_equal_digit,
}
internal_lte :: internal_less_than_or_equal
internal_less_than_or_equal_abs :: proc {
internal_int_less_than_or_equal_abs,
}
internal_lte_abs :: internal_less_than_or_equal_abs
/*
bool := a == b
*/
internal_int_equals :: #force_inline proc(a, b: ^Int) -> (equals: bool) {
return internal_cmp(a, b) == 0
}
/*
bool := a == b
*/
internal_int_equals_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (equals: bool) {
return internal_cmp_digit(a, b) == 0
}
/*
bool := |a| == |b|
Compares the magnitudes only, ignores the sign.
*/
internal_int_equals_abs :: #force_inline proc(a, b: ^Int) -> (equals: bool) {
return internal_cmp_mag(a, b) == 0
}
internal_equals :: proc {
internal_int_equals,
internal_int_equals_digit,
}
internal_eq :: internal_equals
internal_equals_abs :: proc {
internal_int_equals_abs,
}
internal_eq_abs :: internal_equals_abs
/*
bool := a >= b
*/
internal_int_greater_than_or_equal :: #force_inline proc(a, b: ^Int) -> (greater_than_or_equal: bool) {
return internal_cmp(a, b) >= 0
}
/*
bool := a >= b
*/
internal_int_greater_than_or_equal_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (greater_than_or_equal: bool) {
return internal_cmp_digit(a, b) >= 0
}
/*
bool := |a| >= |b|
Compares the magnitudes only, ignores the sign.
*/
internal_int_greater_than_or_equal_abs :: #force_inline proc(a, b: ^Int) -> (greater_than_or_equal: bool) {
return internal_cmp_mag(a, b) >= 0
}
internal_greater_than_or_equal :: proc {
internal_int_greater_than_or_equal,
internal_int_greater_than_or_equal_digit,
}
internal_gte :: internal_greater_than_or_equal
internal_greater_than_or_equal_abs :: proc {
internal_int_greater_than_or_equal_abs,
}
internal_gte_abs :: internal_greater_than_or_equal_abs
/*
bool := a > b
*/
internal_int_greater_than :: #force_inline proc(a, b: ^Int) -> (greater_than: bool) {
return internal_cmp(a, b) == 1
}
/*
bool := a > b
*/
internal_int_greater_than_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (greater_than: bool) {
return internal_cmp_digit(a, b) == 1
}
/*
bool := |a| > |b|
Compares the magnitudes only, ignores the sign.
*/
internal_int_greater_than_abs :: #force_inline proc(a, b: ^Int) -> (greater_than: bool) {
return internal_cmp_mag(a, b) == 1
}
internal_greater_than :: proc {
internal_int_greater_than,
internal_int_greater_than_digit,
}
internal_gt :: internal_greater_than
internal_greater_than_abs :: proc {
internal_int_greater_than_abs,
}
internal_gt_abs :: internal_greater_than_abs
/*
Check if remainders are possible squares - fast exclude non-squares.
Returns `true` if `a` is a square, `false` if not.
Assumes `a` not to be `nil` and to have been initialized.
*/
internal_int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) {
context.allocator = allocator
/*
Default to Non-square :)
*/
square = false
if internal_is_negative(a) { return }
if internal_is_zero(a) { return }
/*
First check mod 128 (suppose that _DIGIT_BITS is at least 7).
*/
if _private_int_rem_128[127 & a.digit[0]] == 1 { return }
/*
Next check mod 105 (3*5*7).
*/
c: DIGIT
c, err = internal_mod(a, 105)
if _private_int_rem_105[c] == 1 { return }
t := &Int{}
defer destroy(t)
set(t, 11 * 13 * 17 * 19 * 23 * 29 * 31) or_return
internal_mod(t, a, t) or_return
r: u64
r, err = internal_int_get(t, u64)
/*
Check for other prime modules, note it's not an ERROR but we must
free "t" so the easiest way is to goto LBL_ERR. We know that err
is already equal to MP_OKAY from the mp_mod call
*/
if (1 << (r % 11) & 0x5C4) != 0 { return }
if (1 << (r % 13) & 0x9E4) != 0 { return }
if (1 << (r % 17) & 0x5CE8) != 0 { return }
if (1 << (r % 19) & 0x4F50C) != 0 { return }
if (1 << (r % 23) & 0x7ACCA0) != 0 { return }
if (1 << (r % 29) & 0xC2EDD0C) != 0 { return }
if (1 << (r % 31) & 0x6DE2B848) != 0 { return }
/*
Final check - is sqr(sqrt(arg)) == arg?
*/
sqrt(t, a) or_return
sqr(t, t) or_return
square = internal_eq_abs(t, a)
return
}
/*
========================= Logs, powers and roots ============================
*/
/*
Returns log_base(a).
Assumes `a` to not be `nil` and have been iniialized.
*/
internal_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {
if base < 2 || DIGIT(base) > _DIGIT_MAX { return -1, .Invalid_Argument }
if internal_is_negative(a) { return -1, .Math_Domain_Error }
if internal_is_zero(a) { return -1, .Math_Domain_Error }
/*
Fast path for bases that are a power of two.
*/
if platform_int_is_power_of_two(int(base)) { return _private_log_power_of_two(a, base) }
/*
Fast path for `Int`s that fit within a single `DIGIT`.
*/
if a.used == 1 { return internal_log(a.digit[0], DIGIT(base)) }
return _private_int_log(a, base)
}
/*
Returns log_base(a), where `a` is a DIGIT.
*/
internal_digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {
/*
If the number is smaller than the base, it fits within a fraction.
Therefore, we return 0.
*/
if a < base { return 0, nil }
/*
If a number equals the base, the log is 1.
*/
if a == base { return 1, nil }
N := _WORD(a)
bracket_low := _WORD(1)
bracket_high := _WORD(base)
high := 1
low := 0
for bracket_high < N {
low = high
bracket_low = bracket_high
high <<= 1
bracket_high *= bracket_high
}
for high - low > 1 {
mid := (low + high) >> 1
bracket_mid := bracket_low * #force_inline internal_small_pow(_WORD(base), _WORD(mid - low))
if N < bracket_mid {
high = mid
bracket_high = bracket_mid
}
if N > bracket_mid {
low = mid
bracket_low = bracket_mid
}
if N == bracket_mid {
return mid, nil
}
}
if bracket_high == N {
return high, nil
} else {
return low, nil
}
}
internal_log :: proc { internal_int_log, internal_digit_log, }
/*
Calculate dest = base^power using a square-multiply algorithm.
Assumes `dest` and `base` not to be `nil` and to have been initialized.
*/
internal_int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
power := power
/*
Early outs.
*/
if #force_inline internal_is_zero(base) {
/*
A zero base is a special case.
*/
if power < 0 {
internal_zero(dest) or_return
return .Math_Domain_Error
}
if power == 0 { return internal_one(dest) }
if power > 0 { return internal_zero(dest) }
}
if power < 0 {
/*
Fraction, so we'll return zero.
*/
return internal_zero(dest)
}
switch(power) {
case 0:
/*
Any base to the power zero is one.
*/
return #force_inline internal_one(dest)
case 1:
/*
Any base to the power one is itself.
*/
return copy(dest, base)
case 2:
return #force_inline internal_sqr(dest, base)
}
g := &Int{}
internal_copy(g, base) or_return
/*
Set initial result.
*/
internal_one(dest) or_return
defer internal_destroy(g)
for power > 0 {
/*
If the bit is set, multiply.
*/
if power & 1 != 0 {
internal_mul(dest, g, dest) or_return
}
/*
Square.
*/
if power > 1 {
internal_sqr(g, g) or_return
}
/* shift to next bit */
power >>= 1
}
return
}
/*
Calculate `dest = base^power`.
Assumes `dest` not to be `nil` and to have been initialized.
*/
internal_int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
base_t := &Int{}
defer internal_destroy(base_t)
internal_set(base_t, base) or_return
return #force_inline internal_int_pow(dest, base_t, power)
}
internal_pow :: proc { internal_int_pow, internal_int_pow_int, }
internal_exp :: pow
/*
*/
internal_small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {
exponent := exponent; base := base
result = _WORD(1)
for exponent != 0 {
if exponent & 1 == 1 {
result *= base
}
exponent >>= 1
base *= base
}
return result
}
/*
This function is less generic than `root_n`, simpler and faster.
Assumes `dest` and `src` not to be `nil` and to have been initialized.
*/
internal_int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
Must be positive.
*/
if #force_inline internal_is_negative(src) { return .Invalid_Argument }
/*
Easy out. If src is zero, so is dest.
*/
if #force_inline internal_is_zero(src) { return internal_zero(dest) }
/*
Set up temporaries.
*/
x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{}
defer internal_destroy(x, y, t1, t2)
count := #force_inline internal_count_bits(src)
a, b := count >> 1, count & 1
internal_int_power_of_two(x, a+b, allocator) or_return
for {
/*
y = (x + n // x) // 2
*/
internal_div(t1, src, x) or_return
internal_add(t2, t1, x) or_return
internal_shr(y, t2, 1) or_return
if internal_gte(y, x) {
internal_swap(dest, x)
return internal_clamp(dest)
}
internal_swap(x, y)
}
internal_swap(dest, x)
return internal_clamp(dest)
}
internal_sqrt :: proc { internal_int_sqrt, }
/*
Find the nth root of an Integer.
Result found such that `(dest)**n <= src` and `(dest+1)**n > src`
This algorithm uses Newton's approximation `x[i+1] = x[i] - f(x[i])/f'(x[i])`,
which will find the root in `log(n)` time where each step involves a fair bit.
Assumes `dest` and `src` not to be `nil` and have been initialized.
*/
internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
Fast path for n == 2
*/
if n == 2 { return #force_inline internal_sqrt(dest, src) }
if n < 0 || n > int(_DIGIT_MAX) { return .Invalid_Argument }
if n & 1 == 0 && #force_inline internal_is_negative(src) { return .Invalid_Argument }
/*
Set up temporaries.
*/
t1, t2, t3, a := &Int{}, &Int{}, &Int{}, &Int{}
defer internal_destroy(t1, t2, t3)
/*
If `src` is negative fudge the sign but keep track.
*/
a.sign = .Zero_or_Positive
a.used = src.used
a.digit = src.digit
/*
If "n" is larger than INT_MAX it is also larger than
log_2(src) because the bit-length of the "src" is measured
with an int and hence the root is always < 2 (two).
*/
if n > max(int) / 2 {
err = set(dest, 1)
dest.sign = a.sign
return err
}
/*
Compute seed: 2^(log_2(src)/n + 2)
*/
ilog2 := internal_count_bits(src)
/*
"src" is smaller than max(int), we can cast safely.
*/
if ilog2 < n {
err = internal_one(dest)
dest.sign = a.sign
return err
}
ilog2 /= n
if ilog2 == 0 {
err = internal_one(dest)
dest.sign = a.sign
return err
}
/*
Start value must be larger than root.
*/
ilog2 += 2
internal_int_power_of_two(t2, ilog2) or_return
c: int
iterations := 0
for {
/* t1 = t2 */
internal_copy(t1, t2) or_return
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
internal_pow(t3, t1, n-1) or_return
/* numerator */
/* t2 = t1**b */
internal_mul(t2, t1, t3) or_return
/* t2 = t1**b - a */
internal_sub(t2, t2, a) or_return
/* denominator */
/* t3 = t1**(b-1) * b */
internal_mul(t3, t3, DIGIT(n)) or_return
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
internal_div(t3, t2, t3) or_return
internal_sub(t2, t1, t3) or_return
/*
Number of rounds is at most log_2(root). If it is more it
got stuck, so break out of the loop and do the rest manually.
*/
if ilog2 -= 1; ilog2 == 0 { break }
if internal_eq(t1, t2) { break }
iterations += 1
if iterations == MAX_ITERATIONS_ROOT_N {
return .Max_Iterations_Reached
}
}
/* Result can be off by a few so check. */
/* Loop beneath can overshoot by one if found root is smaller than actual root. */
iterations = 0
for {
internal_pow(t2, t1, n) or_return
c = internal_cmp(t2, a)
if c == 0 {
swap(dest, t1)
return nil
} else if c == -1 {
internal_add(t1, t1, DIGIT(1)) or_return
} else {
break
}
iterations += 1
if iterations == MAX_ITERATIONS_ROOT_N {
return .Max_Iterations_Reached
}
}
iterations = 0
/*
Correct overshoot from above or from recurrence.
*/
for {
internal_pow(t2, t1, n) or_return
if internal_lt(t2, a) { break }
internal_sub(t1, t1, DIGIT(1)) or_return
iterations += 1
if iterations == MAX_ITERATIONS_ROOT_N {
return .Max_Iterations_Reached
}
}
/*
Set the result.
*/
internal_swap(dest, t1)
/*
Set the sign of the result.
*/
dest.sign = src.sign
return err
}
internal_root_n :: proc { internal_int_root_n, }
/*
Other internal helpers
*/
/*
Deallocates the backing memory of one or more `Int`s.
Asssumes none of the `integers` to be a `nil`.
*/
internal_int_destroy :: proc(integers: ..^Int) {
integers := integers
for &a in integers {
if internal_int_allocated_cap(a) > 0 {
mem.zero_slice(a.digit[:])
free(&a.digit[0])
}
a = &Int{}
}
}
internal_destroy :: proc{
internal_int_destroy,
internal_rat_destroy,
}
/*
Helpers to set an `Int` to a specific value.
*/
internal_int_set_from_integer :: proc(dest: ^Int, src: $T, minimize := false, allocator := context.allocator) -> (err: Error)
where intrinsics.type_is_integer(T) {
context.allocator = allocator
internal_error_if_immutable(dest) or_return
/*
Most internal procs asssume an Int to have already been initialize,
but as this is one of the procs that initializes, we have to check the following.
*/
internal_clear_if_uninitialized_single(dest) or_return
dest.flags = {} // We're not -Inf, Inf, NaN or Immutable.
dest.used = 0
dest.sign = .Negative if src < 0 else .Zero_or_Positive
temp := src
is_maximally_negative := src == min(T)
if is_maximally_negative {
/*
Prevent overflow on abs()
*/
temp += 1
}
temp = -temp if temp < 0 else temp
#no_bounds_check for temp != 0 {
dest.digit[dest.used] = DIGIT(temp) & _MASK
dest.used += 1
temp >>= _DIGIT_BITS
}
if is_maximally_negative {
return internal_sub(dest, dest, 1)
}
internal_zero_unused(dest)
return nil
}
internal_set :: proc { internal_int_set_from_integer, internal_int_copy, int_atoi }
internal_copy_digits :: #force_inline proc(dest, src: ^Int, digits: int, offset := int(0)) -> (err: Error) {
#force_inline internal_error_if_immutable(dest) or_return
/*
If dest == src, do nothing
*/
return #force_inline _private_copy_digits(dest, src, digits, offset)
}
/*
Copy one `Int` to another.
*/
internal_int_copy :: proc(dest, src: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
If dest == src, do nothing
*/
if (dest == src) { return nil }
internal_error_if_immutable(dest) or_return
/*
Grow `dest` to fit `src`.
If `dest` is not yet initialized, it will be using `allocator`.
*/
needed := src.used if minimize else max(src.used, _DEFAULT_DIGIT_COUNT)
internal_grow(dest, needed, minimize) or_return
/*
Copy everything over and zero high digits.
*/
internal_copy_digits(dest, src, src.used)
dest.used = src.used
dest.sign = src.sign
dest.flags = src.flags &~ {.Immutable}
internal_zero_unused(dest)
return nil
}
internal_copy :: proc { internal_int_copy, }
/*
In normal code, you can also write `a, b = b, a`.
However, that only swaps within the current scope.
This helper swaps completely.
*/
internal_int_swap :: #force_inline proc(a, b: ^Int) {
a.used, b.used = b.used, a.used
a.sign, b.sign = b.sign, a.sign
a.digit, b.digit = b.digit, a.digit
}
internal_swap :: proc {
internal_int_swap,
internal_rat_swap,
}
/*
Set `dest` to |`src`|.
*/
internal_int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
If `dest == src`, just fix `dest`'s sign.
*/
if (dest == src) {
dest.sign = .Zero_or_Positive
return nil
}
/*
Copy `src` to `dest`
*/
internal_copy(dest, src) or_return
/*
Fix sign.
*/
dest.sign = .Zero_or_Positive
return nil
}
internal_platform_abs :: proc(n: $T) -> T where intrinsics.type_is_integer(T) {
return n if n >= 0 else -n
}
internal_abs :: proc{ internal_int_abs, internal_platform_abs, }
/*
Set `dest` to `-src`.
*/
internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
If `dest == src`, just fix `dest`'s sign.
*/
sign := Sign.Negative
if #force_inline internal_is_zero(src) || #force_inline internal_is_negative(src) {
sign = .Zero_or_Positive
}
if dest == src {
dest.sign = sign
return nil
}
/*
Copy `src` to `dest`
*/
internal_copy(dest, src) or_return
/*
Fix sign.
*/
dest.sign = sign
return nil
}
internal_neg :: proc { internal_int_neg, }
/*
hac 14.61, pp608.
*/
internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
For all n in N and n > 0, n = 0 mod 1.
*/
if internal_is_positive(a) && internal_eq(b, 1) { return internal_zero(dest) }
/*
`b` cannot be negative and b has to be > 1
*/
if internal_is_negative(b) || !internal_gt(b, 1) { return .Invalid_Argument }
/*
If the modulus is odd we can use a faster routine instead.
*/
if internal_is_odd(b) { return _private_inverse_modulo_odd(dest, a, b) }
return _private_inverse_modulo(dest, a, b)
}
internal_int_invmod :: internal_int_inverse_modulo
internal_invmod :: proc{ internal_int_inverse_modulo, }
/*
Helpers to extract values from the `Int`.
Offset is zero indexed.
*/
internal_int_bitfield_extract_bool :: proc(a: ^Int, offset: int) -> (val: bool, err: Error) {
limb := offset / _DIGIT_BITS
if limb < 0 || limb >= a.used { return false, .Invalid_Argument }
i := _WORD(1 << _WORD((offset % _DIGIT_BITS)))
return bool(_WORD(a.digit[limb]) & i), nil
}
internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) {
limb := offset / _DIGIT_BITS
if limb < 0 || limb >= a.used { return 0, .Invalid_Argument }
i := _WORD(1 << _WORD((offset % _DIGIT_BITS)))
return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil
}
internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) #no_bounds_check {
/*
Early out for single bit.
*/
if count == 1 {
limb := offset / _DIGIT_BITS
if limb < 0 || limb >= a.used { return 0, .Invalid_Argument }
i := _WORD(1 << _WORD((offset % _DIGIT_BITS)))
return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil
}
if count > _WORD_BITS || count < 1 { return 0, .Invalid_Argument }
/*
There are 3 possible cases.
- [offset:][:count] covers 1 DIGIT,
e.g. offset: 0, count: 60 = bits 0..59
- [offset:][:count] covers 2 DIGITS,
e.g. offset: 5, count: 60 = bits 5..59, 0..4
e.g. offset: 0, count: 120 = bits 0..59, 60..119
- [offset:][:count] covers 3 DIGITS,
e.g. offset: 40, count: 100 = bits 40..59, 0..59, 0..19
e.g. offset: 40, count: 120 = bits 40..59, 0..59, 0..39
*/
limb := offset / _DIGIT_BITS
bits_left := count
bits_offset := offset % _DIGIT_BITS
num_bits := min(bits_left, _DIGIT_BITS - bits_offset)
shift := offset % _DIGIT_BITS
mask := (_WORD(1) << uint(num_bits)) - 1
res = (_WORD(a.digit[limb]) >> uint(shift)) & mask
bits_left -= num_bits
if bits_left == 0 { return res, nil }
res_shift := num_bits
num_bits = min(bits_left, _DIGIT_BITS)
mask = (1 << uint(num_bits)) - 1
res |= (_WORD(a.digit[limb + 1]) & mask) << uint(res_shift)
bits_left -= num_bits
if bits_left == 0 { return res, nil }
mask = (1 << uint(bits_left)) - 1
res_shift += _DIGIT_BITS
res |= (_WORD(a.digit[limb + 2]) & mask) << uint(res_shift)
return res, nil
}
/*
Helpers to (un)set a bit in an Int.
Offset is zero indexed.
*/
internal_int_bitfield_set_single :: proc(a: ^Int, offset: int) -> (err: Error) {
limb := offset / _DIGIT_BITS
if limb < 0 || limb >= a.used { return .Invalid_Argument }
i := DIGIT(1 << uint((offset % _DIGIT_BITS)))
a.digit[limb] |= i
return
}
internal_int_bitfield_unset_single :: proc(a: ^Int, offset: int) -> (err: Error) {
limb := offset / _DIGIT_BITS
if limb < 0 || limb >= a.used { return .Invalid_Argument }
i := DIGIT(1 << uint((offset % _DIGIT_BITS)))
a.digit[limb] &= _MASK - i
return
}
internal_int_bitfield_toggle_single :: proc(a: ^Int, offset: int) -> (err: Error) {
limb := offset / _DIGIT_BITS
if limb < 0 || limb >= a.used { return .Invalid_Argument }
i := DIGIT(1 << uint((offset % _DIGIT_BITS)))
a.digit[limb] ~= i
return
}
/*
Resize backing store.
We don't need to pass the allocator, because the storage itself stores it.
Assumes `a` not to be `nil`, and to have already been initialized.
*/
internal_int_shrink :: proc(a: ^Int) -> (err: Error) {
needed := max(_MIN_DIGIT_COUNT, a.used)
if a.used != needed { return internal_grow(a, needed, true) }
return nil
}
internal_shrink :: proc { internal_int_shrink, }
internal_int_grow :: proc(a: ^Int, digits: int, allow_shrink := false, allocator := context.allocator) -> (err: Error) {
/*
We need at least _MIN_DIGIT_COUNT or a.used digits, whichever is bigger.
The caller is asking for `digits`. Let's be accomodating.
*/
cap := internal_int_allocated_cap(a)
needed := max(_MIN_DIGIT_COUNT, a.used, digits)
if !allow_shrink {
needed = max(needed, cap)
}
/*
If not yet initialized, initialize the `digit` backing with the allocator we were passed.
*/
if cap == 0 {
mem_err: mem.Allocator_Error
a.digit, mem_err = make([dynamic]DIGIT, needed, allocator)
if mem_err != nil {
return cast(Error)mem_err
}
} else if cap < needed {
/*
`[dynamic]DIGIT` already knows what allocator was used for it, so resize will do the right thing.
*/
resize(&a.digit, needed)
} else if cap > needed {
/*
Same applies to builtin.shrink here as resize above
*/
builtin.shrink(&a.digit, needed)
}
/*
Let's see if the allocation/resize worked as expected.
*/
if len(a.digit) != needed {
return .Out_Of_Memory
}
return nil
}
internal_grow :: proc { internal_int_grow, }
/*
Clear `Int` and resize it to the default size.
Assumes `a` not to be `nil`.
*/
internal_int_clear :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
raw := transmute(mem.Raw_Dynamic_Array)a.digit
if raw.cap != 0 {
mem.zero_slice(a.digit[:a.used])
}
a.sign = .Zero_or_Positive
a.used = 0
return #force_inline internal_grow(a, a.used, minimize, allocator)
}
internal_clear :: proc { internal_int_clear, }
internal_zero :: internal_clear
/*
Set the `Int` to 1 and optionally shrink it to the minimum backing size.
*/
internal_int_one :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
return internal_copy(a, INT_ONE, minimize, allocator)
}
internal_one :: proc { internal_int_one, }
/*
Set the `Int` to -1 and optionally shrink it to the minimum backing size.
*/
internal_int_minus_one :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
return internal_copy(a, INT_MINUS_ONE, minimize, allocator)
}
internal_minus_one :: proc { internal_int_minus_one, }
/*
Set the `Int` to Inf and optionally shrink it to the minimum backing size.
*/
internal_int_inf :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
return internal_copy(a, INT_INF, minimize, allocator)
}
internal_inf :: proc { internal_int_inf, }
/*
Set the `Int` to -Inf and optionally shrink it to the minimum backing size.
*/
internal_int_minus_inf :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
return internal_copy(a, INT_MINUS_INF, minimize, allocator)
}
internal_minus_inf :: proc { internal_int_inf, }
/*
Set the `Int` to NaN and optionally shrink it to the minimum backing size.
*/
internal_int_nan :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
return internal_copy(a, INT_NAN, minimize, allocator)
}
internal_nan :: proc { internal_int_nan, }
internal_int_power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
if power < 0 || power > _MAX_BIT_COUNT { return .Invalid_Argument }
/*
Grow to accomodate the single bit.
*/
a.used = (power / _DIGIT_BITS) + 1
internal_grow(a, a.used) or_return
/*
Zero the entirety.
*/
mem.zero_slice(a.digit[:])
/*
Set the bit.
*/
a.digit[power / _DIGIT_BITS] = 1 << uint((power % _DIGIT_BITS))
return nil
}
internal_int_get_u128 :: proc(a: ^Int) -> (res: u128, err: Error) {
return internal_int_get(a, u128)
}
internal_get_u128 :: proc { internal_int_get_u128, }
internal_int_get_i128 :: proc(a: ^Int) -> (res: i128, err: Error) {
return internal_int_get(a, i128)
}
internal_get_i128 :: proc { internal_int_get_i128, }
internal_int_get_u64 :: proc(a: ^Int) -> (res: u64, err: Error) {
return internal_int_get(a, u64)
}
internal_get_u64 :: proc { internal_int_get_u64, }
internal_int_get_i64 :: proc(a: ^Int) -> (res: i64, err: Error) {
return internal_int_get(a, i64)
}
internal_get_i64 :: proc { internal_int_get_i64, }
internal_int_get_u32 :: proc(a: ^Int) -> (res: u32, err: Error) {
return internal_int_get(a, u32)
}
internal_get_u32 :: proc { internal_int_get_u32, }
internal_int_get_i32 :: proc(a: ^Int) -> (res: i32, err: Error) {
return internal_int_get(a, i32)
}
internal_get_i32 :: proc { internal_int_get_i32, }
internal_get_low_u32 :: proc(a: ^Int) -> u32 #no_bounds_check {
if a == nil {
return 0
}
if a.used == 0 {
return 0
}
return u32(a.digit[0])
}
internal_get_low_u64 :: proc(a: ^Int) -> u64 #no_bounds_check {
if a == nil {
return 0
}
if a.used == 0 {
return 0
}
v := u64(a.digit[0])
when size_of(DIGIT) == 4 {
if a.used > 1 {
return u64(a.digit[1])<<32 | v
}
}
return v
}
/*
TODO: Think about using `count_bits` to check if the value could be returned completely,
and maybe return max(T), .Integer_Overflow if not?
*/
internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: T, err: Error) where intrinsics.type_is_integer(T) {
/*
Calculate target bit size.
*/
target_bit_size := int(size_of(T) * 8)
when !intrinsics.type_is_unsigned(T) {
if a.sign == .Zero_or_Positive {
target_bit_size -= 1
}
} else {
if a.sign == .Negative {
return 0, .Integer_Underflow
}
}
bits_used := internal_count_bits(a)
if bits_used > target_bit_size {
if a.sign == .Negative {
return min(T), .Integer_Underflow
}
return max(T), .Integer_Overflow
}
for i := a.used; i > 0; i -= 1 {
res <<= _DIGIT_BITS
res |= T(a.digit[i - 1])
}
when !intrinsics.type_is_unsigned(T) {
/*
Set the sign.
*/
if a.sign == .Negative { res = -res }
}
return
}
internal_get :: proc { internal_int_get, }
internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {
/*
log2(max(f64)) is approximately 1020, or 17 legs with the 64-bit storage.
*/
legs :: 1020 / _DIGIT_BITS
l := min(a.used, legs)
fac := f64(1 << _DIGIT_BITS)
d := 0.0
#no_bounds_check for i := l; i >= 0; i -= 1 {
d = (d * fac) + f64(a.digit[i])
}
res = -d if a.sign == .Negative else d
return
}
/*
The `and`, `or` and `xor` binops differ in two lines only.
We could handle those with a switch, but that adds overhead.
TODO: Implement versions that take a DIGIT immediate.
*/
/*
2's complement `and`, returns `dest = a & b;`
*/
internal_int_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
used := max(a.used, b.used) + 1
/*
Grow the destination to accomodate the result.
*/
internal_grow(dest, used) or_return
neg_a := #force_inline internal_is_negative(a)
neg_b := #force_inline internal_is_negative(b)
neg := neg_a && neg_b
ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1)
#no_bounds_check for i := 0; i < used; i += 1 {
x, y: DIGIT
/*
Convert to 2's complement if negative.
*/
if neg_a {
ac += _MASK if i >= a.used else (~a.digit[i] & _MASK)
x = ac & _MASK
ac >>= _DIGIT_BITS
} else {
x = 0 if i >= a.used else a.digit[i]
}
/*
Convert to 2's complement if negative.
*/
if neg_b {
bc += _MASK if i >= b.used else (~b.digit[i] & _MASK)
y = bc & _MASK
bc >>= _DIGIT_BITS
} else {
y = 0 if i >= b.used else b.digit[i]
}
dest.digit[i] = x & y
/*
Convert to to sign-magnitude if negative.
*/
if neg {
cc += ~dest.digit[i] & _MASK
dest.digit[i] = cc & _MASK
cc >>= _DIGIT_BITS
}
}
dest.used = used
dest.sign = .Negative if neg else .Zero_or_Positive
return internal_clamp(dest)
}
internal_and :: proc { internal_int_and, }
/*
2's complement `or`, returns `dest = a | b;`
*/
internal_int_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
used := max(a.used, b.used) + 1
/*
Grow the destination to accomodate the result.
*/
internal_grow(dest, used) or_return
neg_a := #force_inline internal_is_negative(a)
neg_b := #force_inline internal_is_negative(b)
neg := neg_a || neg_b
ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1)
#no_bounds_check for i := 0; i < used; i += 1 {
x, y: DIGIT
/*
Convert to 2's complement if negative.
*/
if neg_a {
ac += _MASK if i >= a.used else (~a.digit[i] & _MASK)
x = ac & _MASK
ac >>= _DIGIT_BITS
} else {
x = 0 if i >= a.used else a.digit[i]
}
/*
Convert to 2's complement if negative.
*/
if neg_b {
bc += _MASK if i >= b.used else (~b.digit[i] & _MASK)
y = bc & _MASK
bc >>= _DIGIT_BITS
} else {
y = 0 if i >= b.used else b.digit[i]
}
dest.digit[i] = x | y
/*
Convert to to sign-magnitude if negative.
*/
if neg {
cc += ~dest.digit[i] & _MASK
dest.digit[i] = cc & _MASK
cc >>= _DIGIT_BITS
}
}
dest.used = used
dest.sign = .Negative if neg else .Zero_or_Positive
return internal_clamp(dest)
}
internal_or :: proc { internal_int_or, }
/*
2's complement `xor`, returns `dest = a ~ b;`
*/
internal_int_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
used := max(a.used, b.used) + 1
/*
Grow the destination to accomodate the result.
*/
internal_grow(dest, used) or_return
neg_a := #force_inline internal_is_negative(a)
neg_b := #force_inline internal_is_negative(b)
neg := neg_a != neg_b
ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1)
#no_bounds_check for i := 0; i < used; i += 1 {
x, y: DIGIT
/*
Convert to 2's complement if negative.
*/
if neg_a {
ac += _MASK if i >= a.used else (~a.digit[i] & _MASK)
x = ac & _MASK
ac >>= _DIGIT_BITS
} else {
x = 0 if i >= a.used else a.digit[i]
}
/*
Convert to 2's complement if negative.
*/
if neg_b {
bc += _MASK if i >= b.used else (~b.digit[i] & _MASK)
y = bc & _MASK
bc >>= _DIGIT_BITS
} else {
y = 0 if i >= b.used else b.digit[i]
}
dest.digit[i] = x ~ y
/*
Convert to to sign-magnitude if negative.
*/
if neg {
cc += ~dest.digit[i] & _MASK
dest.digit[i] = cc & _MASK
cc >>= _DIGIT_BITS
}
}
dest.used = used
dest.sign = .Negative if neg else .Zero_or_Positive
return internal_clamp(dest)
}
internal_xor :: proc { internal_int_xor, }
/*
dest = ~src
*/
internal_int_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
/*
Temporarily fix sign.
*/
old_sign := src.sign
neg := #force_inline internal_is_zero(src) || #force_inline internal_is_positive(src)
src.sign = .Negative if neg else .Zero_or_Positive
err = #force_inline internal_sub(dest, src, 1)
/*
Restore sign.
*/
src.sign = old_sign
return err
}
internal_complement :: proc { internal_int_complement, }
/*
quotient, remainder := numerator >> bits;
`remainder` is allowed to be passed a `nil`, in which case `mod` won't be computed.
*/
internal_int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
bits := bits
if bits < 0 { return .Invalid_Argument }
internal_copy(quotient, numerator) or_return
/*
Shift right by a certain bit count (store quotient and optional remainder.)
`numerator` should not be used after this.
*/
if remainder != nil {
internal_int_mod_bits(remainder, numerator, bits) or_return
}
/*
Shift by as many digits in the bit count.
*/
if bits >= _DIGIT_BITS {
_private_int_shr_leg(quotient, bits / _DIGIT_BITS) or_return
}
/*
Shift any bit count < _DIGIT_BITS.
*/
bits %= _DIGIT_BITS
if bits != 0 {
mask := DIGIT(1 << uint(bits)) - 1
shift := DIGIT(_DIGIT_BITS - bits)
carry := DIGIT(0)
#no_bounds_check for x := quotient.used - 1; x >= 0; x -= 1 {
/*
Get the lower bits of this word in a temp.
*/
fwd_carry := quotient.digit[x] & mask
/*
Shift the current word and mix in the carry bits from the previous word.
*/
quotient.digit[x] = (quotient.digit[x] >> uint(bits)) | (carry << shift)
/*
Update carry from forward carry.
*/
carry = fwd_carry
}
}
return internal_clamp(numerator)
}
internal_shrmod :: proc { internal_int_shrmod, }
internal_int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_shrmod(dest, nil, source, bits, allocator)
}
internal_shr :: proc { internal_int_shr, }
/*
Shift right by a certain bit count with sign extension.
*/
internal_int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
if src.sign == .Zero_or_Positive {
return internal_shr(dest, src, bits)
}
internal_int_add_digit(dest, src, DIGIT(1)) or_return
internal_shr(dest, dest, bits) or_return
return internal_sub(dest, src, DIGIT(1))
}
internal_shr_signed :: proc { internal_int_shr_signed, }
/*
Shift left by a certain bit count.
*/
internal_int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
bits := bits
if bits < 0 { return .Invalid_Argument }
internal_copy(dest, src) or_return
/*
Grow `dest` to accommodate the additional bits.
*/
digits_needed := dest.used + (bits / _DIGIT_BITS) + 1
internal_grow(dest, digits_needed) or_return
dest.used = digits_needed
/*
Shift by as many digits in the bit count as we have.
*/
if bits >= _DIGIT_BITS {
_private_int_shl_leg(dest, bits / _DIGIT_BITS) or_return
}
/*
Shift any remaining bit count < _DIGIT_BITS
*/
bits %= _DIGIT_BITS
if bits != 0 {
mask := (DIGIT(1) << uint(bits)) - DIGIT(1)
shift := DIGIT(_DIGIT_BITS - bits)
carry := DIGIT(0)
#no_bounds_check for x:= 0; x < dest.used; x+= 1 {
fwd_carry := (dest.digit[x] >> shift) & mask
dest.digit[x] = (dest.digit[x] << uint(bits) | carry) & _MASK
carry = fwd_carry
}
/*
Use final carry.
*/
if carry != 0 {
dest.digit[dest.used] = carry
dest.used += 1
}
}
return internal_clamp(dest)
}
internal_shl :: proc { internal_int_shl, }
/*
Count bits in an `Int`.
Assumes `a` not to be `nil` and to have been initialized.
*/
internal_count_bits :: proc(a: ^Int) -> (count: int) {
/*
Fast path for zero.
*/
if #force_inline internal_is_zero(a) { return {} }
/*
Get the number of DIGITs and use it.
*/
count = (a.used - 1) * _DIGIT_BITS
/*
Take the last DIGIT and count the bits in it.
*/
clz := int(intrinsics.count_leading_zeros(a.digit[a.used - 1]))
count += (_DIGIT_TYPE_BITS - clz)
return
}
/*
Returns the number of trailing zeroes before the first one.
Differs from regular `ctz` in that 0 returns 0.
Assumes `a` not to be `nil` and have been initialized.
*/
internal_int_count_lsb :: proc(a: ^Int) -> (count: int, err: Error) {
/*
Easy out.
*/
if #force_inline internal_is_zero(a) { return {}, nil }
/*
Scan lower digits until non-zero.
*/
x: int
#no_bounds_check for x = 0; x < a.used && a.digit[x] == 0; x += 1 {}
when true {
q := a.digit[x]
x *= _DIGIT_BITS
x += internal_count_lsb(q)
} else {
@(static, rodata)
lnz := [?]int{
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
}
q := a.digit[x]
x *= _DIGIT_BITS
if q & 1 == 0 {
p: DIGIT
for {
p = q & 15
x += lnz[p]
q >>= 4
if p != 0 { break }
}
}
}
return x, nil
}
internal_platform_count_lsb :: #force_inline proc(a: $T) -> (count: int)
where intrinsics.type_is_integer(T), intrinsics.type_is_unsigned(T) {
return int(intrinsics.count_trailing_zeros(a)) if a > 0 else 0
}
internal_count_lsb :: proc { internal_int_count_lsb, internal_platform_count_lsb, }
internal_int_random_digit :: proc() -> (res: DIGIT) {
when _DIGIT_BITS == 60 { // DIGIT = u64
return DIGIT(rnd.uint64()) & _MASK
} else when _DIGIT_BITS == 28 { // DIGIT = u32
return DIGIT(rnd.uint32()) & _MASK
} else {
panic("Unsupported DIGIT size.")
}
return 0 // We shouldn't get here.
}
internal_int_random :: proc(dest: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
bits := bits
if bits <= 0 { return .Invalid_Argument }
digits := bits / _DIGIT_BITS
bits %= _DIGIT_BITS
if bits > 0 {
digits += 1
}
#force_inline internal_grow(dest, digits) or_return
for i := 0; i < digits; i += 1 {
dest.digit[i] = int_random_digit() & _MASK
}
if bits > 0 {
dest.digit[digits - 1] &= ((1 << uint(bits)) - 1)
}
dest.used = digits
return internal_clamp(dest)
}
internal_random :: proc { internal_int_random, }
/*
Internal helpers.
*/
internal_assert_initialized :: proc(a: ^Int, loc := #caller_location) {
assert(internal_is_initialized(a), "`Int` was not properly initialized.", loc)
}
internal_clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
if ! #force_inline internal_is_initialized(arg) {
return #force_inline internal_grow(arg, _DEFAULT_DIGIT_COUNT)
}
return err
}
internal_clear_if_uninitialized_multi :: proc(args: ..^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
for i in args {
if ! #force_inline internal_is_initialized(i) {
e := #force_inline internal_grow(i, _DEFAULT_DIGIT_COUNT)
if e != nil { err = e }
}
}
return err
}
internal_clear_if_uninitialized :: proc {internal_clear_if_uninitialized_single, internal_clear_if_uninitialized_multi, }
internal_error_if_immutable_single :: proc "contextless" (arg: ^Int) -> (err: Error) {
if arg != nil && .Immutable in arg.flags { return .Assignment_To_Immutable }
return nil
}
internal_error_if_immutable_multi :: proc "contextless" (args: ..^Int) -> (err: Error) {
for i in args {
if i != nil && .Immutable in i.flags { return .Assignment_To_Immutable }
}
return nil
}
internal_error_if_immutable :: proc {internal_error_if_immutable_single, internal_error_if_immutable_multi, }
/*
Allocates several `Int`s at once.
*/
internal_int_init_multi :: proc(integers: ..^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator
integers := integers
for a in integers {
internal_clear(a) or_return
}
return nil
}
internal_init_multi :: proc { internal_int_init_multi, }
/*
Trim unused digits.
This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero.
Typically very fast. Also fixes the sign if there are no more leading digits.
*/
internal_clamp :: proc(a: ^Int) -> (err: Error) {
for a.used > 0 && a.digit[a.used - 1] == 0 { a.used -= 1 }
if #force_inline internal_is_zero(a) { a.sign = .Zero_or_Positive }
return nil
}
internal_int_zero_unused :: #force_inline proc(dest: ^Int, old_used := -1) {
/*
If we don't pass the number of previously used DIGITs, we zero all remaining ones.
*/
zero_count: int
if old_used < 0 {
zero_count = len(dest.digit) - dest.used
} else {
zero_count = old_used - dest.used
}
/*
Zero remainder.
*/
if zero_count > 0 && dest.used < len(dest.digit) {
mem.zero_slice(dest.digit[dest.used:][:zero_count])
}
}
internal_zero_unused :: proc { internal_int_zero_unused, }
/*
========================== End of low-level routines ==========================
*/