Files
Odin/core/mem/alloc.odin

334 lines
10 KiB
Odin

package mem
import "core:runtime"
// NOTE(bill, 2019-12-31): These are defined in `package runtime` as they are used in the `context`. This is to prevent an import definition cycle.
Allocator_Mode :: runtime.Allocator_Mode;
/*
Allocator_Mode :: enum byte {
Alloc,
Free,
Free_All,
Resize,
Query_Features,
}
*/
Allocator_Mode_Set :: runtime.Allocator_Mode_Set;
/*
Allocator_Mode_Set :: distinct bit_set[Allocator_Mode];
*/
Allocator_Query_Info :: runtime.Allocator_Query_Info;
/*
Allocator_Query_Info :: struct {
pointer: rawptr,
size: Maybe(int),
alignment: Maybe(int),
}
*/
Allocator_Error :: runtime.Allocator_Error;
/*
Allocator_Error :: enum byte {
None = 0,
Out_Of_Memory = 1,
Invalid_Pointer = 2,
Invalid_Argument = 3,
Mode_Not_Implemented = 4,
}
*/
Allocator_Proc :: runtime.Allocator_Proc;
/*
Allocator_Proc :: #type proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location: Source_Code_Location = #caller_location) -> ([]byte, Allocator_Error);
*/
Allocator :: runtime.Allocator;
/*
Allocator :: struct {
procedure: Allocator_Proc,
data: rawptr,
}
*/
DEFAULT_ALIGNMENT :: 2*align_of(rawptr);
alloc :: proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
if size == 0 {
return nil;
}
if allocator.procedure == nil {
return nil;
}
data, err := allocator.procedure(allocator.data, Allocator_Mode.Alloc, size, alignment, nil, 0, loc);
_ = err;
return raw_data(data);
}
alloc_bytes :: proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
if size == 0 {
return nil, nil;
}
if allocator.procedure == nil {
return nil, nil;
}
return allocator.procedure(allocator.data, Allocator_Mode.Alloc, size, alignment, nil, 0, loc);
}
free :: proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if ptr == nil {
return nil;
}
if allocator.procedure == nil {
return nil;
}
_, err := allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, 0, loc);
return err;
}
free_bytes :: proc(bytes: []byte, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if bytes == nil {
return nil;
}
if allocator.procedure == nil {
return nil;
}
_, err := allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, raw_data(bytes), len(bytes), loc);
return err;
}
free_all :: proc(allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if allocator.procedure != nil {
_, err := allocator.procedure(allocator.data, Allocator_Mode.Free_All, 0, 0, nil, 0, loc);
return err;
}
return nil;
}
resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
if allocator.procedure == nil {
return nil;
}
if new_size == 0 {
if ptr != nil {
allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, old_size, loc);
}
return nil;
} else if ptr == nil {
_, err := allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, loc);
_ = err;
return nil;
}
data, err := allocator.procedure(allocator.data, Allocator_Mode.Resize, new_size, alignment, ptr, old_size, loc);
if err == .Mode_Not_Implemented {
data, err = allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, loc);
if err != nil {
return nil;
}
runtime.copy(data, byte_slice(ptr, old_size));
_, err = allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, old_size, loc);
return raw_data(data);
}
return raw_data(data);
}
resize_bytes :: proc(old_data: []byte, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
if allocator.procedure == nil {
return nil, nil;
}
ptr := raw_data(old_data);
old_size := len(old_data);
if new_size == 0 {
if ptr != nil {
_, err := allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, old_size, loc);
return nil, err;
}
return nil, nil;
} else if ptr == nil {
return allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, loc);
}
data, err := allocator.procedure(allocator.data, Allocator_Mode.Resize, new_size, alignment, ptr, old_size, loc);
if err == .Mode_Not_Implemented {
data, err = allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, loc);
if err != nil {
return data, err;
}
runtime.copy(data, old_data);
_, err = allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, old_size, loc);
}
return data, err;
}
query_features :: proc(allocator: Allocator, loc := #caller_location) -> (set: Allocator_Mode_Set) {
if allocator.procedure != nil {
allocator.procedure(allocator.data, Allocator_Mode.Query_Features, 0, 0, &set, 0, loc);
return set;
}
return nil;
}
query_info :: proc(pointer: rawptr, allocator: Allocator, loc := #caller_location) -> (props: Allocator_Query_Info) {
props.pointer = pointer;
if allocator.procedure != nil {
allocator.procedure(allocator.data, Allocator_Mode.Query_Info, 0, 0, &props, 0, loc);
}
return;
}
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) {
free(raw_data(str), allocator, loc);
}
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) {
free((^byte)(str), allocator, loc);
}
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) {
free(raw_data(array), array.allocator, loc);
}
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) {
free(raw_data(array), allocator, loc);
}
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) {
raw := transmute(Raw_Map)m;
delete_slice(raw.hashes, raw.entries.allocator, loc);
free(raw.entries.data, raw.entries.allocator, loc);
}
delete :: proc{
delete_string,
delete_cstring,
delete_dynamic_array,
delete_slice,
delete_map,
};
new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) {
return new_aligned(T, align_of(T), allocator, loc);
}
new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
data := alloc_bytes(size_of(T), alignment, allocator, loc) or_return;
t = (^T)(raw_data(data));
return;
}
new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> ^T {
data := alloc_bytes(size_of(T), alignment, allocator, loc) or_return;
t = (^T)(raw_data(data));
if t != nil {
t^ = data;
}
return;
}
DEFAULT_RESERVE_CAPACITY :: 16;
make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (slice: T, err: Allocator_Error) {
runtime.make_slice_error_loc(loc, len);
data := alloc_bytes(size_of(E)*len, alignment, allocator, loc) or_return;
if data == nil && size_of(E) != 0 {
return;
}
slice = transmute(T)Raw_Slice{raw_data(data), len};
return;
}
make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) {
return make_aligned(T, len, align_of(E), allocator, loc);
}
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) {
return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc);
}
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) {
return make_dynamic_array_len_cap(T, len, len, allocator, loc);
}
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) {
runtime.make_dynamic_array_error_loc(loc, len, cap);
data := alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return;
s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator};
if data == nil && size_of(E) != 0 {
s.len, s.cap = 0, 0;
}
array = transmute(T)s;
return;
}
make_map :: proc($T: typeid/map[$K]$E, #any_int cap: int = DEFAULT_RESERVE_CAPACITY, allocator := context.allocator, loc := #caller_location) -> T {
runtime.make_map_expr_error_loc(loc, cap);
context.allocator = allocator;
m: T;
reserve_map(&m, cap);
return m;
}
make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) {
runtime.make_slice_error_loc(loc, len);
data := alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return;
if data == nil && size_of(E) != 0 {
return;
}
mp = cast(T)raw_data(data);
return;
}
make :: proc{
make_slice,
make_dynamic_array,
make_dynamic_array_len,
make_dynamic_array_len_cap,
make_map,
make_multi_pointer,
};
default_resize_align :: proc(old_memory: rawptr, old_size, new_size, alignment: int, allocator := context.allocator, loc := #caller_location) -> rawptr {
if old_memory == nil {
return alloc(new_size, alignment, allocator, loc);
}
if new_size == 0 {
free(old_memory, allocator, loc);
return nil;
}
if new_size == old_size {
return old_memory;
}
new_memory := alloc(new_size, alignment, allocator, loc);
if new_memory == nil {
return nil;
}
copy(new_memory, old_memory, min(old_size, new_size));
free(old_memory, allocator, loc);
return new_memory;
}
default_resize_bytes_align :: proc(old_data: []byte, new_size, alignment: int, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
old_memory := raw_data(old_data);
old_size := len(old_data);
if old_memory == nil {
return alloc_bytes(new_size, alignment, allocator, loc);
}
if new_size == 0 {
err := free_bytes(old_data, allocator, loc);
return nil, err;
}
if new_size == old_size {
return old_data, .None;
}
new_memory, err := alloc_bytes(new_size, alignment, allocator, loc);
if new_memory == nil || err != nil {
return nil, err;
}
runtime.copy(new_memory, old_data);
free_bytes(old_data, allocator, loc);
return new_memory, err;
}