mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 17:34:34 +00:00
1949 lines
46 KiB
Odin
1949 lines
46 KiB
Odin
// simple procedures to manipulate UTF-8 encoded strings
|
||
package strings
|
||
|
||
import "core:io"
|
||
import "core:mem"
|
||
import "core:slice"
|
||
import "core:unicode"
|
||
import "core:unicode/utf8"
|
||
|
||
// returns a clone of the string `s` allocated using the `allocator`
|
||
clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string {
|
||
c := make([]byte, len(s), allocator, loc)
|
||
copy(c, s)
|
||
return string(c[:len(s)])
|
||
}
|
||
|
||
// returns a clone of the string `s` allocated using the `allocator`
|
||
clone_safe :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (str: string, err: mem.Allocator_Error) {
|
||
c := make([]byte, len(s), allocator, loc) or_return
|
||
copy(c, s)
|
||
return string(c[:len(s)]), nil
|
||
}
|
||
|
||
// returns a clone of the string `s` allocated using the `allocator` as a cstring
|
||
// a nul byte is appended to the clone, to make the cstring safe
|
||
clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring {
|
||
c := make([]byte, len(s)+1, allocator, loc)
|
||
copy(c, s)
|
||
c[len(s)] = 0
|
||
return cstring(&c[0])
|
||
}
|
||
|
||
// returns a string from a byte pointer `ptr` and byte length `len`
|
||
// the string is valid as long as the parameters stay alive
|
||
string_from_ptr :: proc(ptr: ^byte, len: int) -> string {
|
||
return transmute(string)mem.Raw_String{ptr, len}
|
||
}
|
||
|
||
// returns a string from a byte pointer `ptr and byte length `len`
|
||
// searches for a nul byte from 0..<len, otherwhise `len` will be the end size
|
||
string_from_nul_terminated_ptr :: proc(ptr: ^byte, len: int) -> string {
|
||
s := transmute(string)mem.Raw_String{ptr, len}
|
||
s = truncate_to_byte(s, 0)
|
||
return s
|
||
}
|
||
|
||
// returns the raw ^byte start of the string `str`
|
||
ptr_from_string :: proc(str: string) -> ^byte {
|
||
d := transmute(mem.Raw_String)str
|
||
return d.data
|
||
}
|
||
|
||
// returns the transmute of string `str` to a cstring
|
||
// not safe since the origin string may not contain a nul byte
|
||
unsafe_string_to_cstring :: proc(str: string) -> cstring {
|
||
d := transmute(mem.Raw_String)str
|
||
return cstring(d.data)
|
||
}
|
||
|
||
// returns a string truncated to the first time it finds the byte `b`
|
||
// uses the `len` of the string `str` when it couldn't find the input
|
||
truncate_to_byte :: proc(str: string, b: byte) -> string {
|
||
n := index_byte(str, b)
|
||
if n < 0 {
|
||
n = len(str)
|
||
}
|
||
return str[:n]
|
||
}
|
||
|
||
// returns a string truncated to the first time it finds the rune `r`
|
||
// uses the `len` of the string `str` when it couldn't find the input
|
||
truncate_to_rune :: proc(str: string, r: rune) -> string {
|
||
n := index_rune(str, r)
|
||
if n < 0 {
|
||
n = len(str)
|
||
}
|
||
return str[:n]
|
||
}
|
||
|
||
// returns a cloned string of the byte array `s` using the `allocator`
|
||
// appends a leading nul byte
|
||
clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> string {
|
||
c := make([]byte, len(s)+1, allocator, loc)
|
||
copy(c, s)
|
||
c[len(s)] = 0
|
||
return string(c[:len(s)])
|
||
}
|
||
|
||
// returns a clone of the cstring `s` using the `allocator` as a string
|
||
clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> string {
|
||
return clone(string(s), allocator, loc)
|
||
}
|
||
|
||
// returns a cloned string from the pointer `ptr` and a byte length `len` using the `allocator`
|
||
// same to `string_from_ptr` but allocates
|
||
clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> string {
|
||
s := string_from_ptr(ptr, len)
|
||
return clone(s, allocator, loc)
|
||
}
|
||
|
||
// overload to clone from a `string`, `[]byte`, `cstring` or a `^byte + length` to a string
|
||
clone_from :: proc{
|
||
clone,
|
||
clone_from_bytes,
|
||
clone_from_cstring,
|
||
clone_from_ptr,
|
||
}
|
||
|
||
// returns a cloned string from the cstring `ptr` and a byte length `len` using the `allocator`
|
||
// truncates till the first nul byte it finds or the byte len
|
||
clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> string {
|
||
s := string_from_ptr((^u8)(ptr), len)
|
||
s = truncate_to_byte(s, 0)
|
||
return clone(s, allocator, loc)
|
||
}
|
||
|
||
// Compares two strings, returning a value representing which one comes first lexiographically.
|
||
// -1 for `lhs`; 1 for `rhs`, or 0 if they are equal.
|
||
compare :: proc(lhs, rhs: string) -> int {
|
||
return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs)
|
||
}
|
||
|
||
// returns the byte offset of the rune `r` in the string `s`, -1 when not found
|
||
contains_rune :: proc(s: string, r: rune) -> int {
|
||
for c, offset in s {
|
||
if c == r {
|
||
return offset
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
returns true when the string `substr` is contained inside the string `s`
|
||
|
||
strings.contains("testing", "test") -> true
|
||
strings.contains("testing", "ing") -> true
|
||
strings.contains("testing", "text") -> false
|
||
*/
|
||
contains :: proc(s, substr: string) -> bool {
|
||
return index(s, substr) >= 0
|
||
}
|
||
|
||
/*
|
||
returns true when the string `s` contains any of the characters inside the string `chars`
|
||
|
||
strings.contains_any("test", "test") -> true
|
||
strings.contains_any("test", "ts") -> true
|
||
strings.contains_any("test", "et") -> true
|
||
strings.contains_any("test", "a") -> false
|
||
*/
|
||
contains_any :: proc(s, chars: string) -> bool {
|
||
return index_any(s, chars) >= 0
|
||
}
|
||
|
||
/*
|
||
returns the utf8 rune count of the string `s`
|
||
|
||
strings.rune_count("test") -> 4
|
||
strings.rune_count("testö") -> 5, where len("testö") -> 6
|
||
*/
|
||
rune_count :: proc(s: string) -> int {
|
||
return utf8.rune_count_in_string(s)
|
||
}
|
||
|
||
/*
|
||
returns wether the strings `u` and `v` are the same alpha characters
|
||
works with utf8 string content and ignores different casings
|
||
|
||
strings.equal_fold("test", "test") -> true
|
||
strings.equal_fold("Test", "test") -> true
|
||
strings.equal_fold("Test", "tEsT") -> true
|
||
strings.equal_fold("test", "tes") -> false
|
||
*/
|
||
equal_fold :: proc(u, v: string) -> bool {
|
||
s, t := u, v
|
||
loop: for s != "" && t != "" {
|
||
sr, tr: rune
|
||
if s[0] < utf8.RUNE_SELF {
|
||
sr, s = rune(s[0]), s[1:]
|
||
} else {
|
||
r, size := utf8.decode_rune_in_string(s)
|
||
sr, s = r, s[size:]
|
||
}
|
||
if t[0] < utf8.RUNE_SELF {
|
||
tr, t = rune(t[0]), t[1:]
|
||
} else {
|
||
r, size := utf8.decode_rune_in_string(t)
|
||
tr, t = r, t[size:]
|
||
}
|
||
|
||
if tr == sr { // easy case
|
||
continue loop
|
||
}
|
||
|
||
if tr < sr {
|
||
tr, sr = sr, tr
|
||
}
|
||
|
||
if tr < utf8.RUNE_SELF {
|
||
switch sr {
|
||
case 'A'..='Z':
|
||
if tr == (sr+'a')-'A' {
|
||
continue loop
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// TODO(bill): Unicode folding
|
||
|
||
return false
|
||
}
|
||
|
||
return s == t
|
||
}
|
||
|
||
/*
|
||
return the prefix length common between strings `a` and `b`.
|
||
|
||
strings.prefix_length("testing", "test") -> 4
|
||
strings.prefix_length("testing", "te") -> 2
|
||
strings.prefix_length("telephone", "te") -> 2
|
||
strings.prefix_length("testing", "est") -> 0
|
||
*/
|
||
prefix_length :: proc(a, b: string) -> (n: int) {
|
||
_len := min(len(a), len(b))
|
||
|
||
// Scan for matches including partial codepoints.
|
||
#no_bounds_check for n < _len && a[n] == b[n] {
|
||
n += 1
|
||
}
|
||
|
||
// Now scan to ignore partial codepoints.
|
||
if n > 0 {
|
||
s := a[:n]
|
||
n = 0
|
||
for {
|
||
r0, w := utf8.decode_rune(s[n:])
|
||
if r0 != utf8.RUNE_ERROR {
|
||
n += w
|
||
} else {
|
||
break
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
/*
|
||
return true when the string `prefix` is contained at the start of the string `s`
|
||
|
||
strings.has_prefix("testing", "test") -> true
|
||
strings.has_prefix("testing", "te") -> true
|
||
strings.has_prefix("telephone", "te") -> true
|
||
strings.has_prefix("testing", "est") -> false
|
||
*/
|
||
has_prefix :: proc(s, prefix: string) -> bool {
|
||
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
|
||
}
|
||
|
||
/*
|
||
returns true when the string `suffix` is contained at the end of the string `s`
|
||
good example to use this is for file extensions
|
||
|
||
strings.has_suffix("todo.txt", ".txt") -> true
|
||
strings.has_suffix("todo.doc", ".txt") -> false
|
||
strings.has_suffix("todo.doc.txt", ".txt") -> true
|
||
*/
|
||
has_suffix :: proc(s, suffix: string) -> bool {
|
||
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
|
||
}
|
||
|
||
/*
|
||
returns a combined string from the slice of strings `a` seperated with the `sep` string
|
||
allocates the string using the `allocator`
|
||
|
||
a := [?]string { "a", "b", "c" }
|
||
b := strings.join(a[:], " ") -> "a b c"
|
||
c := strings.join(a[:], "-") -> "a-b-c"
|
||
d := strings.join(a[:], "...") -> "a...b...c"
|
||
*/
|
||
join :: proc(a: []string, sep: string, allocator := context.allocator) -> string {
|
||
if len(a) == 0 {
|
||
return ""
|
||
}
|
||
|
||
n := len(sep) * (len(a) - 1)
|
||
for s in a {
|
||
n += len(s)
|
||
}
|
||
|
||
b := make([]byte, n, allocator)
|
||
i := copy(b, a[0])
|
||
for s in a[1:] {
|
||
i += copy(b[i:], sep)
|
||
i += copy(b[i:], s)
|
||
}
|
||
return string(b)
|
||
}
|
||
|
||
join_safe :: proc(a: []string, sep: string, allocator := context.allocator) -> (str: string, err: mem.Allocator_Error) {
|
||
if len(a) == 0 {
|
||
return "", nil
|
||
}
|
||
|
||
n := len(sep) * (len(a) - 1)
|
||
for s in a {
|
||
n += len(s)
|
||
}
|
||
|
||
b := make([]byte, n, allocator) or_return
|
||
i := copy(b, a[0])
|
||
for s in a[1:] {
|
||
i += copy(b[i:], sep)
|
||
i += copy(b[i:], s)
|
||
}
|
||
return string(b), nil
|
||
}
|
||
|
||
/*
|
||
returns a combined string from the slice of strings `a` without a seperator
|
||
allocates the string using the `allocator`
|
||
|
||
|
||
a := [?]string { "a", "b", "c" }
|
||
b := strings.concatenate(a[:]) -> "abc"
|
||
*/
|
||
concatenate :: proc(a: []string, allocator := context.allocator) -> string {
|
||
if len(a) == 0 {
|
||
return ""
|
||
}
|
||
|
||
n := 0
|
||
for s in a {
|
||
n += len(s)
|
||
}
|
||
b := make([]byte, n, allocator)
|
||
i := 0
|
||
for s in a {
|
||
i += copy(b[i:], s)
|
||
}
|
||
return string(b)
|
||
}
|
||
|
||
concatenate_safe :: proc(a: []string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) {
|
||
if len(a) == 0 {
|
||
return "", nil
|
||
}
|
||
|
||
n := 0
|
||
for s in a {
|
||
n += len(s)
|
||
}
|
||
b := make([]byte, n, allocator) or_return
|
||
i := 0
|
||
for s in a {
|
||
i += copy(b[i:], s)
|
||
}
|
||
return string(b), nil
|
||
}
|
||
|
||
/*
|
||
`rune_offset` and `rune_length` are in runes, not bytes.
|
||
If `rune_length` <= 0, then it'll return the remainder of the string starting at `rune_offset`.
|
||
|
||
strings.cut("some example text", 0, 4) -> "some"
|
||
strings.cut("some example text", 2, 2) -> "me"
|
||
strings.cut("some example text", 5, 7) -> "example"
|
||
*/
|
||
cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator) -> (res: string) {
|
||
s := s; rune_length := rune_length
|
||
context.allocator = allocator
|
||
|
||
// If we signal that we want the entire remainder (length <= 0) *and*
|
||
// the offset is zero, then we can early out by cloning the input
|
||
if rune_offset == 0 && rune_length <= 0 {
|
||
return clone(s)
|
||
}
|
||
|
||
// We need to know if we have enough runes to cover offset + length.
|
||
rune_count := utf8.rune_count_in_string(s)
|
||
|
||
// We're asking for a substring starting after the end of the input string.
|
||
// That's just an empty string.
|
||
if rune_offset >= rune_count {
|
||
return ""
|
||
}
|
||
|
||
// If we don't specify the length of the substring, use the remainder.
|
||
if rune_length <= 0 {
|
||
rune_length = rune_count - rune_offset
|
||
}
|
||
|
||
// We don't yet know how many bytes we need exactly.
|
||
// But we do know it's bounded by the number of runes * 4 bytes,
|
||
// and can be no more than the size of the input string.
|
||
bytes_needed := min(rune_length * 4, len(s))
|
||
buf := make([]u8, bytes_needed)
|
||
|
||
byte_offset := 0
|
||
for i := 0; i < rune_count; i += 1 {
|
||
_, w := utf8.decode_rune_in_string(s)
|
||
|
||
// If the rune is part of the substring, copy it to the output buffer.
|
||
if i >= rune_offset {
|
||
for j := 0; j < w; j += 1 {
|
||
buf[byte_offset+j] = s[j]
|
||
}
|
||
byte_offset += w
|
||
}
|
||
|
||
// We're done if we reach the end of the input string, *or*
|
||
// if we've reached a specified length in runes.
|
||
if rune_length > 0 {
|
||
if i == rune_offset + rune_length - 1 { break }
|
||
}
|
||
s = s[w:]
|
||
}
|
||
return string(buf[:byte_offset])
|
||
}
|
||
|
||
@private
|
||
_split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string {
|
||
s, n := s_, n_
|
||
|
||
if n == 0 {
|
||
return nil
|
||
}
|
||
|
||
if sep == "" {
|
||
l := utf8.rune_count_in_string(s)
|
||
if n < 0 || n > l {
|
||
n = l
|
||
}
|
||
|
||
res := make([dynamic]string, n, allocator)
|
||
for i := 0; i < n-1; i += 1 {
|
||
_, w := utf8.decode_rune_in_string(s)
|
||
res[i] = s[:w]
|
||
s = s[w:]
|
||
}
|
||
if n > 0 {
|
||
res[n-1] = s
|
||
}
|
||
return res[:]
|
||
}
|
||
|
||
if n < 0 {
|
||
n = count(s, sep) + 1
|
||
}
|
||
|
||
res := make([dynamic]string, n, allocator)
|
||
|
||
n -= 1
|
||
|
||
i := 0
|
||
for ; i < n; i += 1 {
|
||
m := index(s, sep)
|
||
if m < 0 {
|
||
break
|
||
}
|
||
res[i] = s[:m+sep_save]
|
||
s = s[m+len(sep):]
|
||
}
|
||
res[i] = s
|
||
|
||
return res[:i+1]
|
||
}
|
||
|
||
/*
|
||
Splits a string into parts, based on a separator.
|
||
Returned strings are substrings of 's'.
|
||
```
|
||
s := "aaa.bbb.ccc.ddd.eee" // 5 parts
|
||
ss := split(s, ".")
|
||
fmt.println(ss) // [aaa, bbb, ccc, ddd, eee]
|
||
```
|
||
*/
|
||
split :: proc(s, sep: string, allocator := context.allocator) -> []string {
|
||
return _split(s, sep, 0, -1, allocator)
|
||
}
|
||
|
||
/*
|
||
Splits a string into a total of 'n' parts, based on a separator.
|
||
Returns fewer parts if there wasn't enough occurrences of the separator.
|
||
Returned strings are substrings of 's'.
|
||
```
|
||
s := "aaa.bbb.ccc.ddd.eee" // 5 parts present
|
||
ss := split_n(s, ".", 3) // total of 3 wanted
|
||
fmt.println(ss) // [aaa, bbb, ccc.ddd.eee]
|
||
```
|
||
*/
|
||
split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
|
||
return _split(s, sep, 0, n, allocator)
|
||
}
|
||
|
||
/*
|
||
splits the string `s` after the seperator string `sep` appears
|
||
returns the slice of split strings allocated using `allocator`
|
||
|
||
a := "aaa.bbb.ccc.ddd.eee"
|
||
aa := strings.split_after(a, ".")
|
||
fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee]
|
||
*/
|
||
split_after :: proc(s, sep: string, allocator := context.allocator) -> []string {
|
||
return _split(s, sep, len(sep), -1, allocator)
|
||
}
|
||
|
||
/*
|
||
splits the string `s` after the seperator string `sep` appears into a total of `n` parts
|
||
returns the slice of split strings allocated using `allocator`
|
||
|
||
a := "aaa.bbb.ccc.ddd.eee"
|
||
aa := strings.split_after(a, ".")
|
||
fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee]
|
||
*/
|
||
split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
|
||
return _split(s, sep, len(sep), n, allocator)
|
||
}
|
||
|
||
@private
|
||
_split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) {
|
||
// stop once the string is empty or nil
|
||
if s == nil || len(s^) == 0 {
|
||
return
|
||
}
|
||
|
||
if sep == "" {
|
||
res = s[:]
|
||
ok = true
|
||
s^ = s[len(s):]
|
||
return
|
||
}
|
||
|
||
m := index(s^, sep)
|
||
if m < 0 {
|
||
// not found
|
||
res = s[:]
|
||
ok = res != ""
|
||
s^ = s[len(s):]
|
||
} else {
|
||
res = s[:m+sep_save]
|
||
ok = true
|
||
s^ = s[m+len(sep):]
|
||
}
|
||
return
|
||
}
|
||
|
||
/*
|
||
split the ^string `s` by the byte seperator `sep` in an iterator fashion
|
||
consumes the original string till the end, leaving the string `s` with len == 0
|
||
|
||
text := "a.b.c.d.e"
|
||
for str in strings.split_by_byte_iterator(&text, '.') {
|
||
fmt.eprintln(str) // every loop -> a b c d e
|
||
}
|
||
*/
|
||
split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) {
|
||
m := index_byte(s^, sep)
|
||
if m < 0 {
|
||
// not found
|
||
res = s[:]
|
||
ok = res != ""
|
||
s^ = {}
|
||
} else {
|
||
res = s[:m]
|
||
ok = true
|
||
s^ = s[m+1:]
|
||
}
|
||
return
|
||
}
|
||
|
||
/*
|
||
split the ^string `s` by the seperator string `sep` in an iterator fashion
|
||
consumes the original string till the end
|
||
|
||
text := "a.b.c.d.e"
|
||
for str in strings.split_iterator(&text, ".") {
|
||
fmt.eprintln(str) // every loop -> a b c d e
|
||
}
|
||
*/
|
||
split_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
|
||
return _split_iterator(s, sep, 0)
|
||
}
|
||
|
||
/*
|
||
split the ^string `s` after every seperator string `sep` in an iterator fashion
|
||
consumes the original string till the end
|
||
|
||
text := "a.b.c.d.e"
|
||
for str in strings.split_after_iterator(&text, ".") {
|
||
fmt.eprintln(str) // every loop -> a. b. c. d. e
|
||
}
|
||
*/
|
||
split_after_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
|
||
return _split_iterator(s, sep, len(sep))
|
||
}
|
||
|
||
|
||
@(private)
|
||
_trim_cr :: proc(s: string) -> string {
|
||
n := len(s)
|
||
if n > 0 {
|
||
if s[n-1] == '\r' {
|
||
return s[:n-1]
|
||
}
|
||
}
|
||
return s
|
||
}
|
||
|
||
/*
|
||
split the string `s` at every line break '\n'
|
||
return an allocated slice of strings
|
||
|
||
a := "a\nb\nc\nd\ne"
|
||
b := strings.split_lines(a)
|
||
fmt.eprintln(b) // [a, b, c, d, e]
|
||
*/
|
||
split_lines :: proc(s: string, allocator := context.allocator) -> []string {
|
||
sep :: "\n"
|
||
lines := _split(s, sep, 0, -1, allocator)
|
||
for line in &lines {
|
||
line = _trim_cr(line)
|
||
}
|
||
return lines
|
||
}
|
||
|
||
/*
|
||
split the string `s` at every line break '\n' for `n` parts
|
||
return an allocated slice of strings
|
||
|
||
a := "a\nb\nc\nd\ne"
|
||
b := strings.split_lines_n(a, 3)
|
||
fmt.eprintln(b) // [a, b, c, d\ne\n]
|
||
*/
|
||
split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
|
||
sep :: "\n"
|
||
lines := _split(s, sep, 0, n, allocator)
|
||
for line in &lines {
|
||
line = _trim_cr(line)
|
||
}
|
||
return lines
|
||
}
|
||
|
||
/*
|
||
split the string `s` at every line break '\n' leaving the '\n' in the resulting strings
|
||
return an allocated slice of strings
|
||
|
||
a := "a\nb\nc\nd\ne"
|
||
b := strings.split_lines_after(a)
|
||
fmt.eprintln(b) // [a\n, b\n, c\n, d\n, e\n]
|
||
*/
|
||
split_lines_after :: proc(s: string, allocator := context.allocator) -> []string {
|
||
sep :: "\n"
|
||
lines := _split(s, sep, len(sep), -1, allocator)
|
||
for line in &lines {
|
||
line = _trim_cr(line)
|
||
}
|
||
return lines
|
||
}
|
||
|
||
/*
|
||
split the string `s` at every line break '\n' leaving the '\n' in the resulting strings
|
||
only runs for `n` parts
|
||
return an allocated slice of strings
|
||
|
||
a := "a\nb\nc\nd\ne"
|
||
b := strings.split_lines_after_n(a, 3)
|
||
fmt.eprintln(b) // [a\n, b\n, c\n, d\ne\n]
|
||
*/
|
||
split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
|
||
sep :: "\n"
|
||
lines := _split(s, sep, len(sep), n, allocator)
|
||
for line in &lines {
|
||
line = _trim_cr(line)
|
||
}
|
||
return lines
|
||
}
|
||
|
||
/*
|
||
split the string `s` at every line break '\n'
|
||
returns the current split string every iteration till the string is consumed
|
||
|
||
text := "a\nb\nc\nd\ne"
|
||
for str in strings.split_lines_iterator(&text) {
|
||
fmt.eprintln(text) // every loop -> a b c d e
|
||
}
|
||
*/
|
||
split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
|
||
sep :: "\n"
|
||
line = _split_iterator(s, sep, 0) or_return
|
||
return _trim_cr(line), true
|
||
}
|
||
|
||
/*
|
||
split the string `s` at every line break '\n'
|
||
returns the current split string every iteration till the string is consumed
|
||
|
||
text := "a\nb\nc\nd\ne"
|
||
for str in strings.split_lines_after_iterator(&text) {
|
||
fmt.eprintln(text) // every loop -> a\n b\n c\n d\n e\n
|
||
}
|
||
*/
|
||
split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
|
||
sep :: "\n"
|
||
line = _split_iterator(s, sep, len(sep)) or_return
|
||
return _trim_cr(line), true
|
||
}
|
||
|
||
/*
|
||
returns the byte offset of the first byte `c` in the string `s` it finds, -1 when not found
|
||
can't find utf8 based runes
|
||
|
||
strings.index_byte("test", 't') -> 0
|
||
strings.index_byte("test", 'e') -> 1
|
||
strings.index_byte("test", 'x') -> -1
|
||
strings.index_byte("teäst", 'ä') -> -1
|
||
*/
|
||
index_byte :: proc(s: string, c: byte) -> int {
|
||
for i := 0; i < len(s); i += 1 {
|
||
if s[i] == c {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
returns the byte offset of the last byte `c` in the string `s` it finds, -1 when not found
|
||
can't find utf8 based runes
|
||
|
||
strings.index_byte("test", 't') -> 3
|
||
strings.index_byte("test", 'e') -> 1
|
||
strings.index_byte("test", 'x') -> -1
|
||
strings.index_byte("teäst", 'ä') -> -1
|
||
*/
|
||
last_index_byte :: proc(s: string, c: byte) -> int {
|
||
for i := len(s)-1; i >= 0; i -= 1 {
|
||
if s[i] == c {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
|
||
/*
|
||
returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found
|
||
avoids invalid runes
|
||
|
||
strings.index_rune("abcädef", 'x') -> -1
|
||
strings.index_rune("abcädef", 'a') -> 0
|
||
strings.index_rune("abcädef", 'b') -> 1
|
||
strings.index_rune("abcädef", 'c') -> 2
|
||
strings.index_rune("abcädef", 'ä') -> 3
|
||
strings.index_rune("abcädef", 'd') -> 5
|
||
strings.index_rune("abcädef", 'e') -> 6
|
||
strings.index_rune("abcädef", 'f') -> 7
|
||
*/
|
||
index_rune :: proc(s: string, r: rune) -> int {
|
||
switch {
|
||
case 0 <= r && r < utf8.RUNE_SELF:
|
||
return index_byte(s, byte(r))
|
||
|
||
case r == utf8.RUNE_ERROR:
|
||
for c, i in s {
|
||
if c == utf8.RUNE_ERROR {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
|
||
case !utf8.valid_rune(r):
|
||
return -1
|
||
}
|
||
|
||
b, w := utf8.encode_rune(r)
|
||
return index(s, string(b[:w]))
|
||
}
|
||
|
||
@private PRIME_RABIN_KARP :: 16777619
|
||
|
||
/*
|
||
returns the byte offset of the string `substr` in the string `s`, -1 when not found
|
||
|
||
strings.index("test", "t") -> 0
|
||
strings.index("test", "te") -> 0
|
||
strings.index("test", "st") -> 2
|
||
strings.index("test", "tt") -> -1
|
||
*/
|
||
index :: proc(s, substr: string) -> int {
|
||
hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
|
||
for i := 0; i < len(s); i += 1 {
|
||
hash = hash*PRIME_RABIN_KARP + u32(s[i])
|
||
}
|
||
sq := u32(PRIME_RABIN_KARP)
|
||
for i := len(s); i > 0; i >>= 1 {
|
||
if (i & 1) != 0 {
|
||
pow *= sq
|
||
}
|
||
sq *= sq
|
||
}
|
||
return
|
||
}
|
||
|
||
n := len(substr)
|
||
switch {
|
||
case n == 0:
|
||
return 0
|
||
case n == 1:
|
||
return index_byte(s, substr[0])
|
||
case n == len(s):
|
||
if s == substr {
|
||
return 0
|
||
}
|
||
return -1
|
||
case n > len(s):
|
||
return -1
|
||
}
|
||
|
||
hash, pow := hash_str_rabin_karp(substr)
|
||
h: u32
|
||
for i := 0; i < n; i += 1 {
|
||
h = h*PRIME_RABIN_KARP + u32(s[i])
|
||
}
|
||
if h == hash && s[:n] == substr {
|
||
return 0
|
||
}
|
||
for i := n; i < len(s); /**/ {
|
||
h *= PRIME_RABIN_KARP
|
||
h += u32(s[i])
|
||
h -= pow * u32(s[i-n])
|
||
i += 1
|
||
if h == hash && s[i-n:i] == substr {
|
||
return i - n
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
returns the last byte offset of the string `substr` in the string `s`, -1 when not found
|
||
|
||
strings.index("test", "t") -> 3
|
||
strings.index("test", "te") -> 0
|
||
strings.index("test", "st") -> 2
|
||
strings.index("test", "tt") -> -1
|
||
*/
|
||
last_index :: proc(s, substr: string) -> int {
|
||
hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
|
||
for i := len(s) - 1; i >= 0; i -= 1 {
|
||
hash = hash*PRIME_RABIN_KARP + u32(s[i])
|
||
}
|
||
sq := u32(PRIME_RABIN_KARP)
|
||
for i := len(s); i > 0; i >>= 1 {
|
||
if (i & 1) != 0 {
|
||
pow *= sq
|
||
}
|
||
sq *= sq
|
||
}
|
||
return
|
||
}
|
||
|
||
n := len(substr)
|
||
switch {
|
||
case n == 0:
|
||
return len(s)
|
||
case n == 1:
|
||
return last_index_byte(s, substr[0])
|
||
case n == len(s):
|
||
return 0 if substr == s else -1
|
||
case n > len(s):
|
||
return -1
|
||
}
|
||
|
||
hash, pow := hash_str_rabin_karp_reverse(substr)
|
||
last := len(s) - n
|
||
h: u32
|
||
for i := len(s)-1; i >= last; i -= 1 {
|
||
h = h*PRIME_RABIN_KARP + u32(s[i])
|
||
}
|
||
if h == hash && s[last:] == substr {
|
||
return last
|
||
}
|
||
|
||
for i := last-1; i >= 0; i -= 1 {
|
||
h *= PRIME_RABIN_KARP
|
||
h += u32(s[i])
|
||
h -= pow * u32(s[i+n])
|
||
if h == hash && s[i:i+n] == substr {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
returns the index of any first char of `chars` found in `s`, -1 if not found
|
||
|
||
strings.index_any("test", "s") -> 2
|
||
strings.index_any("test", "se") -> 1
|
||
strings.index_any("test", "et") -> 0
|
||
strings.index_any("test", "set") -> 0
|
||
strings.index_any("test", "x") -> -1
|
||
*/
|
||
index_any :: proc(s, chars: string) -> int {
|
||
if chars == "" {
|
||
return -1
|
||
}
|
||
|
||
if len(chars) == 1 {
|
||
r := rune(chars[0])
|
||
if r >= utf8.RUNE_SELF {
|
||
r = utf8.RUNE_ERROR
|
||
}
|
||
return index_rune(s, r)
|
||
}
|
||
|
||
if len(s) > 8 {
|
||
if as, ok := ascii_set_make(chars); ok {
|
||
for i in 0..<len(s) {
|
||
if ascii_set_contains(as, s[i]) {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
}
|
||
|
||
for c, i in s {
|
||
if index_rune(chars, c) >= 0 {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
returns the index of any first char of `chars` found in `s`, -1 if not found
|
||
iterates the string in reverse
|
||
|
||
strings.index_any("test", "s") -> 2
|
||
strings.index_any("test", "se") -> 2
|
||
strings.index_any("test", "et") -> 1
|
||
strings.index_any("test", "set") -> 3
|
||
strings.index_any("test", "x") -> -1
|
||
*/
|
||
last_index_any :: proc(s, chars: string) -> int {
|
||
if chars == "" {
|
||
return -1
|
||
}
|
||
|
||
if len(s) == 1 {
|
||
r := rune(s[0])
|
||
if r >= utf8.RUNE_SELF {
|
||
r = utf8.RUNE_ERROR
|
||
}
|
||
return index_rune(chars, r)
|
||
}
|
||
|
||
if len(s) > 8 {
|
||
if as, ok := ascii_set_make(chars); ok {
|
||
for i := len(s)-1; i >= 0; i -= 1 {
|
||
if ascii_set_contains(as, s[i]) {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
}
|
||
|
||
if len(chars) == 1 {
|
||
r := rune(chars[0])
|
||
if r >= utf8.RUNE_SELF {
|
||
r = utf8.RUNE_ERROR
|
||
}
|
||
for i := len(s); i > 0; /**/ {
|
||
c, w := utf8.decode_last_rune_in_string(s[:i])
|
||
i -= w
|
||
if c == r {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
for i := len(s); i > 0; /**/ {
|
||
r, w := utf8.decode_last_rune_in_string(s[:i])
|
||
i -= w
|
||
if index_rune(chars, r) >= 0 {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
returns the count of the string `substr` found in the string `s`
|
||
returns the rune_count + 1 of the string `s` on empty `substr`
|
||
|
||
strings.count("abbccc", "a") -> 1
|
||
strings.count("abbccc", "b") -> 2
|
||
strings.count("abbccc", "c") -> 3
|
||
strings.count("abbccc", "ab") -> 1
|
||
strings.count("abbccc", " ") -> 0
|
||
*/
|
||
count :: proc(s, substr: string) -> int {
|
||
if len(substr) == 0 { // special case
|
||
return rune_count(s) + 1
|
||
}
|
||
if len(substr) == 1 {
|
||
c := substr[0]
|
||
switch len(s) {
|
||
case 0:
|
||
return 0
|
||
case 1:
|
||
return int(s[0] == c)
|
||
}
|
||
n := 0
|
||
for i := 0; i < len(s); i += 1 {
|
||
if s[i] == c {
|
||
n += 1
|
||
}
|
||
}
|
||
return n
|
||
}
|
||
|
||
// TODO(bill): Use a non-brute for approach
|
||
n := 0
|
||
str := s
|
||
for {
|
||
i := index(str, substr)
|
||
if i == -1 {
|
||
return n
|
||
}
|
||
n += 1
|
||
str = str[i+len(substr):]
|
||
}
|
||
return n
|
||
}
|
||
|
||
/*
|
||
repeats the string `s` multiple `count` times and returns the allocated string
|
||
panics when `count` is below 0
|
||
|
||
strings.repeat("abc", 2) -> "abcabc"
|
||
*/
|
||
repeat :: proc(s: string, count: int, allocator := context.allocator) -> string {
|
||
if count < 0 {
|
||
panic("strings: negative repeat count")
|
||
} else if count > 0 && (len(s)*count)/count != len(s) {
|
||
panic("strings: repeat count will cause an overflow")
|
||
}
|
||
|
||
b := make([]byte, len(s)*count, allocator)
|
||
i := copy(b, s)
|
||
for i < len(b) { // 2^N trick to reduce the need to copy
|
||
copy(b[i:], b[:i])
|
||
i *= 2
|
||
}
|
||
return string(b)
|
||
}
|
||
|
||
/*
|
||
replaces all instances of `old` in the string `s` with the `new` string
|
||
returns the `output` string and true when an a allocation through a replace happened
|
||
|
||
strings.replace_all("xyzxyz", "xyz", "abc") -> "abcabc", true
|
||
strings.replace_all("xyzxyz", "abc", "xyz") -> "xyzxyz", false
|
||
strings.replace_all("xyzxyz", "xy", "z") -> "zzzz", true
|
||
*/
|
||
replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
||
return replace(s, old, new, -1, allocator)
|
||
}
|
||
|
||
/*
|
||
replaces `n` instances of `old` in the string `s` with the `new` string
|
||
if n < 0, no limit on the number of replacements
|
||
returns the `output` string and true when an a allocation through a replace happened
|
||
|
||
strings.replace("xyzxyz", "xyz", "abc", 2) -> "abcabc", true
|
||
strings.replace("xyzxyz", "xyz", "abc", 1) -> "abcxyz", true
|
||
strings.replace("xyzxyz", "abc", "xyz", -1) -> "xyzxyz", false
|
||
strings.replace("xyzxyz", "xy", "z", -1) -> "zzzz", true
|
||
*/
|
||
replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
||
if old == new || n == 0 {
|
||
was_allocation = false
|
||
output = s
|
||
return
|
||
}
|
||
byte_count := n
|
||
if m := count(s, old); m == 0 {
|
||
was_allocation = false
|
||
output = s
|
||
return
|
||
} else if n < 0 || m < n {
|
||
byte_count = m
|
||
}
|
||
|
||
|
||
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
|
||
was_allocation = true
|
||
|
||
w := 0
|
||
start := 0
|
||
for i := 0; i < byte_count; i += 1 {
|
||
j := start
|
||
if len(old) == 0 {
|
||
if i > 0 {
|
||
_, width := utf8.decode_rune_in_string(s[start:])
|
||
j += width
|
||
}
|
||
} else {
|
||
j += index(s[start:], old)
|
||
}
|
||
w += copy(t[w:], s[start:j])
|
||
w += copy(t[w:], new)
|
||
start = j + len(old)
|
||
}
|
||
w += copy(t[w:], s[start:])
|
||
output = string(t[0:w])
|
||
return
|
||
}
|
||
|
||
/*
|
||
removes the `key` string `n` times from the `s` string
|
||
if n < 0, no limit on the number of removes
|
||
returns the `output` string and true when an a allocation through a remove happened
|
||
|
||
strings.remove("abcabc", "abc", 1) -> "abc", true
|
||
strings.remove("abcabc", "abc", -1) -> "", true
|
||
strings.remove("abcabc", "a", -1) -> "bcbc", true
|
||
strings.remove("abcabc", "x", -1) -> "abcabc", false
|
||
*/
|
||
remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
||
return replace(s, key, "", n, allocator)
|
||
}
|
||
|
||
/*
|
||
removes all the `key` string instanes from the `s` string
|
||
returns the `output` string and true when an a allocation through a remove happened
|
||
|
||
strings.remove("abcabc", "abc") -> "", true
|
||
strings.remove("abcabc", "a") -> "bcbc", true
|
||
strings.remove("abcabc", "x") -> "abcabc", false
|
||
*/
|
||
remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
||
return remove(s, key, -1, allocator)
|
||
}
|
||
|
||
@(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true}
|
||
|
||
// return true when the `r` rune is '\t', '\n', '\v', '\f', '\r' or ' '
|
||
is_ascii_space :: proc(r: rune) -> bool {
|
||
if r < utf8.RUNE_SELF {
|
||
return _ascii_space[u8(r)]
|
||
}
|
||
return false
|
||
}
|
||
|
||
// returns true when the `r` rune is any asci or utf8 based whitespace
|
||
is_space :: proc(r: rune) -> bool {
|
||
if r < 0x2000 {
|
||
switch r {
|
||
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
|
||
return true
|
||
}
|
||
} else {
|
||
if r <= 0x200a {
|
||
return true
|
||
}
|
||
switch r {
|
||
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// returns true when the `r` rune is a nul byte
|
||
is_null :: proc(r: rune) -> bool {
|
||
return r == 0x0000
|
||
}
|
||
|
||
/*
|
||
runs trough the `s` string linearly and watches wether the `p` procedure matches the `truth` bool
|
||
returns the rune offset or -1 when no match was found
|
||
|
||
call :: proc(r: rune) -> bool {
|
||
return r == 'a'
|
||
}
|
||
strings.index_proc("abcabc", call) -> 0
|
||
strings.index_proc("cbacba", call) -> 2
|
||
strings.index_proc("cbacba", call, false) -> 0
|
||
strings.index_proc("abcabc", call, false) -> 1
|
||
strings.index_proc("xyz", call) -> -1
|
||
*/
|
||
index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
|
||
for r, i in s {
|
||
if p(r) == truth {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
// same as `index_proc` but with a `p` procedure taking a rawptr for state
|
||
index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
|
||
for r, i in s {
|
||
if p(state, r) == truth {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
// same as `index_proc` but runs through the string in reverse
|
||
last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
|
||
// TODO(bill): Probably use Rabin-Karp Search
|
||
for i := len(s); i > 0; {
|
||
r, size := utf8.decode_last_rune_in_string(s[:i])
|
||
i -= size
|
||
if p(r) == truth {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
// same as `index_proc_with_state` but runs through the string in reverse
|
||
last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
|
||
// TODO(bill): Probably use Rabin-Karp Search
|
||
for i := len(s); i > 0; {
|
||
r, size := utf8.decode_last_rune_in_string(s[:i])
|
||
i -= size
|
||
if p(state, r) == truth {
|
||
return i
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
/*
|
||
trims the input string `s` until the procedure `p` returns false
|
||
does not allocate - only returns a cut variant of the input string
|
||
returns an empty string when no match was found at all
|
||
|
||
find :: proc(r: rune) -> bool {
|
||
return r != 'i'
|
||
}
|
||
strings.trim_left_proc("testing", find) -> "ing"
|
||
*/
|
||
trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
|
||
i := index_proc(s, p, false)
|
||
if i == -1 {
|
||
return ""
|
||
}
|
||
return s[i:]
|
||
}
|
||
|
||
/*
|
||
trims the input string `s` until the procedure `p` with state returns false
|
||
returns an empty string when no match was found at all
|
||
*/
|
||
trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
|
||
i := index_proc_with_state(s, p, state, false)
|
||
if i == -1 {
|
||
return ""
|
||
}
|
||
return s[i:]
|
||
}
|
||
|
||
/*
|
||
trims the input string `s` from the right until the procedure `p` returns false
|
||
does not allocate - only returns a cut variant of the input string
|
||
returns an empty string when no match was found at all
|
||
|
||
find :: proc(r: rune) -> bool {
|
||
return r != 't'
|
||
}
|
||
strings.trim_left_proc("testing", find) -> "test"
|
||
*/
|
||
trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
|
||
i := last_index_proc(s, p, false)
|
||
if i >= 0 && s[i] >= utf8.RUNE_SELF {
|
||
_, w := utf8.decode_rune_in_string(s[i:])
|
||
i += w
|
||
} else {
|
||
i += 1
|
||
}
|
||
return s[0:i]
|
||
}
|
||
|
||
/*
|
||
trims the input string `s` from the right until the procedure `p` with state returns false
|
||
returns an empty string when no match was found at all
|
||
*/
|
||
trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
|
||
i := last_index_proc_with_state(s, p, state, false)
|
||
if i >= 0 && s[i] >= utf8.RUNE_SELF {
|
||
_, w := utf8.decode_rune_in_string(s[i:])
|
||
i += w
|
||
} else {
|
||
i += 1
|
||
}
|
||
return s[0:i]
|
||
}
|
||
|
||
// procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison
|
||
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
|
||
if state == nil {
|
||
return false
|
||
}
|
||
cutset := (^string)(state)^
|
||
for c in cutset {
|
||
if r == c {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// trims the `cutset` string from the `s` string
|
||
trim_left :: proc(s: string, cutset: string) -> string {
|
||
if s == "" || cutset == "" {
|
||
return s
|
||
}
|
||
state := cutset
|
||
return trim_left_proc_with_state(s, is_in_cutset, &state)
|
||
}
|
||
|
||
// trims the `cutset` string from the `s` string from the right
|
||
trim_right :: proc(s: string, cutset: string) -> string {
|
||
if s == "" || cutset == "" {
|
||
return s
|
||
}
|
||
state := cutset
|
||
return trim_right_proc_with_state(s, is_in_cutset, &state)
|
||
}
|
||
|
||
// trims the `cutset` string from the `s` string, both from left and right
|
||
trim :: proc(s: string, cutset: string) -> string {
|
||
return trim_right(trim_left(s, cutset), cutset)
|
||
}
|
||
|
||
// trims until a valid non space rune: "\t\txyz\t\t" -> "xyz\t\t"
|
||
trim_left_space :: proc(s: string) -> string {
|
||
return trim_left_proc(s, is_space)
|
||
}
|
||
|
||
// trims from the right until a valid non space rune: "\t\txyz\t\t" -> "\t\txyz"
|
||
trim_right_space :: proc(s: string) -> string {
|
||
return trim_right_proc(s, is_space)
|
||
}
|
||
|
||
// trims from both sides until a valid non space rune: "\t\txyz\t\t" -> "xyz"
|
||
trim_space :: proc(s: string) -> string {
|
||
return trim_right_space(trim_left_space(s))
|
||
}
|
||
|
||
// trims nul runes from the left: "\x00\x00testing\x00\x00" -> "testing\x00\x00"
|
||
trim_left_null :: proc(s: string) -> string {
|
||
return trim_left_proc(s, is_null)
|
||
}
|
||
|
||
// trims nul runes from the right: "\x00\x00testing\x00\x00" -> "\x00\x00testing"
|
||
trim_right_null :: proc(s: string) -> string {
|
||
return trim_right_proc(s, is_null)
|
||
}
|
||
|
||
// trims nul runes from both sides: "\x00\x00testing\x00\x00" -> "testing"
|
||
trim_null :: proc(s: string) -> string {
|
||
return trim_right_null(trim_left_null(s))
|
||
}
|
||
|
||
/*
|
||
trims a `prefix` string from the start of the `s` string and returns the trimmed string
|
||
returns the input string `s` when no prefix was found
|
||
|
||
strings.trim_prefix("testing", "test") -> "ing"
|
||
strings.trim_prefix("testing", "abc") -> "testing"
|
||
*/
|
||
trim_prefix :: proc(s, prefix: string) -> string {
|
||
if has_prefix(s, prefix) {
|
||
return s[len(prefix):]
|
||
}
|
||
return s
|
||
}
|
||
|
||
/*
|
||
trims a `suffix` string from the end of the `s` string and returns the trimmed string
|
||
returns the input string `s` when no suffix was found
|
||
|
||
strings.trim_suffix("todo.txt", ".txt") -> "todo"
|
||
strings.trim_suffix("todo.doc", ".txt") -> "todo.doc"
|
||
*/
|
||
trim_suffix :: proc(s, suffix: string) -> string {
|
||
if has_suffix(s, suffix) {
|
||
return s[:len(s)-len(suffix)]
|
||
}
|
||
return s
|
||
}
|
||
|
||
/*
|
||
splits the input string `s` by all possible `substrs` []string
|
||
returns the allocated []string, nil on any empty substring or no matches
|
||
|
||
splits := [?]string { "---", "~~~", ".", "_", "," }
|
||
res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:])
|
||
fmt.eprintln(res) // -> [testing, this, out, nice, done, last]
|
||
*/
|
||
split_multi :: proc(s: string, substrs: []string, allocator := context.allocator) -> (buf: []string) #no_bounds_check {
|
||
if s == "" || len(substrs) <= 0 {
|
||
return
|
||
}
|
||
|
||
// disallow "" substr
|
||
for substr in substrs {
|
||
if len(substr) == 0 {
|
||
return
|
||
}
|
||
}
|
||
|
||
// TODO maybe remove duplicate substrs
|
||
// sort substrings by string size, largest to smallest
|
||
temp_substrs := slice.clone(substrs, context.temp_allocator)
|
||
slice.sort_by(temp_substrs, proc(a, b: string) -> bool {
|
||
return len(a) > len(b)
|
||
})
|
||
|
||
substrings_found: int
|
||
temp := s
|
||
|
||
// count substr results found in string
|
||
first_pass: for len(temp) > 0 {
|
||
for substr in temp_substrs {
|
||
size := len(substr)
|
||
|
||
// check range and compare string to substr
|
||
if size <= len(temp) && temp[:size] == substr {
|
||
substrings_found += 1
|
||
temp = temp[size:]
|
||
continue first_pass
|
||
}
|
||
}
|
||
|
||
// step through string
|
||
_, skip := utf8.decode_rune_in_string(temp[:])
|
||
temp = temp[skip:]
|
||
}
|
||
|
||
// skip when no results
|
||
if substrings_found < 1 {
|
||
return
|
||
}
|
||
|
||
buf = make([]string, substrings_found + 1, allocator)
|
||
buf_index: int
|
||
temp = s
|
||
temp_old := temp
|
||
|
||
// gather results in the same fashion
|
||
second_pass: for len(temp) > 0 {
|
||
for substr in temp_substrs {
|
||
size := len(substr)
|
||
|
||
// check range and compare string to substr
|
||
if size <= len(temp) && temp[:size] == substr {
|
||
buf[buf_index] = temp_old[:len(temp_old) - len(temp)]
|
||
buf_index += 1
|
||
temp = temp[size:]
|
||
temp_old = temp
|
||
continue second_pass
|
||
}
|
||
}
|
||
|
||
// step through string
|
||
_, skip := utf8.decode_rune_in_string(temp[:])
|
||
temp = temp[skip:]
|
||
}
|
||
|
||
buf[buf_index] = temp_old[:]
|
||
|
||
return buf
|
||
}
|
||
|
||
// state for the split multi iterator
|
||
Split_Multi :: struct {
|
||
temp: string,
|
||
temp_old: string,
|
||
substrs: []string,
|
||
}
|
||
|
||
// returns split multi state with sorted `substrs`
|
||
split_multi_init :: proc(s: string, substrs: []string) -> Split_Multi {
|
||
// sort substrings, largest to smallest
|
||
temp_substrs := slice.clone(substrs, context.temp_allocator)
|
||
slice.sort_by(temp_substrs, proc(a, b: string) -> bool {
|
||
return len(a) > len(b)
|
||
})
|
||
|
||
return {
|
||
temp = s,
|
||
temp_old = s,
|
||
substrs = temp_substrs,
|
||
}
|
||
}
|
||
|
||
/*
|
||
splits the input string `s` by all possible `substrs` []string in an iterator fashion
|
||
returns the split string every iteration, the full string on no match
|
||
|
||
splits := [?]string { "---", "~~~", ".", "_", "," }
|
||
state := strings.split_multi_init("testing,this.out_nice---done~~~last", splits[:])
|
||
for str in strings.split_multi_iterate(&state) {
|
||
fmt.eprintln(str) // every iteration -> [testing, this, out, nice, done, last]
|
||
}
|
||
*/
|
||
split_multi_iterate :: proc(using sm: ^Split_Multi) -> (res: string, ok: bool) #no_bounds_check {
|
||
pass: for len(temp) > 0 {
|
||
for substr in substrs {
|
||
size := len(substr)
|
||
|
||
// check range and compare string to substr
|
||
if size <= len(temp) && temp[:size] == substr {
|
||
res = temp_old[:len(temp_old) - len(temp)]
|
||
temp = temp[size:]
|
||
temp_old = temp
|
||
ok = true
|
||
return
|
||
}
|
||
}
|
||
|
||
// step through string
|
||
_, skip := utf8.decode_rune_in_string(temp[:])
|
||
temp = temp[skip:]
|
||
}
|
||
|
||
// allow last iteration
|
||
if temp_old != "" {
|
||
res = temp_old[:]
|
||
ok = true
|
||
temp_old = ""
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
// scrub scruvs invalid utf-8 characters and replaces them with the replacement string
|
||
// Adjacent invalid bytes are only replaced once
|
||
scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string {
|
||
str := s
|
||
b: Builder
|
||
builder_init(&b, 0, len(s), allocator)
|
||
|
||
has_error := false
|
||
cursor := 0
|
||
origin := str
|
||
|
||
for len(str) > 0 {
|
||
r, w := utf8.decode_rune_in_string(str)
|
||
|
||
if r == utf8.RUNE_ERROR {
|
||
if !has_error {
|
||
has_error = true
|
||
write_string(&b, origin[:cursor])
|
||
}
|
||
} else if has_error {
|
||
has_error = false
|
||
write_string(&b, replacement)
|
||
|
||
origin = origin[cursor:]
|
||
cursor = 0
|
||
}
|
||
|
||
cursor += w
|
||
str = str[w:]
|
||
}
|
||
|
||
return to_string(b)
|
||
}
|
||
|
||
/*
|
||
returns a reversed version of the `s` string
|
||
|
||
a := "abcxyz"
|
||
b := strings.reverse(a)
|
||
fmt.eprintln(a, b) // abcxyz zyxcba
|
||
*/
|
||
reverse :: proc(s: string, allocator := context.allocator) -> string {
|
||
str := s
|
||
n := len(str)
|
||
buf := make([]byte, n)
|
||
i := n
|
||
|
||
for len(str) > 0 {
|
||
_, w := utf8.decode_rune_in_string(str)
|
||
i -= w
|
||
copy(buf[i:], str[:w])
|
||
str = str[w:]
|
||
}
|
||
return string(buf)
|
||
}
|
||
|
||
/*
|
||
expands the string to a grid spaced by `tab_size` whenever a `\t` character appears
|
||
returns the tabbed string, panics on tab_size <= 0
|
||
|
||
strings.expand_tabs("abc1\tabc2\tabc3", 4) -> abc1 abc2 abc3
|
||
strings.expand_tabs("abc1\tabc2\tabc3", 5) -> abc1 abc2 abc3
|
||
strings.expand_tabs("abc1\tabc2\tabc3", 6) -> abc1 abc2 abc3
|
||
*/
|
||
expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string {
|
||
if tab_size <= 0 {
|
||
panic("tab size must be positive")
|
||
}
|
||
|
||
if s == "" {
|
||
return ""
|
||
}
|
||
|
||
b: Builder
|
||
builder_init(&b, allocator)
|
||
writer := to_writer(&b)
|
||
str := s
|
||
column: int
|
||
|
||
for len(str) > 0 {
|
||
r, w := utf8.decode_rune_in_string(str)
|
||
|
||
if r == '\t' {
|
||
expand := tab_size - column%tab_size
|
||
|
||
for i := 0; i < expand; i += 1 {
|
||
io.write_byte(writer, ' ')
|
||
}
|
||
|
||
column += expand
|
||
} else {
|
||
if r == '\n' {
|
||
column = 0
|
||
} else {
|
||
column += w
|
||
}
|
||
|
||
io.write_rune(writer, r)
|
||
}
|
||
|
||
str = str[w:]
|
||
}
|
||
|
||
return to_string(b)
|
||
}
|
||
|
||
/*
|
||
splits the `str` string by the seperator `sep` string and returns 3 parts
|
||
`head`: before the split, `match`: the seperator, `tail`: the end of the split
|
||
returns the input string when the `sep` was not found
|
||
|
||
text := "testing this out"
|
||
strings.partition(text, " this ") -> head: "testing", match: " this ", tail: "out"
|
||
strings.partition(text, "hi") -> head: "testing t", match: "hi", tail: "s out"
|
||
strings.partition(text, "xyz") -> head: "testing this out", match: "", tail: ""
|
||
*/
|
||
partition :: proc(str, sep: string) -> (head, match, tail: string) {
|
||
i := index(str, sep)
|
||
if i == -1 {
|
||
head = str
|
||
return
|
||
}
|
||
|
||
head = str[:i]
|
||
match = str[i:i+len(sep)]
|
||
tail = str[i+len(sep):]
|
||
return
|
||
}
|
||
|
||
center_justify :: centre_justify // NOTE(bill): Because Americans exist
|
||
|
||
// centre_justify returns a string with a pad string at boths sides if the str's rune length is smaller than length
|
||
centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
||
n := rune_count(str)
|
||
if n >= length || pad == "" {
|
||
return clone(str, allocator)
|
||
}
|
||
|
||
remains := length-1
|
||
pad_len := rune_count(pad)
|
||
|
||
b: Builder
|
||
builder_init(&b, allocator)
|
||
builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad))
|
||
|
||
w := to_writer(&b)
|
||
|
||
write_pad_string(w, pad, pad_len, remains/2)
|
||
io.write_string(w, str)
|
||
write_pad_string(w, pad, pad_len, (remains+1)/2)
|
||
|
||
return to_string(b)
|
||
}
|
||
|
||
// left_justify returns a string with a pad string at left side if the str's rune length is smaller than length
|
||
left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
||
n := rune_count(str)
|
||
if n >= length || pad == "" {
|
||
return clone(str, allocator)
|
||
}
|
||
|
||
remains := length-1
|
||
pad_len := rune_count(pad)
|
||
|
||
b: Builder
|
||
builder_init(&b, allocator)
|
||
builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad))
|
||
|
||
w := to_writer(&b)
|
||
|
||
io.write_string(w, str)
|
||
write_pad_string(w, pad, pad_len, remains)
|
||
|
||
return to_string(b)
|
||
}
|
||
|
||
// right_justify returns a string with a pad string at right side if the str's rune length is smaller than length
|
||
right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
||
n := rune_count(str)
|
||
if n >= length || pad == "" {
|
||
return clone(str, allocator)
|
||
}
|
||
|
||
remains := length-1
|
||
pad_len := rune_count(pad)
|
||
|
||
b: Builder
|
||
builder_init(&b, allocator)
|
||
builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad))
|
||
|
||
w := to_writer(&b)
|
||
|
||
write_pad_string(w, pad, pad_len, remains)
|
||
io.write_string(w, str)
|
||
|
||
return to_string(b)
|
||
}
|
||
|
||
|
||
|
||
|
||
@private
|
||
write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) {
|
||
repeats := remains / pad_len
|
||
|
||
for i := 0; i < repeats; i += 1 {
|
||
io.write_string(w, pad)
|
||
}
|
||
|
||
n := remains % pad_len
|
||
p := pad
|
||
|
||
for i := 0; i < n; i += 1 {
|
||
r, width := utf8.decode_rune_in_string(p)
|
||
io.write_rune(w, r)
|
||
p = p[width:]
|
||
}
|
||
}
|
||
|
||
|
||
// fields splits the string s around each instance of one or more consecutive white space character, defined by unicode.is_space
|
||
// returning a slice of substrings of s or an empty slice if s only contains white space
|
||
fields :: proc(s: string, allocator := context.allocator) -> []string #no_bounds_check {
|
||
n := 0
|
||
was_space := 1
|
||
set_bits := u8(0)
|
||
|
||
// check to see
|
||
for i in 0..<len(s) {
|
||
r := s[i]
|
||
set_bits |= r
|
||
is_space := int(_ascii_space[r])
|
||
n += was_space & ~is_space
|
||
was_space = is_space
|
||
}
|
||
|
||
if set_bits >= utf8.RUNE_SELF {
|
||
return fields_proc(s, unicode.is_space, allocator)
|
||
}
|
||
|
||
if n == 0 {
|
||
return nil
|
||
}
|
||
|
||
a := make([]string, n, allocator)
|
||
na := 0
|
||
field_start := 0
|
||
i := 0
|
||
for i < len(s) && _ascii_space[s[i]] {
|
||
i += 1
|
||
}
|
||
field_start = i
|
||
for i < len(s) {
|
||
if !_ascii_space[s[i]] {
|
||
i += 1
|
||
continue
|
||
}
|
||
a[na] = s[field_start : i]
|
||
na += 1
|
||
i += 1
|
||
for i < len(s) && _ascii_space[s[i]] {
|
||
i += 1
|
||
}
|
||
field_start = i
|
||
}
|
||
if field_start < len(s) {
|
||
a[na] = s[field_start:]
|
||
}
|
||
return a
|
||
}
|
||
|
||
|
||
// fields_proc splits the string s at each run of unicode code points `ch` satisfying f(ch)
|
||
// returns a slice of substrings of s
|
||
// If all code points in s satisfy f(ch) or string is empty, an empty slice is returned
|
||
//
|
||
// fields_proc makes no guarantee about the order in which it calls f(ch)
|
||
// it assumes that `f` always returns the same value for a given ch
|
||
fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator) -> []string #no_bounds_check {
|
||
substrings := make([dynamic]string, 0, 32, allocator)
|
||
|
||
start, end := -1, -1
|
||
for r, offset in s {
|
||
end = offset
|
||
if f(r) {
|
||
if start >= 0 {
|
||
append(&substrings, s[start : end])
|
||
// -1 could be used, but just speed it up through bitwise not
|
||
// gotta love 2's complement
|
||
start = ~start
|
||
}
|
||
} else {
|
||
if start < 0 {
|
||
start = end
|
||
}
|
||
}
|
||
}
|
||
|
||
if start >= 0 {
|
||
append(&substrings, s[start : len(s)])
|
||
}
|
||
|
||
return substrings[:]
|
||
}
|
||
|
||
|
||
// `fields_iterator` returns the first run of characters in `s` that does not contain white space, defined by `unicode.is_space`
|
||
// `s` will then start from any space after the substring, or be an empty string if the substring was the remaining characters
|
||
fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) {
|
||
start, end := -1, -1
|
||
for r, offset in s {
|
||
end = offset
|
||
if unicode.is_space(r) {
|
||
if start >= 0 {
|
||
field = s[start : end]
|
||
ok = true
|
||
s^ = s[end:]
|
||
return
|
||
}
|
||
} else {
|
||
if start < 0 {
|
||
start = end
|
||
}
|
||
}
|
||
}
|
||
|
||
// if either of these are true, the string did not contain any characters
|
||
if end < 0 || start < 0 {
|
||
return "", false
|
||
}
|
||
|
||
field = s[start:]
|
||
ok = true
|
||
s^ = s[len(s):]
|
||
return
|
||
}
|
||
|
||
// `levenshtein_distance` returns the Levenshtein edit distance between 2 strings.
|
||
// This is a single-row-version of the Wagner–Fischer algorithm, based on C code by Martin Ettl.
|
||
// Note: allocator isn't used if the length of string b in runes is smaller than 64.
|
||
levenshtein_distance :: proc(a, b: string, allocator := context.allocator) -> int {
|
||
LEVENSHTEIN_DEFAULT_COSTS: []int : {
|
||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
||
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
||
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
|
||
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
||
60, 61, 62, 63,
|
||
}
|
||
|
||
m, n := utf8.rune_count_in_string(a), utf8.rune_count_in_string(b)
|
||
|
||
if m == 0 {
|
||
return n
|
||
}
|
||
if n == 0 {
|
||
return m
|
||
}
|
||
|
||
costs: []int
|
||
|
||
if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
|
||
costs = make([]int, n + 1, allocator)
|
||
for k in 0..=n {
|
||
costs[k] = k
|
||
}
|
||
} else {
|
||
costs = LEVENSHTEIN_DEFAULT_COSTS
|
||
}
|
||
|
||
defer if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
|
||
delete(costs, allocator)
|
||
}
|
||
|
||
i: int
|
||
for c1 in a {
|
||
costs[0] = i + 1
|
||
corner := i
|
||
j: int
|
||
for c2 in b {
|
||
upper := costs[j + 1]
|
||
if c1 == c2 {
|
||
costs[j + 1] = corner
|
||
} else {
|
||
t := upper if upper < corner else corner
|
||
costs[j + 1] = (costs[j] if costs[j] < t else t) + 1
|
||
}
|
||
|
||
corner = upper
|
||
j += 1
|
||
}
|
||
|
||
i += 1
|
||
}
|
||
|
||
return costs[n]
|
||
}
|