Files
Odin/core/mem/mem.odin
2024-01-28 22:18:51 +00:00

305 lines
7.5 KiB
Odin

package mem
import "base:runtime"
import "base:intrinsics"
Byte :: runtime.Byte
Kilobyte :: runtime.Kilobyte
Megabyte :: runtime.Megabyte
Gigabyte :: runtime.Gigabyte
Terabyte :: runtime.Terabyte
Petabyte :: runtime.Petabyte
Exabyte :: runtime.Exabyte
set :: proc "contextless" (data: rawptr, value: byte, len: int) -> rawptr {
return runtime.memset(data, i32(value), len)
}
zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero(data, len)
return data
}
zero_explicit :: proc "contextless" (data: rawptr, len: int) -> rawptr {
// This routine tries to avoid the compiler optimizing away the call,
// so that it is always executed. It is intended to provided
// equivalent semantics to those provided by the C11 Annex K 3.7.4.1
// memset_s call.
intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero
intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering
return data
}
zero_item :: proc "contextless" (item: $P/^$T) -> P {
intrinsics.mem_zero(item, size_of(T))
return item
}
zero_slice :: proc "contextless" (data: $T/[]$E) -> T {
zero(raw_data(data), size_of(E)*len(data))
return data
}
copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy(dst, src, len)
return dst
}
copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy_non_overlapping(dst, src, len)
return dst
}
compare :: proc "contextless" (a, b: []byte) -> int {
res := compare_byte_ptrs(raw_data(a), raw_data(b), min(len(a), len(b)))
if res == 0 && len(a) != len(b) {
return len(a) <= len(b) ? -1 : +1
} else if len(a) == 0 && len(b) == 0 {
return 0
}
return res
}
@(require_results)
compare_byte_ptrs :: proc "contextless" (a, b: ^byte, n: int) -> int #no_bounds_check {
return runtime.memory_compare(a, b, n)
}
@(require_results)
check_zero :: proc(data: []byte) -> bool {
return check_zero_ptr(raw_data(data), len(data))
}
@(require_results)
check_zero_ptr :: proc(ptr: rawptr, len: int) -> bool {
switch {
case len <= 0:
return true
case ptr == nil:
return true
}
switch len {
case 1: return (^u8)(ptr)^ == 0
case 2: return intrinsics.unaligned_load((^u16)(ptr)) == 0
case 4: return intrinsics.unaligned_load((^u32)(ptr)) == 0
case 8: return intrinsics.unaligned_load((^u64)(ptr)) == 0
}
start := uintptr(ptr)
start_aligned := align_forward_uintptr(start, align_of(uintptr))
end := start + uintptr(len)
end_aligned := align_backward_uintptr(end, align_of(uintptr))
for b in start..<start_aligned {
if (^byte)(b)^ != 0 {
return false
}
}
for b := start_aligned; b < end_aligned; b += size_of(uintptr) {
if (^uintptr)(b)^ != 0 {
return false
}
}
for b in end_aligned..<end {
if (^byte)(b)^ != 0 {
return false
}
}
return true
}
@(require_results)
simple_equal :: proc "contextless" (a, b: $T) -> bool where intrinsics.type_is_simple_compare(T) {
a, b := a, b
return compare_byte_ptrs((^byte)(&a), (^byte)(&b), size_of(T)) == 0
}
@(require_results)
compare_ptrs :: proc "contextless" (a, b: rawptr, n: int) -> int {
return compare_byte_ptrs((^byte)(a), (^byte)(b), n)
}
ptr_offset :: intrinsics.ptr_offset
ptr_sub :: intrinsics.ptr_sub
@(require_results)
slice_ptr :: proc "contextless" (ptr: ^$T, len: int) -> []T {
return ([^]T)(ptr)[:len]
}
@(require_results)
byte_slice :: #force_inline proc "contextless" (data: rawptr, #any_int len: int) -> []byte {
return ([^]u8)(data)[:max(len, 0)]
}
@(require_results)
slice_to_bytes :: proc "contextless" (slice: $E/[]$T) -> []byte {
s := transmute(Raw_Slice)slice
s.len *= size_of(T)
return transmute([]byte)s
}
@(require_results)
slice_data_cast :: proc "contextless" ($T: typeid/[]$A, slice: $S/[]$B) -> T {
when size_of(A) == 0 || size_of(B) == 0 {
return nil
} else {
s := transmute(Raw_Slice)slice
s.len = (len(slice) * size_of(B)) / size_of(A)
return transmute(T)s
}
}
@(require_results)
slice_to_components :: proc "contextless" (slice: $E/[]$T) -> (data: ^T, len: int) {
s := transmute(Raw_Slice)slice
return (^T)(s.data), s.len
}
@(require_results)
buffer_from_slice :: proc "contextless" (backing: $T/[]$E) -> [dynamic]E {
return transmute([dynamic]E)Raw_Dynamic_Array{
data = raw_data(backing),
len = 0,
cap = len(backing),
allocator = Allocator{
procedure = nil_allocator_proc,
data = nil,
},
}
}
@(require_results)
ptr_to_bytes :: proc "contextless" (ptr: ^$T, len := 1) -> []byte {
return transmute([]byte)Raw_Slice{ptr, len*size_of(T)}
}
@(require_results)
any_to_bytes :: proc "contextless" (val: any) -> []byte {
ti := type_info_of(val.id)
size := ti != nil ? ti.size : 0
return transmute([]byte)Raw_Slice{val.data, size}
}
@(require_results)
is_power_of_two :: proc "contextless" (x: uintptr) -> bool {
if x <= 0 {
return false
}
return (x & (x-1)) == 0
}
@(require_results)
align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
return rawptr(align_forward_uintptr(uintptr(ptr), align))
}
@(require_results)
align_forward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
assert(is_power_of_two(align))
p := ptr
modulo := p & (align-1)
if modulo != 0 {
p += align - modulo
}
return p
}
@(require_results)
align_forward_int :: proc(ptr, align: int) -> int {
return int(align_forward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
align_forward_uint :: proc(ptr, align: uint) -> uint {
return uint(align_forward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
align_backward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
return rawptr(align_backward_uintptr(uintptr(ptr), align))
}
@(require_results)
align_backward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
return align_forward_uintptr(ptr - align + 1, align)
}
@(require_results)
align_backward_int :: proc(ptr, align: int) -> int {
return int(align_backward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
align_backward_uint :: proc(ptr, align: uint) -> uint {
return uint(align_backward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
context_from_allocator :: proc(a: Allocator) -> type_of(context) {
context.allocator = a
return context
}
@(require_results)
reinterpret_copy :: proc "contextless" ($T: typeid, ptr: rawptr) -> (value: T) {
copy(&value, ptr, size_of(T))
return
}
Fixed_Byte_Buffer :: distinct [dynamic]byte
@(require_results)
make_fixed_byte_buffer :: proc "contextless" (backing: []byte) -> Fixed_Byte_Buffer {
s := transmute(Raw_Slice)backing
d: Raw_Dynamic_Array
d.data = s.data
d.len = 0
d.cap = s.len
d.allocator = Allocator{
procedure = nil_allocator_proc,
data = nil,
}
return transmute(Fixed_Byte_Buffer)d
}
@(require_results)
align_formula :: proc "contextless" (size, align: int) -> int {
result := size + align-1
return result - result%align
}
@(require_results)
calc_padding_with_header :: proc "contextless" (ptr: uintptr, align: uintptr, header_size: int) -> int {
p, a := ptr, align
modulo := p & (a-1)
padding := uintptr(0)
if modulo != 0 {
padding = a - modulo
}
needed_space := uintptr(header_size)
if padding < needed_space {
needed_space -= padding
if needed_space & (a-1) > 0 {
padding += align * (1+(needed_space/align))
} else {
padding += align * (needed_space/align)
}
}
return int(padding)
}
@(require_results, deprecated="prefer 'slice.clone'")
clone_slice :: proc(slice: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> (new_slice: T) {
new_slice, _ = make(T, len(slice), allocator, loc)
runtime.copy(new_slice, slice)
return new_slice
}