Files
Odin/src/llvm_backend.cpp
2020-02-02 23:36:15 +00:00

2372 lines
69 KiB
C++

#include "llvm_backend.hpp"
gb_internal gb_thread_local lbModule *global_module = nullptr;
gb_internal LLVMValueRef lb_zero32 = nullptr;
gb_internal LLVMValueRef lb_one32 = nullptr;
lbAddr lb_addr(lbValue addr) {
lbAddr v = {lbAddr_Default, addr};
return v;
}
Type *lb_addr_type(lbAddr const &addr) {
return type_deref(addr.addr.type);
}
LLVMTypeRef lb_addr_lb_type(lbAddr const &addr) {
return LLVMGetElementType(LLVMTypeOf(addr.addr.value));
}
void lb_addr_store(lbProcedure *p, lbAddr const &addr, lbValue const &value) {
if (addr.addr.value == nullptr) {
return;
}
GB_ASSERT(value.value != nullptr);
LLVMBuildStore(p->builder, value.value, addr.addr.value);
}
void lb_emit_store(lbProcedure *p, lbValue ptr, lbValue value) {
GB_ASSERT(value.value != nullptr);
LLVMValueRef v = LLVMBuildStore(p->builder, value.value, ptr.value);
}
lbValue lb_emit_load(lbProcedure *p, lbValue value) {
GB_ASSERT(value.value != nullptr);
Type *t = type_deref(value.type);
LLVMValueRef v = LLVMBuildLoad2(p->builder, lb_type(t), value.value, "");
return lbValue{v, t};
}
lbValue lb_addr_load(lbProcedure *p, lbAddr const &addr) {
GB_ASSERT(addr.addr.value != nullptr);
return lb_emit_load(p, addr.addr);
}
void lb_clone_struct_type(LLVMTypeRef dst, LLVMTypeRef src) {
unsigned field_count = LLVMCountStructElementTypes(src);
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
LLVMGetStructElementTypes(src, fields);
LLVMStructSetBody(dst, fields, field_count, LLVMIsPackedStruct(src));
gb_free(heap_allocator(), fields);
}
LLVMTypeRef lb_alignment_prefix_type_hack(i64 alignment) {
switch (alignment) {
case 1:
return LLVMArrayType(lb_type(t_u8), 0);
case 2:
return LLVMArrayType(lb_type(t_u16), 0);
case 4:
return LLVMArrayType(lb_type(t_u32), 0);
case 8:
return LLVMArrayType(lb_type(t_u64), 0);
case 16:
return LLVMArrayType(LLVMVectorType(lb_type(t_u32), 4), 0);
default:
GB_PANIC("Invalid alignment %d", cast(i32)alignment);
break;
}
return nullptr;
}
String lb_mangle_name(lbModule *m, Entity *e) {
gbAllocator a = heap_allocator();
String name = e->token.string;
AstPackage *pkg = e->pkg;
GB_ASSERT_MSG(pkg != nullptr, "Missing package for '%.*s'", LIT(name));
String pkgn = pkg->name;
GB_ASSERT(!rune_is_digit(pkgn[0]));
isize max_len = pkgn.len + 1 + name.len + 1;
bool require_suffix_id = is_type_polymorphic(e->type, true);
if (require_suffix_id) {
max_len += 21;
}
u8 *new_name = gb_alloc_array(a, u8, max_len);
isize new_name_len = gb_snprintf(
cast(char *)new_name, max_len,
"%.*s.%.*s", LIT(pkgn), LIT(name)
);
if (require_suffix_id) {
char *str = cast(char *)new_name + new_name_len-1;
isize len = max_len-new_name_len;
isize extra = gb_snprintf(str, len, "-%llu", cast(unsigned long long)e->id);
new_name_len += extra-1;
}
return make_string(new_name, new_name_len-1);
}
String lb_get_entity_name(lbModule *m, Entity *e, String default_name) {
if (e != nullptr && e->kind == Entity_TypeName && e->TypeName.ir_mangled_name.len != 0) {
return e->TypeName.ir_mangled_name;
}
String name = {};
bool no_name_mangle = false;
if (e->kind == Entity_Variable) {
bool is_foreign = e->Variable.is_foreign;
bool is_export = e->Variable.is_export;
no_name_mangle = e->Variable.link_name.len > 0 || is_foreign || is_export;
} else if (e->kind == Entity_Procedure && e->Procedure.is_export) {
no_name_mangle = true;
} else if (e->kind == Entity_Procedure && e->Procedure.link_name.len > 0) {
no_name_mangle = true;
}
if (!no_name_mangle) {
name = lb_mangle_name(m, e);
}
if (name.len == 0) {
name = e->token.string;
}
if (e != nullptr && e->kind == Entity_TypeName) {
e->TypeName.ir_mangled_name = name;
} else if (e != nullptr && e->kind == Entity_Procedure) {
e->Procedure.link_name = name;
}
return name;
}
LLVMTypeRef lb_type_internal(Type *type) {
i64 size = type_size_of(type); // Check size
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_llvm_bool: return LLVMInt1Type();
case Basic_bool: return LLVMInt8Type();
case Basic_b8: return LLVMInt8Type();
case Basic_b16: return LLVMInt16Type();
case Basic_b32: return LLVMInt32Type();
case Basic_b64: return LLVMInt64Type();
case Basic_i8: return LLVMInt8Type();
case Basic_u8: return LLVMInt8Type();
case Basic_i16: return LLVMInt16Type();
case Basic_u16: return LLVMInt16Type();
case Basic_i32: return LLVMInt32Type();
case Basic_u32: return LLVMInt32Type();
case Basic_i64: return LLVMInt64Type();
case Basic_u64: return LLVMInt64Type();
case Basic_i128: return LLVMInt128Type();
case Basic_u128: return LLVMInt128Type();
case Basic_rune: return LLVMInt32Type();
// Basic_f16,
case Basic_f32: return LLVMFloatType();
case Basic_f64: return LLVMDoubleType();
// Basic_complex32,
case Basic_complex64:
{
LLVMTypeRef type = LLVMStructCreateNamed(LLVMGetGlobalContext(), "..complex64");
LLVMTypeRef fields[2] = {
lb_type(t_f32),
lb_type(t_f32),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_complex128:
{
LLVMTypeRef type = LLVMStructCreateNamed(LLVMGetGlobalContext(), "..complex128");
LLVMTypeRef fields[2] = {
lb_type(t_f64),
lb_type(t_f64),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_quaternion128:
{
LLVMTypeRef type = LLVMStructCreateNamed(LLVMGetGlobalContext(), "..quaternion128");
LLVMTypeRef fields[4] = {
lb_type(t_f32),
lb_type(t_f32),
lb_type(t_f32),
lb_type(t_f32),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_quaternion256:
{
LLVMTypeRef type = LLVMStructCreateNamed(LLVMGetGlobalContext(), "..quaternion256");
LLVMTypeRef fields[4] = {
lb_type(t_f64),
lb_type(t_f64),
lb_type(t_f64),
lb_type(t_f64),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_int: return LLVMIntType(8*cast(unsigned)build_context.word_size);
case Basic_uint: return LLVMIntType(8*cast(unsigned)build_context.word_size);
case Basic_uintptr: return LLVMIntType(8*cast(unsigned)build_context.word_size);
case Basic_rawptr: return LLVMPointerType(LLVMInt8Type(), 0);
case Basic_string:
{
LLVMTypeRef type = LLVMStructCreateNamed(LLVMGetGlobalContext(), "..string");
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(t_u8), 0),
lb_type(t_int),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_cstring: return LLVMPointerType(LLVMInt8Type(), 0);
case Basic_any:
{
LLVMTypeRef type = LLVMStructCreateNamed(LLVMGetGlobalContext(), "..any");
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(t_rawptr), 0),
lb_type(t_typeid),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_typeid: return LLVMIntType(8*cast(unsigned)build_context.word_size);
// Endian Specific Types
case Basic_i16le: return LLVMInt16Type();
case Basic_u16le: return LLVMInt16Type();
case Basic_i32le: return LLVMInt32Type();
case Basic_u32le: return LLVMInt32Type();
case Basic_i64le: return LLVMInt64Type();
case Basic_u64le: return LLVMInt64Type();
case Basic_i128le: return LLVMInt128Type();
case Basic_u128le: return LLVMInt128Type();
case Basic_i16be: return LLVMInt16Type();
case Basic_u16be: return LLVMInt16Type();
case Basic_i32be: return LLVMInt32Type();
case Basic_u32be: return LLVMInt32Type();
case Basic_i64be: return LLVMInt64Type();
case Basic_u64be: return LLVMInt64Type();
case Basic_i128be: return LLVMInt128Type();
case Basic_u128be: return LLVMInt128Type();
// Untyped types
case Basic_UntypedBool: GB_PANIC("Basic_UntypedBool"); break;
case Basic_UntypedInteger: GB_PANIC("Basic_UntypedInteger"); break;
case Basic_UntypedFloat: GB_PANIC("Basic_UntypedFloat"); break;
case Basic_UntypedComplex: GB_PANIC("Basic_UntypedComplex"); break;
case Basic_UntypedQuaternion: GB_PANIC("Basic_UntypedQuaternion"); break;
case Basic_UntypedString: GB_PANIC("Basic_UntypedString"); break;
case Basic_UntypedRune: GB_PANIC("Basic_UntypedRune"); break;
case Basic_UntypedNil: GB_PANIC("Basic_UntypedNil"); break;
case Basic_UntypedUndef: GB_PANIC("Basic_UntypedUndef"); break;
}
break;
case Type_Named:
{
Type *base = base_type(type->Named.base);
switch (base->kind) {
case Type_Basic:
return lb_type(base);
case Type_Named:
case Type_Generic:
case Type_BitFieldValue:
GB_PANIC("INVALID TYPE");
break;
case Type_Pointer:
case Type_Opaque:
case Type_Array:
case Type_EnumeratedArray:
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
case Type_Enum:
case Type_BitSet:
case Type_SimdVector:
return lb_type(base);
// TODO(bill): Deal with this correctly. Can this be named?
case Type_Proc:
return lb_type(base);
case Type_Tuple:
return lb_type(base);
}
LLVMContextRef ctx = LLVMGetModuleContext(global_module->mod);
if (base->llvm_type != nullptr) {
LLVMTypeKind kind = LLVMGetTypeKind(base->llvm_type);
if (kind == LLVMStructTypeKind) {
type->llvm_type = LLVMStructCreateNamed(ctx, alloc_cstring(heap_allocator(), lb_get_entity_name(global_module, type->Named.type_name)));
lb_clone_struct_type(type->llvm_type, base->llvm_type);
}
}
switch (base->kind) {
case Type_Struct:
case Type_Union:
case Type_BitField:
type->llvm_type = LLVMStructCreateNamed(ctx, alloc_cstring(heap_allocator(), lb_get_entity_name(global_module, type->Named.type_name)));
lb_clone_struct_type(type->llvm_type, lb_type(base));
return type->llvm_type;
}
return lb_type(base);
}
case Type_Pointer:
return LLVMPointerType(lb_type(type_deref(type)), 0);
case Type_Opaque:
return lb_type(base_type(type));
case Type_Array:
return LLVMArrayType(lb_type(type->Array.elem), cast(unsigned)type->Array.count);
case Type_EnumeratedArray:
return LLVMArrayType(lb_type(type->EnumeratedArray.elem), cast(unsigned)type->EnumeratedArray.count);
case Type_Slice:
{
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(type->Slice.elem), 0), // data
lb_type(t_int), // len
};
return LLVMStructType(fields, 2, false);
}
break;
case Type_DynamicArray:
{
LLVMTypeRef fields[4] = {
LLVMPointerType(lb_type(type->DynamicArray.elem), 0), // data
lb_type(t_int), // len
lb_type(t_int), // cap
lb_type(t_allocator), // allocator
};
return LLVMStructType(fields, 4, false);
}
break;
case Type_Map:
return lb_type(type->Map.internal_type);
case Type_Struct:
{
if (type->Struct.is_raw_union) {
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
i64 alignment = type_align_of(type);
unsigned size_of_union = cast(unsigned)type_size_of(type);
fields[0] = lb_alignment_prefix_type_hack(alignment);
fields[1] = LLVMArrayType(lb_type(t_u8), size_of_union);
return LLVMStructType(fields, field_count, false);
}
isize offset = 0;
if (type->Struct.custom_align > 0) {
offset = 1;
}
unsigned field_count = cast(unsigned)(type->Struct.fields.count + offset);
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
GB_ASSERT(fields != nullptr);
defer (gb_free(heap_allocator(), fields));
for_array(i, type->Struct.fields) {
Entity *field = type->Struct.fields[i];
fields[i+offset] = lb_type(field->type);
}
if (type->Struct.custom_align > 0) {
fields[0] = lb_alignment_prefix_type_hack(type->Struct.custom_align);
}
return LLVMStructType(fields, field_count, type->Struct.is_packed);
}
break;
case Type_Union:
if (type->Union.variants.count == 0) {
return LLVMStructType(nullptr, 0, false);
} else {
// NOTE(bill): The zero size array is used to fix the alignment used in a structure as
// LLVM takes the first element's alignment as the entire alignment (like C)
i64 align = type_align_of(type);
i64 size = type_size_of(type);
if (is_type_union_maybe_pointer_original_alignment(type)) {
LLVMTypeRef fields[1] = {lb_type(type->Union.variants[0])};
return LLVMStructType(fields, 1, false);
}
unsigned block_size = cast(unsigned)type->Union.variant_block_size;
LLVMTypeRef fields[3] = {};
unsigned field_count = 1;
fields[0] = lb_alignment_prefix_type_hack(align);
if (is_type_union_maybe_pointer(type)) {
field_count += 1;
fields[1] = lb_type(type->Union.variants[0]);
} else {
field_count += 2;
fields[1] = LLVMArrayType(lb_type(t_u8), block_size);
fields[2] = lb_type(union_tag_type(type));
}
return LLVMStructType(fields, field_count, false);
}
break;
case Type_Enum:
return lb_type(base_enum_type(type));
case Type_Tuple:
{
unsigned field_count = cast(unsigned)(type->Tuple.variables.count);
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
defer (gb_free(heap_allocator(), fields));
for_array(i, type->Tuple.variables) {
Entity *field = type->Tuple.variables[i];
fields[i] = lb_type(field->type);
}
return LLVMStructType(fields, field_count, type->Tuple.is_packed);
}
case Type_Proc:
{
set_procedure_abi_types(heap_allocator(), type);
LLVMTypeRef return_type = LLVMVoidType();
isize offset = 0;
if (type->Proc.return_by_pointer) {
offset = 1;
} else if (type->Proc.abi_compat_result_type != nullptr) {
return_type = lb_type(type->Proc.abi_compat_result_type);
}
isize extra_param_count = offset;
if (type->Proc.calling_convention == ProcCC_Odin) {
extra_param_count += 1;
}
unsigned param_count = cast(unsigned)(type->Proc.abi_compat_params.count + extra_param_count);
LLVMTypeRef *param_types = gb_alloc_array(heap_allocator(), LLVMTypeRef, param_count);
defer (gb_free(heap_allocator(), param_types));
for_array(i, type->Proc.abi_compat_params) {
Type *param = type->Proc.abi_compat_params[i];
param_types[i+offset] = lb_type(param);
}
if (type->Proc.return_by_pointer) {
param_types[0] = LLVMPointerType(lb_type(type->Proc.abi_compat_result_type), 0);
}
if (type->Proc.calling_convention == ProcCC_Odin) {
param_types[param_count-1] = lb_type(t_context_ptr);
}
LLVMTypeRef t = LLVMFunctionType(return_type, param_types, param_count, type->Proc.c_vararg);
return LLVMPointerType(t, 0);
}
break;
case Type_BitFieldValue:
return LLVMIntType(type->BitFieldValue.bits);
case Type_BitField:
{
LLVMTypeRef internal_type = nullptr;
{
GB_ASSERT(type->BitField.fields.count == type->BitField.sizes.count);
unsigned field_count = cast(unsigned)type->BitField.fields.count;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
defer (gb_free(heap_allocator(), fields));
for_array(i, type->BitField.sizes) {
u32 size = type->BitField.sizes[i];
fields[i] = LLVMIntType(size);
}
internal_type = LLVMStructType(fields, field_count, true);
}
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
i64 alignment = 1;
if (type->BitField.custom_align > 0) {
alignment = type->BitField.custom_align;
}
fields[0] = lb_alignment_prefix_type_hack(alignment);
fields[1] = internal_type;
return LLVMStructType(fields, field_count, true);
}
break;
case Type_BitSet:
return LLVMIntType(8*cast(unsigned)type_size_of(type));
case Type_SimdVector:
if (type->SimdVector.is_x86_mmx) {
return LLVMX86MMXType();
}
return LLVMVectorType(lb_type(type->SimdVector.elem), cast(unsigned)type->SimdVector.count);
}
GB_PANIC("Invalid type");
return LLVMInt32Type();
}
LLVMTypeRef lb_type(Type *type) {
type = default_type(type);
if (type->llvm_type) {
return type->llvm_type;
}
LLVMTypeRef llvm_type = lb_type_internal(type);
type->llvm_type = llvm_type;
return llvm_type;
}
void lb_add_entity(lbModule *m, Entity *e, lbValue val) {
if (e != nullptr) {
map_set(&m->values, hash_entity(e), val);
}
}
void lb_add_member(lbModule *m, String const &name, lbValue val) {
if (name.len > 0) {
map_set(&m->members, hash_string(name), val);
}
}
void lb_add_member(lbModule *m, HashKey const &key, lbValue val) {
map_set(&m->members, key, val);
}
LLVMAttributeRef lb_create_enum_attribute(LLVMContextRef ctx, char const *name, u64 value) {
unsigned kind = LLVMGetEnumAttributeKindForName(name, gb_strlen(name));
return LLVMCreateEnumAttribute(ctx, kind, value);
}
void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name, u64 value) {
LLVMContextRef ctx = LLVMGetModuleContext(p->module->mod);
LLVMAddAttributeAtIndex(p->value, cast(unsigned)index, lb_create_enum_attribute(ctx, name, value));
}
void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name) {
lb_add_proc_attribute_at_index(p, index, name, true);
}
lbProcedure *lb_create_procedure(lbModule *module, Entity *entity) {
lbProcedure *p = gb_alloc_item(heap_allocator(), lbProcedure);
p->module = module;
p->entity = entity;
p->name = lb_get_entity_name(module, entity);
DeclInfo *decl = entity->decl_info;
ast_node(pl, ProcLit, decl->proc_lit);
Type *pt = base_type(entity->type);
GB_ASSERT(pt->kind == Type_Proc);
set_procedure_abi_types(heap_allocator(), entity->type);
p->type = entity->type;
p->type_expr = decl->type_expr;
p->body = pl->body;
p->tags = pt->Proc.tags;
p->inlining = ProcInlining_none;
p->is_foreign = false;
p->is_export = false;
p->is_entry_point = false;
p->children.allocator = heap_allocator();
p->params.allocator = heap_allocator();
p->blocks.allocator = heap_allocator();
p->branch_blocks.allocator = heap_allocator();
char *name = alloc_cstring(heap_allocator(), p->name);
LLVMTypeRef func_ptr_type = lb_type(p->type);
LLVMTypeRef func_type = LLVMGetElementType(func_ptr_type);
p->value = LLVMAddFunction(module->mod, name, func_type);
lb_add_entity(module, entity, lbValue{p->value, p->type});
lb_add_member(module, p->name, lbValue{p->value, p->type});
LLVMContextRef ctx = LLVMGetModuleContext(module->mod);
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
lb_add_proc_attribute_at_index(p, 1, "sret");
lb_add_proc_attribute_at_index(p, 1, "noalias");
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.param_count) {
TypeTuple *params = &pt->Proc.params->Tuple;
for (isize i = 0; i < pt->Proc.param_count; i++, parameter_index++) {
Entity *e = params->variables[i];
Type *original_type = e->type;
Type *abi_type = pt->Proc.abi_compat_params[i];
if (e->kind != Entity_Variable) continue;
if (i+1 == params->variables.count && pt->Proc.c_vararg) {
continue;
}
if (is_type_tuple(abi_type)) {
for_array(j, abi_type->Tuple.variables) {
Type *tft = abi_type->Tuple.variables[j]->type;
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index+j, "noalias");
}
}
parameter_index += abi_type->Tuple.variables.count-1;
} else {
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
}
}
}
}
if (pt->Proc.calling_convention == ProcCC_Odin) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nonnull");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture");
}
return p;
}
void lb_begin_procedure_body(lbProcedure *p) {
DeclInfo *decl = decl_info_of_entity(p->entity);
if (decl != nullptr) {
for_array(i, decl->labels) {
BlockLabel bl = decl->labels[i];
lbBranchBlocks bb = {bl.label, nullptr, nullptr};
array_add(&p->branch_blocks, bb);
}
}
p->builder = LLVMCreateBuilder();
p->decl_block = lb_create_block(p, "decls");
p->entry_block = lb_create_block(p, "entry");
p->curr_block = p->entry_block;
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
GB_ASSERT(p->type != nullptr);
if (p->type->Proc.return_by_pointer) {
// NOTE(bill): this must be parameter 0
Type *ptr_type = alloc_type_pointer(reduce_tuple_to_single_type(p->type->Proc.results));
Entity *e = alloc_entity_param(nullptr, make_token_ident(str_lit("agg.result")), ptr_type, false, false);
e->flags |= EntityFlag_Sret | EntityFlag_NoAlias;
lbValue return_ptr_value = {};
return_ptr_value.value = LLVMGetParam(p->value, 0);
return_ptr_value.type = alloc_type_pointer(p->type->Proc.abi_compat_result_type);
p->return_ptr = lb_addr(return_ptr_value);
lb_add_entity(p->module, e, return_ptr_value);
}
}
void lb_end_procedure_body(lbProcedure *p) {
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMBuildBr(p->builder, p->entry_block->block);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
if (p->type->Proc.result_count == 0) {
LLVMValueRef instr = LLVMGetLastInstruction(p->curr_block->block);
if (!LLVMIsAReturnInst(instr)) {
LLVMBuildRetVoid(p->builder);
}
}
p->curr_block = nullptr;
}
void lb_end_procedure(lbProcedure *p) {
LLVMDisposeBuilder(p->builder);
}
lbBlock *lb_create_block(lbProcedure *p, char const *name) {
lbBlock *b = gb_alloc_item(heap_allocator(), lbBlock);
b->block = LLVMAppendBasicBlock(p->value, name);
b->scope = p->curr_scope;
b->scope_index = p->scope_index;
array_add(&p->blocks, b);
return b;
}
lbAddr lb_add_local(lbProcedure *p, Type *type, Entity *e=nullptr) {
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMTypeRef llvm_type = lb_type(type);
LLVMValueRef ptr = LLVMBuildAlloca(p->builder, llvm_type, "");
LLVMSetAlignment(ptr, 16);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
lbValue val = {};
val.value = ptr;
val.type = alloc_type_pointer(type);
if (e != nullptr) {
lb_add_entity(p->module, e, val);
}
return lb_addr(val);
}
lbAddr lb_add_local_generated(lbProcedure *p, Type *type, bool zero_init) {
lbAddr addr = lb_add_local(p, type, nullptr);
lb_addr_store(p, addr, lb_const_nil(type));
return addr;
}
bool lb_init_generator(lbGenerator *gen, Checker *c) {
if (global_error_collector.count != 0) {
return false;
}
isize tc = c->parser->total_token_count;
if (tc < 2) {
return false;
}
String init_fullpath = c->parser->init_fullpath;
if (build_context.out_filepath.len == 0) {
gen->output_name = remove_directory_from_path(init_fullpath);
gen->output_name = remove_extension_from_path(gen->output_name);
gen->output_base = gen->output_name;
} else {
gen->output_name = build_context.out_filepath;
isize pos = string_extension_position(gen->output_name);
if (pos < 0) {
gen->output_base = gen->output_name;
} else {
gen->output_base = substring(gen->output_name, 0, pos);
}
}
gbAllocator ha = heap_allocator();
gen->output_base = path_to_full_path(ha, gen->output_base);
gbString output_file_path = gb_string_make_length(ha, gen->output_base.text, gen->output_base.len);
output_file_path = gb_string_appendc(output_file_path, ".obj");
defer (gb_string_free(output_file_path));
gbFileError err = gb_file_create(&gen->output_file, output_file_path);
if (err != gbFileError_None) {
gb_printf_err("Failed to create file %s\n", output_file_path);
return false;
}
gen->info = &c->info;
gen->module.info = &c->info;
gen->module.mod = LLVMModuleCreateWithName("odin_module");
map_init(&gen->module.values, heap_allocator());
map_init(&gen->module.members, heap_allocator());
map_init(&gen->module.const_strings, heap_allocator());
map_init(&gen->module.const_string_byte_slices, heap_allocator());
global_module = &gen->module;
lb_zero32 = LLVMConstInt(lb_type(t_i32), 0, false);
lb_one32 = LLVMConstInt(lb_type(t_i32), 1, false);
return true;
}
void lb_build_stmt_list(lbProcedure *p, Array<Ast *> const &stmts) {
for_array(i, stmts) {
Ast *stmt = stmts[i];
switch (stmt->kind) {
case_ast_node(vd, ValueDecl, stmt);
// lb_build_constant_value_decl(b, vd);
case_end;
case_ast_node(fb, ForeignBlockDecl, stmt);
ast_node(block, BlockStmt, fb->body);
lb_build_stmt_list(p, block->stmts);
case_end;
}
}
for_array(i, stmts) {
lb_build_stmt(p, stmts[i]);
}
}
lbValue lb_build_gep(lbProcedure *p, lbValue const &value, i32 index) {
Type *elem_type = nullptr;
GB_ASSERT(elem_type != nullptr);
return lbValue{LLVMBuildStructGEP2(p->builder, lb_type(elem_type), value.value, index, ""), elem_type};
}
void lb_build_when_stmt(lbProcedure *p, AstWhenStmt *ws) {
TypeAndValue tv = type_and_value_of_expr(ws->cond);
GB_ASSERT(is_type_boolean(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Bool);
if (tv.value.value_bool) {
lb_build_stmt_list(p, ws->body->BlockStmt.stmts);
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case Ast_BlockStmt:
lb_build_stmt_list(p, ws->else_stmt->BlockStmt.stmts);
break;
case Ast_WhenStmt:
lb_build_when_stmt(p, &ws->else_stmt->WhenStmt);
break;
default:
GB_PANIC("Invalid 'else' statement in 'when' statement");
break;
}
}
}
void lb_build_stmt(lbProcedure *p, Ast *node) {
switch (node->kind) {
case_ast_node(bs, EmptyStmt, node);
case_end;
case_ast_node(us, UsingStmt, node);
case_end;
case_ast_node(ws, WhenStmt, node);
lb_build_when_stmt(p, ws);
case_end;
case_ast_node(bs, BlockStmt, node);
lb_build_stmt_list(p, bs->stmts);
case_end;
case_ast_node(vd, ValueDecl, node);
if (!vd->is_mutable) {
return;
}
bool is_static = false;
if (vd->names.count > 0) {
Entity *e = entity_of_ident(vd->names[0]);
if (e->flags & EntityFlag_Static) {
// NOTE(bill): If one of the entities is static, they all are
is_static = true;
}
}
if (is_static) {
for_array(i, vd->names) {
lbValue value = {};
if (vd->values.count > 0) {
GB_ASSERT(vd->names.count == vd->values.count);
Ast *ast_value = vd->values[i];
GB_ASSERT(ast_value->tav.mode == Addressing_Constant ||
ast_value->tav.mode == Addressing_Invalid);
value = lb_const_value(p->module, ast_value->tav.type, ast_value->tav.value);
}
Ast *ident = vd->names[i];
GB_ASSERT(!is_blank_ident(ident));
Entity *e = entity_of_ident(ident);
GB_ASSERT(e->flags & EntityFlag_Static);
String name = e->token.string;
String mangled_name = {};
{
gbString str = gb_string_make_length(heap_allocator(), p->name.text, p->name.len);
str = gb_string_appendc(str, "-");
str = gb_string_append_fmt(str, ".%.*s-%llu", LIT(name), cast(long long)e->id);
mangled_name.text = cast(u8 *)str;
mangled_name.len = gb_string_length(str);
}
char *c_name = alloc_cstring(heap_allocator(), mangled_name);
LLVMValueRef global = LLVMAddGlobal(p->module->mod, lb_type(e->type), c_name);
if (value.value != nullptr) {
LLVMSetInitializer(global, value.value);
}
if (e->Variable.thread_local_model != "") {
LLVMSetThreadLocal(global, true);
String m = e->Variable.thread_local_model;
LLVMThreadLocalMode mode = LLVMGeneralDynamicTLSModel;
if (m == "default") {
mode = LLVMGeneralDynamicTLSModel;
} else if (m == "localdynamic") {
mode = LLVMLocalDynamicTLSModel;
} else if (m == "initialexec") {
mode = LLVMInitialExecTLSModel;
} else if (m == "localexec") {
mode = LLVMLocalExecTLSModel;
} else {
GB_PANIC("Unhandled thread local mode %.*s", LIT(m));
}
LLVMSetThreadLocalMode(global, mode);
} else {
LLVMSetLinkage(global, LLVMInternalLinkage);
}
lbValue global_val = {global, alloc_type_pointer(e->type)};
lb_add_entity(p->module, e, global_val);
lb_add_member(p->module, mangled_name, global_val);
}
return;
}
auto addrs = array_make<lbAddr>(heap_allocator(), vd->names.count);
auto values = array_make<lbValue>(heap_allocator(), 0, vd->names.count);
defer (array_free(&addrs));
defer (array_free(&values));
for_array(i, vd->names) {
Ast *name = vd->names[i];
if (!is_blank_ident(name)) {
Entity *e = entity_of_ident(name);
lbAddr local = lb_add_local(p, e->type, e);
addrs[i] = local;
if (vd->values.count == 0) {
lb_addr_store(p, addrs[i], lb_const_nil(lb_addr_type(addrs[i])));
}
}
}
for_array(i, vd->values) {
Ast *expr = vd->values[i];
lbValue value = lb_build_expr(p, expr);
GB_ASSERT_MSG(value.type != nullptr, "%s", expr_to_string(expr));
if (is_type_tuple(value.type)) {
}
array_add(&values, value);
}
for_array(i, values) {
lb_addr_store(p, addrs[i], values[i]);
}
case_end;
case_ast_node(as, AssignStmt, node);
case_end;
case_ast_node(es, ExprStmt, node);
lb_build_expr(p, es->expr);
case_end;
case_ast_node(ds, DeferStmt, node);
case_end;
case_ast_node(rs, ReturnStmt, node);
lbValue res = {};
TypeTuple *tuple = &p->type->Proc.results->Tuple;
isize return_count = p->type->Proc.result_count;
isize res_count = rs->results.count;
if (return_count == 0) {
// No return values
LLVMBuildRetVoid(p->builder);
return;
} else if (return_count == 1) {
Entity *e = tuple->variables[0];
if (res_count == 0) {
// lbValue *found = map_get(&p->module->values, hash_entity(e));
// GB_ASSERT(found);
// res = lb_emit_load(p, *found);
} else {
res = lb_build_expr(p, rs->results[0]);
res = lb_emit_conv(p, res, e->type);
}
} else {
}
if (p->type->Proc.return_by_pointer) {
if (res.value != nullptr) {
lb_addr_store(p, p->return_ptr, res);
} else {
lb_addr_store(p, p->return_ptr, lb_const_nil(p->type->Proc.abi_compat_result_type));
}
LLVMBuildRetVoid(p->builder);
} else {
GB_ASSERT_MSG(res.value != nullptr, "%.*s", LIT(p->name));
LLVMBuildRet(p->builder, res.value);
}
case_end;
case_ast_node(is, IfStmt, node);
case_end;
case_ast_node(fs, ForStmt, node);
case_end;
case_ast_node(rs, RangeStmt, node);
case_end;
case_ast_node(rs, InlineRangeStmt, node);
case_end;
case_ast_node(ss, SwitchStmt, node);
case_end;
case_ast_node(ss, TypeSwitchStmt, node);
case_end;
case_ast_node(bs, BranchStmt, node);
case_end;
}
}
lbValue lb_const_nil(Type *type) {
LLVMValueRef v = LLVMConstNull(lb_type(type));
return lbValue{v, type};
}
lbValue lb_const_int(Type *type, u64 value) {
lbValue res = {};
res.value = LLVMConstInt(lb_type(type), value, !is_type_unsigned(type));
res.type = type;
return res;
}
LLVMValueRef llvm_const_f32(f32 f, Type *type=t_f32) {
u32 u = bit_cast<u32>(f);
LLVMValueRef i = LLVMConstInt(LLVMInt32Type(), u, false);
return LLVMConstBitCast(i, lb_type(type));
}
lbValue lb_find_or_add_entity_string(lbModule *m, String const &str) {
HashKey key = hash_string(str);
lbValue *found = map_get(&m->const_strings, key);
if (found != nullptr) {
return *found;
}
lbValue v = lb_const_value(m, t_string, exact_value_string(str));
map_set(&m->const_strings, key, v);
return v;
}
lbValue lb_find_or_add_entity_string_byte_slice(lbModule *m, String const &str) {
HashKey key = hash_string(str);
lbValue *found = map_get(&m->const_string_byte_slices, key);
if (found != nullptr) {
return *found;
}
Type *t = t_u8_slice;
lbValue v = lb_const_value(m, t, exact_value_string(str));
map_set(&m->const_string_byte_slices, key, v);
return v;
}
isize lb_type_info_index(CheckerInfo *info, Type *type, bool err_on_not_found=true) {
isize index = type_info_index(info, type, false);
if (index >= 0) {
auto *set = &info->minimum_dependency_type_info_set;
for_array(i, set->entries) {
if (set->entries[i].ptr == index) {
return i+1;
}
}
}
if (err_on_not_found) {
GB_PANIC("NOT FOUND ir_type_info_index %s @ index %td", type_to_string(type), index);
}
return -1;
}
lbValue lb_typeid(lbModule *m, Type *type, Type *typeid_type=t_typeid) {
type = default_type(type);
u64 id = cast(u64)lb_type_info_index(m->info, type);
GB_ASSERT(id >= 0);
u64 kind = Typeid_Invalid;
u64 named = is_type_named(type) && type->kind != Type_Basic;
u64 special = 0;
u64 reserved = 0;
Type *bt = base_type(type);
TypeKind tk = bt->kind;
switch (tk) {
case Type_Basic: {
u32 flags = bt->Basic.flags;
if (flags & BasicFlag_Boolean) kind = Typeid_Boolean;
if (flags & BasicFlag_Integer) kind = Typeid_Integer;
if (flags & BasicFlag_Unsigned) kind = Typeid_Integer;
if (flags & BasicFlag_Float) kind = Typeid_Float;
if (flags & BasicFlag_Complex) kind = Typeid_Complex;
if (flags & BasicFlag_Pointer) kind = Typeid_Pointer;
if (flags & BasicFlag_String) kind = Typeid_String;
if (flags & BasicFlag_Rune) kind = Typeid_Rune;
} break;
case Type_Pointer: kind = Typeid_Pointer; break;
case Type_Array: kind = Typeid_Array; break;
case Type_EnumeratedArray: kind = Typeid_Enumerated_Array; break;
case Type_Slice: kind = Typeid_Slice; break;
case Type_DynamicArray: kind = Typeid_Dynamic_Array; break;
case Type_Map: kind = Typeid_Map; break;
case Type_Struct: kind = Typeid_Struct; break;
case Type_Enum: kind = Typeid_Enum; break;
case Type_Union: kind = Typeid_Union; break;
case Type_Tuple: kind = Typeid_Tuple; break;
case Type_Proc: kind = Typeid_Procedure; break;
case Type_BitField: kind = Typeid_Bit_Field; break;
case Type_BitSet: kind = Typeid_Bit_Set; break;
}
if (is_type_cstring(type)) {
special = 1;
} else if (is_type_integer(type) && !is_type_unsigned(type)) {
special = 1;
}
u64 data = 0;
if (build_context.word_size == 4) {
data |= (id &~ (1u<<24)) << 0u; // index
data |= (kind &~ (1u<<5)) << 24u; // kind
data |= (named &~ (1u<<1)) << 29u; // kind
data |= (special &~ (1u<<1)) << 30u; // kind
data |= (reserved &~ (1u<<1)) << 31u; // kind
} else {
GB_ASSERT(build_context.word_size == 8);
data |= (id &~ (1ull<<56)) << 0ul; // index
data |= (kind &~ (1ull<<5)) << 56ull; // kind
data |= (named &~ (1ull<<1)) << 61ull; // kind
data |= (special &~ (1ull<<1)) << 62ull; // kind
data |= (reserved &~ (1ull<<1)) << 63ull; // kind
}
lbValue res = {};
res.value = LLVMConstInt(lb_type(typeid_type), data, false);
res.type = typeid_type;
return res;
}
lbValue lb_const_value(lbModule *m, Type *type, ExactValue value) {
Type *original_type = type;
lbValue res = {};
res.type = type;
type = core_type(type);
value = convert_exact_value_for_type(value, type);
if (is_type_slice(type)) {
if (value.kind == ExactValue_String) {
GB_ASSERT(is_type_u8_slice(type));
res.value = lb_find_or_add_entity_string_byte_slice(m, value.value_string).value;
return res;
} else {
ast_node(cl, CompoundLit, value.value_compound);
isize count = cl->elems.count;
if (count == 0) {
return lb_const_nil(type);
}
count = gb_max(cl->max_count, count);
Type *elem = base_type(type)->Slice.elem;
Type *t = alloc_type_array(elem, count);
lbValue backing_array = lb_const_value(m, t, value);
isize max_len = 7+8+1;
u8 *str = cast(u8 *)gb_alloc_array(heap_allocator(), u8, max_len);
isize len = gb_snprintf(cast(char *)str, max_len, "csba$%x", m->global_array_index);
m->global_array_index++;
String name = make_string(str, len-1);
Entity *e = alloc_entity_constant(nullptr, make_token_ident(name), t, value);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, lb_type(t), cast(char const *)str);
LLVMSetInitializer(global_data, backing_array.value);
lbValue g = {};
g.value = global_data;
g.type = t;
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
{
LLVMValueRef indices[2] = {lb_zero32, lb_zero32};
LLVMValueRef ptr = LLVMConstInBoundsGEP(global_data, indices, 2);
LLVMValueRef len = LLVMConstInt(lb_type(t_int), count, true);
LLVMValueRef values[2] = {ptr, len};
res.value = LLVMConstNamedStruct(lb_type(original_type), values, 2);
return res;
}
}
} else if (is_type_array(type) && value.kind == ExactValue_String && !is_type_u8(core_array_type(type))) {
LLVMValueRef data = LLVMConstString(cast(char const *)value.value_string.text,
cast(unsigned)value.value_string.len,
false);
res.value = data;
return res;
} else if (is_type_array(type) &&
value.kind != ExactValue_Invalid &&
value.kind != ExactValue_String &&
value.kind != ExactValue_Compound) {
i64 count = type->Array.count;
Type *elem = type->Array.elem;
lbValue single_elem = lb_const_value(m, elem, value);
LLVMValueRef *elems = gb_alloc_array(heap_allocator(), LLVMValueRef, count);
for (i64 i = 0; i < count; i++) {
elems[i] = single_elem.value;
}
res.value = LLVMConstArray(lb_type(elem), elems, cast(unsigned)count);
return res;
}
switch (value.kind) {
case ExactValue_Invalid:
res.value = LLVMConstNull(lb_type(original_type));
return res;
case ExactValue_Bool:
res.value = LLVMConstInt(lb_type(original_type), value.value_bool, false);
return res;
case ExactValue_String:
{
HashKey key = hash_string(value.value_string);
lbValue *found = map_get(&m->const_strings, key);
if (found != nullptr) {
res.value = found->value;
return res;
}
LLVMValueRef indices[2] = {lb_zero32, lb_zero32};
LLVMValueRef data = LLVMConstString(cast(char const *)value.value_string.text,
cast(unsigned)value.value_string.len,
false);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, LLVMTypeOf(data), "test_string_data");
LLVMSetInitializer(global_data, data);
LLVMValueRef ptr = LLVMConstInBoundsGEP(global_data, indices, 2);
if (is_type_cstring(type)) {
res.value = ptr;
return res;
}
LLVMValueRef len = LLVMConstInt(lb_type(t_int), value.value_string.len, true);
LLVMValueRef values[2] = {ptr, len};
res.value = LLVMConstNamedStruct(lb_type(original_type), values, 2);
map_set(&m->const_strings, key, res);
return res;
}
case ExactValue_Integer:
if (is_type_pointer(type)) {
LLVMValueRef i = LLVMConstIntOfArbitraryPrecision(lb_type(t_uintptr), cast(unsigned)value.value_integer.len, big_int_ptr(&value.value_integer));
res.value = LLVMConstBitCast(i, lb_type(original_type));
} else {
res.value = LLVMConstIntOfArbitraryPrecision(lb_type(original_type), cast(unsigned)value.value_integer.len, big_int_ptr(&value.value_integer));
}
return res;
case ExactValue_Float:
if (type_size_of(type) == 4) {
f32 f = cast(f32)value.value_float;
res.value = llvm_const_f32(f, type);
return res;
}
res.value = LLVMConstReal(lb_type(original_type), value.value_float);
return res;
case ExactValue_Complex:
{
LLVMValueRef values[2] = {};
switch (8*type_size_of(type)) {
case 64:
values[0] = llvm_const_f32(cast(f32)value.value_complex.real);
values[1] = llvm_const_f32(cast(f32)value.value_complex.imag);
break;
case 128:
values[0] = LLVMConstReal(lb_type(t_f64), value.value_complex.real);
values[1] = LLVMConstReal(lb_type(t_f64), value.value_complex.imag);
break;
}
res.value = LLVMConstNamedStruct(lb_type(original_type), values, 2);
return res;
}
break;
case ExactValue_Quaternion:
{
LLVMValueRef values[4] = {};
switch (8*type_size_of(type)) {
case 128:
// @QuaternionLayout
values[3] = llvm_const_f32(cast(f32)value.value_quaternion.real);
values[0] = llvm_const_f32(cast(f32)value.value_quaternion.imag);
values[1] = llvm_const_f32(cast(f32)value.value_quaternion.jmag);
values[2] = llvm_const_f32(cast(f32)value.value_quaternion.kmag);
break;
case 256:
// @QuaternionLayout
values[3] = LLVMConstReal(lb_type(t_f64), value.value_quaternion.real);
values[0] = LLVMConstReal(lb_type(t_f64), value.value_quaternion.imag);
values[1] = LLVMConstReal(lb_type(t_f64), value.value_quaternion.jmag);
values[2] = LLVMConstReal(lb_type(t_f64), value.value_quaternion.kmag);
break;
}
res.value = LLVMConstNamedStruct(lb_type(original_type), values, 4);
return res;
}
break;
case ExactValue_Pointer:
res.value = LLVMConstBitCast(LLVMConstInt(lb_type(t_uintptr), value.value_pointer, false), lb_type(original_type));
return res;
case ExactValue_Compound:
if (is_type_slice(type)) {
return lb_const_value(m, type, value);
} else if (is_type_array(type)) {
ast_node(cl, CompoundLit, value.value_compound);
Type *elem_type = type->Array.elem;
isize elem_count = cl->elems.count;
if (elem_count == 0) {
return lb_const_nil(original_type);
}
if (cl->elems[0]->kind == Ast_FieldValue) {
// TODO(bill): This is O(N*M) and will be quite slow; it should probably be sorted before hand
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->Array.count);
defer (gb_free(heap_allocator(), values));
isize value_index = 0;
for (i64 i = 0; i < type->Array.count; i++) {
bool found = false;
for (isize j = 0; j < elem_count; j++) {
Ast *elem = cl->elems[j];
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
if (lo == i) {
TypeAndValue tav = fv->value->tav;
if (tav.mode != Addressing_Constant) {
break;
}
LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value;
for (i64 k = lo; k < hi; k++) {
values[value_index++] = val;
}
found = true;
i += (hi-lo-1);
break;
}
} else {
TypeAndValue index_tav = fv->field->tav;
GB_ASSERT(index_tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(index_tav.value);
if (index == i) {
TypeAndValue tav = fv->value->tav;
if (tav.mode != Addressing_Constant) {
break;
}
LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value;
values[value_index++] = val;
found = true;
break;
}
}
}
if (!found) {
values[value_index++] = LLVMConstNull(lb_type(elem_type));
}
}
res.value = LLVMConstArray(lb_type(elem_type), values, cast(unsigned int)type->Array.count);
return res;
} else {
GB_ASSERT_MSG(elem_count == type->Array.count, "%td != %td", elem_count, type->Array.count);
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->Array.count);
defer (gb_free(heap_allocator(), values));
for (isize i = 0; i < elem_count; i++) {
TypeAndValue tav = cl->elems[i]->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
values[i] = lb_const_value(m, elem_type, tav.value).value;
}
for (isize i = elem_count; i < type->Array.count; i++) {
values[i] = LLVMConstNull(lb_type(elem_type));
}
res.value = LLVMConstArray(lb_type(elem_type), values, cast(unsigned int)type->Array.count);
return res;
}
} else if (is_type_enumerated_array(type)) {
ast_node(cl, CompoundLit, value.value_compound);
Type *elem_type = type->EnumeratedArray.elem;
isize elem_count = cl->elems.count;
if (elem_count == 0) {
return lb_const_nil(original_type);
}
if (cl->elems[0]->kind == Ast_FieldValue) {
// TODO(bill): This is O(N*M) and will be quite slow; it should probably be sorted before hand
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->EnumeratedArray.count);
defer (gb_free(heap_allocator(), values));
isize value_index = 0;
i64 total_lo = exact_value_to_i64(type->EnumeratedArray.min_value);
i64 total_hi = exact_value_to_i64(type->EnumeratedArray.max_value);
for (i64 i = total_lo; i <= total_hi; i++) {
bool found = false;
for (isize j = 0; j < elem_count; j++) {
Ast *elem = cl->elems[j];
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
if (lo == i) {
TypeAndValue tav = fv->value->tav;
if (tav.mode != Addressing_Constant) {
break;
}
LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value;
for (i64 k = lo; k < hi; k++) {
values[value_index++] = val;
}
found = true;
i += (hi-lo-1);
break;
}
} else {
TypeAndValue index_tav = fv->field->tav;
GB_ASSERT(index_tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(index_tav.value);
if (index == i) {
TypeAndValue tav = fv->value->tav;
if (tav.mode != Addressing_Constant) {
break;
}
LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value;
values[value_index++] = val;
found = true;
break;
}
}
}
if (!found) {
values[value_index++] = LLVMConstNull(lb_type(elem_type));
}
}
res.value = LLVMConstArray(lb_type(elem_type), values, cast(unsigned int)type->EnumeratedArray.count);
return res;
} else {
GB_ASSERT_MSG(elem_count == type->EnumeratedArray.count, "%td != %td", elem_count, type->EnumeratedArray.count);
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->EnumeratedArray.count);
defer (gb_free(heap_allocator(), values));
for (isize i = 0; i < elem_count; i++) {
TypeAndValue tav = cl->elems[i]->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
values[i] = lb_const_value(m, elem_type, tav.value).value;
}
for (isize i = elem_count; i < type->EnumeratedArray.count; i++) {
values[i] = LLVMConstNull(lb_type(elem_type));
}
res.value = LLVMConstArray(lb_type(elem_type), values, cast(unsigned int)type->EnumeratedArray.count);
return res;
}
} else if (is_type_simd_vector(type)) {
ast_node(cl, CompoundLit, value.value_compound);
Type *elem_type = type->SimdVector.elem;
isize elem_count = cl->elems.count;
if (elem_count == 0) {
return lb_const_nil(original_type);
}
isize total_elem_count = type->SimdVector.count;
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, total_elem_count);
defer (gb_free(heap_allocator(), values));
for (isize i = 0; i < elem_count; i++) {
TypeAndValue tav = cl->elems[i]->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
values[i] = lb_const_value(m, elem_type, tav.value).value;
}
for (isize i = elem_count; i < type->SimdVector.count; i++) {
values[i] = LLVMConstNull(lb_type(elem_type));
}
res.value = LLVMConstVector(values, cast(unsigned)total_elem_count);
return res;
} else if (is_type_struct(type)) {
ast_node(cl, CompoundLit, value.value_compound);
if (cl->elems.count == 0) {
return lb_const_nil(type);
}
isize offset = 0;
if (type->Struct.custom_align > 0) {
offset = 1;
}
isize value_count = type->Struct.fields.count + offset;
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, value_count);
bool *visited = gb_alloc_array(heap_allocator(), bool, value_count);
defer (gb_free(heap_allocator(), values));
defer (gb_free(heap_allocator(), visited));
if (cl->elems.count > 0) {
if (cl->elems[0]->kind == Ast_FieldValue) {
isize elem_count = cl->elems.count;
for (isize i = 0; i < elem_count; i++) {
ast_node(fv, FieldValue, cl->elems[i]);
String name = fv->field->Ident.token.string;
TypeAndValue tav = fv->value->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
Selection sel = lookup_field(type, name, false);
Entity *f = type->Struct.fields[sel.index[0]];
values[offset+f->Variable.field_index] = lb_const_value(m, f->type, tav.value).value;
visited[offset+f->Variable.field_index] = true;
}
} else {
for_array(i, cl->elems) {
Entity *f = type->Struct.fields[i];
TypeAndValue tav = cl->elems[i]->tav;
ExactValue val = {};
if (tav.mode != Addressing_Invalid) {
val = tav.value;
}
values[offset+f->Variable.field_index] = lb_const_value(m, f->type, val).value;
visited[offset+f->Variable.field_index] = true;
}
}
}
for (isize i = 0; i < type->Struct.fields.count; i++) {
if (!visited[offset+i]) {
GB_ASSERT(values[offset+i] == nullptr);
values[offset+i] = lb_const_nil(type->Struct.fields[i]->type).value;
}
}
if (type->Struct.custom_align > 0) {
values[0] = LLVMConstNull(lb_alignment_prefix_type_hack(type->Struct.custom_align));
}
res.value = LLVMConstNamedStruct(lb_type(original_type), values, cast(unsigned)value_count);
return res;
} else if (is_type_bit_set(type)) {
ast_node(cl, CompoundLit, value.value_compound);
if (cl->elems.count == 0) {
return lb_const_nil(original_type);
}
i64 sz = type_size_of(type);
if (sz == 0) {
return lb_const_nil(original_type);
}
u64 bits = 0;
for_array(i, cl->elems) {
Ast *e = cl->elems[i];
GB_ASSERT(e->kind != Ast_FieldValue);
TypeAndValue tav = e->tav;
if (tav.mode != Addressing_Constant) {
continue;
}
GB_ASSERT(tav.value.kind == ExactValue_Integer);
i64 v = big_int_to_i64(&tav.value.value_integer);
i64 lower = type->BitSet.lower;
bits |= 1ull<<cast(u64)(v-lower);
}
if (is_type_different_to_arch_endianness(type)) {
i64 size = type_size_of(type);
switch (size) {
case 2: bits = cast(u64)gb_endian_swap16(cast(u16)bits); break;
case 4: bits = cast(u64)gb_endian_swap32(cast(u32)bits); break;
case 8: bits = cast(u64)gb_endian_swap64(cast(u64)bits); break;
}
}
res.value = LLVMConstInt(lb_type(original_type), bits, false);
return res;
} else {
return lb_const_nil(original_type);
}
break;
case ExactValue_Procedure:
GB_PANIC("TODO(bill): ExactValue_Procedure");
break;
case ExactValue_Typeid:
return lb_typeid(m, value.value_typeid, original_type);
}
return lb_const_nil(original_type);
}
u64 lb_generate_source_code_location_hash(TokenPos const &pos) {
u64 h = 0xcbf29ce484222325;
for (isize i = 0; i < pos.file.len; i++) {
h = (h ^ u64(pos.file[i])) * 0x100000001b3;
}
h = h ^ (u64(pos.line) * 0x100000001b3);
h = h ^ (u64(pos.column) * 0x100000001b3);
return h;
}
lbValue lb_emit_source_code_location(lbProcedure *p, String const &procedure, TokenPos const &pos) {
LLVMValueRef fields[5] = {};
fields[0]/*file*/ = lb_find_or_add_entity_string(p->module, pos.file).value;
fields[1]/*line*/ = lb_const_int(t_int, pos.line).value;
fields[2]/*column*/ = lb_const_int(t_int, pos.column).value;
fields[3]/*procedure*/ = lb_find_or_add_entity_string(p->module, procedure).value;
fields[4]/*hash*/ = lb_const_int(t_u64, lb_generate_source_code_location_hash(pos)).value;
lbValue res = {};
res.value = LLVMConstNamedStruct(lb_type(t_source_code_location), fields, 5);
res.type = t_source_code_location;
return res;
}
lbValue lb_emit_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) {
lbValue res = {};
res.type = type;
switch (op) {
case Token_Add:
if (is_type_float(type)) {
res.value = LLVMBuildFAdd(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildAdd(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Sub:
if (is_type_float(type)) {
res.value = LLVMBuildFSub(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSub(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Mul:
if (is_type_float(type)) {
res.value = LLVMBuildFMul(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildMul(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Quo:
if (is_type_float(type)) {
res.value = LLVMBuildFDiv(p->builder, lhs.value, rhs.value, "");
return res;
} else if (is_type_unsigned(type)) {
res.value = LLVMBuildUDiv(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSDiv(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Mod:
if (is_type_float(type)) {
res.value = LLVMBuildFRem(p->builder, lhs.value, rhs.value, "");
return res;
} else if (is_type_unsigned(type)) {
res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSRem(p->builder, lhs.value, rhs.value, "");
return res;
case Token_ModMod:
if (is_type_unsigned(type)) {
res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, "");
return res;
} else {
LLVMValueRef a = LLVMBuildSRem(p->builder, lhs.value, rhs.value, "");
LLVMValueRef b = LLVMBuildAdd(p->builder, a, rhs.value, "");
LLVMValueRef c = LLVMBuildSRem(p->builder, b, rhs.value, "");
res.value = c;
return res;
}
case Token_And:
res.value = LLVMBuildAnd(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Or:
res.value = LLVMBuildOr(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Xor:
res.value = LLVMBuildXor(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Shl:
res.value = LLVMBuildShl(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Shr:
if (is_type_unsigned(type)) {
res.value = LLVMBuildLShr(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildAShr(p->builder, lhs.value, rhs.value, "");
return res;
case Token_AndNot:
{
LLVMValueRef all_ones = LLVMConstAllOnes(lb_type(type));
LLVMValueRef new_rhs = LLVMBuildXor(p->builder, all_ones, rhs.value, "");
res.value = LLVMBuildAnd(p->builder, lhs.value, new_rhs, "");
return res;
}
break;
}
GB_PANIC("unhandled operator of lb_emit_arith");
return {};
}
lbValue lb_build_binary_expr(lbProcedure *p, Ast *expr) {
ast_node(be, BinaryExpr, expr);
TypeAndValue tv = type_and_value_of_expr(expr);
switch (be->op.kind) {
case Token_Add:
case Token_Sub:
case Token_Mul:
case Token_Quo:
case Token_Mod:
case Token_ModMod:
case Token_And:
case Token_Or:
case Token_Xor:
case Token_AndNot:
case Token_Shl:
case Token_Shr: {
Type *type = default_type(tv.type);
lbValue left = lb_build_expr(p, be->left);
lbValue right = lb_build_expr(p, be->right);
return lb_emit_arith(p, be->op.kind, left, right, type);
}
default:
GB_PANIC("Invalid binary expression");
break;
}
return {};
}
lbValue lb_emit_conv(lbProcedure *p, lbValue value, Type *t) {
// TODO(bill): lb_emit_conv
return value;
}
lbValue lb_emit_call(lbProcedure *p, lbValue value, Array<lbValue > const &args, ProcInlining inlining = ProcInlining_none, bool use_return_ptr_hint = false) {
return {};
}
lbValue lb_emit_ev(lbProcedure *p, lbValue value, i32 index) {
return {};
}
lbValue lb_emit_array_epi(lbProcedure *p, lbValue value, i32 index){
return {};
}
void lb_fill_slice(lbProcedure *p, lbAddr slice, lbValue base_elem, lbValue len) {
}
lbValue lb_build_call_expr(lbProcedure *p, Ast *expr) {
TypeAndValue tv = type_and_value_of_expr(expr);
ast_node(ce, CallExpr, expr);
TypeAndValue proc_tv = type_and_value_of_expr(ce->proc);
AddressingMode proc_mode = proc_tv.mode;
if (proc_mode == Addressing_Type) {
GB_ASSERT(ce->args.count == 1);
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_emit_conv(p, x, tv.type);
return y;
}
Ast *pexpr = unparen_expr(ce->proc);
if (proc_mode == Addressing_Builtin) {
Entity *e = entity_of_node(pexpr);
BuiltinProcId id = BuiltinProc_Invalid;
if (e != nullptr) {
id = cast(BuiltinProcId)e->Builtin.id;
} else {
id = BuiltinProc_DIRECTIVE;
}
GB_PANIC("lb_build_builtin_proc");
// return lb_build_builtin_proc(p, expr, tv, id);
}
// NOTE(bill): Regular call
lbValue value = {};
Ast *proc_expr = unparen_expr(ce->proc);
if (proc_expr->tav.mode == Addressing_Constant) {
ExactValue v = proc_expr->tav.value;
switch (v.kind) {
case ExactValue_Integer:
{
u64 u = big_int_to_u64(&v.value_integer);
lbValue x = {};
x.value = LLVMConstInt(lb_type(t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
case ExactValue_Pointer:
{
u64 u = cast(u64)v.value_pointer;
lbValue x = {};
x.value = LLVMConstInt(lb_type(t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
}
}
if (value.value == nullptr) {
value = lb_build_expr(p, proc_expr);
}
GB_ASSERT(value.value != nullptr);
Type *proc_type_ = base_type(value.type);
GB_ASSERT(proc_type_->kind == Type_Proc);
TypeProc *pt = &proc_type_->Proc;
set_procedure_abi_types(heap_allocator(), proc_type_);
if (is_call_expr_field_value(ce)) {
auto args = array_make<lbValue >(heap_allocator(), pt->param_count);
for_array(arg_index, ce->args) {
Ast *arg = ce->args[arg_index];
ast_node(fv, FieldValue, arg);
GB_ASSERT(fv->field->kind == Ast_Ident);
String name = fv->field->Ident.token.string;
isize index = lookup_procedure_parameter(pt, name);
GB_ASSERT(index >= 0);
TypeAndValue tav = type_and_value_of_expr(fv->value);
if (tav.mode == Addressing_Type) {
args[index] = lb_const_nil(tav.type);
} else {
args[index] = lb_build_expr(p, fv->value);
}
}
TypeTuple *params = &pt->params->Tuple;
for (isize i = 0; i < args.count; i++) {
Entity *e = params->variables[i];
if (e->kind == Entity_TypeName) {
args[i] = lb_const_nil(e->type);
} else if (e->kind == Entity_Constant) {
continue;
} else {
GB_ASSERT(e->kind == Entity_Variable);
if (args[i].value == nullptr) {
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[i] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[i] = lb_const_nil(e->type);
break;
case ParameterValue_Location:
args[i] = lb_emit_source_code_location(p, p->entity->token.string, ast_token(expr).pos);
break;
case ParameterValue_Value:
args[i] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
} else {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
}
return lb_emit_call(p, value, args, ce->inlining, p->return_ptr_hint_ast == expr);
}
isize arg_index = 0;
isize arg_count = 0;
for_array(i, ce->args) {
Ast *arg = ce->args[i];
TypeAndValue tav = type_and_value_of_expr(arg);
GB_ASSERT_MSG(tav.mode != Addressing_Invalid, "%s %s", expr_to_string(arg), expr_to_string(expr));
GB_ASSERT_MSG(tav.mode != Addressing_ProcGroup, "%s", expr_to_string(arg));
Type *at = tav.type;
if (at->kind == Type_Tuple) {
arg_count += at->Tuple.variables.count;
} else {
arg_count++;
}
}
isize param_count = 0;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_count = pt->params->Tuple.variables.count;
}
auto args = array_make<lbValue >(heap_allocator(), cast(isize)gb_max(param_count, arg_count));
isize variadic_index = pt->variadic_index;
bool variadic = pt->variadic && variadic_index >= 0;
bool vari_expand = ce->ellipsis.pos.line != 0;
bool is_c_vararg = pt->c_vararg;
String proc_name = {};
if (p->entity != nullptr) {
proc_name = p->entity->token.string;
}
TokenPos pos = ast_token(ce->proc).pos;
TypeTuple *param_tuple = nullptr;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_tuple = &pt->params->Tuple;
}
for_array(i, ce->args) {
Ast *arg = ce->args[i];
TypeAndValue arg_tv = type_and_value_of_expr(arg);
if (arg_tv.mode == Addressing_Type) {
args[arg_index++] = lb_const_nil(arg_tv.type);
} else {
lbValue a = lb_build_expr(p, arg);
Type *at = a.type;
if (at->kind == Type_Tuple) {
for_array(i, at->Tuple.variables) {
Entity *e = at->Tuple.variables[i];
lbValue v = lb_emit_ev(p, a, cast(i32)i);
args[arg_index++] = v;
}
} else {
args[arg_index++] = a;
}
}
}
if (param_count > 0) {
GB_ASSERT_MSG(pt->params != nullptr, "%s %td", expr_to_string(expr), pt->param_count);
GB_ASSERT(param_count < 1000000);
if (arg_count < param_count) {
isize end = cast(isize)param_count;
if (variadic) {
end = variadic_index;
}
while (arg_index < end) {
Entity *e = param_tuple->variables[arg_index];
GB_ASSERT(e->kind == Entity_Variable);
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[arg_index++] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[arg_index++] = lb_const_nil(e->type);
break;
case ParameterValue_Location:
args[arg_index++] = lb_emit_source_code_location(p, proc_name, pos);
break;
case ParameterValue_Value:
args[arg_index++] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
}
}
if (is_c_vararg) {
GB_ASSERT(variadic);
GB_ASSERT(!vari_expand);
isize i = 0;
for (; i < variadic_index; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
Type *variadic_type = param_tuple->variables[i]->type;
GB_ASSERT(is_type_slice(variadic_type));
variadic_type = base_type(variadic_type)->Slice.elem;
if (!is_type_any(variadic_type)) {
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], variadic_type);
}
} else {
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], default_type(args[i].type));
}
}
} else if (variadic) {
isize i = 0;
for (; i < variadic_index; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
if (!vari_expand) {
Type *variadic_type = param_tuple->variables[i]->type;
GB_ASSERT(is_type_slice(variadic_type));
variadic_type = base_type(variadic_type)->Slice.elem;
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], variadic_type);
}
}
} else {
for (isize i = 0; i < param_count; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
GB_ASSERT(args[i].value != nullptr);
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
}
if (variadic && !vari_expand && !is_c_vararg) {
// variadic call argument generation
gbAllocator allocator = heap_allocator();
Type *slice_type = param_tuple->variables[variadic_index]->type;
Type *elem_type = base_type(slice_type)->Slice.elem;
lbAddr slice = lb_add_local_generated(p, slice_type, true);
isize slice_len = arg_count+1 - (variadic_index+1);
if (slice_len > 0) {
lbAddr base_array = lb_add_local_generated(p, alloc_type_array(elem_type, slice_len), true);
for (isize i = variadic_index, j = 0; i < arg_count; i++, j++) {
lbValue addr = lb_emit_array_epi(p, base_array.addr, cast(i32)j);
lb_emit_store(p, addr, args[i]);
}
lbValue base_elem = lb_emit_array_epi(p, base_array.addr, 0);
lbValue len = lb_const_int(t_int, slice_len);
lb_fill_slice(p, slice, base_elem, len);
}
arg_count = param_count;
args[variadic_index] = lb_addr_load(p, slice);
}
}
if (variadic && variadic_index+1 < param_count) {
for (isize i = variadic_index+1; i < param_count; i++) {
Entity *e = param_tuple->variables[i];
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[i] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[i] = lb_const_nil(e->type);
break;
case ParameterValue_Location:
args[i] = lb_emit_source_code_location(p, proc_name, pos);
break;
case ParameterValue_Value:
args[i] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
}
}
isize final_count = param_count;
if (is_c_vararg) {
final_count = arg_count;
}
auto call_args = array_slice(args, 0, final_count);
return lb_emit_call(p, value, call_args, ce->inlining, p->return_ptr_hint_ast == expr);
}
lbValue lb_build_expr(lbProcedure *p, Ast *expr) {
expr = unparen_expr(expr);
TypeAndValue tv = type_and_value_of_expr(expr);
GB_ASSERT(tv.mode != Addressing_Invalid);
GB_ASSERT(tv.mode != Addressing_Type);
if (tv.value.kind != ExactValue_Invalid) {
// NOTE(bill): Short on constant values
return lb_const_value(p->module, tv.type, tv.value);
}
switch (expr->kind) {
case_ast_node(bl, BasicLit, expr);
TokenPos pos = bl->token.pos;
GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(token_strings[bl->token.kind]));
case_end;
case_ast_node(bd, BasicDirective, expr);
TokenPos pos = bd->token.pos;
GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(bd->name));
case_end;
case_ast_node(i, Implicit, expr);
// return ir_addr_load(p, ir_build_addr(p, expr));
GB_PANIC("TODO(bill): Implicit");
case_end;
case_ast_node(u, Undef, expr);
return lbValue{LLVMGetUndef(lb_type(tv.type)), tv.type};
case_end;
case_ast_node(i, Ident, expr);
Entity *e = entity_of_ident(expr);
GB_ASSERT_MSG(e != nullptr, "%s", expr_to_string(expr));
if (e->kind == Entity_Builtin) {
Token token = ast_token(expr);
GB_PANIC("TODO(bill): lb_build_expr Entity_Builtin '%.*s'\n"
"\t at %.*s(%td:%td)", LIT(builtin_procs[e->Builtin.id].name),
LIT(token.pos.file), token.pos.line, token.pos.column);
return {};
} else if (e->kind == Entity_Nil) {
return lb_const_nil(tv.type);
}
auto *found = map_get(&p->module->values, hash_entity(e));
if (found) {
auto v = *found;
// NOTE(bill): This is because pointers are already pointers in LLVM
if (is_type_proc(v.type)) {
return v;
}
return lb_emit_load(p, v);
// } else if (e != nullptr && e->kind == Entity_Variable) {
// return ir_addr_load(p, ir_build_addr(p, expr));
}
GB_PANIC("nullptr value for expression from identifier: %.*s : %s @ %p", LIT(i->token.string), type_to_string(e->type), expr);
return {};
case_end;
case_ast_node(be, BinaryExpr, expr);
return lb_build_binary_expr(p, expr);
case_end;
case_ast_node(ce, CallExpr, expr);
return lb_build_call_expr(p, expr);
case_end;
}
return {};
}
void lb_generate_module(lbGenerator *gen) {
lbModule *m = &gen->module;
LLVMModuleRef mod = gen->module.mod;
CheckerInfo *info = gen->info;
Arena temp_arena = {};
arena_init(&temp_arena, heap_allocator());
gbAllocator temp_allocator = arena_allocator(&temp_arena);
Entity *entry_point = info->entry_point;
auto *min_dep_set = &info->minimum_dependency_set;
for_array(i, info->entities) {
// arena_free_all(&temp_arena);
// gbAllocator a = temp_allocator;
Entity *e = info->entities[i];
String name = e->token.string;
DeclInfo *decl = e->decl_info;
Scope * scope = e->scope;
if ((scope->flags & ScopeFlag_File) == 0) {
continue;
}
Scope *package_scope = scope->parent;
GB_ASSERT(package_scope->flags & ScopeFlag_Pkg);
switch (e->kind) {
case Entity_Variable:
// NOTE(bill): Handled above as it requires a specific load order
continue;
case Entity_ProcGroup:
continue;
case Entity_TypeName:
case Entity_Procedure:
break;
}
bool polymorphic_struct = false;
if (e->type != nullptr && e->kind == Entity_TypeName) {
Type *bt = base_type(e->type);
if (bt->kind == Type_Struct) {
polymorphic_struct = is_type_polymorphic(bt);
}
}
if (!polymorphic_struct && !ptr_set_exists(min_dep_set, e)) {
// NOTE(bill): Nothing depends upon it so doesn't need to be built
continue;
}
String mangled_name = lb_get_entity_name(m, e);
if (e->pkg->name != "demo") {
continue;
}
switch (e->kind) {
case Entity_TypeName:
break;
case Entity_Procedure:
break;
}
if (e->kind == Entity_Procedure) {
lbProcedure *p = lb_create_procedure(m, e);
if (p->body != nullptr) { // Build Procedure
lb_begin_procedure_body(p);
lb_build_stmt(p, p->body);
lb_end_procedure_body(p);
}
lb_end_procedure(p);
}
}
char *llvm_error = nullptr;
defer (LLVMDisposeMessage(llvm_error));
LLVMVerifyModule(mod, LLVMAbortProcessAction, &llvm_error);
LLVMDumpModule(mod);
// LLVMInitializeAllTargetInfos();
// LLVMInitializeAllTargets();
// LLVMInitializeAllTargetMCs();
// LLVMInitializeAllAsmParsers();
// LLVMInitializeAllAsmPrinters();
// char const *target_triple = "x86_64-pc-windows-msvc";
// char const *target_data_layout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128";
// LLVMSetTarget(mod, target_triple);
// LLVMTargetRef target = {};
// LLVMGetTargetFromTriple(target_triple, &target, &llvm_error);
// GB_ASSERT(target != nullptr);
// LLVMTargetMachineRef target_machine = LLVMCreateTargetMachine(target, target_triple, "generic", "", LLVMCodeGenLevelNone, LLVMRelocDefault, LLVMCodeModelDefault);
// defer (LLVMDisposeTargetMachine(target_machine));
// LLVMBool ok = LLVMTargetMachineEmitToFile(target_machine, mod, "llvm_demo.obj", LLVMObjectFile, &llvm_error);
// if (ok) {
// gb_printf_err("LLVM Error: %s\n", llvm_error);
// return;
// }
}