Files
Odin/core/runtime/internal.odin

766 lines
21 KiB
Odin

package runtime
import "core:intrinsics"
bswap_16 :: proc "none" (x: u16) -> u16 {
return x>>8 | x<<8;
}
bswap_32 :: proc "none" (x: u32) -> u32 {
return x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24;
}
bswap_64 :: proc "none" (x: u64) -> u64 {
z := x;
z = (z & 0x00000000ffffffff) << 32 | (z & 0xffffffff00000000) >> 32;
z = (z & 0x0000ffff0000ffff) << 16 | (z & 0xffff0000ffff0000) >> 16;
z = (z & 0x00ff00ff00ff00ff) << 8 | (z & 0xff00ff00ff00ff00) >> 8;
return z;
}
bswap_128 :: proc "none" (x: u128) -> u128 {
z := transmute([4]u32)x;
z[0] = bswap_32(z[3]);
z[1] = bswap_32(z[2]);
z[2] = bswap_32(z[1]);
z[3] = bswap_32(z[0]);
return transmute(u128)z;
}
bswap_f16 :: proc "none" (f: f16) -> f16 {
x := transmute(u16)f;
z := bswap_16(x);
return transmute(f16)z;
}
bswap_f32 :: proc "none" (f: f32) -> f32 {
x := transmute(u32)f;
z := bswap_32(x);
return transmute(f32)z;
}
bswap_f64 :: proc "none" (f: f64) -> f64 {
x := transmute(u64)f;
z := bswap_64(x);
return transmute(f64)z;
}
ptr_offset :: #force_inline proc "contextless" (ptr: $P/^$T, n: int) -> P {
new := int(uintptr(ptr)) + size_of(T)*n;
return P(uintptr(new));
}
is_power_of_two_int :: #force_inline proc(x: int) -> bool {
if x <= 0 {
return false;
}
return (x & (x-1)) == 0;
}
align_forward_int :: #force_inline proc(ptr, align: int) -> int {
assert(is_power_of_two_int(align));
p := ptr;
modulo := p & (align-1);
if modulo != 0 {
p += align - modulo;
}
return p;
}
is_power_of_two_uintptr :: #force_inline proc(x: uintptr) -> bool {
if x <= 0 {
return false;
}
return (x & (x-1)) == 0;
}
align_forward_uintptr :: #force_inline proc(ptr, align: uintptr) -> uintptr {
assert(is_power_of_two_uintptr(align));
p := ptr;
modulo := p & (align-1);
if modulo != 0 {
p += align - modulo;
}
return p;
}
mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
if data == nil {
return nil;
}
if len < 0 {
return data;
}
intrinsics.mem_zero(data, len);
return data;
}
mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
if src == nil {
return dst;
}
// NOTE(bill): This _must_ be implemented like C's memmove
intrinsics.mem_copy(dst, src, len);
return dst;
}
mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
if src == nil {
return dst;
}
// NOTE(bill): This _must_ be implemented like C's memcpy
intrinsics.mem_copy_non_overlapping(dst, src, len);
return dst;
}
DEFAULT_ALIGNMENT :: 2*align_of(rawptr);
mem_alloc_bytes :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
if size == 0 {
return nil, nil;
}
if allocator.procedure == nil {
return nil, nil;
}
return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc);
}
mem_alloc :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (rawptr, Allocator_Error) {
if size == 0 {
return nil, nil;
}
if allocator.procedure == nil {
return nil, nil;
}
data, err := allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc);
return raw_data(data), err;
}
mem_free :: #force_inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if ptr == nil {
return .None;
}
if allocator.procedure == nil {
return .None;
}
_, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc);
return err;
}
mem_free_all :: #force_inline proc(allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) {
if allocator.procedure != nil {
_, err = allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, loc);
}
return;
}
mem_resize :: #force_inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (new_ptr: rawptr, err: Allocator_Error) {
new_data: []byte;
switch {
case allocator.procedure == nil:
return;
case new_size == 0:
new_data, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc);
case ptr == nil:
new_data, err = allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc);
case:
new_data, err = allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, loc);
}
new_ptr = raw_data(new_data);
return;
}
memory_equal :: proc "contextless" (a, b: rawptr, n: int) -> bool {
return memory_compare(a, b, n) == 0;
}
memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check {
switch {
case a == b: return 0;
case a == nil: return -1;
case b == nil: return +1;
}
x := uintptr(a);
y := uintptr(b);
n := uintptr(n);
SU :: size_of(uintptr);
fast := n/SU + 1;
offset := (fast-1)*SU;
curr_block := uintptr(0);
if n < SU {
fast = 0;
}
for /**/; curr_block < fast; curr_block += 1 {
va := (^uintptr)(x + curr_block * size_of(uintptr))^;
vb := (^uintptr)(y + curr_block * size_of(uintptr))^;
if va ~ vb != 0 {
for pos := curr_block*SU; pos < n; pos += 1 {
a := (^byte)(x+pos)^;
b := (^byte)(y+pos)^;
if a ~ b != 0 {
return -1 if (int(a) - int(b)) < 0 else +1;
}
}
}
}
for /**/; offset < n; offset += 1 {
a := (^byte)(x+offset)^;
b := (^byte)(y+offset)^;
if a ~ b != 0 {
return -1 if (int(a) - int(b)) < 0 else +1;
}
}
return 0;
}
memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check {
x := uintptr(a);
n := uintptr(n);
SU :: size_of(uintptr);
fast := n/SU + 1;
offset := (fast-1)*SU;
curr_block := uintptr(0);
if n < SU {
fast = 0;
}
for /**/; curr_block < fast; curr_block += 1 {
va := (^uintptr)(x + curr_block * size_of(uintptr))^;
if va ~ 0 != 0 {
for pos := curr_block*SU; pos < n; pos += 1 {
a := (^byte)(x+pos)^;
if a ~ 0 != 0 {
return -1 if int(a) < 0 else +1;
}
}
}
}
for /**/; offset < n; offset += 1 {
a := (^byte)(x+offset)^;
if a ~ 0 != 0 {
return -1 if int(a) < 0 else +1;
}
}
return 0;
}
string_eq :: proc "contextless" (a, b: string) -> bool {
x := transmute(Raw_String)a;
y := transmute(Raw_String)b;
switch {
case x.len != y.len: return false;
case x.len == 0: return true;
case x.data == y.data: return true;
}
return string_cmp(a, b) == 0;
}
string_cmp :: proc "contextless" (a, b: string) -> int {
x := transmute(Raw_String)a;
y := transmute(Raw_String)b;
return memory_compare(x.data, y.data, min(x.len, y.len));
}
string_ne :: #force_inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); }
string_lt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; }
string_gt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; }
string_le :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; }
string_ge :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; }
cstring_len :: proc "contextless" (s: cstring) -> int {
p0 := uintptr((^byte)(s));
p := p0;
for p != 0 && (^byte)(p)^ != 0 {
p += 1;
}
return int(p - p0);
}
cstring_to_string :: proc "contextless" (s: cstring) -> string {
if s == nil {
return "";
}
ptr := (^byte)(s);
n := cstring_len(s);
return transmute(string)Raw_String{ptr, n};
}
complex32_eq :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex32_ne :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
complex64_eq :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex64_ne :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
complex128_eq :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex128_ne :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
quaternion64_eq :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
quaternion64_ne :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
quaternion128_eq :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
quaternion128_ne :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
quaternion256_eq :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
quaternion256_ne :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
string_decode_rune :: #force_inline proc "contextless" (s: string) -> (rune, int) {
// NOTE(bill): Duplicated here to remove dependency on package unicode/utf8
@static accept_sizes := [256]u8{
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf
0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf
0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef
0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff
};
Accept_Range :: struct {lo, hi: u8};
@static accept_ranges := [5]Accept_Range{
{0x80, 0xbf},
{0xa0, 0xbf},
{0x80, 0x9f},
{0x90, 0xbf},
{0x80, 0x8f},
};
MASKX :: 0b0011_1111;
MASK2 :: 0b0001_1111;
MASK3 :: 0b0000_1111;
MASK4 :: 0b0000_0111;
LOCB :: 0b1000_0000;
HICB :: 0b1011_1111;
RUNE_ERROR :: '\ufffd';
n := len(s);
if n < 1 {
return RUNE_ERROR, 0;
}
s0 := s[0];
x := accept_sizes[s0];
if x >= 0xF0 {
mask := rune(x) << 31 >> 31; // NOTE(bill): Create 0x0000 or 0xffff.
return rune(s[0])&~mask | RUNE_ERROR&mask, 1;
}
sz := x & 7;
accept := accept_ranges[x>>4];
if n < int(sz) {
return RUNE_ERROR, 1;
}
b1 := s[1];
if b1 < accept.lo || accept.hi < b1 {
return RUNE_ERROR, 1;
}
if sz == 2 {
return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2;
}
b2 := s[2];
if b2 < LOCB || HICB < b2 {
return RUNE_ERROR, 1;
}
if sz == 3 {
return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3;
}
b3 := s[3];
if b3 < LOCB || HICB < b3 {
return RUNE_ERROR, 1;
}
return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4;
}
abs_f16 :: #force_inline proc "contextless" (x: f16) -> f16 {
return -x if x < 0 else x;
}
abs_f32 :: #force_inline proc "contextless" (x: f32) -> f32 {
return -x if x < 0 else x;
}
abs_f64 :: #force_inline proc "contextless" (x: f64) -> f64 {
return -x if x < 0 else x;
}
min_f16 :: #force_inline proc "contextless" (a, b: f16) -> f16 {
return a if a < b else b;
}
min_f32 :: #force_inline proc "contextless" (a, b: f32) -> f32 {
return a if a < b else b;
}
min_f64 :: #force_inline proc "contextless" (a, b: f64) -> f64 {
return a if a < b else b;
}
max_f16 :: #force_inline proc "contextless" (a, b: f16) -> f16 {
return a if a > b else b;
}
max_f32 :: #force_inline proc "contextless" (a, b: f32) -> f32 {
return a if a > b else b;
}
max_f64 :: #force_inline proc "contextless" (a, b: f64) -> f64 {
return a if a > b else b;
}
abs_complex32 :: #force_inline proc "contextless" (x: complex32) -> f16 {
r, i := real(x), imag(x);
return f16(intrinsics.sqrt(f32(r*r + i*i)));
}
abs_complex64 :: #force_inline proc "contextless" (x: complex64) -> f32 {
r, i := real(x), imag(x);
return intrinsics.sqrt(r*r + i*i);
}
abs_complex128 :: #force_inline proc "contextless" (x: complex128) -> f64 {
r, i := real(x), imag(x);
return intrinsics.sqrt(r*r + i*i);
}
abs_quaternion64 :: #force_inline proc "contextless" (x: quaternion64) -> f16 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return f16(intrinsics.sqrt(f32(r*r + i*i + j*j + k*k)));
}
abs_quaternion128 :: #force_inline proc "contextless" (x: quaternion128) -> f32 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return intrinsics.sqrt(r*r + i*i + j*j + k*k);
}
abs_quaternion256 :: #force_inline proc "contextless" (x: quaternion256) -> f64 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return intrinsics.sqrt(r*r + i*i + j*j + k*k);
}
quo_complex32 :: proc "contextless" (n, m: complex32) -> complex32 {
e, f: f16;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}
quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 {
e, f: f32;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}
quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 {
e, f: f64;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}
mul_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
return quaternion(t0, t1, t2, t3);
}
mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
return quaternion(t0, t1, t2, t3);
}
mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
return quaternion(t0, t1, t2, t3);
}
quo_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
return quaternion(t0, t1, t2, t3);
}
quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
return quaternion(t0, t1, t2, t3);
}
quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
return quaternion(t0, t1, t2, t3);
}
@(link_name="__truncsfhf2")
truncsfhf2 :: proc "c" (value: f32) -> u16 {
v: struct #raw_union { i: u32, f: f32 };
i, s, e, m: i32;
v.f = value;
i = i32(v.i);
s = (i >> 16) & 0x00008000;
e = ((i >> 23) & 0x000000ff) - (127 - 15);
m = i & 0x007fffff;
if e <= 0 {
if e < -10 {
return u16(s);
}
m = (m | 0x00800000) >> u32(1 - e);
if m & 0x00001000 != 0 {
m += 0x00002000;
}
return u16(s | (m >> 13));
} else if e == 0xff - (127 - 15) {
if m == 0 {
return u16(s | 0x7c00); /* NOTE(bill): infinity */
} else {
/* NOTE(bill): NAN */
m >>= 13;
return u16(s | 0x7c00 | m | i32(m == 0));
}
} else {
if m & 0x00001000 != 0 {
m += 0x00002000;
if (m & 0x00800000) != 0 {
m = 0;
e += 1;
}
}
if e > 30 {
f := i64(1e12);
for j := 0; j < 10; j += 1 {
/* NOTE(bill): Cause overflow */
g := intrinsics.volatile_load(&f);
g *= g;
intrinsics.volatile_store(&f, g);
}
return u16(s | 0x7c00);
}
return u16(s | (e << 10) | (m >> 13));
}
}
@(link_name="__truncdfhf2")
truncdfhf2 :: proc "c" (value: f64) -> u16 {
return truncsfhf2(f32(value));
}
@(link_name="__gnu_h2f_ieee")
gnu_h2f_ieee :: proc "c" (value: u16) -> f32 {
fp32 :: struct #raw_union { u: u32, f: f32 };
v: fp32;
magic, inf_or_nan: fp32;
magic.u = u32((254 - 15) << 23);
inf_or_nan.u = u32((127 + 16) << 23);
v.u = u32(value & 0x7fff) << 13;
v.f *= magic.f;
if v.f >= inf_or_nan.f {
v.u |= 255 << 23;
}
v.u |= u32(value & 0x8000) << 16;
return v.f;
}
@(link_name="__gnu_f2h_ieee")
gnu_f2h_ieee :: proc "c" (value: f32) -> u16 {
return truncsfhf2(value);
}
@(link_name="__extendhfsf2")
extendhfsf2 :: proc "c" (value: u16) -> f32 {
return gnu_h2f_ieee(value);
}
@(link_name="__floattidf")
floattidf :: proc(a: i128) -> f64 {
DBL_MANT_DIG :: 53;
if a == 0 {
return 0.0;
}
a := a;
N :: size_of(i128) * 8;
s := a >> (N-1);
a = (a ~ s) - s;
sd: = N - intrinsics.count_leading_zeros(a); // number of significant digits
e := u32(sd - 1); // exponent
if sd > DBL_MANT_DIG {
switch sd {
case DBL_MANT_DIG + 1:
a <<= 1;
case DBL_MANT_DIG + 2:
// okay
case:
a = i128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
i128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0);
};
a |= i128((a & 4) != 0);
a += 1;
a >>= 2;
if a & (1 << DBL_MANT_DIG) != 0 {
a >>= 1;
e += 1;
}
} else {
a <<= u128(DBL_MANT_DIG - sd);
}
fb: [2]u32;
fb[0] = (u32(s) & 0x80000000) | // sign
((e + 1023) << 20) | // exponent
u32((u64(a) >> 32) & 0x000FFFFF); // mantissa-high
fb[1] = u32(a); // mantissa-low
return transmute(f64)fb;
}
@(link_name="__floattidf_unsigned")
floattidf_unsigned :: proc(a: u128) -> f64 {
DBL_MANT_DIG :: 53;
if a == 0 {
return 0.0;
}
a := a;
N :: size_of(u128) * 8;
sd: = N - intrinsics.count_leading_zeros(a); // number of significant digits
e := u32(sd - 1); // exponent
if sd > DBL_MANT_DIG {
switch sd {
case DBL_MANT_DIG + 1:
a <<= 1;
case DBL_MANT_DIG + 2:
// okay
case:
a = u128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
u128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0);
};
a |= u128((a & 4) != 0);
a += 1;
a >>= 2;
if a & (1 << DBL_MANT_DIG) != 0 {
a >>= 1;
e += 1;
}
} else {
a <<= u128(DBL_MANT_DIG - sd);
}
fb: [2]u32;
fb[0] = (0) | // sign
((e + 1023) << 20) | // exponent
u32((u64(a) >> 32) & 0x000FFFFF); // mantissa-high
fb[1] = u32(a); // mantissa-low
return transmute(f64)fb;
}