Files
Odin/core/slice/slice.odin

330 lines
6.4 KiB
Odin

package slice
import "core:intrinsics"
import "core:builtin"
import "core:math/bits"
import "core:mem"
_ :: intrinsics;
_ :: builtin;
_ :: bits;
_ :: mem;
swap :: proc(array: $T/[]$E, a, b: int, loc := #caller_location) {
when size_of(E) > 8 {
ptr_swap_non_overlapping(&array[a], &array[b], size_of(E));
} else {
array[a], array[b] = array[b], array[a];
}
}
reverse :: proc(array: $T/[]$E) {
n := len(array)/2;
for i in 0..<n {
a, b := i, len(array)-i-1;
array[a], array[b] = array[b], array[a];
}
}
contains :: proc(array: $T/[]$E, value: E) -> bool where intrinsics.type_is_comparable(E) {
_, found := linear_search(array, value);
return found;
}
linear_search :: proc(array: $A/[]$T, key: T) -> (index: int, found: bool)
where intrinsics.type_is_comparable(T) #no_bounds_check {
for x, i in array {
if x == key {
return i, true;
}
}
return -1, false;
}
linear_search_proc :: proc(array: $A/[]$T, f: proc(T) -> bool) -> (index: int, found: bool) #no_bounds_check {
for x, i in array {
if f(x) {
return i, true;
}
}
return -1, false;
}
binary_search :: proc(array: $A/[]$T, key: T) -> (index: int, found: bool)
where intrinsics.type_is_ordered(T) #no_bounds_check {
n := len(array);
switch n {
case 0:
return -1, false;
case 1:
if array[0] == key {
return 0, true;
}
return -1, false;
}
lo, hi := 0, n-1;
for array[hi] != array[lo] && key >= array[lo] && key <= array[hi] {
when intrinsics.type_is_ordered_numeric(T) {
// NOTE(bill): This is technically interpolation search
m := lo + int((key - array[lo]) * T(hi - lo) / (array[hi] - array[lo]));
} else {
m := lo + (hi - lo)/2;
}
switch {
case array[m] < key:
lo = m + 1;
case key < array[m]:
hi = m - 1;
case:
return m, true;
}
}
if key == array[lo] {
return lo, true;
}
return -1, false;
}
equal :: proc(a, b: $T/[]$E) -> bool where intrinsics.type_is_comparable(E) {
if len(a) != len(b) {
return false;
}
when intrinsics.type_is_simple_compare(E) {
return mem.compare_ptrs(raw_data(a), raw_data(b), len(a)*size_of(E)) == 0;
} else {
for i in 0..<len(a) {
if a[i] != b[i] {
return false;
}
}
return true;
}
}
simple_equal :: proc(a, b: $T/[]$E) -> bool where intrinsics.type_is_simple_compare(E) {
if len(a) != len(b) {
return false;
}
return mem.compare_ptrs(raw_data(a), raw_data(b), len(a)*size_of(E)) == 0;
}
has_prefix :: proc(array: $T/[]$E, needle: E) -> bool where intrinsics.type_is_comparable(E) {
n := len(needle);
if len(array) >= n {
return equal(array[:n], needle);
}
return false;
}
has_suffix :: proc(array: $T/[]$E, needle: E) -> bool where intrinsics.type_is_comparable(E) {
array := array;
m, n := len(array), len(needle);
if m >= n {
return equal(array[m-n:], needle);
}
return false;
}
fill :: proc(array: $T/[]$E, value: E) {
for _, i in array {
array[i] = value;
}
}
rotate_left :: proc(array: $T/[]$E, mid: int) {
n := len(array);
m := mid %% n;
k := n - m;
p := raw_data(array);
ptr_rotate(mid, ptr_add(p, mid), k);
}
rotate_right :: proc(array: $T/[]$E, k: int) {
rotate_left(array, -k);
}
swap_with_slice :: proc(a, b: $T/[]$E, loc := #caller_location) {
assert(len(a) == len(b), "miss matching slice lengths", loc);
ptr_swap_non_overlapping(raw_data(a), raw_data(b), len(a)*size_of(E));
}
concatenate :: proc(a: []$T/[]$E, allocator := context.allocator) -> (res: T) {
if len(a) == 0 {
return;
}
n := 0;
for s in a {
n += len(s);
}
res = make(T, n, allocator);
i := 0;
for s in a {
i += copy(res[i:], s);
}
return;
}
// copies slice into a new dynamic array
clone :: proc(a: $T/[]$E, allocator := context.allocator) -> []E {
d := make([]E, len(a), allocator);
copy(d[:], a);
return d;
}
// copies slice into a new dynamic array
to_dynamic :: proc(a: $T/[]$E, allocator := context.allocator) -> [dynamic]E {
d := make([dynamic]E, len(a), allocator);
copy(d[:], a);
return d;
}
// Converts slice into a dynamic array without cloning or allocating memory
into_dynamic :: proc(a: $T/[]$E) -> [dynamic]E {
s := transmute(mem.Raw_Slice)a;
d := mem.Raw_Dynamic_Array{
data = s.data,
len = 0,
cap = s.len,
allocator = mem.nil_allocator(),
};
return transmute([dynamic]E)d;
}
length :: proc(a: $T/[]$E) -> int {
return len(a);
}
is_empty :: proc(a: $T/[]$E) -> bool {
return len(a) == 0;
}
split_at :: proc(array: $T/[]$E, index: int) -> (a, b: T) {
return array[:index], array[index:];
}
split_first :: proc(array: $T/[]$E) -> (first: E, rest: T) {
return array[0], array[1:];
}
split_last :: proc(array: $T/[]$E) -> (rest: T, last: E) {
n := len(array)-1;
return array[:n], array[n];
}
first :: proc(array: $T/[]$E) -> E {
return array[0];
}
last :: proc(array: $T/[]$E) -> E {
return array[len(array)-1];
}
first_ptr :: proc(array: $T/[]$E) -> ^E {
if len(array) != 0 {
return &array[0];
}
return nil;
}
last_ptr :: proc(array: $T/[]$E) -> ^E {
if len(array) != 0 {
return &array[len(array)-1];
}
return nil;
}
get :: proc(array: $T/[]$E, index: int) -> (value: E, ok: bool) {
if 0 <= index && index < len(array) {
value = array[index];
ok = true;
}
return;
}
get_ptr :: proc(array: $T/[]$E, index: int) -> (value: ^E, ok: bool) {
if 0 <= index && index < len(array) {
value = &array[index];
ok = true;
}
return;
}
as_ptr :: proc(array: $T/[]$E) -> ^E {
return raw_data(array);
}
mapper :: proc(s: $S/[]$U, f: proc(U) -> $V, allocator := context.allocator) -> []V {
r := make([]V, len(s), allocator);
for v, i in s {
r[i] = f(v);
}
return r;
}
reduce :: proc(s: $S/[]$U, initializer: $V, f: proc(V, U) -> V) -> V {
r := initializer;
for v in s {
r = f(r, v);
}
return r;
}
filter :: proc(s: $S/[]$U, f: proc(U) -> bool, allocator := context.allocator) -> S {
r := make([dynamic]U, 0, 0, allocator);
for v in s {
if f(v) {
append(&r, v);
}
}
return r[:];
}
min :: proc(s: $S/[]$T) -> (res: T, ok: bool) where intrinsics.type_is_ordered(T) #optional_ok {
if len(s) != 0 {
res = s[0];
ok = true;
for v in s[1:] {
res = builtin.min(res, v);
}
}
return;
}
max :: proc(s: $S/[]$T) -> (res: T, ok: bool) where intrinsics.type_is_ordered(T) #optional_ok {
if len(s) != 0 {
res = s[0];
ok = true;
for v in s[1:] {
res = builtin.max(res, v);
}
}
return;
}
dot_product :: proc(a, b: $S/[]$T) -> T
where intrinsics.type_is_numeric(T) {
if len(a) != len(b) {
panic("slice.dot_product: slices of unequal length");
}
r: T;
#no_bounds_check for _, i in a {
r += a[i] * b[i];
}
return r;
}