Files
Odin/src/types.cpp
2017-07-20 15:32:34 +01:00

2458 lines
66 KiB
C++

struct Scope;
struct AstNode;
enum BasicKind {
Basic_Invalid,
Basic_bool,
Basic_i8,
Basic_u8,
Basic_i16,
Basic_u16,
Basic_i32,
Basic_u32,
Basic_i64,
Basic_u64,
Basic_i128,
Basic_u128,
Basic_rune,
// Basic_f16,
Basic_f32,
Basic_f64,
// Basic_complex32,
Basic_complex64,
Basic_complex128,
Basic_int,
Basic_uint,
Basic_rawptr,
Basic_string, // ^u8 + int
Basic_any, // ^Type_Info + rawptr
Basic_UntypedBool,
Basic_UntypedInteger,
Basic_UntypedFloat,
Basic_UntypedComplex,
Basic_UntypedString,
Basic_UntypedRune,
Basic_UntypedNil,
Basic_UntypedUndef,
Basic_COUNT,
Basic_byte = Basic_u8,
};
enum BasicFlag {
BasicFlag_Boolean = GB_BIT(0),
BasicFlag_Integer = GB_BIT(1),
BasicFlag_Unsigned = GB_BIT(2),
BasicFlag_Float = GB_BIT(3),
BasicFlag_Complex = GB_BIT(4),
BasicFlag_Pointer = GB_BIT(5),
BasicFlag_String = GB_BIT(6),
BasicFlag_Rune = GB_BIT(7),
BasicFlag_Untyped = GB_BIT(8),
BasicFlag_Numeric = BasicFlag_Integer | BasicFlag_Float | BasicFlag_Complex,
BasicFlag_Ordered = BasicFlag_Integer | BasicFlag_Float | BasicFlag_String | BasicFlag_Pointer | BasicFlag_Rune,
BasicFlag_ConstantType = BasicFlag_Boolean | BasicFlag_Numeric | BasicFlag_String | BasicFlag_Pointer | BasicFlag_Rune,
};
struct BasicType {
BasicKind kind;
u32 flags;
i64 size; // -1 if arch. dep.
String name;
};
struct TypeStruct {
Array<Entity *> fields;
Array<Entity *> fields_in_src_order;
AstNode *node;
Scope * scope;
i64 * offsets; // == fields.count
bool are_offsets_set;
bool are_offsets_being_processed;
bool is_packed;
bool is_ordered;
bool is_raw_union;
bool is_polymorphic;
bool is_poly_specialized;
Type * polymorphic_params; // Type_Tuple
Type * polymorphic_parent;
i64 custom_align; // NOTE(bill): Only used in structs at the moment
Entity * names;
};
#define TYPE_KINDS \
TYPE_KIND(Basic, BasicType) \
TYPE_KIND(Generic, struct { \
i64 id; \
String name; \
Type * specialized; \
}) \
TYPE_KIND(Pointer, struct { Type *elem; }) \
TYPE_KIND(Array, struct { Type *elem; i64 count; }) \
TYPE_KIND(DynamicArray, struct { Type *elem; }) \
TYPE_KIND(Vector, struct { Type *elem; i64 count; }) \
TYPE_KIND(Slice, struct { Type *elem; }) \
TYPE_KIND(Struct, TypeStruct) \
TYPE_KIND(Enum, struct { \
Entity **fields; \
i32 field_count; \
AstNode *node; \
Scope * scope; \
Entity * names; \
Type * base_type; \
Entity * count; \
Entity * min_value; \
Entity * max_value; \
}) \
TYPE_KIND(Union, struct { \
Array<Type *> variants; \
AstNode *node; \
Scope * scope; \
Entity * union__type_info; \
i64 variant_block_size; \
i64 custom_align; \
}) \
TYPE_KIND(Named, struct { \
String name; \
Type * base; \
Entity *type_name; /* Entity_TypeName */ \
}) \
TYPE_KIND(Tuple, struct { \
Array<Entity *> variables; /* Entity_Variable */ \
bool are_offsets_set; \
i64 * offsets; \
}) \
TYPE_KIND(Proc, struct { \
AstNode *node; \
Scope * scope; \
Type * params; /* Type_Tuple */ \
Type * results; /* Type_Tuple */ \
i32 param_count; \
i32 result_count; \
bool return_by_pointer; \
Type ** abi_compat_params; \
Type * abi_compat_result_type; \
bool variadic; \
bool require_results; \
bool c_vararg; \
bool is_polymorphic; \
bool is_poly_specialized; \
ProcCallingConvention calling_convention; \
}) \
TYPE_KIND(Map, struct { \
i64 count; /* 0 if dynamic */ \
Type *key; \
Type *value; \
Type *entry_type; \
Type *generated_struct_type; \
Type *lookup_result_type; \
}) \
TYPE_KIND(BitFieldValue, struct { u32 bits; }) \
TYPE_KIND(BitField, struct { \
Scope * scope; \
Entity **fields; \
i32 field_count; \
u32 * offsets; \
u32 * sizes; \
i64 custom_align; \
}) \
enum TypeKind {
Type_Invalid,
#define TYPE_KIND(k, ...) GB_JOIN2(Type_, k),
TYPE_KINDS
#undef TYPE_KIND
Type_Count,
};
String const type_strings[] = {
{cast(u8 *)"Invalid", gb_size_of("Invalid")},
#define TYPE_KIND(k, ...) {cast(u8 *)#k, gb_size_of(#k)-1},
TYPE_KINDS
#undef TYPE_KIND
};
#define TYPE_KIND(k, ...) typedef __VA_ARGS__ GB_JOIN2(Type, k);
TYPE_KINDS
#undef TYPE_KIND
struct Type {
TypeKind kind;
union {
#define TYPE_KIND(k, ...) GB_JOIN2(Type, k) k;
TYPE_KINDS
#undef TYPE_KIND
};
bool failure;
};
// TODO(bill): Should I add extra information here specifying the kind of selection?
// e.g. field, constant, vector field, type field, etc.
struct Selection {
Entity * entity;
Array<i32> index;
bool indirect; // Set if there was a pointer deref anywhere down the line
};
Selection empty_selection = {0};
Selection make_selection(Entity *entity, Array<i32> index, bool indirect) {
Selection s = {entity, index, indirect};
return s;
}
void selection_add_index(Selection *s, isize index) {
// IMPORTANT NOTE(bill): this requires a stretchy buffer/dynamic array so it requires some form
// of heap allocation
// TODO(bill): Find a way to use a backing buffer for initial use as the general case is probably .count<3
if (s->index.data == nullptr) {
array_init(&s->index, heap_allocator());
}
array_add(&s->index, cast(i32)index);
}
gb_global Type basic_types[] = {
{Type_Basic, {Basic_Invalid, 0, 0, STR_LIT("invalid type")}},
{Type_Basic, {Basic_bool, BasicFlag_Boolean, 1, STR_LIT("bool")}},
{Type_Basic, {Basic_i8, BasicFlag_Integer, 1, STR_LIT("i8")}},
{Type_Basic, {Basic_u8, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("u8")}},
{Type_Basic, {Basic_i16, BasicFlag_Integer, 2, STR_LIT("i16")}},
{Type_Basic, {Basic_u16, BasicFlag_Integer | BasicFlag_Unsigned, 2, STR_LIT("u16")}},
{Type_Basic, {Basic_i32, BasicFlag_Integer, 4, STR_LIT("i32")}},
{Type_Basic, {Basic_u32, BasicFlag_Integer | BasicFlag_Unsigned, 4, STR_LIT("u32")}},
{Type_Basic, {Basic_i64, BasicFlag_Integer, 8, STR_LIT("i64")}},
{Type_Basic, {Basic_u64, BasicFlag_Integer | BasicFlag_Unsigned, 8, STR_LIT("u64")}},
{Type_Basic, {Basic_i128, BasicFlag_Integer, 16, STR_LIT("i128")}},
{Type_Basic, {Basic_u128, BasicFlag_Integer | BasicFlag_Unsigned, 16, STR_LIT("u128")}},
{Type_Basic, {Basic_rune, BasicFlag_Integer | BasicFlag_Rune, 4, STR_LIT("rune")}},
// {Type_Basic, {Basic_f16, BasicFlag_Float, 2, STR_LIT("f16")}},
{Type_Basic, {Basic_f32, BasicFlag_Float, 4, STR_LIT("f32")}},
{Type_Basic, {Basic_f64, BasicFlag_Float, 8, STR_LIT("f64")}},
// {Type_Basic, {Basic_complex32, BasicFlag_Complex, 4, STR_LIT("complex32")}},
{Type_Basic, {Basic_complex64, BasicFlag_Complex, 8, STR_LIT("complex64")}},
{Type_Basic, {Basic_complex128, BasicFlag_Complex, 16, STR_LIT("complex128")}},
{Type_Basic, {Basic_int, BasicFlag_Integer, -1, STR_LIT("int")}},
{Type_Basic, {Basic_uint, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uint")}},
{Type_Basic, {Basic_rawptr, BasicFlag_Pointer, -1, STR_LIT("rawptr")}},
{Type_Basic, {Basic_string, BasicFlag_String, -1, STR_LIT("string")}},
{Type_Basic, {Basic_any, 0, -1, STR_LIT("any")}},
{Type_Basic, {Basic_UntypedBool, BasicFlag_Boolean | BasicFlag_Untyped, 0, STR_LIT("untyped bool")}},
{Type_Basic, {Basic_UntypedInteger, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped integer")}},
{Type_Basic, {Basic_UntypedFloat, BasicFlag_Float | BasicFlag_Untyped, 0, STR_LIT("untyped float")}},
{Type_Basic, {Basic_UntypedComplex, BasicFlag_Complex | BasicFlag_Untyped, 0, STR_LIT("untyped complex")}},
{Type_Basic, {Basic_UntypedString, BasicFlag_String | BasicFlag_Untyped, 0, STR_LIT("untyped string")}},
{Type_Basic, {Basic_UntypedRune, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped rune")}},
{Type_Basic, {Basic_UntypedNil, BasicFlag_Untyped, 0, STR_LIT("untyped nil")}},
{Type_Basic, {Basic_UntypedUndef, BasicFlag_Untyped, 0, STR_LIT("untyped undefined")}},
};
// gb_global Type basic_type_aliases[] = {
// // {Type_Basic, {Basic_byte, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("byte")}},
// // {Type_Basic, {Basic_rune, BasicFlag_Integer, 4, STR_LIT("rune")}},
// };
gb_global Type *t_invalid = &basic_types[Basic_Invalid];
gb_global Type *t_bool = &basic_types[Basic_bool];
gb_global Type *t_i8 = &basic_types[Basic_i8];
gb_global Type *t_u8 = &basic_types[Basic_u8];
gb_global Type *t_i16 = &basic_types[Basic_i16];
gb_global Type *t_u16 = &basic_types[Basic_u16];
gb_global Type *t_i32 = &basic_types[Basic_i32];
gb_global Type *t_u32 = &basic_types[Basic_u32];
gb_global Type *t_i64 = &basic_types[Basic_i64];
gb_global Type *t_u64 = &basic_types[Basic_u64];
gb_global Type *t_i128 = &basic_types[Basic_i128];
gb_global Type *t_u128 = &basic_types[Basic_u128];
gb_global Type *t_rune = &basic_types[Basic_rune];
// gb_global Type *t_f16 = &basic_types[Basic_f16];
gb_global Type *t_f32 = &basic_types[Basic_f32];
gb_global Type *t_f64 = &basic_types[Basic_f64];
// gb_global Type *t_complex32 = &basic_types[Basic_complex32];
gb_global Type *t_complex64 = &basic_types[Basic_complex64];
gb_global Type *t_complex128 = &basic_types[Basic_complex128];
gb_global Type *t_int = &basic_types[Basic_int];
gb_global Type *t_uint = &basic_types[Basic_uint];
gb_global Type *t_rawptr = &basic_types[Basic_rawptr];
gb_global Type *t_string = &basic_types[Basic_string];
gb_global Type *t_any = &basic_types[Basic_any];
gb_global Type *t_untyped_bool = &basic_types[Basic_UntypedBool];
gb_global Type *t_untyped_integer = &basic_types[Basic_UntypedInteger];
gb_global Type *t_untyped_float = &basic_types[Basic_UntypedFloat];
gb_global Type *t_untyped_complex = &basic_types[Basic_UntypedComplex];
gb_global Type *t_untyped_string = &basic_types[Basic_UntypedString];
gb_global Type *t_untyped_rune = &basic_types[Basic_UntypedRune];
gb_global Type *t_untyped_nil = &basic_types[Basic_UntypedNil];
gb_global Type *t_untyped_undef = &basic_types[Basic_UntypedUndef];
gb_global Type *t_u8_ptr = nullptr;
gb_global Type *t_int_ptr = nullptr;
gb_global Type *t_i64_ptr = nullptr;
gb_global Type *t_i128_ptr = nullptr;
gb_global Type *t_f64_ptr = nullptr;
gb_global Type *t_u8_slice = nullptr;
gb_global Type *t_string_slice = nullptr;
// Type generated for the "preload" file
gb_global Type *t_type_info = nullptr;
gb_global Type *t_type_info_enum_value = nullptr;
gb_global Type *t_type_info_ptr = nullptr;
gb_global Type *t_type_info_enum_value_ptr = nullptr;
gb_global Type *t_type_info_named = nullptr;
gb_global Type *t_type_info_integer = nullptr;
gb_global Type *t_type_info_rune = nullptr;
gb_global Type *t_type_info_float = nullptr;
gb_global Type *t_type_info_complex = nullptr;
gb_global Type *t_type_info_any = nullptr;
gb_global Type *t_type_info_string = nullptr;
gb_global Type *t_type_info_boolean = nullptr;
gb_global Type *t_type_info_pointer = nullptr;
gb_global Type *t_type_info_procedure = nullptr;
gb_global Type *t_type_info_array = nullptr;
gb_global Type *t_type_info_dynamic_array = nullptr;
gb_global Type *t_type_info_slice = nullptr;
gb_global Type *t_type_info_vector = nullptr;
gb_global Type *t_type_info_tuple = nullptr;
gb_global Type *t_type_info_struct = nullptr;
gb_global Type *t_type_info_union = nullptr;
gb_global Type *t_type_info_enum = nullptr;
gb_global Type *t_type_info_map = nullptr;
gb_global Type *t_type_info_bit_field = nullptr;
gb_global Type *t_type_info_named_ptr = nullptr;
gb_global Type *t_type_info_integer_ptr = nullptr;
gb_global Type *t_type_info_rune_ptr = nullptr;
gb_global Type *t_type_info_float_ptr = nullptr;
gb_global Type *t_type_info_complex_ptr = nullptr;
gb_global Type *t_type_info_quaternion_ptr = nullptr;
gb_global Type *t_type_info_any_ptr = nullptr;
gb_global Type *t_type_info_string_ptr = nullptr;
gb_global Type *t_type_info_boolean_ptr = nullptr;
gb_global Type *t_type_info_pointer_ptr = nullptr;
gb_global Type *t_type_info_procedure_ptr = nullptr;
gb_global Type *t_type_info_array_ptr = nullptr;
gb_global Type *t_type_info_dynamic_array_ptr = nullptr;
gb_global Type *t_type_info_slice_ptr = nullptr;
gb_global Type *t_type_info_vector_ptr = nullptr;
gb_global Type *t_type_info_tuple_ptr = nullptr;
gb_global Type *t_type_info_struct_ptr = nullptr;
gb_global Type *t_type_info_union_ptr = nullptr;
gb_global Type *t_type_info_enum_ptr = nullptr;
gb_global Type *t_type_info_map_ptr = nullptr;
gb_global Type *t_type_info_bit_field_ptr = nullptr;
gb_global Type *t_allocator = nullptr;
gb_global Type *t_allocator_ptr = nullptr;
gb_global Type *t_context = nullptr;
gb_global Type *t_context_ptr = nullptr;
gb_global Type *t_source_code_location = nullptr;
gb_global Type *t_source_code_location_ptr = nullptr;
gb_global Type *t_map_key = nullptr;
gb_global Type *t_map_header = nullptr;
i64 type_size_of (gbAllocator allocator, Type *t);
i64 type_align_of (gbAllocator allocator, Type *t);
i64 type_offset_of (gbAllocator allocator, Type *t, i32 index);
gbString type_to_string(Type *type);
Type *base_type(Type *t) {
for (;;) {
if (t == nullptr) {
break;
}
if (t->kind != Type_Named) {
break;
}
if (t == t->Named.base) {
return t_invalid;
}
t = t->Named.base;
}
return t;
}
Type *base_enum_type(Type *t) {
Type *bt = base_type(t);
if (bt != nullptr &&
bt->kind == Type_Enum) {
return bt->Enum.base_type;
}
return t;
}
Type *core_type(Type *t) {
for (;;) {
if (t == nullptr) {
break;
}
switch (t->kind) {
case Type_Named:
if (t == t->Named.base) {
return t_invalid;
}
t = t->Named.base;
continue;
case Type_Enum:
t = t->Enum.base_type;
continue;
}
break;
}
return t;
}
void set_base_type(Type *t, Type *base) {
if (t && t->kind == Type_Named) {
t->Named.base = base;
}
}
Type *alloc_type(gbAllocator a, TypeKind kind) {
Type *t = gb_alloc_item(a, Type);
gb_zero_item(t);
t->kind = kind;
return t;
}
Type *make_type_basic(gbAllocator a, BasicType basic) {
Type *t = alloc_type(a, Type_Basic);
t->Basic = basic;
return t;
}
Type *make_type_generic(gbAllocator a, i64 id, String name, Type *specialized) {
Type *t = alloc_type(a, Type_Generic);
t->Generic.id = id;
t->Generic.name = name;
t->Generic.specialized = specialized;
return t;
}
Type *make_type_pointer(gbAllocator a, Type *elem) {
Type *t = alloc_type(a, Type_Pointer);
t->Pointer.elem = elem;
return t;
}
Type *make_type_array(gbAllocator a, Type *elem, i64 count) {
Type *t = alloc_type(a, Type_Array);
t->Array.elem = elem;
t->Array.count = count;
return t;
}
Type *make_type_dynamic_array(gbAllocator a, Type *elem) {
Type *t = alloc_type(a, Type_DynamicArray);
t->DynamicArray.elem = elem;
return t;
}
Type *make_type_vector(gbAllocator a, Type *elem, i64 count) {
Type *t = alloc_type(a, Type_Vector);
t->Vector.elem = elem;
t->Vector.count = count;
return t;
}
Type *make_type_slice(gbAllocator a, Type *elem) {
Type *t = alloc_type(a, Type_Slice);
t->Array.elem = elem;
return t;
}
Type *make_type_struct(gbAllocator a) {
Type *t = alloc_type(a, Type_Struct);
return t;
}
Type *make_type_union(gbAllocator a) {
Type *t = alloc_type(a, Type_Union);
return t;
}
Type *make_type_enum(gbAllocator a) {
Type *t = alloc_type(a, Type_Enum);
return t;
}
Type *make_type_named(gbAllocator a, String name, Type *base, Entity *type_name) {
Type *t = alloc_type(a, Type_Named);
t->Named.name = name;
t->Named.base = base;
t->Named.type_name = type_name;
return t;
}
Type *make_type_tuple(gbAllocator a) {
Type *t = alloc_type(a, Type_Tuple);
return t;
}
Type *make_type_proc(gbAllocator a, Scope *scope, Type *params, isize param_count, Type *results, isize result_count, bool variadic, ProcCallingConvention calling_convention) {
Type *t = alloc_type(a, Type_Proc);
if (variadic) {
if (param_count == 0) {
GB_PANIC("variadic procedure must have at least one parameter");
}
GB_ASSERT(params != nullptr && params->kind == Type_Tuple);
Entity *e = params->Tuple.variables[param_count-1];
if (base_type(e->type)->kind != Type_Slice) {
// NOTE(bill): For custom calling convention
GB_PANIC("variadic parameter must be of type slice");
}
}
t->Proc.scope = scope;
t->Proc.params = params;
t->Proc.param_count = param_count;
t->Proc.results = results;
t->Proc.result_count = result_count;
t->Proc.variadic = variadic;
t->Proc.calling_convention = calling_convention;
return t;
}
bool is_type_valid_for_keys(Type *t);
Type *make_type_map(gbAllocator a, i64 count, Type *key, Type *value) {
Type *t = alloc_type(a, Type_Map);
if (key != nullptr) {
GB_ASSERT(is_type_valid_for_keys(key));
}
t->Map.count = count;
t->Map.key = key;
t->Map.value = value;
return t;
}
Type *make_type_bit_field_value(gbAllocator a, u32 bits) {
Type *t = alloc_type(a, Type_BitFieldValue);
t->BitFieldValue.bits = bits;
return t;
}
Type *make_type_bit_field(gbAllocator a) {
Type *t = alloc_type(a, Type_BitField);
return t;
}
////////////////////////////////////////////////////////////////
Type *type_deref(Type *t) {
if (t != nullptr) {
Type *bt = base_type(t);
if (bt == nullptr)
return nullptr;
if (bt != nullptr && bt->kind == Type_Pointer)
return bt->Pointer.elem;
}
return t;
}
bool is_type_named(Type *t) {
if (t->kind == Type_Basic) {
return true;
}
return t->kind == Type_Named;
}
bool is_type_named_alias(Type *t) {
if (!is_type_named(t)) {
return false;
}
Entity *e = t->Named.type_name;
if (e == nullptr) {
return false;
}
if (e->kind != Entity_TypeName) {
return false;
}
return e->TypeName.is_type_alias;
}
bool is_type_boolean(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Boolean) != 0;
}
return false;
}
bool is_type_integer(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Integer) != 0;
}
return false;
}
bool is_type_unsigned(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Unsigned) != 0;
}
return false;
}
bool is_type_rune(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Rune) != 0;
}
return false;
}
bool is_type_numeric(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Numeric) != 0;
}
// TODO(bill): Should this be here?
if (t->kind == Type_Vector) {
return is_type_numeric(t->Vector.elem);
}
return false;
}
bool is_type_string(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_String) != 0;
}
return false;
}
bool is_type_typed(Type *t) {
t = base_type(t);
if (t == nullptr) {
return false;
}
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Untyped) == 0;
}
return true;
}
bool is_type_untyped(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Untyped) != 0;
}
return false;
}
bool is_type_ordered(Type *t) {
t = core_type(t);
switch (t->kind) {
case Type_Basic:
return (t->Basic.flags & BasicFlag_Ordered) != 0;
case Type_Pointer:
return true;
case Type_Vector:
return is_type_ordered(t->Vector.elem);
}
return false;
}
bool is_type_constant_type(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_ConstantType) != 0;
}
return false;
}
bool is_type_float(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Float) != 0;
}
return false;
}
bool is_type_complex(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Complex) != 0;
}
return false;
}
bool is_type_f32(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_f32;
}
return false;
}
bool is_type_f64(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_f64;
}
return false;
}
bool is_type_pointer(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Pointer) != 0;
}
return t->kind == Type_Pointer;
}
bool is_type_tuple(Type *t) {
t = base_type(t);
return t->kind == Type_Tuple;
}
bool is_type_int_or_uint(Type *t) {
if (t->kind == Type_Basic) {
return (t->Basic.kind == Basic_int) || (t->Basic.kind == Basic_uint);
}
return false;
}
bool is_type_i128_or_u128(Type *t) {
if (t->kind == Type_Basic) {
return (t->Basic.kind == Basic_i128) || (t->Basic.kind == Basic_u128);
}
return false;
}
bool is_type_rawptr(Type *t) {
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_rawptr;
}
return false;
}
bool is_type_u8(Type *t) {
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_u8;
}
return false;
}
bool is_type_array(Type *t) {
t = base_type(t);
return t->kind == Type_Array;
}
bool is_type_dynamic_array(Type *t) {
t = base_type(t);
return t->kind == Type_DynamicArray;
}
bool is_type_slice(Type *t) {
t = base_type(t);
return t->kind == Type_Slice;
}
bool is_type_u8_slice(Type *t) {
t = base_type(t);
if (t->kind == Type_Slice) {
return is_type_u8(t->Slice.elem);
}
return false;
}
bool is_type_vector(Type *t) {
t = base_type(t);
return t->kind == Type_Vector;
}
bool is_type_proc(Type *t) {
t = base_type(t);
return t->kind == Type_Proc;
}
bool is_type_poly_proc(Type *t) {
t = base_type(t);
return t->kind == Type_Proc && t->Proc.is_polymorphic;
}
Type *base_vector_type(Type *t) {
if (is_type_vector(t)) {
t = base_type(t);
return t->Vector.elem;
}
return t;
}
Type *base_complex_elem_type(Type *t) {
t = core_type(t);
if (is_type_complex(t)) {
switch (t->Basic.kind) {
// case Basic_complex32: return t_f16;
case Basic_complex64: return t_f32;
case Basic_complex128: return t_f64;
case Basic_UntypedComplex: return t_untyped_float;
}
}
GB_PANIC("Invalid complex type");
return t_invalid;
}
bool is_type_struct(Type *t) {
t = base_type(t);
return (t->kind == Type_Struct && !t->Struct.is_raw_union);
}
bool is_type_union(Type *t) {
t = base_type(t);
return t->kind == Type_Union;
}
bool is_type_raw_union(Type *t) {
t = base_type(t);
return (t->kind == Type_Struct && t->Struct.is_raw_union);
}
bool is_type_enum(Type *t) {
t = base_type(t);
return (t->kind == Type_Enum);
}
bool is_type_bit_field(Type *t) {
t = base_type(t);
return (t->kind == Type_BitField);
}
bool is_type_bit_field_value(Type *t) {
t = base_type(t);
return (t->kind == Type_BitFieldValue);
}
bool is_type_map(Type *t) {
t = base_type(t);
return t->kind == Type_Map;
}
bool is_type_fixed_map(Type *t) {
t = base_type(t);
return t->kind == Type_Map && t->Map.count > 0;
}
bool is_type_dynamic_map(Type *t) {
t = base_type(t); return t->kind == Type_Map && t->Map.count == 0;
}
bool is_type_any(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_any);
}
bool is_type_untyped_nil(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_UntypedNil);
}
bool is_type_untyped_undef(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_UntypedUndef);
}
bool is_type_valid_for_keys(Type *t) {
t = core_type(t);
if (t->kind == Type_Generic) {
return true;
}
if (is_type_untyped(t)) {
return false;
}
if (is_type_integer(t)) {
return true;
}
if (is_type_float(t)) {
return true;
}
if (is_type_string(t)) {
return true;
}
if (is_type_pointer(t)) {
return true;
}
return false;
}
bool is_type_indexable(Type *t) {
return is_type_array(t) || is_type_slice(t) || is_type_vector(t) || is_type_string(t);
}
bool is_type_polymorphic_struct(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic;
}
return false;
}
bool is_type_polymorphic_struct_specialized(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic && t->Struct.is_poly_specialized;
}
return false;
}
bool is_type_polymorphic(Type *t) {
switch (t->kind) {
case Type_Generic:
return true;
case Type_Named:
return is_type_polymorphic_struct(t->Named.base);
case Type_Pointer:
return is_type_polymorphic(t->Pointer.elem);
case Type_Array:
return is_type_polymorphic(t->Array.elem);
case Type_DynamicArray:
return is_type_polymorphic(t->DynamicArray.elem);
case Type_Vector:
return is_type_polymorphic(t->Vector.elem);
case Type_Slice:
return is_type_polymorphic(t->Slice.elem);
case Type_Tuple:
for_array(i, t->Tuple.variables) {
if (is_type_polymorphic(t->Tuple.variables[i]->type)) {
return true;
}
}
break;
case Type_Proc:
if (t->Proc.is_polymorphic) {
return true;
}
#if 1
if (t->Proc.param_count > 0 &&
is_type_polymorphic(t->Proc.params)) {
return true;
}
if (t->Proc.result_count > 0 &&
is_type_polymorphic(t->Proc.results)) {
return true;
}
#endif
break;
case Type_Enum:
if (t->kind == Type_Enum) {
if (t->Enum.base_type != nullptr) {
return is_type_polymorphic(t->Enum.base_type);
}
return false;
}
break;
case Type_Union:
for_array(i, t->Union.variants) {
if (is_type_polymorphic(t->Union.variants[i])) {
return true;
}
}
break;
case Type_Struct:
if (t->Struct.is_polymorphic) {
return true;
}
for_array(i, t->Struct.fields) {
if (is_type_polymorphic(t->Struct.fields[i]->type)) {
return true;
}
}
break;
case Type_Map:
if (is_type_polymorphic(t->Map.key)) {
return true;
}
if (is_type_polymorphic(t->Map.value)) {
return true;
}
break;
}
return false;
}
bool type_has_undef(Type *t) {
t = base_type(t);
return true;
}
bool type_has_nil(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic: {
switch (t->Basic.kind) {
case Basic_rawptr:
case Basic_any:
return true;
}
return false;
} break;
case Type_Slice:
case Type_Proc:
case Type_Pointer:
case Type_DynamicArray:
case Type_Map:
return true;
case Type_Union:
return true;
case Type_Struct:
return false;
}
return false;
}
bool is_type_comparable(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_UntypedNil:
case Basic_any:
return false;
case Basic_rune:
return true;
}
return true;
case Type_Pointer:
return true;
case Type_Enum:
return is_type_comparable(core_type(t));
case Type_Array:
return false;
case Type_Vector:
return is_type_comparable(t->Vector.elem);
case Type_Proc:
return true;
}
return false;
}
bool are_types_identical(Type *x, Type *y) {
if (x == y) {
return true;
}
if ((x == nullptr && y != nullptr) ||
(x != nullptr && y == nullptr)) {
return false;
}
switch (x->kind) {
case Type_Generic:
if (y->kind == Type_Generic) {
return are_types_identical(x->Generic.specialized, y->Generic.specialized);
}
break;
case Type_Basic:
if (y->kind == Type_Basic) {
return x->Basic.kind == y->Basic.kind;
}
break;
case Type_Array:
if (y->kind == Type_Array) {
return (x->Array.count == y->Array.count) && are_types_identical(x->Array.elem, y->Array.elem);
}
break;
case Type_DynamicArray:
if (y->kind == Type_DynamicArray) {
return are_types_identical(x->DynamicArray.elem, y->DynamicArray.elem);
}
break;
case Type_Vector:
if (y->kind == Type_Vector) {
return (x->Vector.count == y->Vector.count) && are_types_identical(x->Vector.elem, y->Vector.elem);
}
break;
case Type_Slice:
if (y->kind == Type_Slice) {
return are_types_identical(x->Slice.elem, y->Slice.elem);
}
break;
case Type_Enum:
return x == y; // NOTE(bill): All enums are unique
case Type_Union:
if (y->kind == Type_Union) {
if (x->Union.variants.count == y->Union.variants.count &&
x->Union.custom_align == y->Union.custom_align) {
// NOTE(bill): zeroth variant is nullptr
for_array(i, x->Union.variants) {
if (!are_types_identical(x->Union.variants[i], y->Union.variants[i])) {
return false;
}
}
return true;
}
}
break;
case Type_Struct:
if (y->kind == Type_Struct) {
if (x->Struct.is_raw_union == y->Struct.is_raw_union &&
x->Struct.fields.count == y->Struct.fields.count &&
x->Struct.is_packed == y->Struct.is_packed &&
x->Struct.is_ordered == y->Struct.is_ordered &&
x->Struct.custom_align == y->Struct.custom_align) {
// TODO(bill); Fix the custom alignment rule
for_array(i, x->Struct.fields) {
Entity *xf = x->Struct.fields[i];
Entity *yf = y->Struct.fields[i];
if (!are_types_identical(xf->type, yf->type)) {
return false;
}
if (xf->token.string != yf->token.string) {
return false;
}
bool xf_is_using = (xf->flags&EntityFlag_Using) != 0;
bool yf_is_using = (yf->flags&EntityFlag_Using) != 0;
if (xf_is_using ^ yf_is_using) {
return false;
}
}
return true;
}
}
break;
case Type_Pointer:
if (y->kind == Type_Pointer) {
return are_types_identical(x->Pointer.elem, y->Pointer.elem);
}
break;
case Type_Named:
if (y->kind == Type_Named) {
return x->Named.type_name == y->Named.type_name;
}
break;
case Type_Tuple:
if (y->kind == Type_Tuple) {
if (x->Tuple.variables.count == y->Tuple.variables.count) {
for_array(i, x->Tuple.variables) {
Entity *xe = x->Tuple.variables[i];
Entity *ye = y->Tuple.variables[i];
if (xe->kind != ye->kind || !are_types_identical(xe->type, ye->type)) {
return false;
}
}
return true;
}
}
break;
case Type_Proc:
if (y->kind == Type_Proc) {
return x->Proc.calling_convention == y->Proc.calling_convention &&
x->Proc.c_vararg == y->Proc.c_vararg &&
x->Proc.variadic == y->Proc.variadic &&
are_types_identical(x->Proc.params, y->Proc.params) &&
are_types_identical(x->Proc.results, y->Proc.results);
}
break;
case Type_Map:
if (y->kind == Type_Map) {
return x->Map.count == y->Map.count &&
are_types_identical(x->Map.key, y->Map.key) &&
are_types_identical(x->Map.value, y->Map.value);
}
break;
}
return false;
}
Type *default_bit_field_value_type(Type *type) {
if (type == nullptr) {
return t_invalid;
}
Type *t = base_type(type);
if (t->kind == Type_BitFieldValue) {
i32 bits = t->BitFieldValue.bits;
i32 size = 8*next_pow2((bits+7)/8);
switch (size) {
case 8: return t_u8;
case 16: return t_u16;
case 32: return t_u32;
case 64: return t_u64;
case 128: return t_u128;
default: GB_PANIC("Too big of a bit size!"); break;
}
}
return type;
}
Type *default_type(Type *type) {
if (type == nullptr) {
return t_invalid;
}
if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_UntypedBool: return t_bool;
case Basic_UntypedInteger: return t_int;
case Basic_UntypedFloat: return t_f64;
case Basic_UntypedComplex: return t_complex128;
case Basic_UntypedString: return t_string;
case Basic_UntypedRune: return t_rune;
}
}
if (type->kind == Type_BitFieldValue) {
return default_bit_field_value_type(type);
}
return type;
}
// NOTE(bill): Valid Compile time execution #run type
bool is_type_cte_safe(Type *type) {
type = default_type(base_type(type));
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_rawptr:
case Basic_any:
return false;
}
return true;
case Type_Pointer:
return false;
case Type_Array:
return is_type_cte_safe(type->Array.elem);
case Type_DynamicArray:
return false;
case Type_Map:
return false;
case Type_Vector: // NOTE(bill): This should always to be true but this is for sanity reasons
return is_type_cte_safe(type->Vector.elem);
case Type_Slice:
return false;
case Type_Struct: {
if (type->Struct.is_raw_union) {
return false;
}
for_array(i, type->Struct.fields) {
Entity *v = type->Struct.fields[i];
if (!is_type_cte_safe(v->type)) {
return false;
}
}
return true;
}
case Type_Tuple: {
for_array(i, type->Tuple.variables) {
Entity *v = type->Tuple.variables[i];
if (!is_type_cte_safe(v->type)) {
return false;
}
}
return true;
}
case Type_Proc:
// TODO(bill): How should I handle procedures in the CTE stage?
// return type->Proc.calling_convention == ProcCC_Odin;
return false;
}
return false;
}
enum ProcTypeOverloadKind {
ProcOverload_Identical, // The types are identical
ProcOverload_CallingConvention,
ProcOverload_ParamCount,
ProcOverload_ParamVariadic,
ProcOverload_ParamTypes,
ProcOverload_ResultCount,
ProcOverload_ResultTypes,
ProcOverload_Polymorphic,
ProcOverload_NotProcedure,
};
ProcTypeOverloadKind are_proc_types_overload_safe(Type *x, Type *y) {
if (x == nullptr && y == nullptr) return ProcOverload_NotProcedure;
if (x == nullptr && y != nullptr) return ProcOverload_NotProcedure;
if (x != nullptr && y == nullptr) return ProcOverload_NotProcedure;
if (!is_type_proc(x)) return ProcOverload_NotProcedure;
if (!is_type_proc(y)) return ProcOverload_NotProcedure;
TypeProc px = base_type(x)->Proc;
TypeProc py = base_type(y)->Proc;
// if (px.calling_convention != py.calling_convention) {
// return ProcOverload_CallingConvention;
// }
// if (px.is_polymorphic != py.is_polymorphic) {
// return ProcOverload_Polymorphic;
// }
if (px.param_count != py.param_count) {
return ProcOverload_ParamCount;
}
for (isize i = 0; i < px.param_count; i++) {
Entity *ex = px.params->Tuple.variables[i];
Entity *ey = py.params->Tuple.variables[i];
if (!are_types_identical(ex->type, ey->type)) {
return ProcOverload_ParamTypes;
}
}
// IMPORTANT TODO(bill): Determine the rules for overloading procedures with variadic parameters
if (px.variadic != py.variadic) {
return ProcOverload_ParamVariadic;
}
if (px.is_polymorphic != py.is_polymorphic) {
return ProcOverload_Polymorphic;
}
if (px.result_count != py.result_count) {
return ProcOverload_ResultCount;
}
for (isize i = 0; i < px.result_count; i++) {
Entity *ex = px.results->Tuple.variables[i];
Entity *ey = py.results->Tuple.variables[i];
if (!are_types_identical(ex->type, ey->type)) {
return ProcOverload_ResultTypes;
}
}
if (px.params != nullptr && py.params != nullptr) {
Entity *ex = px.params->Tuple.variables[0];
Entity *ey = py.params->Tuple.variables[0];
bool ok = are_types_identical(ex->type, ey->type);
if (ok) {
}
}
return ProcOverload_Identical;
}
Selection lookup_field_with_selection(gbAllocator a, Type *type_, String field_name, bool is_type, Selection sel);
Selection lookup_field(gbAllocator a, Type *type_, String field_name, bool is_type) {
return lookup_field_with_selection(a, type_, field_name, is_type, empty_selection);
}
Selection lookup_field_from_index(gbAllocator a, Type *type, i64 index) {
GB_ASSERT(is_type_struct(type) || is_type_union(type) || is_type_tuple(type));
type = base_type(type);
i64 max_count = 0;
switch (type->kind) {
case Type_Struct: max_count = type->Struct.fields.count; break;
case Type_Tuple: max_count = type->Tuple.variables.count; break;
case Type_BitField: max_count = type->BitField.field_count; break;
}
if (index >= max_count) {
return empty_selection;
}
switch (type->kind) {
case Type_Struct:
for (isize i = 0; i < max_count; i++) {
Entity *f = type->Struct.fields[i];
if (f->kind == Entity_Variable) {
if (f->Variable.field_src_index == index) {
Array<i32> sel_array = {0};
array_init_count(&sel_array, a, 1);
sel_array[0] = i;
return make_selection(f, sel_array, false);
}
}
}
break;
case Type_Tuple:
for (isize i = 0; i < max_count; i++) {
Entity *f = type->Tuple.variables[i];
if (i == index) {
Array<i32> sel_array = {0};
array_init_count(&sel_array, a, 1);
sel_array[0] = i;
return make_selection(f, sel_array, false);
}
}
break;
case Type_BitField: {
Array<i32> sel_array = {0};
array_init_count(&sel_array, a, 1);
sel_array[0] = cast(i32)index;
return make_selection(type->BitField.fields[index], sel_array, false);
} break;
}
GB_PANIC("Illegal index");
return empty_selection;
}
gb_global Entity *entity__any_data = nullptr;
gb_global Entity *entity__any_type_info = nullptr;
Entity *current_scope_lookup_entity(Scope *s, String name);
Selection lookup_field_with_selection(gbAllocator a, Type *type_, String field_name, bool is_type, Selection sel) {
GB_ASSERT(type_ != nullptr);
if (is_blank_ident(field_name)) {
return empty_selection;
}
Type *type = type_deref(type_);
bool is_ptr = type != type_;
sel.indirect = sel.indirect || is_ptr;
type = base_type(type);
if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_any: {
#if 1
// IMPORTANT TODO(bill): Should these members be available to should I only allow them with
// `Raw_Any` type?
String data_str = str_lit("data");
String type_info_str = str_lit("type_info");
if (entity__any_data == nullptr) {
entity__any_data = make_entity_field(a, nullptr, make_token_ident(data_str), t_rawptr, false, 0);
}
if (entity__any_type_info == nullptr) {
entity__any_type_info = make_entity_field(a, nullptr, make_token_ident(type_info_str), t_type_info_ptr, false, 1);
}
if (field_name == data_str) {
selection_add_index(&sel, 0);
sel.entity = entity__any_data;;
return sel;
} else if (field_name == type_info_str) {
selection_add_index(&sel, 1);
sel.entity = entity__any_type_info;
return sel;
}
#endif
} break;
}
return sel;
} else if (type->kind == Type_Vector) {
if (type->Vector.count <= 4 && !is_type_boolean(type->Vector.elem)) {
// HACK(bill): Memory leak
switch (type->Vector.count) {
#define _VECTOR_FIELD_CASE(_length, _name) \
case (_length): \
if (field_name == _name) { \
selection_add_index(&sel, (_length)-1); \
sel.entity = make_entity_vector_elem(a, nullptr, make_token_ident(str_lit(_name)), type->Vector.elem, (_length)-1); \
return sel; \
} \
/*fallthrough*/
_VECTOR_FIELD_CASE(4, "w");
_VECTOR_FIELD_CASE(3, "z");
_VECTOR_FIELD_CASE(2, "y");
_VECTOR_FIELD_CASE(1, "x");
default: break;
#undef _VECTOR_FIELD_CASE
}
}
}
if (is_type) {
switch (type->kind) {
case Type_Struct:
if (type->Struct.names != nullptr &&
field_name == "names") {
sel.entity = type->Struct.names;
return sel;
}
break;
case Type_Enum:
if (type->Enum.names != nullptr &&
field_name == "names") {
sel.entity = type->Enum.names;
return sel;
}
break;
}
if (is_type_enum(type)) {
// NOTE(bill): These may not have been added yet, so check in case
if (type->Enum.count != nullptr) {
if (field_name == "count") {
sel.entity = type->Enum.count;
return sel;
}
if (field_name == "min_value") {
sel.entity = type->Enum.min_value;
return sel;
}
if (field_name == "max_value") {
sel.entity = type->Enum.max_value;
return sel;
}
}
for (isize i = 0; i < type->Enum.field_count; i++) {
Entity *f = type->Enum.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
String str = f->token.string;
if (field_name == str) {
sel.entity = f;
// selection_add_index(&sel, i);
return sel;
}
}
}
if (type->kind == Type_Struct) {
Scope *s = type->Struct.scope;
if (s != nullptr) {
Entity *found = current_scope_lookup_entity(s, field_name);
if (found != nullptr && found->kind != Entity_Variable) {
sel.entity = found;
return sel;
}
}
}
if (type->kind == Type_Generic && type->Generic.specialized != nullptr) {
Type *specialized = type->Generic.specialized;
return lookup_field_with_selection(a, specialized, field_name, is_type, sel);
}
} else if (type->kind == Type_Union) {
if (field_name == "__type_info") {
Entity *e = type->Union.union__type_info;
if (e == nullptr) {
Entity *__type_info = make_entity_field(a, nullptr, make_token_ident(str_lit("__type_info")), t_type_info_ptr, false, -1);
type->Union.union__type_info = __type_info;
e = __type_info;
}
GB_ASSERT(e != nullptr);
selection_add_index(&sel, -1); // HACK(bill): Leaky memory
sel.entity = e;
return sel;
}
} else if (type->kind == Type_Struct) {
for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
if (f->kind != Entity_Variable || (f->flags & EntityFlag_Field) == 0) {
continue;
}
String str = f->token.string;
if (field_name == str) {
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel.entity = f;
return sel;
}
if (f->flags & EntityFlag_Using) {
isize prev_count = sel.index.count;
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel = lookup_field_with_selection(a, f->type, field_name, is_type, sel);
if (sel.entity != nullptr) {
if (is_type_pointer(f->type)) {
sel.indirect = true;
}
return sel;
}
sel.index.count = prev_count;
}
}
} else if (type->kind == Type_BitField) {
for (isize i = 0; i < type->BitField.field_count; i++) {
Entity *f = type->BitField.fields[i];
if (f->kind != Entity_Variable ||
(f->flags & EntityFlag_BitFieldValue) == 0) {
continue;
}
String str = f->token.string;
if (field_name == str) {
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel.entity = f;
return sel;
}
}
}
return sel;
}
struct TypePath {
Array<Type *> path; // Entity_TypeName;
bool failure;
};
void type_path_init(TypePath *tp) {
// TODO(bill): Use an allocator that uses a backing array if it can and then use alternative allocator when exhausted
array_init(&tp->path, heap_allocator());
}
void type_path_free(TypePath *tp) {
array_free(&tp->path);
}
void type_path_print_illegal_cycle(TypePath *tp, isize start_index) {
GB_ASSERT(tp != nullptr);
GB_ASSERT(start_index < tp->path.count);
Type *t = tp->path[start_index];
GB_ASSERT(t != nullptr);
GB_ASSERT_MSG(is_type_named(t), "%s", type_to_string(t));
Entity *e = t->Named.type_name;
error(e->token, "Illegal declaration cycle of `%.*s`", LIT(t->Named.name));
// NOTE(bill): Print cycle, if it's deep enough
for (isize j = start_index; j < tp->path.count; j++) {
Type *t = tp->path[j];
GB_ASSERT_MSG(is_type_named(t), "%s", type_to_string(t));
Entity *e = t->Named.type_name;
error(e->token, "\t%.*s refers to", LIT(t->Named.name));
}
// NOTE(bill): This will only print if the path count > 1
error(e->token, "\t%.*s", LIT(t->Named.name));
tp->failure = true;
t->failure = true;
}
TypePath *type_path_push(TypePath *tp, Type *t) {
GB_ASSERT(tp != nullptr);
for (isize i = 0; i < tp->path.count; i++) {
if (tp->path[i] == t) {
type_path_print_illegal_cycle(tp, i);
}
}
if (!tp->failure && is_type_named(t)) {
array_add(&tp->path, t);
}
return tp;
}
void type_path_pop(TypePath *tp) {
if (tp != nullptr && tp->path.count > 0) {
array_pop(&tp->path);
}
}
#define FAILURE_SIZE 0
#define FAILURE_ALIGNMENT 0
i64 type_size_of_internal (gbAllocator allocator, Type *t, TypePath *path);
i64 type_align_of_internal(gbAllocator allocator, Type *t, TypePath *path);
i64 align_formula(i64 size, i64 align) {
if (align > 0) {
i64 result = size + align-1;
return result - result%align;
}
return size;
}
i64 type_size_of(gbAllocator allocator, Type *t) {
if (t == nullptr) {
return 0;
}
i64 size;
TypePath path = {0};
type_path_init(&path);
size = type_size_of_internal(allocator, t, &path);
type_path_free(&path);
return size;
}
i64 type_align_of(gbAllocator allocator, Type *t) {
if (t == nullptr) {
return 1;
}
i64 align;
TypePath path = {0};
type_path_init(&path);
align = type_align_of_internal(allocator, t, &path);
type_path_free(&path);
return align;
}
i64 type_align_of_internal(gbAllocator allocator, Type *t, TypePath *path) {
if (t->failure) {
return FAILURE_ALIGNMENT;
}
t = base_type(t);
switch (t->kind) {
case Type_Basic: {
GB_ASSERT(is_type_typed(t));
switch (t->Basic.kind) {
case Basic_string: return build_context.word_size;
case Basic_any: return build_context.word_size;
case Basic_int: case Basic_uint: case Basic_rawptr:
return build_context.word_size;
case Basic_complex64: case Basic_complex128:
return type_size_of_internal(allocator, t, path) / 2;
}
} break;
case Type_Array: {
Type *elem = t->Array.elem;
type_path_push(path, elem);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(allocator, t->Array.elem, path);
type_path_pop(path);
return align;
}
case Type_DynamicArray:
// data, count, capacity, allocator
return build_context.word_size;
case Type_Slice:
return build_context.word_size;
case Type_Vector: {
Type *elem = t->Vector.elem;
type_path_push(path, elem);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 size = type_size_of_internal(allocator, t->Vector.elem, path);
type_path_pop(path);
i64 count = gb_max(prev_pow2(t->Vector.count), 1);
i64 total = size * count;
return gb_clamp(total, 1, build_context.max_align);
} break;
case Type_Tuple: {
i64 max = 1;
for_array(i, t->Tuple.variables) {
i64 align = type_align_of_internal(allocator, t->Tuple.variables[i]->type, path);
if (max < align) {
max = align;
}
}
return max;
} break;
case Type_Map: {
if (t->Map.count == 0) { // Dynamic
return type_align_of_internal(allocator, t->Map.generated_struct_type, path);
}
GB_PANIC("TODO(bill): Fixed map alignment");
} break;
case Type_Enum:
return type_align_of_internal(allocator, t->Enum.base_type, path);
case Type_Union: {
i64 max = build_context.word_size;
for_array(i, t->Union.variants) {
Type *variant = t->Union.variants[i];
type_path_push(path, variant);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(allocator, variant, path);
type_path_pop(path);
if (max < align) {
max = align;
}
}
return max;
} break;
case Type_Struct: {
if (t->Struct.is_raw_union) {
i64 max = 1;
for_array(i, t->Struct.fields) {
Type *field_type = t->Struct.fields[i]->type;
type_path_push(path, field_type);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(allocator, field_type, path);
type_path_pop(path);
if (max < align) {
max = align;
}
}
return max;
} else {
if (t->Struct.custom_align > 0) {
return gb_clamp(t->Struct.custom_align, 1, build_context.max_align);
}
if (t->Struct.fields.count > 0) {
i64 max = 1;
if (t->Struct.is_packed) {
max = build_context.word_size;
}
for_array(i, t->Struct.fields) {
Type *field_type = t->Struct.fields[i]->type;
type_path_push(path, field_type);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(allocator, field_type, path);
type_path_pop(path);
if (max < align) {
max = align;
}
}
return max;
}
}
} break;
case Type_BitField: {
i64 align = 1;
if (t->BitField.custom_align > 0) {
align = t->BitField.custom_align;
}
return gb_clamp(next_pow2(align), 1, build_context.max_align);
} break;
}
// return gb_clamp(next_pow2(type_size_of(allocator, t)), 1, build_context.max_align);
// NOTE(bill): Things that are bigger than build_context.word_size, are actually comprised of smaller types
// TODO(bill): Is this correct for 128-bit types (integers)?
return gb_clamp(next_pow2(type_size_of_internal(allocator, t, path)), 1, build_context.word_size);
}
i64 *type_set_offsets_of(gbAllocator allocator, Array<Entity *> fields, bool is_packed, bool is_raw_union) {
i64 *offsets = gb_alloc_array(allocator, i64, fields.count);
i64 curr_offset = 0;
if (is_raw_union) {
for_array(i, fields) {
offsets[i] = 0;
}
} else if (is_packed) {
for_array(i, fields) {
i64 size = type_size_of(allocator, fields[i]->type);
offsets[i] = curr_offset;
curr_offset += size;
}
} else {
for_array(i, fields) {
i64 align = gb_max(type_align_of(allocator, fields[i]->type), 1);
i64 size = gb_max(type_size_of(allocator, fields[i]->type), 0);
curr_offset = align_formula(curr_offset, align);
offsets[i] = curr_offset;
curr_offset += size;
}
}
return offsets;
}
bool type_set_offsets(gbAllocator allocator, Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
if (!t->Struct.are_offsets_set) {
t->Struct.are_offsets_being_processed = true;
t->Struct.offsets = type_set_offsets_of(allocator, t->Struct.fields, t->Struct.is_packed, t->Struct.is_raw_union);
t->Struct.are_offsets_set = true;
return true;
}
} else if (is_type_tuple(t)) {
if (!t->Tuple.are_offsets_set) {
t->Struct.are_offsets_being_processed = true;
t->Tuple.offsets = type_set_offsets_of(allocator, t->Tuple.variables, false, false);
t->Tuple.are_offsets_set = true;
return true;
}
} else {
GB_PANIC("Invalid type for setting offsets");
}
return false;
}
i64 type_size_of_internal(gbAllocator allocator, Type *t, TypePath *path) {
if (t->failure) {
return FAILURE_SIZE;
}
switch (t->kind) {
case Type_Named: {
type_path_push(path, t);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 size = type_size_of_internal(allocator, t->Named.base, path);
type_path_pop(path);
return size;
} break;
case Type_Basic: {
GB_ASSERT_MSG(is_type_typed(t), "%s", type_to_string(t));
BasicKind kind = t->Basic.kind;
i64 size = t->Basic.size;
if (size > 0) {
return size;
}
switch (kind) {
case Basic_string: return 2*build_context.word_size;
case Basic_any: return 2*build_context.word_size;
case Basic_int: case Basic_uint: case Basic_rawptr:
return build_context.word_size;
}
} break;
case Type_Array: {
i64 count, align, size, alignment;
count = t->Array.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(allocator, t->Array.elem, path);
if (path->failure) {
return FAILURE_SIZE;
}
size = type_size_of_internal( allocator, t->Array.elem, path);
alignment = align_formula(size, align);
return alignment*(count-1) + size;
} break;
case Type_DynamicArray:
// data + len + cap + allocator(procedure+data)
return 3*build_context.word_size + 2*build_context.word_size;
case Type_Vector: {
#if 0
i64 count, bit_size, total_size_in_bits, total_size;
count = t->Vector.count;
if (count == 0) {
return 0;
}
type_path_push(path, t->Vector.elem);
if (path->failure) {
return FAILURE_SIZE;
}
bit_size = 8*type_size_of_internal(allocator, t->Vector.elem, path);
type_path_pop(path);
if (is_type_boolean(t->Vector.elem)) {
bit_size = 1; // NOTE(bill): LLVM can store booleans as 1 bit because a boolean _is_ an `i1`
// Silly LLVM spec
}
total_size_in_bits = bit_size * count;
total_size = (total_size_in_bits+7)/8;
return total_size;
#else
i64 count = t->Vector.count;
if (count == 0) {
return 0;
}
i64 elem_align = type_align_of_internal(allocator, t->Vector.elem, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 vector_align = type_align_of_internal(allocator, t, path);
i64 elem_size = type_size_of_internal(allocator, t->Vector.elem, path);
i64 alignment = align_formula(elem_size, elem_align);
return align_formula(alignment*(count-1) + elem_size, vector_align);
#endif
} break;
case Type_Slice: // ptr + count
return 3 * build_context.word_size;
case Type_Map: {
if (t->Map.count == 0) { // Dynamic
return type_size_of_internal(allocator, t->Map.generated_struct_type, path);
}
GB_PANIC("TODO(bill): Fixed map size");
}
case Type_Tuple: {
i64 count, align, size;
count = t->Tuple.variables.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(allocator, t, path);
type_set_offsets(allocator, t);
size = t->Tuple.offsets[count-1] + type_size_of_internal(allocator, t->Tuple.variables[count-1]->type, path);
return align_formula(size, align);
} break;
case Type_Enum:
return type_size_of_internal(allocator, t->Enum.base_type, path);
case Type_Union: {
i64 align = type_align_of_internal(allocator, t, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 max = 0;
i64 field_size = 0;
for_array(i, t->Union.variants) {
Type *variant_type = t->Union.variants[i];
i64 size = type_size_of_internal(allocator, variant_type, path);
if (max < size) {
max = size;
}
}
// NOTE(bill): Align to int
i64 size = align_formula(max, build_context.word_size);
// NOTE(bill): Calculate the padding between the common fields and the tag
t->Union.variant_block_size = size - field_size;
size += type_size_of(allocator, t_int);
size = align_formula(size, align);
return size;
} break;
case Type_Struct: {
if (t->Struct.is_raw_union) {
i64 count = t->Struct.fields.count;
i64 align = type_align_of_internal(allocator, t, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 max = 0;
for (isize i = 0; i < count; i++) {
i64 size = type_size_of_internal(allocator, t->Struct.fields[i]->type, path);
if (max < size) {
max = size;
}
}
// TODO(bill): Is this how it should work?
return align_formula(max, align);
} else {
i64 count = t->Struct.fields.count;
if (count == 0) {
return 0;
}
i64 align = type_align_of_internal(allocator, t, path);
if (path->failure) {
return FAILURE_SIZE;
}
if (t->Struct.are_offsets_being_processed && t->Struct.offsets == nullptr) {
type_path_print_illegal_cycle(path, path->path.count-1);
return FAILURE_SIZE;
}
type_set_offsets(allocator, t);
i64 size = t->Struct.offsets[count-1] + type_size_of_internal(allocator, t->Struct.fields[count-1]->type, path);
return align_formula(size, align);
}
} break;
case Type_BitField: {
i64 align = 8*type_align_of_internal(allocator, t, path);
i64 end = 0;
if (t->BitField.field_count > 0) {
i64 last = t->BitField.field_count-1;
end = t->BitField.offsets[last] + t->BitField.sizes[last];
}
i64 bits = align_formula(end, align);
GB_ASSERT((bits%8) == 0);
return bits/8;
} break;
}
// Catch all
return build_context.word_size;
}
i64 type_offset_of(gbAllocator allocator, Type *t, i32 index) {
t = base_type(t);
if (t->kind == Type_Struct && !t->Struct.is_raw_union) {
type_set_offsets(allocator, t);
if (gb_is_between(index, 0, t->Struct.fields.count-1)) {
return t->Struct.offsets[index];
}
} else if (t->kind == Type_Tuple) {
type_set_offsets(allocator, t);
if (gb_is_between(index, 0, t->Tuple.variables.count-1)) {
return t->Tuple.offsets[index];
}
} else if (t->kind == Type_Basic) {
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0: return 0; // data
case 1: return build_context.word_size; // count
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
case 0: return 0; // type_info
case 1: return build_context.word_size; // data
}
}
} else if (t->kind == Type_Slice) {
switch (index) {
case 0: return 0; // data
case 1: return 1*build_context.word_size; // count
case 2: return 2*build_context.word_size; // capacity
}
} else if (t->kind == Type_DynamicArray) {
switch (index) {
case 0: return 0; // data
case 1: return 1*build_context.word_size; // count
case 2: return 2*build_context.word_size; // capacity
case 3: return 3*build_context.word_size; // allocator
}
}
return 0;
}
i64 type_offset_of_from_selection(gbAllocator allocator, Type *type, Selection sel) {
GB_ASSERT(sel.indirect == false);
Type *t = type;
i64 offset = 0;
for_array(i, sel.index) {
isize index = sel.index[i];
t = base_type(t);
offset += type_offset_of(allocator, t, index);
if (t->kind == Type_Struct && !t->Struct.is_raw_union) {
t = t->Struct.fields[index]->type;
} else {
// NOTE(bill): No need to worry about custom types, just need the alignment
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
case 0: t = t_type_info_ptr; break;
case 1: t = t_rawptr; break;
}
}
break;
case Type_Slice:
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
case 2: t = t_int; break;
}
break;
case Type_DynamicArray:
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
case 2: t = t_int; break;
case 3: t = t_allocator; break;
}
break;
}
}
}
return offset;
}
gbString write_type_to_string(gbString str, Type *type) {
if (type == nullptr) {
return gb_string_appendc(str, "<no type>");
}
switch (type->kind) {
case Type_Basic:
str = gb_string_append_length(str, type->Basic.name.text, type->Basic.name.len);
break;
case Type_Generic:
if (type->Generic.name.len == 0) {
str = gb_string_appendc(str, "type");
} else {
String name = type->Generic.name;
str = gb_string_appendc(str, "$");
str = gb_string_append_length(str, name.text, name.len);
if (type->Generic.specialized != nullptr) {
str = gb_string_appendc(str, "/");
str = write_type_to_string(str, type->Generic.specialized);
}
}
break;
case Type_Pointer:
str = gb_string_appendc(str, "^");
str = write_type_to_string(str, type->Pointer.elem);
break;
case Type_Array:
str = gb_string_appendc(str, gb_bprintf("[%d]", cast(int)type->Array.count));
str = write_type_to_string(str, type->Array.elem);
break;
case Type_Vector:
str = gb_string_appendc(str, gb_bprintf("[vector %d]", cast(int)type->Vector.count));
str = write_type_to_string(str, type->Vector.elem);
break;
case Type_Slice:
str = gb_string_appendc(str, "[]");
str = write_type_to_string(str, type->Array.elem);
break;
case Type_DynamicArray:
str = gb_string_appendc(str, "[dynamic]");
str = write_type_to_string(str, type->DynamicArray.elem);
break;
case Type_Enum:
str = gb_string_appendc(str, "enum");
if (type->Enum.base_type != nullptr) {
str = gb_string_appendc(str, " ");
str = write_type_to_string(str, type->Enum.base_type);
}
str = gb_string_appendc(str, " {");
for (isize i = 0; i < type->Enum.field_count; i++) {
Entity *f = type->Enum.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
// str = gb_string_appendc(str, " = ");
}
str = gb_string_appendc(str, "}");
break;
case Type_Union:
str = gb_string_appendc(str, "union{");
for_array(i, type->Union.variants) {
Type *t = type->Union.variants[i];
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_type_to_string(str, t);
}
str = gb_string_appendc(str, "}");
break;
case Type_Struct: {
if (type->Struct.is_raw_union) {
str = gb_string_appendc(str, "raw_union{");
for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, f->type);
}
str = gb_string_appendc(str, "}");
} else {
str = gb_string_appendc(str, "struct");
if (type->Struct.is_packed) {
str = gb_string_appendc(str, " #packed");
}
if (type->Struct.is_ordered) {
str = gb_string_appendc(str, " #ordered");
}
str = gb_string_appendc(str, " {");
for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, f->type);
}
str = gb_string_appendc(str, "}");
}
} break;
case Type_Map: {
str = gb_string_appendc(str, "map[");
if (type->Map.count > 0) {
str = gb_string_appendc(str, gb_bprintf("%d, ", cast(int)type->Map.count));
}
str = write_type_to_string(str, type->Map.key);
str = gb_string_appendc(str, "]");
str = write_type_to_string(str, type->Map.value);
} break;
case Type_Named:
if (type->Named.type_name != nullptr) {
str = gb_string_append_length(str, type->Named.name.text, type->Named.name.len);
} else {
// NOTE(bill): Just in case
str = gb_string_appendc(str, "<named type>");
}
break;
case Type_Tuple:
if (type->Tuple.variables.count > 0) {
for_array(i, type->Tuple.variables) {
Entity *var = type->Tuple.variables[i];
if (var != nullptr) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
if (var->kind == Entity_Variable) {
if (var->flags&EntityFlag_CVarArg) {
str = gb_string_appendc(str, "#c_vararg ");
}
if (var->flags&EntityFlag_Ellipsis) {
Type *slice = base_type(var->type);
str = gb_string_appendc(str, "..");
GB_ASSERT(var->type->kind == Type_Slice);
str = write_type_to_string(str, slice->Slice.elem);
} else {
str = write_type_to_string(str, var->type);
}
} else {
GB_ASSERT(var->kind == Entity_TypeName);
if (var->type->kind == Type_Generic) {
str = gb_string_appendc(str, "type/");
str = write_type_to_string(str, var->type);
} else {
str = gb_string_appendc(str, "type");
}
}
}
}
}
break;
case Type_Proc:
str = gb_string_appendc(str, "proc(");
if (type->Proc.params) {
str = write_type_to_string(str, type->Proc.params);
}
str = gb_string_appendc(str, ")");
if (type->Proc.results) {
str = gb_string_appendc(str, " -> ");
str = write_type_to_string(str, type->Proc.results);
}
switch (type->Proc.calling_convention) {
case ProcCC_Odin:
// str = gb_string_appendc(str, " #cc_odin");
break;
case ProcCC_C:
str = gb_string_appendc(str, " #cc_c");
break;
case ProcCC_Std:
str = gb_string_appendc(str, " #cc_std");
break;
case ProcCC_Fast:
str = gb_string_appendc(str, " #cc_fast");
break;
}
break;
case Type_BitField:
str = gb_string_appendc(str, "bit_field ");
if (type->BitField.custom_align != 0) {
str = gb_string_appendc(str, gb_bprintf("#align %d ", cast(int)type->BitField.custom_align));
}
str = gb_string_appendc(str, "{");
for (isize i = 0; i < type->BitField.field_count; i++) {
Entity *f = type->BitField.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
GB_ASSERT(f->type != nullptr && f->type->kind == Type_BitFieldValue);
str = gb_string_appendc(str, "{");
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
str = gb_string_appendc(str, " : ");
str = gb_string_appendc(str, gb_bprintf("%lld", cast(long long)f->type->BitFieldValue.bits));
}
str = gb_string_appendc(str, "}");
break;
case Type_BitFieldValue:
str = gb_string_appendc(str, gb_bprintf("(bit field value with %d bits)", cast(int)type->BitFieldValue.bits));
break;
}
return str;
}
gbString type_to_string(Type *type) {
return write_type_to_string(gb_string_make(heap_allocator(), ""), type);
}