mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 09:24:33 +00:00
416 lines
13 KiB
Odin
416 lines
13 KiB
Odin
#+build linux
|
|
package net
|
|
|
|
/*
|
|
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
|
|
For other protocols and their features, see subdirectories of this package.
|
|
*/
|
|
|
|
/*
|
|
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
|
|
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
|
|
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
|
|
Copyright 2024 Feoramund <rune@swevencraft.org>.
|
|
Made available under Odin's BSD-3 license.
|
|
|
|
List of contributors:
|
|
Tetralux: Initial implementation
|
|
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
|
|
Jeroen van Rijn: Cross platform unification, code style, documentation
|
|
flysand: Move dependency from core:os to core:sys/linux
|
|
Feoramund: FreeBSD platform code
|
|
*/
|
|
|
|
import "core:c"
|
|
import "core:time"
|
|
import "core:sys/linux"
|
|
|
|
Socket_Option :: enum c.int {
|
|
Reuse_Address = c.int(linux.Socket_Option.REUSEADDR),
|
|
Keep_Alive = c.int(linux.Socket_Option.KEEPALIVE),
|
|
Out_Of_Bounds_Data_Inline = c.int(linux.Socket_Option.OOBINLINE),
|
|
TCP_Nodelay = c.int(linux.Socket_TCP_Option.NODELAY),
|
|
Linger = c.int(linux.Socket_Option.LINGER),
|
|
Receive_Buffer_Size = c.int(linux.Socket_Option.RCVBUF),
|
|
Send_Buffer_Size = c.int(linux.Socket_Option.SNDBUF),
|
|
Receive_Timeout = c.int(linux.Socket_Option.RCVTIMEO),
|
|
Send_Timeout = c.int(linux.Socket_Option.SNDTIMEO),
|
|
Broadcast = c.int(linux.Socket_Option.BROADCAST),
|
|
}
|
|
|
|
// Wrappers and unwrappers for system-native types
|
|
|
|
@(private="file")
|
|
_unwrap_os_socket :: proc "contextless" (sock: Any_Socket)->linux.Fd {
|
|
return linux.Fd(any_socket_to_socket(sock))
|
|
}
|
|
|
|
@(private="file")
|
|
_wrap_os_socket :: proc "contextless" (sock: linux.Fd, protocol: Socket_Protocol)->Any_Socket {
|
|
switch protocol {
|
|
case .TCP: return TCP_Socket(Socket(sock))
|
|
case .UDP: return UDP_Socket(Socket(sock))
|
|
case:
|
|
unreachable()
|
|
}
|
|
}
|
|
|
|
@(private="file")
|
|
_unwrap_os_family :: proc "contextless" (family: Address_Family)->linux.Address_Family {
|
|
switch family {
|
|
case .IP4: return .INET
|
|
case .IP6: return .INET6
|
|
case:
|
|
unreachable()
|
|
}
|
|
}
|
|
|
|
@(private="file")
|
|
_unwrap_os_proto_socktype :: proc "contextless" (protocol: Socket_Protocol)->(linux.Protocol, linux.Socket_Type) {
|
|
switch protocol {
|
|
case .TCP: return .TCP, .STREAM
|
|
case .UDP: return .UDP, .DGRAM
|
|
case:
|
|
unreachable()
|
|
}
|
|
}
|
|
|
|
@(private="file")
|
|
_unwrap_os_addr :: proc "contextless" (endpoint: Endpoint)->(linux.Sock_Addr_Any) {
|
|
switch address in endpoint.address {
|
|
case IP4_Address:
|
|
return {
|
|
ipv4 = {
|
|
sin_family = .INET,
|
|
sin_port = u16be(endpoint.port),
|
|
sin_addr = ([4]u8)(endpoint.address.(IP4_Address)),
|
|
},
|
|
}
|
|
case IP6_Address:
|
|
return {
|
|
ipv6 = {
|
|
sin6_port = u16be(endpoint.port),
|
|
sin6_addr = transmute([16]u8)endpoint.address.(IP6_Address),
|
|
sin6_family = .INET6,
|
|
},
|
|
}
|
|
case:
|
|
unreachable()
|
|
}
|
|
}
|
|
|
|
@(private="file")
|
|
_wrap_os_addr :: proc "contextless" (addr: linux.Sock_Addr_Any)->(Endpoint) {
|
|
#partial switch addr.family {
|
|
case .INET:
|
|
return {
|
|
address = cast(IP4_Address) addr.sin_addr,
|
|
port = cast(int) addr.sin_port,
|
|
}
|
|
case .INET6:
|
|
return {
|
|
port = cast(int) addr.sin6_port,
|
|
address = transmute(IP6_Address) addr.sin6_addr,
|
|
}
|
|
case:
|
|
unreachable()
|
|
}
|
|
}
|
|
|
|
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (Any_Socket, Network_Error) {
|
|
family := _unwrap_os_family(family)
|
|
proto, socktype := _unwrap_os_proto_socktype(protocol)
|
|
sock, errno := linux.socket(family, socktype, {.CLOEXEC}, proto)
|
|
if errno != .NONE {
|
|
return {}, Create_Socket_Error(errno)
|
|
}
|
|
return _wrap_os_socket(sock, protocol), nil
|
|
}
|
|
|
|
@(private)
|
|
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (TCP_Socket, Network_Error) {
|
|
errno: linux.Errno
|
|
if endpoint.port == 0 {
|
|
return 0, .Port_Required
|
|
}
|
|
// Create new TCP socket
|
|
os_sock: linux.Fd
|
|
os_sock, errno = linux.socket(_unwrap_os_family(family_from_endpoint(endpoint)), .STREAM, {.CLOEXEC}, .TCP)
|
|
if errno != .NONE {
|
|
// TODO(flysand): should return invalid file descriptor here casted as TCP_Socket
|
|
return {}, Create_Socket_Error(errno)
|
|
}
|
|
// NOTE(tetra): This is so that if we crash while the socket is open, we can
|
|
// bypass the cooldown period, and allow the next run of the program to
|
|
// use the same address immediately.
|
|
reuse_addr: b32 = true
|
|
_ = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &reuse_addr)
|
|
addr := _unwrap_os_addr(endpoint)
|
|
errno = linux.connect(linux.Fd(os_sock), &addr)
|
|
if errno != .NONE {
|
|
close(cast(TCP_Socket) os_sock)
|
|
return {}, Dial_Error(errno)
|
|
}
|
|
// NOTE(tetra): Not vital to succeed; error ignored
|
|
no_delay: b32 = cast(b32) options.no_delay
|
|
_ = linux.setsockopt(os_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &no_delay)
|
|
return cast(TCP_Socket) os_sock, nil
|
|
}
|
|
|
|
@(private)
|
|
_bind :: proc(sock: Any_Socket, endpoint: Endpoint) -> (Network_Error) {
|
|
addr := _unwrap_os_addr(endpoint)
|
|
errno := linux.bind(_unwrap_os_socket(sock), &addr)
|
|
if errno != .NONE {
|
|
return Bind_Error(errno)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
@(private)
|
|
_listen_tcp :: proc(endpoint: Endpoint, backlog := 1000) -> (socket: TCP_Socket, err: Network_Error) {
|
|
errno: linux.Errno
|
|
assert(backlog > 0 && i32(backlog) < max(i32))
|
|
|
|
// Figure out the address family and address of the endpoint
|
|
ep_family := _unwrap_os_family(family_from_endpoint(endpoint))
|
|
ep_address := _unwrap_os_addr(endpoint)
|
|
|
|
// Create TCP socket
|
|
os_sock: linux.Fd
|
|
os_sock, errno = linux.socket(ep_family, .STREAM, {.CLOEXEC}, .TCP)
|
|
if errno != .NONE {
|
|
err = Create_Socket_Error(errno)
|
|
return
|
|
}
|
|
socket = cast(TCP_Socket)os_sock
|
|
defer if err != nil { close(socket) }
|
|
|
|
// NOTE(tetra): This is so that if we crash while the socket is open, we can
|
|
// bypass the cooldown period, and allow the next run of the program to
|
|
// use the same address immediately.
|
|
//
|
|
// TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
|
|
do_reuse_addr: b32 = true
|
|
if errno = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &do_reuse_addr); errno != .NONE {
|
|
err = Listen_Error(errno)
|
|
return
|
|
}
|
|
|
|
// Bind the socket to endpoint address
|
|
if errno = linux.bind(os_sock, &ep_address); errno != .NONE {
|
|
err = Bind_Error(errno)
|
|
return
|
|
}
|
|
|
|
// Listen on bound socket
|
|
if errno = linux.listen(os_sock, cast(i32) backlog); errno != .NONE {
|
|
err = Listen_Error(errno)
|
|
return
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
@(private)
|
|
_bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Network_Error) {
|
|
addr: linux.Sock_Addr_Any
|
|
errno := linux.getsockname(_unwrap_os_socket(sock), &addr)
|
|
if errno != .NONE {
|
|
err = Listen_Error(errno)
|
|
return
|
|
}
|
|
|
|
ep = _wrap_os_addr(addr)
|
|
return
|
|
}
|
|
|
|
@(private)
|
|
_accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (tcp_client: TCP_Socket, endpoint: Endpoint, err: Network_Error) {
|
|
addr: linux.Sock_Addr_Any
|
|
client_sock, errno := linux.accept(linux.Fd(sock), &addr)
|
|
if errno != .NONE {
|
|
return {}, {}, Accept_Error(errno)
|
|
}
|
|
// NOTE(tetra): Not vital to succeed; error ignored
|
|
val: b32 = cast(b32) options.no_delay
|
|
_ = linux.setsockopt(client_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &val)
|
|
return TCP_Socket(client_sock), _wrap_os_addr(addr), nil
|
|
}
|
|
|
|
@(private)
|
|
_close :: proc(sock: Any_Socket) {
|
|
linux.close(_unwrap_os_socket(sock))
|
|
}
|
|
|
|
@(private)
|
|
_recv_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
|
|
if len(buf) <= 0 {
|
|
return 0, nil
|
|
}
|
|
bytes_read, errno := linux.recv(linux.Fd(tcp_sock), buf, {})
|
|
if errno != .NONE {
|
|
return 0, TCP_Recv_Error(errno)
|
|
}
|
|
return int(bytes_read), nil
|
|
}
|
|
|
|
@(private)
|
|
_recv_udp :: proc(udp_sock: UDP_Socket, buf: []byte) -> (int, Endpoint, Network_Error) {
|
|
if len(buf) <= 0 {
|
|
// NOTE(flysand): It was returning no error, I didn't change anything
|
|
return 0, {}, {}
|
|
}
|
|
// NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
|
|
// and no error is returned.
|
|
// However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
|
|
// We can use this fact to detect this condition and return .Buffer_Too_Small.
|
|
from_addr: linux.Sock_Addr_Any
|
|
bytes_read, errno := linux.recvfrom(linux.Fd(udp_sock), buf, {.TRUNC}, &from_addr)
|
|
if errno != .NONE {
|
|
return 0, {}, UDP_Recv_Error(errno)
|
|
}
|
|
if bytes_read > len(buf) {
|
|
// NOTE(tetra): The buffer has been filled, with a partial message.
|
|
return len(buf), {}, .Buffer_Too_Small
|
|
}
|
|
return bytes_read, _wrap_os_addr(from_addr), nil
|
|
}
|
|
|
|
@(private)
|
|
_send_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
|
|
total_written := 0
|
|
for total_written < len(buf) {
|
|
limit := min(int(max(i32)), len(buf) - total_written)
|
|
remaining := buf[total_written:][:limit]
|
|
res, errno := linux.send(linux.Fd(tcp_sock), remaining, {.NOSIGNAL})
|
|
if errno == .EPIPE {
|
|
// If the peer is disconnected when we are trying to send we will get an `EPIPE` error,
|
|
// so we turn that into a clearer error
|
|
return total_written, TCP_Send_Error.Connection_Closed
|
|
} else if errno != .NONE {
|
|
return total_written, TCP_Send_Error(errno)
|
|
}
|
|
total_written += int(res)
|
|
}
|
|
return total_written, nil
|
|
}
|
|
|
|
@(private)
|
|
_send_udp :: proc(udp_sock: UDP_Socket, buf: []byte, to: Endpoint) -> (int, Network_Error) {
|
|
to_addr := _unwrap_os_addr(to)
|
|
bytes_written, errno := linux.sendto(linux.Fd(udp_sock), buf, {}, &to_addr)
|
|
if errno != .NONE {
|
|
return bytes_written, UDP_Send_Error(errno)
|
|
}
|
|
return int(bytes_written), nil
|
|
}
|
|
|
|
@(private)
|
|
_shutdown :: proc(sock: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
|
|
os_sock := _unwrap_os_socket(sock)
|
|
errno := linux.shutdown(os_sock, cast(linux.Shutdown_How) manner)
|
|
if errno != .NONE {
|
|
return Shutdown_Error(errno)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// TODO(flysand): Figure out what we want to do with this on core:sys/ level.
|
|
@(private)
|
|
_set_option :: proc(sock: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
|
|
level: int
|
|
if option == .TCP_Nodelay {
|
|
level = int(linux.SOL_TCP)
|
|
} else {
|
|
level = int(linux.SOL_SOCKET)
|
|
}
|
|
os_sock := _unwrap_os_socket(sock)
|
|
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
|
|
// it _has_ to be a b32.
|
|
// I haven't tested if you can give more than that. <-- (flysand) probably not, posix explicitly specifies an int
|
|
bool_value: b32
|
|
int_value: i32
|
|
timeval_value: linux.Time_Val
|
|
errno: linux.Errno
|
|
switch option {
|
|
case
|
|
.Reuse_Address,
|
|
.Keep_Alive,
|
|
.Out_Of_Bounds_Data_Inline,
|
|
.TCP_Nodelay,
|
|
.Broadcast:
|
|
// TODO: verify whether these are options or not on Linux
|
|
// .Broadcast, <-- yes
|
|
// .Conditional_Accept,
|
|
// .Dont_Linger:
|
|
switch x in value {
|
|
case bool, b8:
|
|
x2 := x
|
|
bool_value = b32((^bool)(&x2)^)
|
|
case b16:
|
|
bool_value = b32(x)
|
|
case b32:
|
|
bool_value = b32(x)
|
|
case b64:
|
|
bool_value = b32(x)
|
|
case:
|
|
panic("set_option() value must be a boolean here", loc)
|
|
}
|
|
errno = linux.setsockopt(os_sock, level, int(option), &bool_value)
|
|
case
|
|
.Linger,
|
|
.Send_Timeout,
|
|
.Receive_Timeout:
|
|
t, ok := value.(time.Duration)
|
|
if !ok {
|
|
panic("set_option() value must be a time.Duration here", loc)
|
|
}
|
|
|
|
micros := cast(i64) (time.duration_microseconds(t))
|
|
timeval_value.microseconds = cast(int) (micros % 1e6)
|
|
timeval_value.seconds = cast(int) ((micros - i64(timeval_value.microseconds)) / 1e6)
|
|
errno = linux.setsockopt(os_sock, level, int(option), &timeval_value)
|
|
case
|
|
.Receive_Buffer_Size,
|
|
.Send_Buffer_Size:
|
|
// TODO: check for out of range values and return .Value_Out_Of_Range?
|
|
switch i in value {
|
|
case i8, u8: i2 := i; int_value = i32((^u8)(&i2)^)
|
|
case i16, u16: i2 := i; int_value = i32((^u16)(&i2)^)
|
|
case i32, u32: i2 := i; int_value = i32((^u32)(&i2)^)
|
|
case i64, u64: i2 := i; int_value = i32((^u64)(&i2)^)
|
|
case i128, u128: i2 := i; int_value = i32((^u128)(&i2)^)
|
|
case int, uint: i2 := i; int_value = i32((^uint)(&i2)^)
|
|
case:
|
|
panic("set_option() value must be an integer here", loc)
|
|
}
|
|
errno = linux.setsockopt(os_sock, level, int(option), &int_value)
|
|
}
|
|
if errno != .NONE {
|
|
return Socket_Option_Error(errno)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
@(private)
|
|
_set_blocking :: proc(sock: Any_Socket, should_block: bool) -> (err: Network_Error) {
|
|
errno: linux.Errno
|
|
flags: linux.Open_Flags
|
|
os_sock := _unwrap_os_socket(sock)
|
|
flags, errno = linux.fcntl(os_sock, linux.F_GETFL)
|
|
if errno != .NONE {
|
|
return Set_Blocking_Error(errno)
|
|
}
|
|
if should_block {
|
|
flags -= {.NONBLOCK}
|
|
} else {
|
|
flags += {.NONBLOCK}
|
|
}
|
|
errno = linux.fcntl(os_sock, linux.F_SETFL, flags)
|
|
if errno != .NONE {
|
|
return Set_Blocking_Error(errno)
|
|
}
|
|
return nil
|
|
}
|