Files
Odin/base/runtime/core_builtin.odin
2024-03-11 12:30:24 +00:00

900 lines
30 KiB
Odin

package runtime
import "base:intrinsics"
@builtin
Maybe :: union($T: typeid) {T}
@(builtin, require_results)
container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T
where intrinsics.type_has_field(T, field_name),
intrinsics.type_field_type(T, field_name) == Field_Type {
offset :: offset_of_by_string(T, field_name)
return (^T)(uintptr(ptr) - offset) if ptr != nil else nil
}
when !NO_DEFAULT_TEMP_ALLOCATOR {
@thread_local global_default_temp_allocator_data: Default_Temp_Allocator
}
@(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR)
init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
when !NO_DEFAULT_TEMP_ALLOCATOR {
default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator)
}
}
// `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`.
// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
// of len(src) and len(dst).
//
// Prefer the procedure group `copy`.
@builtin
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
n := max(0, min(len(dst), len(src)))
if n > 0 {
intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E))
}
return n
}
// `copy_from_string` is a built-in procedure that copies elements from a source slice `src` to a destination string `dst`.
// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
// of len(src) and len(dst).
//
// Prefer the procedure group `copy`.
@builtin
copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
n := max(0, min(len(dst), len(src)))
if n > 0 {
intrinsics.mem_copy(raw_data(dst), raw_data(src), n)
}
return n
}
// `copy` is a built-in procedure that copies elements from a source slice `src` to a destination slice/string `dst`.
// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
// of len(src) and len(dst).
@builtin
copy :: proc{copy_slice, copy_from_string}
// `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value
// with the old value, and reducing the length of the dynamic array by 1.
//
// Note: This is an O(1) operation.
// Note: If you the elements to remain in their order, use `ordered_remove`.
// Note: If the index is out of bounds, this procedure will panic.
@builtin
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
bounds_check_error_loc(loc, index, len(array))
n := len(array)-1
if index != n {
array[index] = array[n]
}
(^Raw_Dynamic_Array)(array).len -= 1
}
// `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements.
//
// Note: This is an O(N) operation.
// Note: If you the elements do not have to remain in their order, prefer `unordered_remove`.
// Note: If the index is out of bounds, this procedure will panic.
@builtin
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
bounds_check_error_loc(loc, index, len(array))
if index+1 < len(array) {
copy(array[index:], array[index+1:])
}
(^Raw_Dynamic_Array)(array).len -= 1
}
// `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements.
//
// Note: This is an O(N) operation.
// Note: If the range is out of bounds, this procedure will panic.
@builtin
remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check {
slice_expr_error_lo_hi_loc(loc, lo, hi, len(array))
n := max(hi-lo, 0)
if n > 0 {
if hi != len(array) {
copy(array[lo:], array[hi:])
}
(^Raw_Dynamic_Array)(array).len -= n
}
}
// `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
//
// Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic.
@builtin
pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, loc=loc)
res = array[len(array)-1]
(^Raw_Dynamic_Array)(array).len -= 1
return res
}
// `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
// If the operation is not possible, it will return false.
@builtin
pop_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return
}
res, ok = array[len(array)-1], true
(^Raw_Dynamic_Array)(array).len -= 1
return
}
// `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1.
//
// Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic.
@builtin
pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, loc=loc)
res = array[0]
if len(array) > 1 {
copy(array[0:], array[1:])
}
(^Raw_Dynamic_Array)(array).len -= 1
return res
}
// `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1.
// If the operation is not possible, it will return false.
@builtin
pop_front_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return
}
res, ok = array[0], true
if len(array) > 1 {
copy(array[0:], array[1:])
}
(^Raw_Dynamic_Array)(array).len -= 1
return
}
// `clear` will set the length of a passed dynamic array or map to `0`
@builtin
clear :: proc{clear_dynamic_array, clear_map}
// `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
@builtin
reserve :: proc{reserve_dynamic_array, reserve_map}
@builtin
non_zero_reserve :: proc{non_zero_reserve_dynamic_array}
// `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`).
@builtin
resize :: proc{resize_dynamic_array}
@builtin
non_zero_resize :: proc{non_zero_resize_dynamic_array}
// Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity.
@builtin
shrink :: proc{shrink_dynamic_array, shrink_map}
// `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation.
@builtin
free :: proc{mem_free}
// `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation.
@builtin
free_all :: proc{mem_free_all}
// `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
//
// Note: Prefer the procedure group `delete`.
@builtin
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
return mem_free_with_size(raw_data(str), len(str), allocator, loc)
}
// `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
//
// Note: Prefer the procedure group `delete`.
@builtin
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
return mem_free((^byte)(str), allocator, loc)
}
// `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation.
//
// Note: Prefer the procedure group `delete`.
@builtin
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error {
return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc)
}
// `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation.
//
// Note: Prefer the procedure group `delete`.
@builtin
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc)
}
// `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation.
//
// Note: Prefer the procedure group `delete`.
@builtin
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error {
return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc)
}
// `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation.
//
// Note: Prefer `delete` over the specific `delete_*` procedures where possible.
@builtin
delete :: proc{
delete_string,
delete_cstring,
delete_dynamic_array,
delete_slice,
delete_map,
delete_soa_slice,
delete_soa_dynamic_array,
}
// The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
// return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
@(builtin, require_results)
new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error {
return new_aligned(T, align_of(T), allocator, loc)
}
@(require_results)
new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return
t = (^T)(raw_data(data))
return
}
@(builtin, require_results)
new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return
t = (^T)(raw_data(t_data))
if t != nil {
t^ = data
}
return
}
DEFAULT_RESERVE_CAPACITY :: 16
@(require_results)
make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
make_slice_error_loc(loc, len)
data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc)
if data == nil && size_of(E) != 0 {
return nil, err
}
s := Raw_Slice{raw_data(data), len}
return transmute(T)s, err
}
// `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value.
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
//
// Note: Prefer using the procedure group `make`.
@(builtin, require_results)
make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
return make_aligned(T, len, align_of(E), allocator, loc)
}
// `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
//
// Note: Prefer using the procedure group `make`.
@(builtin, require_results)
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc)
}
// `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
//
// Note: Prefer using the procedure group `make`.
@(builtin, require_results)
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
return make_dynamic_array_len_cap(T, len, len, allocator, loc)
}
// `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
//
// Note: Prefer using the procedure group `make`.
@(builtin, require_results)
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
make_dynamic_array_error_loc(loc, len, cap)
array.allocator = allocator // initialize allocator before just in case it fails to allocate any memory
data := mem_alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return
s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator}
if data == nil && size_of(E) != 0 {
s.len, s.cap = 0, 0
}
array = transmute(T)s
return
}
// `make_map` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
//
// Note: Prefer using the procedure group `make`.
@(builtin, require_results)
make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1<<MAP_MIN_LOG2_CAPACITY, allocator := context.allocator, loc := #caller_location) -> (m: T, err: Allocator_Error) #optional_allocator_error {
make_map_expr_error_loc(loc, capacity)
context.allocator = allocator
err = reserve_map(&m, capacity, loc)
return
}
// `make_multi_pointer` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
//
// This is "similar" to doing `raw_data(make([]E, len, allocator))`.
//
// Note: Prefer using the procedure group `make`.
@(builtin, require_results)
make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error {
make_slice_error_loc(loc, len)
data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return
if data == nil && size_of(E) != 0 {
return
}
mp = cast(T)raw_data(data)
return
}
// `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only).
//
// Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the
// type of its argument, not a pointer to it.
// Make uses the specified allocator, default is context.allocator.
@builtin
make :: proc{
make_slice,
make_dynamic_array,
make_dynamic_array_len,
make_dynamic_array_len_cap,
make_map,
make_multi_pointer,
}
// `clear_map` will set the length of a passed map to `0`
//
// Note: Prefer the procedure group `clear`
@builtin
clear_map :: proc "contextless" (m: ^$T/map[$K]$V) {
if m == nil {
return
}
map_clear_dynamic((^Raw_Map)(m), map_info(T))
}
// `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`).
//
// Note: Prefer the procedure group `reserve`
@builtin
reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int, loc := #caller_location) -> Allocator_Error {
return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil
}
// Shrinks the capacity of a map down to the current length.
//
// Note: Prefer the procedure group `shrink`
@builtin
shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
if m != nil {
return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc)
}
return
}
// The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
// If m is nil, or there is no such element, this procedure is a no-op
@builtin
delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) {
if m != nil {
key := key
old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key))
if ok {
deleted_key = (^K)(old_k)^
deleted_value = (^V)(old_v)^
}
}
return
}
_append_elem :: #force_inline proc(array: ^$T/[dynamic]$E, arg: E, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
if array == nil {
return 0, nil
}
when size_of(E) == 0 {
array := (^Raw_Dynamic_Array)(array)
array.len += 1
return 1, nil
} else {
if cap(array) < len(array)+1 {
cap := 2 * cap(array) + max(8, 1)
// do not 'or_return' here as it could be a partial success
if should_zero {
err = reserve(array, cap, loc)
} else {
err = non_zero_reserve(array, cap, loc)
}
}
if cap(array)-len(array) > 0 {
a := (^Raw_Dynamic_Array)(array)
when size_of(E) != 0 {
data := ([^]E)(a.data)
assert(data != nil, loc=loc)
data[a.len] = arg
}
a.len += 1
return 1, err
}
return 0, err
}
}
@builtin
append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
return _append_elem(array, arg, true, loc=loc)
}
@builtin
non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
return _append_elem(array, arg, false, loc=loc)
}
_append_elems :: #force_inline proc(array: ^$T/[dynamic]$E, should_zero: bool, loc := #caller_location, args: ..E) -> (n: int, err: Allocator_Error) #optional_allocator_error {
if array == nil {
return 0, nil
}
arg_len := len(args)
if arg_len <= 0 {
return 0, nil
}
when size_of(E) == 0 {
array := (^Raw_Dynamic_Array)(array)
array.len += arg_len
return arg_len, nil
} else {
if cap(array) < len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len)
// do not 'or_return' here as it could be a partial success
if should_zero {
err = reserve(array, cap, loc)
} else {
err = non_zero_reserve(array, cap, loc)
}
}
arg_len = min(cap(array)-len(array), arg_len)
if arg_len > 0 {
a := (^Raw_Dynamic_Array)(array)
when size_of(E) != 0 {
data := ([^]E)(a.data)
assert(data != nil, loc=loc)
intrinsics.mem_copy(&data[a.len], raw_data(args), size_of(E) * arg_len)
}
a.len += arg_len
}
return arg_len, err
}
}
@builtin
append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
return _append_elems(array, true, loc, ..args)
}
@builtin
non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
return _append_elems(array, false, loc, ..args)
}
// The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
args := transmute([]E)arg
if should_zero {
return append_elems(array, ..args, loc=loc)
} else {
return non_zero_append_elems(array, ..args, loc=loc)
}
}
@builtin
append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
return _append_elem_string(array, arg, true, loc)
}
@builtin
non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
return _append_elem_string(array, arg, false, loc)
}
// The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
@builtin
append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
n_arg: int
for arg in args {
n_arg, err = append(array, ..transmute([]E)(arg), loc=loc)
n += n_arg
if err != nil {
return
}
}
return
}
// The append built-in procedure appends elements to the end of a dynamic array
@builtin append :: proc{append_elem, append_elems, append_elem_string}
@builtin non_zero_append :: proc{non_zero_append_elem, non_zero_append_elems, non_zero_append_elem_string}
@builtin
append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
if array == nil {
return 0, nil
}
prev_len := len(array)
resize(array, len(array)+1, loc) or_return
return len(array)-prev_len, nil
}
@builtin
inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
if array == nil {
return
}
n := max(len(array), index)
m :: 1
new_size := n + m
resize(array, new_size, loc) or_return
when size_of(E) != 0 {
copy(array[index + m:], array[index:])
array[index] = arg
}
ok = true
return
}
@builtin
inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
if array == nil {
return
}
if len(args) == 0 {
ok = true
return
}
n := max(len(array), index)
m := len(args)
new_size := n + m
resize(array, new_size, loc) or_return
when size_of(E) != 0 {
copy(array[index + m:], array[index:])
copy(array[index:], args)
}
ok = true
return
}
@builtin
inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
if array == nil {
return
}
if len(arg) == 0 {
ok = true
return
}
n := max(len(array), index)
m := len(arg)
new_size := n + m
resize(array, new_size, loc) or_return
copy(array[index+m:], array[index:])
copy(array[index:], arg)
ok = true
return
}
@builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string}
@builtin
assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
if index < len(array) {
array[index] = arg
ok = true
} else {
resize(array, index+1, loc) or_return
array[index] = arg
ok = true
}
return
}
@builtin
assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
new_size := index + len(args)
if len(args) == 0 {
ok = true
} else if new_size < len(array) {
copy(array[index:], args)
ok = true
} else {
resize(array, new_size, loc) or_return
copy(array[index:], args)
ok = true
}
return
}
@builtin
assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
new_size := index + len(arg)
if len(arg) == 0 {
ok = true
} else if new_size < len(array) {
copy(array[index:], arg)
ok = true
} else {
resize(array, new_size, loc) or_return
copy(array[index:], arg)
ok = true
}
return
}
@builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string}
// `clear_dynamic_array` will set the length of a passed dynamic array to `0`
//
// Note: Prefer the procedure group `clear`.
@builtin
clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) {
if array != nil {
(^Raw_Dynamic_Array)(array).len = 0
}
}
// `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
//
// Note: Prefer the procedure group `reserve`.
_reserve_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
if array == nil {
return nil
}
a := (^Raw_Dynamic_Array)(array)
if capacity <= a.cap {
return nil
}
if a.allocator.procedure == nil {
a.allocator = context.allocator
}
assert(a.allocator.procedure != nil)
old_size := a.cap * size_of(E)
new_size := capacity * size_of(E)
allocator := a.allocator
new_data: []byte
if should_zero {
new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
} else {
new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
}
if new_data == nil && new_size > 0 {
return .Out_Of_Memory
}
a.data = raw_data(new_data)
a.cap = capacity
return nil
}
@builtin
reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error {
return _reserve_dynamic_array(array, capacity, true, loc)
}
@builtin
non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error {
return _reserve_dynamic_array(array, capacity, false, loc)
}
// `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`).
//
// Note: Prefer the procedure group `resize`
_resize_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
if array == nil {
return nil
}
a := (^Raw_Dynamic_Array)(array)
if length <= a.cap {
a.len = max(length, 0)
return nil
}
if a.allocator.procedure == nil {
a.allocator = context.allocator
}
assert(a.allocator.procedure != nil)
old_size := a.cap * size_of(E)
new_size := length * size_of(E)
allocator := a.allocator
new_data : []byte
if should_zero {
new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
} else {
new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
}
if new_data == nil && new_size > 0 {
return .Out_Of_Memory
}
a.data = raw_data(new_data)
a.len = length
a.cap = length
return nil
}
@builtin
resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error {
return _resize_dynamic_array(array, length, true, loc=loc)
}
@builtin
non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error {
return _resize_dynamic_array(array, length, false, loc=loc)
}
/*
Shrinks the capacity of a dynamic array down to the current length, or the given capacity.
If `new_cap` is negative, then `len(array)` is used.
Returns false if `cap(array) < new_cap`, or the allocator report failure.
If `len(array) < new_cap`, then `len(array)` will be left unchanged.
Note: Prefer the procedure group `shrink`
*/
shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
if array == nil {
return
}
a := (^Raw_Dynamic_Array)(array)
new_cap := new_cap if new_cap >= 0 else a.len
if new_cap > a.cap {
return
}
if a.allocator.procedure == nil {
a.allocator = context.allocator
}
assert(a.allocator.procedure != nil)
old_size := a.cap * size_of(E)
new_size := new_cap * size_of(E)
new_data := mem_resize(a.data, old_size, new_size, align_of(E), a.allocator, loc) or_return
a.data = raw_data(new_data)
a.len = min(new_cap, a.len)
a.cap = new_cap
return true, nil
}
@builtin
map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) {
key, value := key, value
return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc))
}
// Explicitly inserts a key and value into a map `m`, the same as `map_insert`, but the return values differ.
// - `prev_key` will return the previous pointer of a key if it exists, check `found_previous` if was previously found
// - `value_ptr` will return the pointer of the memory where the insertion happens, and `nil` if the map failed to resize
// - `found_previous` will be true a previous key was found
@(builtin, require_results)
map_upsert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (prev_key: K, value_ptr: ^V, found_previous: bool) {
key, value := key, value
kp, vp := __dynamic_map_set_extra_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)
if kp != nil {
prev_key = (^K)(kp)^
found_previous = true
}
value_ptr = (^V)(vp)
return
}
@builtin
card :: proc "contextless" (s: $S/bit_set[$E; $U]) -> int {
when size_of(S) == 1 {
return int(intrinsics.count_ones(transmute(u8)s))
} else when size_of(S) == 2 {
return int(intrinsics.count_ones(transmute(u16)s))
} else when size_of(S) == 4 {
return int(intrinsics.count_ones(transmute(u32)s))
} else when size_of(S) == 8 {
return int(intrinsics.count_ones(transmute(u64)s))
} else when size_of(S) == 16 {
return int(intrinsics.count_ones(transmute(u128)s))
} else {
#panic("Unhandled card bit_set size")
}
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
assert :: proc(condition: bool, message := "", loc := #caller_location) {
if !condition {
// NOTE(bill): This is wrapped in a procedure call
// to improve performance to make the CPU not
// execute speculatively, making it about an order of
// magnitude faster
@(cold)
internal :: proc(message: string, loc: Source_Code_Location) {
p := context.assertion_failure_proc
if p == nil {
p = default_assertion_failure_proc
}
p("runtime assertion", message, loc)
}
internal(message, loc)
}
}
@builtin
panic :: proc(message: string, loc := #caller_location) -> ! {
p := context.assertion_failure_proc
if p == nil {
p = default_assertion_failure_proc
}
p("panic", message, loc)
}
@builtin
unimplemented :: proc(message := "", loc := #caller_location) -> ! {
p := context.assertion_failure_proc
if p == nil {
p = default_assertion_failure_proc
}
p("not yet implemented", message, loc)
}