Files
Odin/core/net/socket_darwin.odin
gingerBill 842cfee0f3 Change Odin's LICENSE to zlib from BSD 3-clause
This change was made in order to allow things produced with Odin and using Odin's core library, to not require the LICENSE to also be distributed alongside the binary form.
2025-10-28 14:38:25 +00:00

431 lines
12 KiB
Odin

#+build darwin
package net
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
Feoramund: FreeBSD platform code
*/
import "core:c"
import "core:sys/posix"
import "core:time"
Socket_Option :: enum c.int {
Broadcast = c.int(posix.Sock_Option.BROADCAST),
Reuse_Address = c.int(posix.Sock_Option.REUSEADDR),
Keep_Alive = c.int(posix.Sock_Option.KEEPALIVE),
Out_Of_Bounds_Data_Inline = c.int(posix.Sock_Option.OOBINLINE),
TCP_Nodelay = c.int(posix.TCP_NODELAY),
Linger = c.int(posix.Sock_Option.LINGER),
Receive_Buffer_Size = c.int(posix.Sock_Option.RCVBUF),
Send_Buffer_Size = c.int(posix.Sock_Option.SNDBUF),
Receive_Timeout = c.int(posix.Sock_Option.RCVTIMEO),
Send_Timeout = c.int(posix.Sock_Option.SNDTIMEO),
}
Shutdown_Manner :: enum c.int {
Receive = c.int(posix.SHUT_RD),
Send = c.int(posix.SHUT_WR),
Both = c.int(posix.SHUT_RDWR),
}
@(private)
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) {
c_type: posix.Sock
c_protocol: posix.Protocol
c_family: posix.AF
switch family {
case .IP4: c_family = .INET
case .IP6: c_family = .INET6
case:
unreachable()
}
switch protocol {
case .TCP: c_type = .STREAM; c_protocol = .TCP
case .UDP: c_type = .DGRAM; c_protocol = .UDP
case:
unreachable()
}
sock := posix.socket(c_family, c_type, c_protocol)
if sock < 0 {
err = _create_socket_error()
return
}
switch protocol {
case .TCP: return TCP_Socket(sock), nil
case .UDP: return UDP_Socket(sock), nil
case:
unreachable()
}
}
@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (skt: TCP_Socket, err: Network_Error) {
if endpoint.port == 0 {
return 0, .Port_Required
}
family := family_from_endpoint(endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
_ = set_option(skt, .Reuse_Address, true)
sockaddr := _endpoint_to_sockaddr(endpoint)
if posix.connect(posix.FD(skt), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK {
err = _dial_error()
close(skt)
}
return
}
@(private)
_bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Bind_Error) {
sockaddr := _endpoint_to_sockaddr(ep)
s := any_socket_to_socket(skt)
if posix.bind(posix.FD(s), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK {
err = _bind_error()
}
return
}
@(private)
_listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
assert(backlog > 0 && i32(backlog) < max(i32))
family := family_from_endpoint(interface_endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
defer if err != nil { close(skt) }
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
//
_ = set_option(sock, .Reuse_Address, true)
bind(sock, interface_endpoint) or_return
if posix.listen(posix.FD(skt), i32(backlog)) != .OK {
err = _listen_error()
}
return
}
@(private)
_bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
addr: posix.sockaddr_storage
addr_len := posix.socklen_t(size_of(addr))
if posix.getsockname(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&addr)
return
}
@(private)
_peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
addr: posix.sockaddr_storage
addr_len := posix.socklen_t(size_of(addr))
if posix.getpeername(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&addr)
return
}
@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) {
addr: posix.sockaddr_storage
addr_len := posix.socklen_t(size_of(addr))
client_sock := posix.accept(posix.FD(sock), (^posix.sockaddr)(&addr), &addr_len)
if client_sock < 0 {
err = _accept_error()
return
}
client = TCP_Socket(client_sock)
source = _sockaddr_to_endpoint(&addr)
return
}
@(private)
_close :: proc(skt: Any_Socket) {
s := any_socket_to_socket(skt)
posix.close(posix.FD(s))
}
@(private)
_recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) {
if len(buf) <= 0 {
return
}
res := posix.recv(posix.FD(skt), raw_data(buf), len(buf), {})
if res < 0 {
err = _tcp_recv_error()
return
}
return int(res), nil
}
@(private)
_recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) {
if len(buf) <= 0 {
return
}
from: posix.sockaddr_storage
fromsize := posix.socklen_t(size_of(from))
res := posix.recvfrom(posix.FD(skt), raw_data(buf), len(buf), {}, (^posix.sockaddr)(&from), &fromsize)
if res < 0 {
err = _udp_recv_error()
return
}
bytes_read = int(res)
remote_endpoint = _sockaddr_to_endpoint(&from)
return
}
@(private)
_send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) {
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res := posix.send(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL})
if res < 0 {
err = _tcp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) {
toaddr := _endpoint_to_sockaddr(to)
for bytes_written < len(buf) {
limit := min(1<<31, len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res := posix.sendto(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL}, (^posix.sockaddr)(&toaddr), posix.socklen_t(toaddr.ss_len))
if res < 0 {
err = _udp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) {
s := any_socket_to_socket(skt)
if posix.shutdown(posix.FD(s), posix.Shut(manner)) != .OK {
err = _shutdown_error()
}
return
}
@(private)
_set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error {
level := posix.SOL_SOCKET if option != .TCP_Nodelay else posix.IPPROTO_TCP
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
// it _has_ to be a b32.
// I haven't tested if you can give more than that.
bool_value: b32
int_value: posix.socklen_t
timeval_value: posix.timeval
ptr: rawptr
len: posix.socklen_t
switch option {
case
.Broadcast,
.Reuse_Address,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay:
// TODO: verify whether these are options or not on Linux
// .Broadcast,
// .Conditional_Accept,
// .Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
ptr = &bool_value
len = size_of(bool_value)
case
.Linger,
.Send_Timeout,
.Receive_Timeout:
t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
micros := i64(time.duration_microseconds(t))
timeval_value.tv_usec = posix.suseconds_t(micros % 1e6)
timeval_value.tv_sec = posix.time_t(micros - i64(timeval_value.tv_usec)) / 1e6
ptr = &timeval_value
len = size_of(timeval_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
// TODO: check for out of range values and return .Value_Out_Of_Range?
switch i in value {
case i8, u8: i2 := i; int_value = posix.socklen_t((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = posix.socklen_t((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = posix.socklen_t((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = posix.socklen_t((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = posix.socklen_t((^u128)(&i2)^)
case int, uint: i2 := i; int_value = posix.socklen_t((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
ptr = &int_value
len = size_of(int_value)
}
skt := any_socket_to_socket(s)
if posix.setsockopt(posix.FD(skt), i32(level), posix.Sock_Option(option), ptr, len) != .OK {
return _socket_option_error()
}
return nil
}
@(private)
_set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) {
socket := any_socket_to_socket(socket)
flags_ := posix.fcntl(posix.FD(socket), .GETFL, 0)
if flags_ < 0 {
return _set_blocking_error()
}
flags := transmute(posix.O_Flags)flags_
if should_block {
flags -= {.NONBLOCK}
} else {
flags += {.NONBLOCK}
}
if posix.fcntl(posix.FD(socket), .SETFL, flags) < 0 {
return _set_blocking_error()
}
return nil
}
@private
_endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: posix.sockaddr_storage) {
switch a in ep.address {
case IP4_Address:
(^posix.sockaddr_in)(&sockaddr)^ = posix.sockaddr_in {
sin_port = u16be(ep.port),
sin_addr = transmute(posix.in_addr)a,
sin_family = .INET,
sin_len = size_of(posix.sockaddr_in),
}
return
case IP6_Address:
(^posix.sockaddr_in6)(&sockaddr)^ = posix.sockaddr_in6 {
sin6_port = u16be(ep.port),
sin6_addr = transmute(posix.in6_addr)a,
sin6_family = .INET6,
sin6_len = size_of(posix.sockaddr_in6),
}
return
}
unreachable()
}
@private
_sockaddr_to_endpoint :: proc(native_addr: ^posix.sockaddr_storage) -> (ep: Endpoint) {
#partial switch native_addr.ss_family {
case .INET:
addr := cast(^posix.sockaddr_in)native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte)addr.sin_addr),
port = port,
}
case .INET6:
addr := cast(^posix.sockaddr_in6)native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be)addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}
@(private)
_sockaddr_basic_to_endpoint :: proc(native_addr: ^posix.sockaddr) -> (ep: Endpoint) {
#partial switch native_addr.sa_family {
case .INET:
addr := cast(^posix.sockaddr_in)native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte)addr.sin_addr),
port = port,
}
case .INET6:
addr := cast(^posix.sockaddr_in6)native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be)addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}