Files
Odin/core/net/socket_darwin.odin
Tetralux d74ddb2d91 fixup
2024-02-22 15:01:55 +00:00

404 lines
11 KiB
Odin

package net
// +build darwin
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
*/
import "core:c"
import "core:os"
import "core:time"
Socket_Option :: enum c.int {
Broadcast = c.int(os.SO_BROADCAST),
Reuse_Address = c.int(os.SO_REUSEADDR),
Keep_Alive = c.int(os.SO_KEEPALIVE),
Out_Of_Bounds_Data_Inline = c.int(os.SO_OOBINLINE),
TCP_Nodelay = c.int(os.TCP_NODELAY),
Linger = c.int(os.SO_LINGER),
Receive_Buffer_Size = c.int(os.SO_RCVBUF),
Send_Buffer_Size = c.int(os.SO_SNDBUF),
Receive_Timeout = c.int(os.SO_RCVTIMEO),
Send_Timeout = c.int(os.SO_SNDTIMEO),
}
@(private)
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Network_Error) {
c_type, c_protocol, c_family: int
switch family {
case .IP4: c_family = os.AF_INET
case .IP6: c_family = os.AF_INET6
case:
unreachable()
}
switch protocol {
case .TCP: c_type = os.SOCK_STREAM; c_protocol = os.IPPROTO_TCP
case .UDP: c_type = os.SOCK_DGRAM; c_protocol = os.IPPROTO_UDP
case:
unreachable()
}
sock, ok := os.socket(c_family, c_type, c_protocol)
if ok != os.ERROR_NONE {
err = Create_Socket_Error(ok)
return
}
switch protocol {
case .TCP: return TCP_Socket(sock), nil
case .UDP: return UDP_Socket(sock), nil
case:
unreachable()
}
}
@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (skt: TCP_Socket, err: Network_Error) {
if endpoint.port == 0 {
return 0, .Port_Required
}
family := family_from_endpoint(endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
_ = set_option(skt, .Reuse_Address, true)
sockaddr := _endpoint_to_sockaddr(endpoint)
res := os.connect(os.Socket(skt), (^os.SOCKADDR)(&sockaddr), i32(sockaddr.len))
if res != os.ERROR_NONE {
err = Dial_Error(res)
return
}
return
}
// On Darwin, any port below 1024 is 'privileged' - which means that you need root access in order to use it.
MAX_PRIVILEGED_PORT :: 1023
@(private)
_bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Network_Error) {
sockaddr := _endpoint_to_sockaddr(ep)
s := any_socket_to_socket(skt)
res := os.bind(os.Socket(s), (^os.SOCKADDR)(&sockaddr), i32(sockaddr.len))
if res != os.ERROR_NONE {
if res == os.EACCES && ep.port <= MAX_PRIVILEGED_PORT {
err = .Privileged_Port_Without_Root
} else {
err = Bind_Error(res)
}
}
return
}
@(private)
_listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
assert(backlog > 0 && i32(backlog) < max(i32))
family := family_from_endpoint(interface_endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
//
// TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
set_option(sock, .Reuse_Address, true) or_return
bind(sock, interface_endpoint) or_return
res := os.listen(os.Socket(skt), backlog)
if res != os.ERROR_NONE {
err = Listen_Error(res)
return
}
return
}
@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (client: TCP_Socket, source: Endpoint, err: Network_Error) {
sockaddr: os.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
client_sock, ok := os.accept(os.Socket(sock), cast(^os.SOCKADDR) &sockaddr, &sockaddrlen)
if ok != os.ERROR_NONE {
err = Accept_Error(ok)
return
}
client = TCP_Socket(client_sock)
source = _sockaddr_to_endpoint(&sockaddr)
return
}
@(private)
_close :: proc(skt: Any_Socket) {
s := any_socket_to_socket(skt)
os.close(os.Handle(os.Socket(s)))
}
@(private)
_recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: Network_Error) {
if len(buf) <= 0 {
return
}
res, ok := os.recv(os.Socket(skt), buf, 0)
if ok != os.ERROR_NONE {
err = TCP_Recv_Error(ok)
return
}
return int(res), nil
}
@(private)
_recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: Network_Error) {
if len(buf) <= 0 {
return
}
from: os.SOCKADDR_STORAGE_LH
fromsize := c.int(size_of(from))
res, ok := os.recvfrom(os.Socket(skt), buf, 0, cast(^os.SOCKADDR) &from, &fromsize)
if ok != os.ERROR_NONE {
err = UDP_Recv_Error(ok)
return
}
bytes_read = int(res)
remote_endpoint = _sockaddr_to_endpoint(&from)
return
}
@(private)
_send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: Network_Error) {
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res, ok := os.send(os.Socket(skt), remaining, 0)
if ok != os.ERROR_NONE {
err = TCP_Send_Error(ok)
return
}
bytes_written += int(res)
}
return
}
@(private)
_send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: Network_Error) {
toaddr := _endpoint_to_sockaddr(to)
for bytes_written < len(buf) {
limit := min(1<<31, len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res, ok := os.sendto(os.Socket(skt), remaining, 0, cast(^os.SOCKADDR)&toaddr, i32(toaddr.len))
if ok != os.ERROR_NONE {
err = UDP_Send_Error(ok)
return
}
bytes_written += int(res)
}
return
}
@(private)
_shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
s := any_socket_to_socket(skt)
res := os.shutdown(os.Socket(s), int(manner))
if res != os.ERROR_NONE {
return Shutdown_Error(res)
}
return
}
@(private)
_set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
level := os.SOL_SOCKET if option != .TCP_Nodelay else os.IPPROTO_TCP
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
// it _has_ to be a b32.
// I haven't tested if you can give more than that.
bool_value: b32
int_value: i32
timeval_value: os.Timeval
ptr: rawptr
len: os.socklen_t
switch option {
case
.Broadcast,
.Reuse_Address,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay:
// TODO: verify whether these are options or not on Linux
// .Broadcast,
// .Conditional_Accept,
// .Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
ptr = &bool_value
len = size_of(bool_value)
case
.Linger,
.Send_Timeout,
.Receive_Timeout:
t, ok := value.(time.Duration)
if !ok do panic("set_option() value must be a time.Duration here", loc)
micros := i64(time.duration_microseconds(t))
timeval_value.microseconds = int(micros % 1e6)
timeval_value.seconds = (micros - i64(timeval_value.microseconds)) / 1e6
ptr = &timeval_value
len = size_of(timeval_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
// TODO: check for out of range values and return .Value_Out_Of_Range?
switch i in value {
case i8, u8: i2 := i; int_value = os.socklen_t((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = os.socklen_t((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = os.socklen_t((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = os.socklen_t((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = os.socklen_t((^u128)(&i2)^)
case int, uint: i2 := i; int_value = os.socklen_t((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
ptr = &int_value
len = size_of(int_value)
}
skt := any_socket_to_socket(s)
res := os.setsockopt(os.Socket(skt), int(level), int(option), ptr, len)
if res != os.ERROR_NONE {
return Socket_Option_Error(res)
}
return nil
}
@(private)
_set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Network_Error) {
socket := any_socket_to_socket(socket)
flags, getfl_err := os.fcntl(int(socket), os.F_GETFL, 0)
if getfl_err != os.ERROR_NONE {
return Set_Blocking_Error(getfl_err)
}
if should_block {
flags &= ~int(os.O_NONBLOCK)
} else {
flags |= int(os.O_NONBLOCK)
}
_, setfl_err := os.fcntl(int(socket), os.F_SETFL, flags)
if setfl_err != os.ERROR_NONE {
return Set_Blocking_Error(setfl_err)
}
return nil
}
@private
_endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: os.SOCKADDR_STORAGE_LH) {
switch a in ep.address {
case IP4_Address:
(^os.sockaddr_in)(&sockaddr)^ = os.sockaddr_in {
sin_port = u16be(ep.port),
sin_addr = transmute(os.in_addr) a,
sin_family = u8(os.AF_INET),
sin_len = size_of(os.sockaddr_in),
}
return
case IP6_Address:
(^os.sockaddr_in6)(&sockaddr)^ = os.sockaddr_in6 {
sin6_port = u16be(ep.port),
sin6_addr = transmute(os.in6_addr) a,
sin6_family = u8(os.AF_INET6),
sin6_len = size_of(os.sockaddr_in6),
}
return
}
unreachable()
}
@private
_sockaddr_to_endpoint :: proc(native_addr: ^os.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) {
switch native_addr.family {
case u8(os.AF_INET):
addr := cast(^os.sockaddr_in) native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte) addr.sin_addr),
port = port,
}
case u8(os.AF_INET6):
addr := cast(^os.sockaddr_in6) native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}
@(private)
_sockaddr_basic_to_endpoint :: proc(native_addr: ^os.SOCKADDR) -> (ep: Endpoint) {
switch u16(native_addr.family) {
case u16(os.AF_INET):
addr := cast(^os.sockaddr_in) native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte) addr.sin_addr),
port = port,
}
case u16(os.AF_INET6):
addr := cast(^os.sockaddr_in6) native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}