mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 01:14:40 +00:00
900 lines
30 KiB
Odin
900 lines
30 KiB
Odin
package runtime
|
|
|
|
import "base:intrinsics"
|
|
|
|
@builtin
|
|
Maybe :: union($T: typeid) {T}
|
|
|
|
|
|
@(builtin, require_results)
|
|
container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T
|
|
where intrinsics.type_has_field(T, field_name),
|
|
intrinsics.type_field_type(T, field_name) == Field_Type {
|
|
offset :: offset_of_by_string(T, field_name)
|
|
return (^T)(uintptr(ptr) - offset) if ptr != nil else nil
|
|
}
|
|
|
|
|
|
when !NO_DEFAULT_TEMP_ALLOCATOR {
|
|
@thread_local global_default_temp_allocator_data: Default_Temp_Allocator
|
|
}
|
|
|
|
@(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR)
|
|
init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
|
|
when !NO_DEFAULT_TEMP_ALLOCATOR {
|
|
default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator)
|
|
}
|
|
}
|
|
|
|
|
|
// `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`.
|
|
// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
|
|
// of len(src) and len(dst).
|
|
//
|
|
// Prefer the procedure group `copy`.
|
|
@builtin
|
|
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
|
|
n := max(0, min(len(dst), len(src)))
|
|
if n > 0 {
|
|
intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E))
|
|
}
|
|
return n
|
|
}
|
|
// `copy_from_string` is a built-in procedure that copies elements from a source slice `src` to a destination string `dst`.
|
|
// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
|
|
// of len(src) and len(dst).
|
|
//
|
|
// Prefer the procedure group `copy`.
|
|
@builtin
|
|
copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
|
|
n := max(0, min(len(dst), len(src)))
|
|
if n > 0 {
|
|
intrinsics.mem_copy(raw_data(dst), raw_data(src), n)
|
|
}
|
|
return n
|
|
}
|
|
// `copy` is a built-in procedure that copies elements from a source slice `src` to a destination slice/string `dst`.
|
|
// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
|
|
// of len(src) and len(dst).
|
|
@builtin
|
|
copy :: proc{copy_slice, copy_from_string}
|
|
|
|
|
|
|
|
// `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value
|
|
// with the old value, and reducing the length of the dynamic array by 1.
|
|
//
|
|
// Note: This is an O(1) operation.
|
|
// Note: If you the elements to remain in their order, use `ordered_remove`.
|
|
// Note: If the index is out of bounds, this procedure will panic.
|
|
@builtin
|
|
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
|
|
bounds_check_error_loc(loc, index, len(array))
|
|
n := len(array)-1
|
|
if index != n {
|
|
array[index] = array[n]
|
|
}
|
|
(^Raw_Dynamic_Array)(array).len -= 1
|
|
}
|
|
// `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements.
|
|
//
|
|
// Note: This is an O(N) operation.
|
|
// Note: If you the elements do not have to remain in their order, prefer `unordered_remove`.
|
|
// Note: If the index is out of bounds, this procedure will panic.
|
|
@builtin
|
|
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
|
|
bounds_check_error_loc(loc, index, len(array))
|
|
if index+1 < len(array) {
|
|
copy(array[index:], array[index+1:])
|
|
}
|
|
(^Raw_Dynamic_Array)(array).len -= 1
|
|
}
|
|
|
|
// `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements.
|
|
//
|
|
// Note: This is an O(N) operation.
|
|
// Note: If the range is out of bounds, this procedure will panic.
|
|
@builtin
|
|
remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check {
|
|
slice_expr_error_lo_hi_loc(loc, lo, hi, len(array))
|
|
n := max(hi-lo, 0)
|
|
if n > 0 {
|
|
if hi != len(array) {
|
|
copy(array[lo:], array[hi:])
|
|
}
|
|
(^Raw_Dynamic_Array)(array).len -= n
|
|
}
|
|
}
|
|
|
|
|
|
// `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
|
|
//
|
|
// Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic.
|
|
@builtin
|
|
pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
|
|
assert(len(array) > 0, loc=loc)
|
|
res = array[len(array)-1]
|
|
(^Raw_Dynamic_Array)(array).len -= 1
|
|
return res
|
|
}
|
|
|
|
|
|
// `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
|
|
// If the operation is not possible, it will return false.
|
|
@builtin
|
|
pop_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
|
|
if len(array) == 0 {
|
|
return
|
|
}
|
|
res, ok = array[len(array)-1], true
|
|
(^Raw_Dynamic_Array)(array).len -= 1
|
|
return
|
|
}
|
|
|
|
// `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1.
|
|
//
|
|
// Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic.
|
|
@builtin
|
|
pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
|
|
assert(len(array) > 0, loc=loc)
|
|
res = array[0]
|
|
if len(array) > 1 {
|
|
copy(array[0:], array[1:])
|
|
}
|
|
(^Raw_Dynamic_Array)(array).len -= 1
|
|
return res
|
|
}
|
|
|
|
// `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1.
|
|
// If the operation is not possible, it will return false.
|
|
@builtin
|
|
pop_front_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
|
|
if len(array) == 0 {
|
|
return
|
|
}
|
|
res, ok = array[0], true
|
|
if len(array) > 1 {
|
|
copy(array[0:], array[1:])
|
|
}
|
|
(^Raw_Dynamic_Array)(array).len -= 1
|
|
return
|
|
}
|
|
|
|
|
|
// `clear` will set the length of a passed dynamic array or map to `0`
|
|
@builtin
|
|
clear :: proc{clear_dynamic_array, clear_map}
|
|
|
|
// `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
|
|
@builtin
|
|
reserve :: proc{reserve_dynamic_array, reserve_map}
|
|
|
|
@builtin
|
|
non_zero_reserve :: proc{non_zero_reserve_dynamic_array}
|
|
|
|
// `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`).
|
|
@builtin
|
|
resize :: proc{resize_dynamic_array}
|
|
|
|
@builtin
|
|
non_zero_resize :: proc{non_zero_resize_dynamic_array}
|
|
|
|
// Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity.
|
|
@builtin
|
|
shrink :: proc{shrink_dynamic_array, shrink_map}
|
|
|
|
// `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation.
|
|
@builtin
|
|
free :: proc{mem_free}
|
|
|
|
// `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation.
|
|
@builtin
|
|
free_all :: proc{mem_free_all}
|
|
|
|
|
|
|
|
// `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
|
|
//
|
|
// Note: Prefer the procedure group `delete`.
|
|
@builtin
|
|
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
|
|
return mem_free_with_size(raw_data(str), len(str), allocator, loc)
|
|
}
|
|
// `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
|
|
//
|
|
// Note: Prefer the procedure group `delete`.
|
|
@builtin
|
|
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
|
|
return mem_free((^byte)(str), allocator, loc)
|
|
}
|
|
// `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation.
|
|
//
|
|
// Note: Prefer the procedure group `delete`.
|
|
@builtin
|
|
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error {
|
|
return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc)
|
|
}
|
|
// `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation.
|
|
//
|
|
// Note: Prefer the procedure group `delete`.
|
|
@builtin
|
|
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
|
|
return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc)
|
|
}
|
|
// `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation.
|
|
//
|
|
// Note: Prefer the procedure group `delete`.
|
|
@builtin
|
|
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error {
|
|
return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc)
|
|
}
|
|
|
|
|
|
// `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation.
|
|
//
|
|
// Note: Prefer `delete` over the specific `delete_*` procedures where possible.
|
|
@builtin
|
|
delete :: proc{
|
|
delete_string,
|
|
delete_cstring,
|
|
delete_dynamic_array,
|
|
delete_slice,
|
|
delete_map,
|
|
delete_soa_slice,
|
|
delete_soa_dynamic_array,
|
|
}
|
|
|
|
|
|
// The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
|
|
// return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
|
|
@(builtin, require_results)
|
|
new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error {
|
|
return new_aligned(T, align_of(T), allocator, loc)
|
|
}
|
|
@(require_results)
|
|
new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
|
|
data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return
|
|
t = (^T)(raw_data(data))
|
|
return
|
|
}
|
|
|
|
@(builtin, require_results)
|
|
new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
|
|
t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return
|
|
t = (^T)(raw_data(t_data))
|
|
if t != nil {
|
|
t^ = data
|
|
}
|
|
return
|
|
}
|
|
|
|
DEFAULT_RESERVE_CAPACITY :: 16
|
|
|
|
@(require_results)
|
|
make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
|
|
make_slice_error_loc(loc, len)
|
|
data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc)
|
|
if data == nil && size_of(E) != 0 {
|
|
return nil, err
|
|
}
|
|
s := Raw_Slice{raw_data(data), len}
|
|
return transmute(T)s, err
|
|
}
|
|
|
|
// `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value.
|
|
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
|
|
//
|
|
// Note: Prefer using the procedure group `make`.
|
|
@(builtin, require_results)
|
|
make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
|
|
return make_aligned(T, len, align_of(E), allocator, loc)
|
|
}
|
|
// `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
|
|
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
|
|
//
|
|
// Note: Prefer using the procedure group `make`.
|
|
@(builtin, require_results)
|
|
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
|
|
return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc)
|
|
}
|
|
// `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
|
|
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
|
|
//
|
|
// Note: Prefer using the procedure group `make`.
|
|
@(builtin, require_results)
|
|
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
|
|
return make_dynamic_array_len_cap(T, len, len, allocator, loc)
|
|
}
|
|
// `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
|
|
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
|
|
//
|
|
// Note: Prefer using the procedure group `make`.
|
|
@(builtin, require_results)
|
|
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
|
|
make_dynamic_array_error_loc(loc, len, cap)
|
|
array.allocator = allocator // initialize allocator before just in case it fails to allocate any memory
|
|
data := mem_alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return
|
|
s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator}
|
|
if data == nil && size_of(E) != 0 {
|
|
s.len, s.cap = 0, 0
|
|
}
|
|
array = transmute(T)s
|
|
return
|
|
}
|
|
// `make_map` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
|
|
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
|
|
//
|
|
// Note: Prefer using the procedure group `make`.
|
|
@(builtin, require_results)
|
|
make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1<<MAP_MIN_LOG2_CAPACITY, allocator := context.allocator, loc := #caller_location) -> (m: T, err: Allocator_Error) #optional_allocator_error {
|
|
make_map_expr_error_loc(loc, capacity)
|
|
context.allocator = allocator
|
|
|
|
err = reserve_map(&m, capacity, loc)
|
|
return
|
|
}
|
|
// `make_multi_pointer` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
|
|
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
|
|
//
|
|
// This is "similar" to doing `raw_data(make([]E, len, allocator))`.
|
|
//
|
|
// Note: Prefer using the procedure group `make`.
|
|
@(builtin, require_results)
|
|
make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error {
|
|
make_slice_error_loc(loc, len)
|
|
data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return
|
|
if data == nil && size_of(E) != 0 {
|
|
return
|
|
}
|
|
mp = cast(T)raw_data(data)
|
|
return
|
|
}
|
|
|
|
|
|
// `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only).
|
|
//
|
|
// Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the
|
|
// type of its argument, not a pointer to it.
|
|
// Make uses the specified allocator, default is context.allocator.
|
|
@builtin
|
|
make :: proc{
|
|
make_slice,
|
|
make_dynamic_array,
|
|
make_dynamic_array_len,
|
|
make_dynamic_array_len_cap,
|
|
make_map,
|
|
make_multi_pointer,
|
|
}
|
|
|
|
|
|
|
|
// `clear_map` will set the length of a passed map to `0`
|
|
//
|
|
// Note: Prefer the procedure group `clear`
|
|
@builtin
|
|
clear_map :: proc "contextless" (m: ^$T/map[$K]$V) {
|
|
if m == nil {
|
|
return
|
|
}
|
|
map_clear_dynamic((^Raw_Map)(m), map_info(T))
|
|
}
|
|
|
|
// `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`).
|
|
//
|
|
// Note: Prefer the procedure group `reserve`
|
|
@builtin
|
|
reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int, loc := #caller_location) -> Allocator_Error {
|
|
return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil
|
|
}
|
|
|
|
// Shrinks the capacity of a map down to the current length.
|
|
//
|
|
// Note: Prefer the procedure group `shrink`
|
|
@builtin
|
|
shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
|
|
if m != nil {
|
|
return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc)
|
|
}
|
|
return
|
|
}
|
|
|
|
// The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
|
|
// If m is nil, or there is no such element, this procedure is a no-op
|
|
@builtin
|
|
delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) {
|
|
if m != nil {
|
|
key := key
|
|
old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key))
|
|
if ok {
|
|
deleted_key = (^K)(old_k)^
|
|
deleted_value = (^V)(old_v)^
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
_append_elem :: #force_inline proc(array: ^$T/[dynamic]$E, arg: E, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
if array == nil {
|
|
return 0, nil
|
|
}
|
|
when size_of(E) == 0 {
|
|
array := (^Raw_Dynamic_Array)(array)
|
|
array.len += 1
|
|
return 1, nil
|
|
} else {
|
|
if cap(array) < len(array)+1 {
|
|
cap := 2 * cap(array) + max(8, 1)
|
|
|
|
// do not 'or_return' here as it could be a partial success
|
|
if should_zero {
|
|
err = reserve(array, cap, loc)
|
|
} else {
|
|
err = non_zero_reserve(array, cap, loc)
|
|
}
|
|
}
|
|
if cap(array)-len(array) > 0 {
|
|
a := (^Raw_Dynamic_Array)(array)
|
|
when size_of(E) != 0 {
|
|
data := ([^]E)(a.data)
|
|
assert(data != nil, loc=loc)
|
|
data[a.len] = arg
|
|
}
|
|
a.len += 1
|
|
return 1, err
|
|
}
|
|
return 0, err
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
return _append_elem(array, arg, true, loc=loc)
|
|
}
|
|
|
|
@builtin
|
|
non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
return _append_elem(array, arg, false, loc=loc)
|
|
}
|
|
|
|
_append_elems :: #force_inline proc(array: ^$T/[dynamic]$E, should_zero: bool, loc := #caller_location, args: ..E) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
if array == nil {
|
|
return 0, nil
|
|
}
|
|
|
|
arg_len := len(args)
|
|
if arg_len <= 0 {
|
|
return 0, nil
|
|
}
|
|
|
|
when size_of(E) == 0 {
|
|
array := (^Raw_Dynamic_Array)(array)
|
|
array.len += arg_len
|
|
return arg_len, nil
|
|
} else {
|
|
if cap(array) < len(array)+arg_len {
|
|
cap := 2 * cap(array) + max(8, arg_len)
|
|
|
|
// do not 'or_return' here as it could be a partial success
|
|
if should_zero {
|
|
err = reserve(array, cap, loc)
|
|
} else {
|
|
err = non_zero_reserve(array, cap, loc)
|
|
}
|
|
}
|
|
arg_len = min(cap(array)-len(array), arg_len)
|
|
if arg_len > 0 {
|
|
a := (^Raw_Dynamic_Array)(array)
|
|
when size_of(E) != 0 {
|
|
data := ([^]E)(a.data)
|
|
assert(data != nil, loc=loc)
|
|
intrinsics.mem_copy(&data[a.len], raw_data(args), size_of(E) * arg_len)
|
|
}
|
|
a.len += arg_len
|
|
}
|
|
return arg_len, err
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
return _append_elems(array, true, loc, ..args)
|
|
}
|
|
|
|
@builtin
|
|
non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
return _append_elems(array, false, loc, ..args)
|
|
}
|
|
|
|
// The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
|
|
_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
args := transmute([]E)arg
|
|
if should_zero {
|
|
return append_elems(array, ..args, loc=loc)
|
|
} else {
|
|
return non_zero_append_elems(array, ..args, loc=loc)
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
return _append_elem_string(array, arg, true, loc)
|
|
}
|
|
@builtin
|
|
non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
return _append_elem_string(array, arg, false, loc)
|
|
}
|
|
|
|
|
|
// The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
|
|
@builtin
|
|
append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
n_arg: int
|
|
for arg in args {
|
|
n_arg, err = append(array, ..transmute([]E)(arg), loc=loc)
|
|
n += n_arg
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// The append built-in procedure appends elements to the end of a dynamic array
|
|
@builtin append :: proc{append_elem, append_elems, append_elem_string}
|
|
@builtin non_zero_append :: proc{non_zero_append_elem, non_zero_append_elems, non_zero_append_elem_string}
|
|
|
|
|
|
@builtin
|
|
append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
|
|
if array == nil {
|
|
return 0, nil
|
|
}
|
|
prev_len := len(array)
|
|
resize(array, len(array)+1, loc) or_return
|
|
return len(array)-prev_len, nil
|
|
}
|
|
|
|
|
|
@builtin
|
|
inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
|
|
if array == nil {
|
|
return
|
|
}
|
|
n := max(len(array), index)
|
|
m :: 1
|
|
new_size := n + m
|
|
|
|
resize(array, new_size, loc) or_return
|
|
when size_of(E) != 0 {
|
|
copy(array[index + m:], array[index:])
|
|
array[index] = arg
|
|
}
|
|
ok = true
|
|
return
|
|
}
|
|
|
|
@builtin
|
|
inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
|
|
if array == nil {
|
|
return
|
|
}
|
|
if len(args) == 0 {
|
|
ok = true
|
|
return
|
|
}
|
|
|
|
n := max(len(array), index)
|
|
m := len(args)
|
|
new_size := n + m
|
|
|
|
resize(array, new_size, loc) or_return
|
|
when size_of(E) != 0 {
|
|
copy(array[index + m:], array[index:])
|
|
copy(array[index:], args)
|
|
}
|
|
ok = true
|
|
return
|
|
}
|
|
|
|
@builtin
|
|
inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
|
|
if array == nil {
|
|
return
|
|
}
|
|
if len(arg) == 0 {
|
|
ok = true
|
|
return
|
|
}
|
|
|
|
n := max(len(array), index)
|
|
m := len(arg)
|
|
new_size := n + m
|
|
|
|
resize(array, new_size, loc) or_return
|
|
copy(array[index+m:], array[index:])
|
|
copy(array[index:], arg)
|
|
ok = true
|
|
return
|
|
}
|
|
|
|
@builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string}
|
|
|
|
|
|
|
|
@builtin
|
|
assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
|
|
if index < len(array) {
|
|
array[index] = arg
|
|
ok = true
|
|
} else {
|
|
resize(array, index+1, loc) or_return
|
|
array[index] = arg
|
|
ok = true
|
|
}
|
|
return
|
|
}
|
|
|
|
|
|
@builtin
|
|
assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
|
|
new_size := index + len(args)
|
|
if len(args) == 0 {
|
|
ok = true
|
|
} else if new_size < len(array) {
|
|
copy(array[index:], args)
|
|
ok = true
|
|
} else {
|
|
resize(array, new_size, loc) or_return
|
|
copy(array[index:], args)
|
|
ok = true
|
|
}
|
|
return
|
|
}
|
|
|
|
|
|
@builtin
|
|
assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
|
|
new_size := index + len(arg)
|
|
if len(arg) == 0 {
|
|
ok = true
|
|
} else if new_size < len(array) {
|
|
copy(array[index:], arg)
|
|
ok = true
|
|
} else {
|
|
resize(array, new_size, loc) or_return
|
|
copy(array[index:], arg)
|
|
ok = true
|
|
}
|
|
return
|
|
}
|
|
|
|
@builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string}
|
|
|
|
|
|
|
|
|
|
// `clear_dynamic_array` will set the length of a passed dynamic array to `0`
|
|
//
|
|
// Note: Prefer the procedure group `clear`.
|
|
@builtin
|
|
clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) {
|
|
if array != nil {
|
|
(^Raw_Dynamic_Array)(array).len = 0
|
|
}
|
|
}
|
|
|
|
// `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
|
|
//
|
|
// Note: Prefer the procedure group `reserve`.
|
|
_reserve_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
|
|
if array == nil {
|
|
return nil
|
|
}
|
|
a := (^Raw_Dynamic_Array)(array)
|
|
|
|
if capacity <= a.cap {
|
|
return nil
|
|
}
|
|
|
|
if a.allocator.procedure == nil {
|
|
a.allocator = context.allocator
|
|
}
|
|
assert(a.allocator.procedure != nil)
|
|
|
|
old_size := a.cap * size_of(E)
|
|
new_size := capacity * size_of(E)
|
|
allocator := a.allocator
|
|
|
|
new_data: []byte
|
|
if should_zero {
|
|
new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
|
|
} else {
|
|
new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
|
|
}
|
|
if new_data == nil && new_size > 0 {
|
|
return .Out_Of_Memory
|
|
}
|
|
|
|
a.data = raw_data(new_data)
|
|
a.cap = capacity
|
|
return nil
|
|
}
|
|
|
|
@builtin
|
|
reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error {
|
|
return _reserve_dynamic_array(array, capacity, true, loc)
|
|
}
|
|
|
|
@builtin
|
|
non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error {
|
|
return _reserve_dynamic_array(array, capacity, false, loc)
|
|
}
|
|
|
|
// `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`).
|
|
//
|
|
// Note: Prefer the procedure group `resize`
|
|
_resize_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
|
|
if array == nil {
|
|
return nil
|
|
}
|
|
a := (^Raw_Dynamic_Array)(array)
|
|
|
|
if length <= a.cap {
|
|
a.len = max(length, 0)
|
|
return nil
|
|
}
|
|
|
|
if a.allocator.procedure == nil {
|
|
a.allocator = context.allocator
|
|
}
|
|
assert(a.allocator.procedure != nil)
|
|
|
|
old_size := a.cap * size_of(E)
|
|
new_size := length * size_of(E)
|
|
allocator := a.allocator
|
|
|
|
new_data : []byte
|
|
if should_zero {
|
|
new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
|
|
} else {
|
|
new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
|
|
}
|
|
if new_data == nil && new_size > 0 {
|
|
return .Out_Of_Memory
|
|
}
|
|
|
|
a.data = raw_data(new_data)
|
|
a.len = length
|
|
a.cap = length
|
|
return nil
|
|
}
|
|
|
|
@builtin
|
|
resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error {
|
|
return _resize_dynamic_array(array, length, true, loc=loc)
|
|
}
|
|
|
|
@builtin
|
|
non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error {
|
|
return _resize_dynamic_array(array, length, false, loc=loc)
|
|
}
|
|
|
|
/*
|
|
Shrinks the capacity of a dynamic array down to the current length, or the given capacity.
|
|
|
|
If `new_cap` is negative, then `len(array)` is used.
|
|
|
|
Returns false if `cap(array) < new_cap`, or the allocator report failure.
|
|
|
|
If `len(array) < new_cap`, then `len(array)` will be left unchanged.
|
|
|
|
Note: Prefer the procedure group `shrink`
|
|
*/
|
|
shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
|
|
if array == nil {
|
|
return
|
|
}
|
|
a := (^Raw_Dynamic_Array)(array)
|
|
|
|
new_cap := new_cap if new_cap >= 0 else a.len
|
|
|
|
if new_cap > a.cap {
|
|
return
|
|
}
|
|
|
|
if a.allocator.procedure == nil {
|
|
a.allocator = context.allocator
|
|
}
|
|
assert(a.allocator.procedure != nil)
|
|
|
|
old_size := a.cap * size_of(E)
|
|
new_size := new_cap * size_of(E)
|
|
|
|
new_data := mem_resize(a.data, old_size, new_size, align_of(E), a.allocator, loc) or_return
|
|
|
|
a.data = raw_data(new_data)
|
|
a.len = min(new_cap, a.len)
|
|
a.cap = new_cap
|
|
return true, nil
|
|
}
|
|
|
|
@builtin
|
|
map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) {
|
|
key, value := key, value
|
|
return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc))
|
|
}
|
|
|
|
// Explicitly inserts a key and value into a map `m`, the same as `map_insert`, but the return values differ.
|
|
// - `prev_key` will return the previous pointer of a key if it exists, check `found_previous` if was previously found
|
|
// - `value_ptr` will return the pointer of the memory where the insertion happens, and `nil` if the map failed to resize
|
|
// - `found_previous` will be true a previous key was found
|
|
@(builtin, require_results)
|
|
map_upsert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (prev_key: K, value_ptr: ^V, found_previous: bool) {
|
|
key, value := key, value
|
|
kp, vp := __dynamic_map_set_extra_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)
|
|
if kp != nil {
|
|
prev_key = (^K)(kp)^
|
|
found_previous = true
|
|
}
|
|
value_ptr = (^V)(vp)
|
|
return
|
|
}
|
|
|
|
|
|
@builtin
|
|
card :: proc "contextless" (s: $S/bit_set[$E; $U]) -> int {
|
|
when size_of(S) == 1 {
|
|
return int(intrinsics.count_ones(transmute(u8)s))
|
|
} else when size_of(S) == 2 {
|
|
return int(intrinsics.count_ones(transmute(u16)s))
|
|
} else when size_of(S) == 4 {
|
|
return int(intrinsics.count_ones(transmute(u32)s))
|
|
} else when size_of(S) == 8 {
|
|
return int(intrinsics.count_ones(transmute(u64)s))
|
|
} else when size_of(S) == 16 {
|
|
return int(intrinsics.count_ones(transmute(u128)s))
|
|
} else {
|
|
#panic("Unhandled card bit_set size")
|
|
}
|
|
}
|
|
|
|
|
|
|
|
@builtin
|
|
@(disabled=ODIN_DISABLE_ASSERT)
|
|
assert :: proc(condition: bool, message := "", loc := #caller_location) {
|
|
if !condition {
|
|
// NOTE(bill): This is wrapped in a procedure call
|
|
// to improve performance to make the CPU not
|
|
// execute speculatively, making it about an order of
|
|
// magnitude faster
|
|
@(cold)
|
|
internal :: proc(message: string, loc: Source_Code_Location) {
|
|
p := context.assertion_failure_proc
|
|
if p == nil {
|
|
p = default_assertion_failure_proc
|
|
}
|
|
p("runtime assertion", message, loc)
|
|
}
|
|
internal(message, loc)
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
panic :: proc(message: string, loc := #caller_location) -> ! {
|
|
p := context.assertion_failure_proc
|
|
if p == nil {
|
|
p = default_assertion_failure_proc
|
|
}
|
|
p("panic", message, loc)
|
|
}
|
|
|
|
@builtin
|
|
unimplemented :: proc(message := "", loc := #caller_location) -> ! {
|
|
p := context.assertion_failure_proc
|
|
if p == nil {
|
|
p = default_assertion_failure_proc
|
|
}
|
|
p("not yet implemented", message, loc)
|
|
}
|