Files
Odin/core/os/os.odin

219 lines
5.1 KiB
Odin

package os
import "core:mem"
import "core:strconv"
import "core:unicode/utf8"
OS :: ODIN_OS;
ARCH :: ODIN_ARCH;
ENDIAN :: ODIN_ENDIAN;
write_string :: proc(fd: Handle, str: string) -> (int, Errno) {
return write(fd, transmute([]byte)str);
}
write_byte :: proc(fd: Handle, b: byte) -> (int, Errno) {
return write(fd, []byte{b});
}
write_rune :: proc(fd: Handle, r: rune) -> (int, Errno) {
if r < utf8.RUNE_SELF {
return write_byte(fd, byte(r));
}
b, n := utf8.encode_rune(r);
return write(fd, b[:n]);
}
write_encoded_rune :: proc(fd: Handle, r: rune) {
write_byte(fd, '\'');
switch r {
case '\a': write_string(fd, "\\a");
case '\b': write_string(fd, "\\b");
case '\e': write_string(fd, "\\e");
case '\f': write_string(fd, "\\f");
case '\n': write_string(fd, "\\n");
case '\r': write_string(fd, "\\r");
case '\t': write_string(fd, "\\t");
case '\v': write_string(fd, "\\v");
case:
if r < 32 {
write_string(fd, "\\x");
b: [2]byte;
s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil);
switch len(s) {
case 0: write_string(fd, "00");
case 1: write_rune(fd, '0');
case 2: write_string(fd, s);
}
} else {
write_rune(fd, r);
}
}
write_byte(fd, '\'');
}
file_size_from_path :: proc(path: string) -> i64 {
fd, err := open(path, O_RDONLY, 0);
if err != 0 {
return -1;
}
defer close(fd);
length: i64;
if length, err = file_size(fd); err != 0 {
return -1;
}
return length;
}
read_entire_file :: proc(name: string, allocator := context.allocator) -> (data: []byte, success: bool) {
fd, err := open(name, O_RDONLY, 0);
if err != 0 {
return nil, false;
}
defer close(fd);
length: i64;
if length, err = file_size(fd); err != 0 {
return nil, false;
}
if length <= 0 {
return nil, true;
}
data = make([]byte, int(length), allocator);
if data == nil {
return nil, false;
}
bytes_read, read_err := read(fd, data);
if read_err != ERROR_NONE {
delete(data);
return nil, false;
}
return data[:bytes_read], true;
}
write_entire_file :: proc(name: string, data: []byte, truncate := true) -> (success: bool) {
flags: int = O_WRONLY|O_CREATE;
if truncate {
flags |= O_TRUNC;
}
mode: int = 0;
when OS == "linux" || OS == "darwin" {
// NOTE(justasd): 644 (owner read, write; group read; others read)
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
}
fd, err := open(name, flags, mode);
if err != 0 {
return false;
}
defer close(fd);
_, write_err := write(fd, data);
return write_err == 0;
}
write_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) {
s := transmute([]byte)mem.Raw_Slice{data, len};
return write(fd, s);
}
read_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) {
s := transmute([]byte)mem.Raw_Slice{data, len};
return read(fd, s);
}
heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) {
//
// NOTE(tetra, 2020-01-14): The heap doesn't respect alignment.
// Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert
// padding. We also store the original pointer returned by heap_alloc right before
// the pointer we return to the user.
//
aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil) -> ([]byte, mem.Allocator_Error) {
a := max(alignment, align_of(rawptr));
space := size + a - 1;
allocated_mem: rawptr;
if old_ptr != nil {
original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^;
allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr));
} else {
allocated_mem = heap_alloc(space+size_of(rawptr));
}
aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr)));
ptr := uintptr(aligned_mem);
aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a);
diff := int(aligned_ptr - ptr);
if (size + diff) > space {
return nil, .Out_Of_Memory;
}
aligned_mem = rawptr(aligned_ptr);
mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem;
return mem.byte_slice(aligned_mem, size), nil;
}
aligned_free :: proc(p: rawptr) {
if p != nil {
heap_free(mem.ptr_offset((^rawptr)(p), -1)^);
}
}
aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> ([]byte, mem.Allocator_Error) {
if p == nil {
return nil, nil;
}
return aligned_alloc(new_size, new_alignment, p);
}
switch mode {
case .Alloc:
return aligned_alloc(size, alignment);
case .Free:
aligned_free(old_memory);
case .Free_All:
return nil, .Mode_Not_Implemented;
case .Resize:
if old_memory == nil {
return aligned_alloc(size, alignment);
}
return aligned_resize(old_memory, old_size, size, alignment);
case .Query_Features:
set := (^mem.Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free, .Resize, .Query_Features};
}
return nil, nil;
case .Query_Info:
return nil, .Mode_Not_Implemented;
}
return nil, nil;
}
heap_allocator :: proc() -> mem.Allocator {
return mem.Allocator{
procedure = heap_allocator_proc,
data = nil,
};
}