Files
Odin/core/net/socket_windows.odin
gingerBill 842cfee0f3 Change Odin's LICENSE to zlib from BSD 3-clause
This change was made in order to allow things produced with Odin and using Odin's core library, to not require the LICENSE to also be distributed alongside the binary form.
2025-10-28 14:38:25 +00:00

452 lines
13 KiB
Odin

#+build windows
package net
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
Feoramund: FreeBSD platform code
*/
import "core:c"
import win "core:sys/windows"
import "core:time"
Socket_Option :: enum c.int {
// bool: Whether the address that this socket is bound to can be reused by other sockets.
// This allows you to bypass the cooldown period if a program dies while the socket is bound.
Reuse_Address = win.SO_REUSEADDR,
// bool: Whether other programs will be inhibited from binding the same endpoint as this socket.
Exclusive_Addr_Use = win.SO_EXCLUSIVEADDRUSE,
// bool: When true, keepalive packets will be automatically be sent for this connection. TODO: verify this understanding
Keep_Alive = win.SO_KEEPALIVE,
// bool: When true, client connections will immediately be sent a TCP/IP RST response, rather than being accepted.
Conditional_Accept = win.SO_CONDITIONAL_ACCEPT,
// bool: If true, when the socket is closed, but data is still waiting to be sent, discard that data.
Dont_Linger = win.SO_DONTLINGER,
// bool: When true, 'out-of-band' data sent over the socket will be read by a normal net.recv() call, the same as normal 'in-band' data.
Out_Of_Bounds_Data_Inline = win.SO_OOBINLINE,
// bool: When true, disables send-coalescing, therefore reducing latency.
TCP_Nodelay = win.TCP_NODELAY,
// win.LINGER: Customizes how long (if at all) the socket will remain open when there
// is some remaining data waiting to be sent, and net.close() is called.
Linger = win.SO_LINGER,
// win.DWORD: The size, in bytes, of the OS-managed receive-buffer for this socket.
Receive_Buffer_Size = win.SO_RCVBUF,
// win.DWORD: The size, in bytes, of the OS-managed send-buffer for this socket.
Send_Buffer_Size = win.SO_SNDBUF,
// win.DWORD: For blocking sockets, the time in milliseconds to wait for incoming data to be received, before giving up and returning .Timeout.
// For non-blocking sockets, ignored.
// Use a value of zero to potentially wait forever.
Receive_Timeout = win.SO_RCVTIMEO,
// win.DWORD: For blocking sockets, the time in milliseconds to wait for outgoing data to be sent, before giving up and returning .Timeout.
// For non-blocking sockets, ignored.
// Use a value of zero to potentially wait forever.
Send_Timeout = win.SO_SNDTIMEO,
// bool: Allow sending to, receiving from, and binding to, a broadcast address.
Broadcast = win.SO_BROADCAST,
}
Shutdown_Manner :: enum c.int {
Receive = win.SD_RECEIVE,
Send = win.SD_SEND,
Both = win.SD_BOTH,
}
@(init, private)
ensure_winsock_initialized :: proc "contextless" () {
win.ensure_winsock_initialized()
}
@(private)
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) {
c_type, c_protocol, c_family: c.int
switch family {
case .IP4: c_family = win.AF_INET
case .IP6: c_family = win.AF_INET6
case:
unreachable()
}
switch protocol {
case .TCP: c_type = win.SOCK_STREAM; c_protocol = win.IPPROTO_TCP
case .UDP: c_type = win.SOCK_DGRAM; c_protocol = win.IPPROTO_UDP
case:
unreachable()
}
sock := win.socket(c_family, c_type, c_protocol)
if sock == win.INVALID_SOCKET {
err = _create_socket_error()
return
}
switch protocol {
case .TCP: return TCP_Socket(sock), nil
case .UDP: return UDP_Socket(sock), nil
case:
unreachable()
}
}
@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (socket: TCP_Socket, err: Network_Error) {
if endpoint.port == 0 {
err = .Port_Required
return
}
family := family_from_endpoint(endpoint)
sock := create_socket(family, .TCP) or_return
socket = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
_ = set_option(socket, .Reuse_Address, true)
sockaddr := _endpoint_to_sockaddr(endpoint)
res := win.connect(win.SOCKET(socket), &sockaddr, size_of(sockaddr))
if res < 0 {
err = _dial_error()
close(socket)
return {}, err
}
if options.no_delay {
_ = set_option(sock, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
}
return
}
@(private)
_bind :: proc(socket: Any_Socket, ep: Endpoint) -> (err: Bind_Error) {
sockaddr := _endpoint_to_sockaddr(ep)
sock := any_socket_to_socket(socket)
res := win.bind(win.SOCKET(sock), &sockaddr, size_of(sockaddr))
if res < 0 {
err = _bind_error()
}
return
}
@(private)
_listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (socket: TCP_Socket, err: Network_Error) {
family := family_from_endpoint(interface_endpoint)
sock := create_socket(family, .TCP) or_return
socket = sock.(TCP_Socket)
defer if err != nil { close(socket) }
// NOTE(tetra): While I'm not 100% clear on it, my understanding is that this will
// prevent hijacking of the server's endpoint by other applications.
set_option(socket, .Exclusive_Addr_Use, true) or_return
bind(sock, interface_endpoint) or_return
if res := win.listen(win.SOCKET(socket), i32(backlog)); res == win.SOCKET_ERROR {
err = _listen_error()
}
return
}
@(private)
_bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
sockaddr: win.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
if win.getsockname(win.SOCKET(any_socket_to_socket(sock)), &sockaddr, &sockaddrlen) == win.SOCKET_ERROR {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&sockaddr)
return
}
@(private)
_peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
sockaddr: win.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
res := win.getpeername(win.SOCKET(any_socket_to_socket(sock)), &sockaddr, &sockaddrlen)
if res < 0 {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&sockaddr)
return
}
@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) {
for {
sockaddr: win.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
client_sock := win.accept(win.SOCKET(sock), &sockaddr, &sockaddrlen)
if int(client_sock) == win.SOCKET_ERROR {
e := win.WSAGetLastError()
if e == win.WSAECONNRESET {
// NOTE(tetra): Reset just means that a client that connection immediately lost the connection.
// There's no need to concern the user with this, so we handle it for them.
// On Linux, this error isn't possible in the first place according the man pages, so we also
// can do this to match the behaviour.
continue
}
err = _accept_error()
return
}
client = TCP_Socket(client_sock)
source = _sockaddr_to_endpoint(&sockaddr)
if options.no_delay {
_ = set_option(client, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
}
return
}
}
@(private)
_close :: proc(socket: Any_Socket) {
if s := any_socket_to_socket(socket); s != {} {
win.closesocket(win.SOCKET(s))
}
}
@(private)
_recv_tcp :: proc(socket: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) {
if len(buf) <= 0 {
return
}
res := win.recv(win.SOCKET(socket), raw_data(buf), c.int(len(buf)), 0)
if res < 0 {
err = _tcp_recv_error()
return
}
return int(res), nil
}
@(private)
_recv_udp :: proc(socket: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) {
if len(buf) <= 0 {
return
}
from: win.SOCKADDR_STORAGE_LH
fromsize := c.int(size_of(from))
res := win.recvfrom(win.SOCKET(socket), raw_data(buf), c.int(len(buf)), 0, &from, &fromsize)
if res < 0 {
err = _udp_recv_error()
return
}
bytes_read = int(res)
remote_endpoint = _sockaddr_to_endpoint(&from)
return
}
@(private)
_send_tcp :: proc(socket: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) {
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:]
res := win.send(win.SOCKET(socket), raw_data(remaining), c.int(limit), 0)
if res < 0 {
err = _tcp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_send_udp :: proc(socket: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) {
toaddr := _endpoint_to_sockaddr(to)
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:]
res := win.sendto(win.SOCKET(socket), raw_data(remaining), c.int(limit), 0, &toaddr, size_of(toaddr))
if res < 0 {
err = _udp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_shutdown :: proc(socket: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) {
s := any_socket_to_socket(socket)
res := win.shutdown(win.SOCKET(s), c.int(manner))
if res < 0 {
return _shutdown_error()
}
return
}
@(private)
_set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error {
level := win.SOL_SOCKET if option != .TCP_Nodelay else win.IPPROTO_TCP
bool_value: b32
int_value: i32
linger_value: win.LINGER
ptr: rawptr
len: c.int
switch option {
case
.Reuse_Address,
.Exclusive_Addr_Use,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay,
.Broadcast,
.Conditional_Accept,
.Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
ptr = &bool_value
len = size_of(bool_value)
case .Linger:
t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
num_secs := i64(time.duration_seconds(t))
if num_secs > i64(max(u16)) {
return .Invalid_Value
}
linger_value.l_onoff = 1
linger_value.l_linger = c.ushort(num_secs)
ptr = &linger_value
len = size_of(linger_value)
case
.Receive_Timeout,
.Send_Timeout:
t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
int_value = i32(time.duration_milliseconds(t))
ptr = &int_value
len = size_of(int_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
switch i in value {
case i8, u8: i2 := i; int_value = c.int((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = c.int((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = c.int((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = c.int((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = c.int((^u128)(&i2)^)
case int, uint: i2 := i; int_value = c.int((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
ptr = &int_value
len = size_of(int_value)
}
socket := any_socket_to_socket(s)
res := win.setsockopt(win.SOCKET(socket), c.int(level), c.int(option), ptr, len)
if res < 0 {
return _socket_option_error()
}
return nil
}
@(private)
_set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) {
socket := any_socket_to_socket(socket)
arg: win.DWORD = 0 if should_block else 1
res := win.ioctlsocket(win.SOCKET(socket), transmute(win.c_long)win.FIONBIO, &arg)
if res == win.SOCKET_ERROR {
return _set_blocking_error()
}
return nil
}
@(private)
_endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: win.SOCKADDR_STORAGE_LH) {
switch a in ep.address {
case IP4_Address:
(^win.sockaddr_in)(&sockaddr)^ = win.sockaddr_in {
sin_port = u16be(win.USHORT(ep.port)),
sin_addr = transmute(win.in_addr) a,
sin_family = u16(win.AF_INET),
}
return
case IP6_Address:
(^win.sockaddr_in6)(&sockaddr)^ = win.sockaddr_in6 {
sin6_port = u16be(win.USHORT(ep.port)),
sin6_addr = transmute(win.in6_addr) a,
sin6_family = u16(win.AF_INET6),
}
return
}
unreachable()
}
@(private)
_sockaddr_to_endpoint :: proc(native_addr: ^win.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) {
switch native_addr.ss_family {
case u16(win.AF_INET):
addr := cast(^win.sockaddr_in) native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte) addr.sin_addr),
port = port,
}
case u16(win.AF_INET6):
addr := cast(^win.sockaddr_in6) native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}