Files
Odin/src/queue.cpp
2022-01-02 15:31:47 +00:00

157 lines
4.1 KiB
C++

#define MPMC_CACHE_LINE_SIZE 64
typedef std::atomic<i32> MPMCQueueAtomicIdx;
// Multiple Producer Multiple Consumer Queue
template <typename T>
struct MPMCQueue {
static size_t const PAD0_OFFSET = (sizeof(T *) + sizeof(MPMCQueueAtomicIdx *) + sizeof(gbAllocator) + sizeof(BlockingMutex) + sizeof(i32) + sizeof(i32));
T * nodes;
MPMCQueueAtomicIdx *indices;
gbAllocator allocator;
BlockingMutex mutex;
MPMCQueueAtomicIdx count;
i32 mask; // capacity-1, because capacity must be a power of 2
char pad0[(MPMC_CACHE_LINE_SIZE*2 - PAD0_OFFSET) % MPMC_CACHE_LINE_SIZE];
MPMCQueueAtomicIdx head_idx;
char pad1[MPMC_CACHE_LINE_SIZE - sizeof(i32)];
MPMCQueueAtomicIdx tail_idx;
};
void mpmc_internal_init_indices(MPMCQueueAtomicIdx *indices, i32 offset, i32 size) {
GB_ASSERT(offset % 8 == 0);
GB_ASSERT(size % 8 == 0);
// NOTE(bill): pretend it's not atomic for performance
auto *raw_data = cast(i32 *)indices;
for (i32 i = offset; i < size; i += 8) {
raw_data[i+0] = i+0;
raw_data[i+1] = i+1;
raw_data[i+2] = i+2;
raw_data[i+3] = i+3;
raw_data[i+4] = i+4;
raw_data[i+5] = i+5;
raw_data[i+6] = i+6;
raw_data[i+7] = i+7;
}
}
template <typename T>
void mpmc_init(MPMCQueue<T> *q, gbAllocator a, isize size_i) {
if (size_i < 8) {
size_i = 8;
}
GB_ASSERT(size_i < I32_MAX);
i32 size = cast(i32)size_i;
size = next_pow2(size);
GB_ASSERT(gb_is_power_of_two(size));
mutex_init(&q->mutex);
q->mask = size-1;
q->allocator = a;
q->nodes = gb_alloc_array(a, T, size);
q->indices = gb_alloc_array(a, MPMCQueueAtomicIdx, size);
mpmc_internal_init_indices(q->indices, 0, q->mask+1);
}
template <typename T>
void mpmc_destroy(MPMCQueue<T> *q) {
mutex_destroy(&q->mutex);
gb_free(q->allocator, q->nodes);
gb_free(q->allocator, q->indices);
}
template <typename T>
bool mpmc_internal_grow(MPMCQueue<T> *q) {
mutex_lock(&q->mutex);
i32 old_size = q->mask+1;
i32 new_size = old_size*2;
resize_array_raw(&q->nodes, q->allocator, old_size, new_size);
if (q->nodes == nullptr) {
GB_PANIC("Unable to resize enqueue: %td -> %td", old_size, new_size);
mutex_unlock(&q->mutex);
return false;
}
resize_array_raw(&q->indices, q->allocator, old_size, new_size);
if (q->indices == nullptr) {
GB_PANIC("Unable to resize enqueue: %td -> %td", old_size, new_size);
mutex_unlock(&q->mutex);
return false;
}
mpmc_internal_init_indices(q->indices, old_size, new_size);
q->mask = new_size-1;
mutex_unlock(&q->mutex);
return true;
}
template <typename T>
i32 mpmc_enqueue(MPMCQueue<T> *q, T const &data) {
GB_ASSERT(q->mask != 0);
i32 head_idx = q->head_idx.load(std::memory_order_relaxed);
for (;;) {
i32 index = head_idx & q->mask;
auto node = &q->nodes[index];
auto node_idx_ptr = &q->indices[index];
i32 node_idx = node_idx_ptr->load(std::memory_order_acquire);
i32 diff = node_idx - head_idx;
if (diff == 0) {
i32 next_head_idx = head_idx+1;
if (q->head_idx.compare_exchange_weak(head_idx, next_head_idx)) {
*node = data;
node_idx_ptr->store(next_head_idx, std::memory_order_release);
return q->count.fetch_add(1, std::memory_order_release);
}
} else if (diff < 0) {
if (!mpmc_internal_grow(q)) {
return -1;
}
} else {
head_idx = q->head_idx.load(std::memory_order_relaxed);
}
}
}
template <typename T>
bool mpmc_dequeue(MPMCQueue<T> *q, T *data_) {
if (q->mask == 0) {
return false;
}
i32 tail_idx = q->tail_idx.load(std::memory_order_relaxed);
for (;;) {
auto node_ptr = &q->nodes[tail_idx & q->mask];
auto node_idx_ptr = &q->indices[tail_idx & q->mask];
i32 node_idx = node_idx_ptr->load(std::memory_order_acquire);
i32 diff = node_idx - (tail_idx+1);
if (diff == 0) {
i32 next_tail_idx = tail_idx+1;
if (q->tail_idx.compare_exchange_weak(tail_idx, next_tail_idx)) {
if (data_) *data_ = *node_ptr;
node_idx_ptr->store(tail_idx + q->mask + 1, std::memory_order_release);
q->count.fetch_sub(1, std::memory_order_release);
return true;
}
} else if (diff < 0) {
return false;
} else {
tail_idx = q->tail_idx.load(std::memory_order_relaxed);
}
}
}