Files
Odin/core/math/math_sincos.odin
2024-11-05 12:45:30 +00:00

309 lines
9.3 KiB
Odin

package math
import "core:math/bits"
// The original C code, the long comment, and the constants
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
// available from http://www.netlib.org/cephes/cmath.tgz.
// The go code is a simplified version of the original C.
//
// sin.c
//
// Circular sine
//
// SYNOPSIS:
//
// double x, y, sin();
// y = sin( x );
//
// DESCRIPTION:
//
// Range reduction is into intervals of pi/4. The reduction error is nearly
// eliminated by contriving an extended precision modular arithmetic.
//
// Two polynomial approximating functions are employed.
// Between 0 and pi/4 the sine is approximated by
// x + x**3 P(x**2).
// Between pi/4 and pi/2 the cosine is represented as
// 1 - x**2 Q(x**2).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC 0, 10 150000 3.0e-17 7.8e-18
// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
//
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
// be meaningless for x > 2**49 = 5.6e14.
//
// cos.c
//
// Circular cosine
//
// SYNOPSIS:
//
// double x, y, cos();
// y = cos( x );
//
// DESCRIPTION:
//
// Range reduction is into intervals of pi/4. The reduction error is nearly
// eliminated by contriving an extended precision modular arithmetic.
//
// Two polynomial approximating functions are employed.
// Between 0 and pi/4 the cosine is approximated by
// 1 - x**2 Q(x**2).
// Between pi/4 and pi/2 the sine is represented as
// x + x**3 P(x**2).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
sincos :: proc{
sincos_f16, sincos_f16le, sincos_f16be,
sincos_f32, sincos_f32le, sincos_f32be,
sincos_f64, sincos_f64le, sincos_f64be,
}
sincos_f16 :: proc "contextless" (x: f16) -> (sin, cos: f16) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f16(s), f16(c)
}
sincos_f16le :: proc "contextless" (x: f16le) -> (sin, cos: f16le) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f16le(s), f16le(c)
}
sincos_f16be :: proc "contextless" (x: f16be) -> (sin, cos: f16be) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f16be(s), f16be(c)
}
sincos_f32 :: proc "contextless" (x: f32) -> (sin, cos: f32) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f32(s), f32(c)
}
sincos_f32le :: proc "contextless" (x: f32le) -> (sin, cos: f32le) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f32le(s), f32le(c)
}
sincos_f32be :: proc "contextless" (x: f32be) -> (sin, cos: f32be) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f32be(s), f32be(c)
}
sincos_f64le :: proc "contextless" (x: f64le) -> (sin, cos: f64le) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f64le(s), f64le(c)
}
sincos_f64be :: proc "contextless" (x: f64be) -> (sin, cos: f64be) #no_bounds_check {
s, c := sincos_f64(f64(x))
return f64be(s), f64be(c)
}
sincos_f64 :: proc "contextless" (x: f64) -> (sin, cos: f64) #no_bounds_check {
x := x
PI4A :: 0h3fe921fb40000000 // 7.85398125648498535156e-1 PI/4 split into three parts
PI4B :: 0h3e64442d00000000 // 3.77489470793079817668e-8
PI4C :: 0h3ce8469898cc5170 // 2.69515142907905952645e-15
// special cases
switch {
case x == 0:
return x, 1 // return ±0.0, 1.0
case is_nan(x) || is_inf(x, 0):
return nan_f64(), nan_f64()
}
// make argument positive
sin_sign, cos_sign := false, false
if x < 0 {
x = -x
sin_sign = true
}
j: u64
y, z: f64
if x >= REDUCE_THRESHOLD {
j, z = _trig_reduce_f64(x)
} else {
j = u64(x * (4 / PI)) // integer part of x/(PI/4), as integer for tests on the phase angle
y = f64(j) // integer part of x/(PI/4), as float
if j&1 == 1 { // map zeros to origin
j += 1
y += 1
}
j &= 7 // octant modulo TAU radians (360 degrees)
z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
}
if j > 3 { // reflect in x axis
j -= 4
sin_sign, cos_sign = !sin_sign, !cos_sign
}
if j > 1 {
cos_sign = !cos_sign
}
zz := z * z
cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
if j == 1 || j == 2 {
sin, cos = cos, sin
}
if cos_sign {
cos = -cos
}
if sin_sign {
sin = -sin
}
return
}
// sin coefficients
@(private="file")
_sin := [?]f64{
0h3de5d8fd1fd19ccd, // 1.58962301576546568060e-10
0hbe5ae5e5a9291f5d, // -2.50507477628578072866e-8
0h3ec71de3567d48a1, // 2.75573136213857245213e-6
0hbf2a01a019bfdf03, // -1.98412698295895385996e-4
0h3f8111111110f7d0, // 8.33333333332211858878e-3
0hbfc5555555555548, // -1.66666666666666307295e-1
}
// cos coefficients
@(private="file")
_cos := [?]f64{
0hbda8fa49a0861a9b, // -1.13585365213876817300e-11,
0h3e21ee9d7b4e3f05, // 2.08757008419747316778e-9,
0hbe927e4f7eac4bc6, // -2.75573141792967388112e-7,
0h3efa01a019c844f5, // 2.48015872888517045348e-5,
0hbf56c16c16c14f91, // -1.38888888888730564116e-3,
0h3fa555555555554b, // 4.16666666666665929218e-2,
}
// REDUCE_THRESHOLD is the maximum value of x where the reduction using Pi/4
// in 3 f64 parts still gives accurate results. This threshold
// is set by y*C being representable as a f64 without error
// where y is given by y = floor(x * (4 / Pi)) and C is the leading partial
// terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30
// and 32 trailing zero bits, y should have less than 30 significant bits.
//
// y < 1<<30 -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4
//
// So, conservatively we can take x < 1<<29.
// Above this threshold Payne-Hanek range reduction must be used.
@(private="file")
REDUCE_THRESHOLD :: 1 << 29
// _trig_reduce_f64 implements Payne-Hanek range reduction by Pi/4
// for x > 0. It returns the integer part mod 8 (j) and
// the fractional part (z) of x / (Pi/4).
// The implementation is based on:
// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
// K. C. Ng et al, March 24, 1992
// The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic.
_trig_reduce_f64 :: proc "contextless" (x: f64) -> (j: u64, z: f64) #no_bounds_check {
// bd_pi4 is the binary digits of 4/pi as a u64 array,
// that is, 4/pi = Sum bd_pi4[i]*2^(-64*i)
// 19 64-bit digits and the leading one bit give 1217 bits
// of precision to handle the largest possible f64 exponent.
@(static, rodata) bd_pi4 := [?]u64{
0x0000000000000001,
0x45f306dc9c882a53,
0xf84eafa3ea69bb81,
0xb6c52b3278872083,
0xfca2c757bd778ac3,
0x6e48dc74849ba5c0,
0x0c925dd413a32439,
0xfc3bd63962534e7d,
0xd1046bea5d768909,
0xd338e04d68befc82,
0x7323ac7306a673e9,
0x3908bf177bf25076,
0x3ff12fffbc0b301f,
0xde5e2316b414da3e,
0xda6cfd9e4f96136e,
0x9e8c7ecd3cbfd45a,
0xea4f758fd7cbe2f6,
0x7a0e73ef14a525d4,
0xd7f6bf623f1aba10,
0xac06608df8f6d757,
}
PI4 :: PI / 4
if x < PI4 {
return 0, x
}
MASK :: 0x7FF
SHIFT :: 64 - 11 - 1
BIAS :: 1023
// Extract out the integer and exponent such that,
// x = ix * 2 ** exp.
ix := transmute(u64)x
exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT
ix &~= MASK << SHIFT
ix |= 1 << SHIFT
// Use the exponent to extract the 3 appropriate u64 digits from bd_pi4,
// B ~ (z0, z1, z2), such that the product leading digit has the exponent -61.
// Note, exp >= -53 since x >= PI4 and exp < 971 for maximum f64.
digit, bitshift := uint(exp+61)/64, uint(exp+61)%64
z0 := (bd_pi4[digit] << bitshift) | (bd_pi4[digit+1] >> (64 - bitshift))
z1 := (bd_pi4[digit+1] << bitshift) | (bd_pi4[digit+2] >> (64 - bitshift))
z2 := (bd_pi4[digit+2] << bitshift) | (bd_pi4[digit+3] >> (64 - bitshift))
// Multiply mantissa by the digits and extract the upper two digits (hi, lo).
z2hi, _ := bits.mul(z2, ix)
z1hi, z1lo := bits.mul(z1, ix)
z0lo := z0 * ix
lo, c := bits.add(z1lo, z2hi, 0)
hi, _ := bits.add(z0lo, z1hi, c)
// The top 3 bits are j.
j = hi >> 61
// Extract the fraction and find its magnitude.
hi = hi<<3 | lo>>61
lz := uint(bits.leading_zeros(hi))
e := u64(BIAS - (lz + 1))
// Clear implicit mantissa bit and shift into place.
hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
hi >>= 64 - SHIFT
// Include the exponent and convert to a float.
hi |= e << SHIFT
z = transmute(f64)hi
// Map zeros to origin.
if j&1 == 1 {
j += 1
j &= 7
z -= 1
}
// Multiply the fractional part by pi/4.
return j, z * PI4
}