Files
Odin/core/math/math_log1p.odin
2023-05-22 11:58:01 +01:00

200 lines
6.4 KiB
Odin

package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double log1p(double x)
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2**k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// and
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if(u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
log1p :: proc {
log1p_f16,
log1p_f32,
log1p_f64,
log1p_f16le,
log1p_f16be,
log1p_f32le,
log1p_f32be,
log1p_f64le,
log1p_f64be,
}
@(require_results) log1p_f16 :: proc "contextless" (x: f16) -> f16 { return f16(log1p_f64(f64(x))) }
@(require_results) log1p_f32 :: proc "contextless" (x: f32) -> f32 { return f32(log1p_f64(f64(x))) }
@(require_results) log1p_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log1p_f64(f64(x))) }
@(require_results) log1p_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log1p_f64(f64(x))) }
@(require_results) log1p_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log1p_f64(f64(x))) }
@(require_results) log1p_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log1p_f64(f64(x))) }
@(require_results) log1p_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log1p_f64(f64(x))) }
@(require_results) log1p_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log1p_f64(f64(x))) }
@(require_results)
log1p_f64 :: proc "contextless" (x: f64) -> f64 {
SQRT2_M1 :: 0h3fda827999fcef34 // sqrt(2)-1
SQRT2_HALF_M1 :: 0hbfd2bec333018866 // sqrt(2)/2-1
SMALL :: 0h3e20000000000000 // 2**-29
TINY :: 0h3c90000000000000 // 2**-54
TWO53 :: 0h4340000000000000 // 2**53
LN2HI :: 0h3fe62e42fee00000
LN2LO :: 0h3dea39ef35793c76
LP1 :: 0h3FE5555555555593
LP2 :: 0h3FD999999997FA04
LP3 :: 0h3FD2492494229359
LP4 :: 0h3FCC71C51D8E78AF
LP5 :: 0h3FC7466496CB03DE
LP6 :: 0h3FC39A09D078C69F
LP7 :: 0h3FC2F112DF3E5244
switch {
case x < -1 || is_nan(x):
return nan_f64()
case x == -1:
return inf_f64(-1)
case is_inf(x, 1):
return inf_f64(+1)
}
absx := abs(x)
f: f64
iu: u64
k := 1
if absx < SQRT2_M1 { // |x| < sqrt(2)-1
if absx < SMALL { // |x| < 2**-29
if absx < TINY { // |x| < 2**-54
return x
}
return x - x*x*0.5
}
if x > SQRT2_HALF_M1 { // sqrt(2)/2-1 < x
// (sqrt(2)/2-1) < x < (sqrt(2)-1)
k = 0
f = x
iu = 1
}
}
c: f64
if k != 0 {
u: f64
if absx < TWO53 { // 1<<53
u = 1.0 + x
iu = transmute(u64)u
k = int((iu >> 52) - 1023)
// correction term
if k > 0 {
c = 1.0 - (u - x)
} else {
c = x - (u - 1.0)
}
c /= u
} else {
u = x
iu = transmute(u64)u
k = int((iu >> 52) - 1023)
c = 0
}
iu &= 0x000fffffffffffff
if iu < 0x0006a09e667f3bcd { // mantissa of sqrt(2)
u = transmute(f64)(iu | 0x3ff0000000000000) // normalize u
} else {
k += 1
u = transmute(f64)(iu | 0x3fe0000000000000) // normalize u/2
iu = (0x0010000000000000 - iu) >> 2
}
f = u - 1.0 // sqrt(2)/2 < u < sqrt(2)
}
hfsq := 0.5 * f * f
s, R, z: f64
if iu == 0 { // |f| < 2**-20
if f == 0 {
if k == 0 {
return 0
}
c += f64(k) * LN2LO
return f64(k)*LN2HI + c
}
R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
if k == 0 {
return f - R
}
return f64(k)*LN2HI - ((R - (f64(k)*LN2LO + c)) - f)
}
s = f / (2.0 + f)
z = s * s
R = z * (LP1 + z*(LP2+z*(LP3+z*(LP4+z*(LP5+z*(LP6+z*LP7))))))
if k == 0 {
return f - (hfsq - s*(hfsq+R))
}
return f64(k)*LN2HI - ((hfsq - (s*(hfsq+R) + (f64(k)*LN2LO + c))) - f)
}