mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 17:34:34 +00:00
The intention is to provide a faster split parsing if the seperator is known to be byte size.
1368 lines
26 KiB
Odin
1368 lines
26 KiB
Odin
package strings
|
|
|
|
import "core:io"
|
|
import "core:mem"
|
|
import "core:unicode"
|
|
import "core:unicode/utf8"
|
|
|
|
clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string {
|
|
c := make([]byte, len(s), allocator, loc)
|
|
copy(c, s)
|
|
return string(c[:len(s)])
|
|
}
|
|
|
|
clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring {
|
|
c := make([]byte, len(s)+1, allocator, loc)
|
|
copy(c, s)
|
|
c[len(s)] = 0
|
|
return cstring(&c[0])
|
|
}
|
|
|
|
string_from_ptr :: proc(ptr: ^byte, len: int) -> string {
|
|
return transmute(string)mem.Raw_String{ptr, len}
|
|
}
|
|
|
|
string_from_nul_terminated_ptr :: proc(ptr: ^byte, len: int) -> string {
|
|
s := transmute(string)mem.Raw_String{ptr, len}
|
|
s = truncate_to_byte(s, 0)
|
|
return s
|
|
}
|
|
|
|
|
|
ptr_from_string :: proc(str: string) -> ^byte {
|
|
d := transmute(mem.Raw_String)str
|
|
return d.data
|
|
}
|
|
|
|
unsafe_string_to_cstring :: proc(str: string) -> cstring {
|
|
d := transmute(mem.Raw_String)str
|
|
return cstring(d.data)
|
|
}
|
|
|
|
truncate_to_byte :: proc(str: string, b: byte) -> string {
|
|
n := index_byte(str, b)
|
|
if n < 0 {
|
|
n = len(str)
|
|
}
|
|
return str[:n]
|
|
}
|
|
truncate_to_rune :: proc(str: string, r: rune) -> string {
|
|
n := index_rune(str, r)
|
|
if n < 0 {
|
|
n = len(str)
|
|
}
|
|
return str[:n]
|
|
}
|
|
|
|
clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> string {
|
|
c := make([]byte, len(s)+1, allocator, loc)
|
|
copy(c, s)
|
|
c[len(s)] = 0
|
|
return string(c[:len(s)])
|
|
}
|
|
clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> string {
|
|
return clone(string(s), allocator, loc)
|
|
}
|
|
clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> string {
|
|
s := string_from_ptr(ptr, len)
|
|
return clone(s, allocator, loc)
|
|
}
|
|
|
|
clone_from :: proc{
|
|
clone,
|
|
clone_from_bytes,
|
|
clone_from_cstring,
|
|
clone_from_ptr,
|
|
}
|
|
|
|
clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> string {
|
|
s := string_from_ptr((^u8)(ptr), len)
|
|
s = truncate_to_byte(s, 0)
|
|
return clone(s, allocator, loc)
|
|
}
|
|
|
|
// Compares two strings, returning a value representing which one comes first lexiographically.
|
|
// -1 for `a`; 1 for `b`, or 0 if they are equal.
|
|
compare :: proc(lhs, rhs: string) -> int {
|
|
return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs)
|
|
}
|
|
|
|
contains_rune :: proc(s: string, r: rune) -> int {
|
|
for c, offset in s {
|
|
if c == r {
|
|
return offset
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
contains :: proc(s, substr: string) -> bool {
|
|
return index(s, substr) >= 0
|
|
}
|
|
|
|
contains_any :: proc(s, chars: string) -> bool {
|
|
return index_any(s, chars) >= 0
|
|
}
|
|
|
|
|
|
rune_count :: proc(s: string) -> int {
|
|
return utf8.rune_count_in_string(s)
|
|
}
|
|
|
|
|
|
equal_fold :: proc(u, v: string) -> bool {
|
|
s, t := u, v
|
|
loop: for s != "" && t != "" {
|
|
sr, tr: rune
|
|
if s[0] < utf8.RUNE_SELF {
|
|
sr, s = rune(s[0]), s[1:]
|
|
} else {
|
|
r, size := utf8.decode_rune_in_string(s)
|
|
sr, s = r, s[size:]
|
|
}
|
|
if t[0] < utf8.RUNE_SELF {
|
|
tr, t = rune(t[0]), t[1:]
|
|
} else {
|
|
r, size := utf8.decode_rune_in_string(t)
|
|
tr, t = r, t[size:]
|
|
}
|
|
|
|
if tr == sr { // easy case
|
|
continue loop
|
|
}
|
|
|
|
if tr < sr {
|
|
tr, sr = sr, tr
|
|
}
|
|
|
|
if tr < utf8.RUNE_SELF {
|
|
switch sr {
|
|
case 'A'..='Z':
|
|
if tr == (sr+'a')-'A' {
|
|
continue loop
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// TODO(bill): Unicode folding
|
|
|
|
return false
|
|
}
|
|
|
|
return s == t
|
|
}
|
|
|
|
has_prefix :: proc(s, prefix: string) -> bool {
|
|
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
|
|
}
|
|
|
|
has_suffix :: proc(s, suffix: string) -> bool {
|
|
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
|
|
}
|
|
|
|
|
|
join :: proc(a: []string, sep: string, allocator := context.allocator) -> string {
|
|
if len(a) == 0 {
|
|
return ""
|
|
}
|
|
|
|
n := len(sep) * (len(a) - 1)
|
|
for s in a {
|
|
n += len(s)
|
|
}
|
|
|
|
b := make([]byte, n, allocator)
|
|
i := copy(b, a[0])
|
|
for s in a[1:] {
|
|
i += copy(b[i:], sep)
|
|
i += copy(b[i:], s)
|
|
}
|
|
return string(b)
|
|
}
|
|
|
|
concatenate :: proc(a: []string, allocator := context.allocator) -> string {
|
|
if len(a) == 0 {
|
|
return ""
|
|
}
|
|
|
|
n := 0
|
|
for s in a {
|
|
n += len(s)
|
|
}
|
|
b := make([]byte, n, allocator)
|
|
i := 0
|
|
for s in a {
|
|
i += copy(b[i:], s)
|
|
}
|
|
return string(b)
|
|
}
|
|
|
|
/*
|
|
`rune_offset` and `rune_length` are in runes, not bytes.
|
|
If `rune_length` <= 0, then it'll return the remainder of the string starting with `rune_offset`.
|
|
*/
|
|
cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator) -> (res: string) {
|
|
s := s; rune_length := rune_length
|
|
l := utf8.rune_count_in_string(s)
|
|
|
|
if rune_offset >= l { return "" }
|
|
if rune_offset == 0 && rune_length <= 0 {
|
|
return clone(s, allocator)
|
|
}
|
|
if rune_length == 0 { rune_length = l }
|
|
|
|
bytes_needed := min(rune_length * 4, len(s))
|
|
buf := make([]u8, bytes_needed, allocator)
|
|
|
|
byte_offset := 0
|
|
for i := 0; i < l; i += 1 {
|
|
_, w := utf8.decode_rune_in_string(s)
|
|
if i >= rune_offset {
|
|
for j := 0; j < w; j += 1 {
|
|
buf[byte_offset+j] = s[j]
|
|
}
|
|
byte_offset += w
|
|
}
|
|
if rune_length > 0 {
|
|
if i == rune_offset + rune_length - 1 { break }
|
|
}
|
|
s = s[w:]
|
|
}
|
|
return string(buf[:byte_offset])
|
|
}
|
|
|
|
@private
|
|
_split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string {
|
|
s, n := s_, n_
|
|
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
|
|
if sep == "" {
|
|
l := utf8.rune_count_in_string(s)
|
|
if n < 0 || n > l {
|
|
n = l
|
|
}
|
|
|
|
res := make([dynamic]string, n, allocator)
|
|
for i := 0; i < n-1; i += 1 {
|
|
_, w := utf8.decode_rune_in_string(s)
|
|
res[i] = s[:w]
|
|
s = s[w:]
|
|
}
|
|
if n > 0 {
|
|
res[n-1] = s
|
|
}
|
|
return res[:]
|
|
}
|
|
|
|
if n < 0 {
|
|
n = count(s, sep) + 1
|
|
}
|
|
|
|
res := make([dynamic]string, n, allocator)
|
|
|
|
n -= 1
|
|
|
|
i := 0
|
|
for ; i < n; i += 1 {
|
|
m := index(s, sep)
|
|
if m < 0 {
|
|
break
|
|
}
|
|
res[i] = s[:m+sep_save]
|
|
s = s[m+len(sep):]
|
|
}
|
|
res[i] = s
|
|
|
|
return res[:i+1]
|
|
}
|
|
|
|
/*
|
|
Splits a string into parts, based on a separator.
|
|
Returned strings are substrings of 's'.
|
|
```
|
|
s := "aaa.bbb.ccc.ddd.eee" // 5 parts
|
|
ss := split(s, ".")
|
|
fmt.println(ss) // [aaa, bbb, ccc, ddd, eee]
|
|
```
|
|
*/
|
|
split :: proc(s, sep: string, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, 0, -1, allocator)
|
|
}
|
|
|
|
/*
|
|
Splits a string into a total of 'n' parts, based on a separator.
|
|
Returns fewer parts if there wasn't enough occurrences of the separator.
|
|
Returned strings are substrings of 's'.
|
|
```
|
|
s := "aaa.bbb.ccc.ddd.eee" // 5 parts present
|
|
ss := split_n(s, ".", 3) // total of 3 wanted
|
|
fmt.println(ss) // [aaa, bbb, ccc.ddd.eee]
|
|
```
|
|
*/
|
|
split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, 0, n, allocator)
|
|
}
|
|
|
|
split_after :: proc(s, sep: string, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, len(sep), -1, allocator)
|
|
}
|
|
|
|
split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, len(sep), n, allocator)
|
|
}
|
|
|
|
|
|
@private
|
|
_split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) {
|
|
if sep == "" {
|
|
res = s[:]
|
|
ok = true
|
|
s^ = s[len(s):]
|
|
return
|
|
}
|
|
|
|
m := index(s^, sep)
|
|
if m < 0 {
|
|
// not found
|
|
res = s[:]
|
|
ok = res != ""
|
|
s^ = s[len(s):]
|
|
} else {
|
|
res = s[:m+sep_save]
|
|
ok = true
|
|
s^ = s[m+len(sep):]
|
|
}
|
|
return
|
|
}
|
|
|
|
@private
|
|
_split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) {
|
|
m := index_byte(s^, sep)
|
|
if m < 0 {
|
|
// not found
|
|
res = s[:]
|
|
ok = res != ""
|
|
s^ = {}
|
|
} else {
|
|
res = s[:m]
|
|
ok = true
|
|
s^ = s[m+1:]
|
|
}
|
|
return
|
|
}
|
|
|
|
split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (string, bool) {
|
|
return _split_by_byte_iterator(s, sep)
|
|
}
|
|
|
|
split_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
|
|
return _split_iterator(s, sep, 0)
|
|
}
|
|
|
|
split_after_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
|
|
return _split_iterator(s, sep, len(sep))
|
|
}
|
|
|
|
|
|
@(private)
|
|
_trim_cr :: proc(s: string) -> string {
|
|
n := len(s)
|
|
if n > 0 {
|
|
if s[n-1] == '\r' {
|
|
return s[:n-1]
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
split_lines :: proc(s: string, allocator := context.allocator) -> []string {
|
|
sep :: "\n"
|
|
lines := _split(s, sep, 0, -1, allocator)
|
|
for line in &lines {
|
|
line = _trim_cr(line)
|
|
}
|
|
return lines
|
|
}
|
|
|
|
split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
|
|
sep :: "\n"
|
|
lines := _split(s, sep, 0, n, allocator)
|
|
for line in &lines {
|
|
line = _trim_cr(line)
|
|
}
|
|
return lines
|
|
}
|
|
|
|
split_lines_after :: proc(s: string, allocator := context.allocator) -> []string {
|
|
sep :: "\n"
|
|
lines := _split(s, sep, len(sep), -1, allocator)
|
|
for line in &lines {
|
|
line = _trim_cr(line)
|
|
}
|
|
return lines
|
|
}
|
|
|
|
split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
|
|
sep :: "\n"
|
|
lines := _split(s, sep, len(sep), n, allocator)
|
|
for line in &lines {
|
|
line = _trim_cr(line)
|
|
}
|
|
return lines
|
|
}
|
|
|
|
split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
|
|
sep :: "\n"
|
|
line = _split_iterator(s, sep, 0) or_return
|
|
return _trim_cr(line), true
|
|
}
|
|
|
|
split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
|
|
sep :: "\n"
|
|
line = _split_iterator(s, sep, len(sep)) or_return
|
|
return _trim_cr(line), true
|
|
}
|
|
|
|
|
|
|
|
|
|
index_byte :: proc(s: string, c: byte) -> int {
|
|
for i := 0; i < len(s); i += 1 {
|
|
if s[i] == c {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Returns -1 if c is not present
|
|
last_index_byte :: proc(s: string, c: byte) -> int {
|
|
for i := len(s)-1; i >= 0; i -= 1 {
|
|
if s[i] == c {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
|
|
|
|
@private PRIME_RABIN_KARP :: 16777619
|
|
|
|
index :: proc(s, substr: string) -> int {
|
|
hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
|
|
for i := 0; i < len(s); i += 1 {
|
|
hash = hash*PRIME_RABIN_KARP + u32(s[i])
|
|
}
|
|
sq := u32(PRIME_RABIN_KARP)
|
|
for i := len(s); i > 0; i >>= 1 {
|
|
if (i & 1) != 0 {
|
|
pow *= sq
|
|
}
|
|
sq *= sq
|
|
}
|
|
return
|
|
}
|
|
|
|
n := len(substr)
|
|
switch {
|
|
case n == 0:
|
|
return 0
|
|
case n == 1:
|
|
return index_byte(s, substr[0])
|
|
case n == len(s):
|
|
if s == substr {
|
|
return 0
|
|
}
|
|
return -1
|
|
case n > len(s):
|
|
return -1
|
|
}
|
|
|
|
hash, pow := hash_str_rabin_karp(substr)
|
|
h: u32
|
|
for i := 0; i < n; i += 1 {
|
|
h = h*PRIME_RABIN_KARP + u32(s[i])
|
|
}
|
|
if h == hash && s[:n] == substr {
|
|
return 0
|
|
}
|
|
for i := n; i < len(s); /**/ {
|
|
h *= PRIME_RABIN_KARP
|
|
h += u32(s[i])
|
|
h -= pow * u32(s[i-n])
|
|
i += 1
|
|
if h == hash && s[i-n:i] == substr {
|
|
return i - n
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
last_index :: proc(s, substr: string) -> int {
|
|
hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
|
|
for i := len(s) - 1; i >= 0; i -= 1 {
|
|
hash = hash*PRIME_RABIN_KARP + u32(s[i])
|
|
}
|
|
sq := u32(PRIME_RABIN_KARP)
|
|
for i := len(s); i > 0; i >>= 1 {
|
|
if (i & 1) != 0 {
|
|
pow *= sq
|
|
}
|
|
sq *= sq
|
|
}
|
|
return
|
|
}
|
|
|
|
n := len(substr)
|
|
switch {
|
|
case n == 0:
|
|
return len(s)
|
|
case n == 1:
|
|
return last_index_byte(s, substr[0])
|
|
case n == len(s):
|
|
return 0 if substr == s else -1
|
|
case n > len(s):
|
|
return -1
|
|
}
|
|
|
|
hash, pow := hash_str_rabin_karp_reverse(substr)
|
|
last := len(s) - n
|
|
h: u32
|
|
for i := len(s)-1; i >= last; i -= 1 {
|
|
h = h*PRIME_RABIN_KARP + u32(s[i])
|
|
}
|
|
if h == hash && s[last:] == substr {
|
|
return last
|
|
}
|
|
|
|
for i := last-1; i >= 0; i -= 1 {
|
|
h *= PRIME_RABIN_KARP
|
|
h += u32(s[i])
|
|
h -= pow * u32(s[i+n])
|
|
if h == hash && s[i:i+n] == substr {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// index_any returns the index of the first char of `chars` found in `s`. -1 if not found.
|
|
index_any :: proc(s, chars: string) -> int {
|
|
if chars == "" {
|
|
return -1
|
|
}
|
|
|
|
if len(chars) == 1 {
|
|
r := rune(chars[0])
|
|
if r >= utf8.RUNE_SELF {
|
|
r = utf8.RUNE_ERROR
|
|
}
|
|
return index_rune(s, r)
|
|
}
|
|
|
|
if len(s) > 8 {
|
|
if as, ok := ascii_set_make(chars); ok {
|
|
for i in 0..<len(s) {
|
|
if ascii_set_contains(as, s[i]) {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
}
|
|
|
|
for c, i in s {
|
|
if index_rune(chars, c) >= 0 {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
last_index_any :: proc(s, chars: string) -> int {
|
|
if chars == "" {
|
|
return -1
|
|
}
|
|
|
|
if len(s) == 1 {
|
|
r := rune(s[0])
|
|
if r >= utf8.RUNE_SELF {
|
|
r = utf8.RUNE_ERROR
|
|
}
|
|
return index_rune(chars, r)
|
|
}
|
|
|
|
if len(s) > 8 {
|
|
if as, ok := ascii_set_make(chars); ok {
|
|
for i := len(s)-1; i >= 0; i -= 1 {
|
|
if ascii_set_contains(as, s[i]) {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
}
|
|
|
|
if len(chars) == 1 {
|
|
r := rune(chars[0])
|
|
if r >= utf8.RUNE_SELF {
|
|
r = utf8.RUNE_ERROR
|
|
}
|
|
for i := len(s); i > 0; /**/ {
|
|
c, w := utf8.decode_last_rune_in_string(s[:i])
|
|
i -= w
|
|
if c == r {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
for i := len(s); i > 0; /**/ {
|
|
r, w := utf8.decode_last_rune_in_string(s[:i])
|
|
i -= w
|
|
if index_rune(chars, r) >= 0 {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
count :: proc(s, substr: string) -> int {
|
|
if len(substr) == 0 { // special case
|
|
return rune_count(s) + 1
|
|
}
|
|
if len(substr) == 1 {
|
|
c := substr[0]
|
|
switch len(s) {
|
|
case 0:
|
|
return 0
|
|
case 1:
|
|
return int(s[0] == c)
|
|
}
|
|
n := 0
|
|
for i := 0; i < len(s); i += 1 {
|
|
if s[i] == c {
|
|
n += 1
|
|
}
|
|
}
|
|
return n
|
|
}
|
|
|
|
// TODO(bill): Use a non-brute for approach
|
|
n := 0
|
|
str := s
|
|
for {
|
|
i := index(str, substr)
|
|
if i == -1 {
|
|
return n
|
|
}
|
|
n += 1
|
|
str = str[i+len(substr):]
|
|
}
|
|
return n
|
|
}
|
|
|
|
|
|
repeat :: proc(s: string, count: int, allocator := context.allocator) -> string {
|
|
if count < 0 {
|
|
panic("strings: negative repeat count")
|
|
} else if count > 0 && (len(s)*count)/count != len(s) {
|
|
panic("strings: repeat count will cause an overflow")
|
|
}
|
|
|
|
b := make([]byte, len(s)*count, allocator)
|
|
i := copy(b, s)
|
|
for i < len(b) { // 2^N trick to reduce the need to copy
|
|
copy(b[i:], b[:i])
|
|
i *= 2
|
|
}
|
|
return string(b)
|
|
}
|
|
|
|
replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
|
return replace(s, old, new, -1, allocator)
|
|
}
|
|
|
|
// if n < 0, no limit on the number of replacements
|
|
replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
|
if old == new || n == 0 {
|
|
was_allocation = false
|
|
output = s
|
|
return
|
|
}
|
|
byte_count := n
|
|
if m := count(s, old); m == 0 {
|
|
was_allocation = false
|
|
output = s
|
|
return
|
|
} else if n < 0 || m < n {
|
|
byte_count = m
|
|
}
|
|
|
|
|
|
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
|
|
was_allocation = true
|
|
|
|
w := 0
|
|
start := 0
|
|
for i := 0; i < byte_count; i += 1 {
|
|
j := start
|
|
if len(old) == 0 {
|
|
if i > 0 {
|
|
_, width := utf8.decode_rune_in_string(s[start:])
|
|
j += width
|
|
}
|
|
} else {
|
|
j += index(s[start:], old)
|
|
}
|
|
w += copy(t[w:], s[start:j])
|
|
w += copy(t[w:], new)
|
|
start = j + len(old)
|
|
}
|
|
w += copy(t[w:], s[start:])
|
|
output = string(t[0:w])
|
|
return
|
|
}
|
|
|
|
remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
|
return replace(s, key, "", n, allocator)
|
|
}
|
|
|
|
remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
|
return remove(s, key, -1, allocator)
|
|
}
|
|
|
|
@(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true}
|
|
|
|
|
|
is_ascii_space :: proc(r: rune) -> bool {
|
|
if r < utf8.RUNE_SELF {
|
|
return _ascii_space[u8(r)]
|
|
}
|
|
return false
|
|
}
|
|
|
|
is_space :: proc(r: rune) -> bool {
|
|
if r < 0x2000 {
|
|
switch r {
|
|
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
|
|
return true
|
|
}
|
|
} else {
|
|
if r <= 0x200a {
|
|
return true
|
|
}
|
|
switch r {
|
|
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
is_null :: proc(r: rune) -> bool {
|
|
return r == 0x0000
|
|
}
|
|
|
|
index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
|
|
for r, i in s {
|
|
if p(r) == truth {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
|
|
for r, i in s {
|
|
if p(state, r) == truth {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
|
|
// TODO(bill): Probably use Rabin-Karp Search
|
|
for i := len(s); i > 0; {
|
|
r, size := utf8.decode_last_rune_in_string(s[:i])
|
|
i -= size
|
|
if p(r) == truth {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
|
|
// TODO(bill): Probably use Rabin-Karp Search
|
|
for i := len(s); i > 0; {
|
|
r, size := utf8.decode_last_rune_in_string(s[:i])
|
|
i -= size
|
|
if p(state, r) == truth {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
|
|
i := index_proc(s, p, false)
|
|
if i == -1 {
|
|
return ""
|
|
}
|
|
return s[i:]
|
|
}
|
|
|
|
|
|
index_rune :: proc(s: string, r: rune) -> int {
|
|
switch {
|
|
case 0 <= r && r < utf8.RUNE_SELF:
|
|
return index_byte(s, byte(r))
|
|
|
|
case r == utf8.RUNE_ERROR:
|
|
for c, i in s {
|
|
if c == utf8.RUNE_ERROR {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
|
|
case !utf8.valid_rune(r):
|
|
return -1
|
|
}
|
|
|
|
b, w := utf8.encode_rune(r)
|
|
return index(s, string(b[:w]))
|
|
}
|
|
|
|
|
|
trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
|
|
i := index_proc_with_state(s, p, state, false)
|
|
if i == -1 {
|
|
return ""
|
|
}
|
|
return s[i:]
|
|
}
|
|
|
|
trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
|
|
i := last_index_proc(s, p, false)
|
|
if i >= 0 && s[i] >= utf8.RUNE_SELF {
|
|
_, w := utf8.decode_rune_in_string(s[i:])
|
|
i += w
|
|
} else {
|
|
i += 1
|
|
}
|
|
return s[0:i]
|
|
}
|
|
|
|
trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
|
|
i := last_index_proc_with_state(s, p, state, false)
|
|
if i >= 0 && s[i] >= utf8.RUNE_SELF {
|
|
_, w := utf8.decode_rune_in_string(s[i:])
|
|
i += w
|
|
} else {
|
|
i += 1
|
|
}
|
|
return s[0:i]
|
|
}
|
|
|
|
|
|
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
|
|
if state == nil {
|
|
return false
|
|
}
|
|
cutset := (^string)(state)^
|
|
for c in cutset {
|
|
if r == c {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
|
|
trim_left :: proc(s: string, cutset: string) -> string {
|
|
if s == "" || cutset == "" {
|
|
return s
|
|
}
|
|
state := cutset
|
|
return trim_left_proc_with_state(s, is_in_cutset, &state)
|
|
}
|
|
|
|
trim_right :: proc(s: string, cutset: string) -> string {
|
|
if s == "" || cutset == "" {
|
|
return s
|
|
}
|
|
state := cutset
|
|
return trim_right_proc_with_state(s, is_in_cutset, &state)
|
|
}
|
|
|
|
trim :: proc(s: string, cutset: string) -> string {
|
|
return trim_right(trim_left(s, cutset), cutset)
|
|
}
|
|
|
|
trim_left_space :: proc(s: string) -> string {
|
|
return trim_left_proc(s, is_space)
|
|
}
|
|
|
|
trim_right_space :: proc(s: string) -> string {
|
|
return trim_right_proc(s, is_space)
|
|
}
|
|
|
|
trim_space :: proc(s: string) -> string {
|
|
return trim_right_space(trim_left_space(s))
|
|
}
|
|
|
|
|
|
trim_left_null :: proc(s: string) -> string {
|
|
return trim_left_proc(s, is_null)
|
|
}
|
|
|
|
trim_right_null :: proc(s: string) -> string {
|
|
return trim_right_proc(s, is_null)
|
|
}
|
|
|
|
trim_null :: proc(s: string) -> string {
|
|
return trim_right_null(trim_left_null(s))
|
|
}
|
|
|
|
trim_prefix :: proc(s, prefix: string) -> string {
|
|
if has_prefix(s, prefix) {
|
|
return s[len(prefix):]
|
|
}
|
|
return s
|
|
}
|
|
|
|
trim_suffix :: proc(s, suffix: string) -> string {
|
|
if has_suffix(s, suffix) {
|
|
return s[:len(s)-len(suffix)]
|
|
}
|
|
return s
|
|
}
|
|
|
|
split_multi :: proc(s: string, substrs: []string, skip_empty := false, allocator := context.allocator) -> []string #no_bounds_check {
|
|
if s == "" || len(substrs) <= 0 {
|
|
return nil
|
|
}
|
|
|
|
sublen := len(substrs[0])
|
|
|
|
for substr in substrs[1:] {
|
|
sublen = min(sublen, len(substr))
|
|
}
|
|
|
|
shared := len(s) - sublen
|
|
|
|
if shared <= 0 {
|
|
return nil
|
|
}
|
|
|
|
// number, index, last
|
|
n, i, l := 0, 0, 0
|
|
|
|
// count results
|
|
first_pass: for i <= shared {
|
|
for substr in substrs {
|
|
if s[i:i+sublen] == substr {
|
|
if !skip_empty || i - l > 0 {
|
|
n += 1
|
|
}
|
|
|
|
i += sublen
|
|
l = i
|
|
|
|
continue first_pass
|
|
}
|
|
}
|
|
|
|
_, skip := utf8.decode_rune_in_string(s[i:])
|
|
i += skip
|
|
}
|
|
|
|
if !skip_empty || len(s) - l > 0 {
|
|
n += 1
|
|
}
|
|
|
|
if n < 1 {
|
|
// no results
|
|
return nil
|
|
}
|
|
|
|
buf := make([]string, n, allocator)
|
|
|
|
n, i, l = 0, 0, 0
|
|
|
|
// slice results
|
|
second_pass: for i <= shared {
|
|
for substr in substrs {
|
|
if s[i:i+sublen] == substr {
|
|
if !skip_empty || i - l > 0 {
|
|
buf[n] = s[l:i]
|
|
n += 1
|
|
}
|
|
|
|
i += sublen
|
|
l = i
|
|
|
|
continue second_pass
|
|
}
|
|
}
|
|
|
|
_, skip := utf8.decode_rune_in_string(s[i:])
|
|
i += skip
|
|
}
|
|
|
|
if !skip_empty || len(s) - l > 0 {
|
|
buf[n] = s[l:]
|
|
}
|
|
|
|
return buf
|
|
}
|
|
|
|
|
|
|
|
|
|
split_multi_iterator :: proc(s: ^string, substrs: []string, skip_empty := false) -> (string, bool) #no_bounds_check {
|
|
if s == nil || s^ == "" || len(substrs) <= 0 {
|
|
return "", false
|
|
}
|
|
|
|
sublen := len(substrs[0])
|
|
|
|
for substr in substrs[1:] {
|
|
sublen = min(sublen, len(substr))
|
|
}
|
|
|
|
shared := len(s) - sublen
|
|
|
|
if shared <= 0 {
|
|
return "", false
|
|
}
|
|
|
|
// index, last
|
|
i, l := 0, 0
|
|
|
|
loop: for i <= shared {
|
|
for substr in substrs {
|
|
if s[i:i+sublen] == substr {
|
|
if !skip_empty || i - l > 0 {
|
|
res := s[l:i]
|
|
s^ = s[i:]
|
|
return res, true
|
|
}
|
|
|
|
i += sublen
|
|
l = i
|
|
|
|
continue loop
|
|
}
|
|
}
|
|
|
|
_, skip := utf8.decode_rune_in_string(s[i:])
|
|
i += skip
|
|
}
|
|
|
|
if !skip_empty || len(s) - l > 0 {
|
|
res := s[l:]
|
|
s^ = s[len(s):]
|
|
return res, true
|
|
}
|
|
|
|
return "", false
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// scrub scruvs invalid utf-8 characters and replaces them with the replacement string
|
|
// Adjacent invalid bytes are only replaced once
|
|
scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string {
|
|
str := s
|
|
b: Builder
|
|
init_builder(&b, 0, len(s), allocator)
|
|
|
|
has_error := false
|
|
cursor := 0
|
|
origin := str
|
|
|
|
for len(str) > 0 {
|
|
r, w := utf8.decode_rune_in_string(str)
|
|
|
|
if r == utf8.RUNE_ERROR {
|
|
if !has_error {
|
|
has_error = true
|
|
write_string(&b, origin[:cursor])
|
|
}
|
|
} else if has_error {
|
|
has_error = false
|
|
write_string(&b, replacement)
|
|
|
|
origin = origin[cursor:]
|
|
cursor = 0
|
|
}
|
|
|
|
cursor += w
|
|
str = str[w:]
|
|
}
|
|
|
|
return to_string(b)
|
|
}
|
|
|
|
|
|
reverse :: proc(s: string, allocator := context.allocator) -> string {
|
|
str := s
|
|
n := len(str)
|
|
buf := make([]byte, n)
|
|
i := n
|
|
|
|
for len(str) > 0 {
|
|
_, w := utf8.decode_rune_in_string(str)
|
|
i -= w
|
|
copy(buf[i:], str[:w])
|
|
str = str[w:]
|
|
}
|
|
return string(buf)
|
|
}
|
|
|
|
expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string {
|
|
if tab_size <= 0 {
|
|
panic("tab size must be positive")
|
|
}
|
|
|
|
|
|
if s == "" {
|
|
return ""
|
|
}
|
|
|
|
b: Builder
|
|
init_builder(&b, allocator)
|
|
writer := to_writer(&b)
|
|
str := s
|
|
column: int
|
|
|
|
for len(str) > 0 {
|
|
r, w := utf8.decode_rune_in_string(str)
|
|
|
|
if r == '\t' {
|
|
expand := tab_size - column%tab_size
|
|
|
|
for i := 0; i < expand; i += 1 {
|
|
io.write_byte(writer, ' ')
|
|
}
|
|
|
|
column += expand
|
|
} else {
|
|
if r == '\n' {
|
|
column = 0
|
|
} else {
|
|
column += w
|
|
}
|
|
|
|
io.write_rune(writer, r)
|
|
}
|
|
|
|
str = str[w:]
|
|
}
|
|
|
|
return to_string(b)
|
|
}
|
|
|
|
|
|
partition :: proc(str, sep: string) -> (head, match, tail: string) {
|
|
i := index(str, sep)
|
|
if i == -1 {
|
|
head = str
|
|
return
|
|
}
|
|
|
|
head = str[:i]
|
|
match = str[i:i+len(sep)]
|
|
tail = str[i+len(sep):]
|
|
return
|
|
}
|
|
|
|
center_justify :: centre_justify // NOTE(bill): Because Americans exist
|
|
|
|
// centre_justify returns a string with a pad string at boths sides if the str's rune length is smaller than length
|
|
centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
|
n := rune_count(str)
|
|
if n >= length || pad == "" {
|
|
return clone(str, allocator)
|
|
}
|
|
|
|
remains := length-1
|
|
pad_len := rune_count(pad)
|
|
|
|
b: Builder
|
|
init_builder(&b, allocator)
|
|
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
|
|
|
|
w := to_writer(&b)
|
|
|
|
write_pad_string(w, pad, pad_len, remains/2)
|
|
io.write_string(w, str)
|
|
write_pad_string(w, pad, pad_len, (remains+1)/2)
|
|
|
|
return to_string(b)
|
|
}
|
|
|
|
// left_justify returns a string with a pad string at left side if the str's rune length is smaller than length
|
|
left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
|
n := rune_count(str)
|
|
if n >= length || pad == "" {
|
|
return clone(str, allocator)
|
|
}
|
|
|
|
remains := length-1
|
|
pad_len := rune_count(pad)
|
|
|
|
b: Builder
|
|
init_builder(&b, allocator)
|
|
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
|
|
|
|
w := to_writer(&b)
|
|
|
|
io.write_string(w, str)
|
|
write_pad_string(w, pad, pad_len, remains)
|
|
|
|
return to_string(b)
|
|
}
|
|
|
|
// right_justify returns a string with a pad string at right side if the str's rune length is smaller than length
|
|
right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
|
n := rune_count(str)
|
|
if n >= length || pad == "" {
|
|
return clone(str, allocator)
|
|
}
|
|
|
|
remains := length-1
|
|
pad_len := rune_count(pad)
|
|
|
|
b: Builder
|
|
init_builder(&b, allocator)
|
|
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
|
|
|
|
w := to_writer(&b)
|
|
|
|
write_pad_string(w, pad, pad_len, remains)
|
|
io.write_string(w, str)
|
|
|
|
return to_string(b)
|
|
}
|
|
|
|
|
|
|
|
|
|
@private
|
|
write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) {
|
|
repeats := remains / pad_len
|
|
|
|
for i := 0; i < repeats; i += 1 {
|
|
io.write_string(w, pad)
|
|
}
|
|
|
|
n := remains % pad_len
|
|
p := pad
|
|
|
|
for i := 0; i < n; i += 1 {
|
|
r, width := utf8.decode_rune_in_string(p)
|
|
io.write_rune(w, r)
|
|
p = p[width:]
|
|
}
|
|
}
|
|
|
|
|
|
// fields splits the string s around each instance of one or more consecutive white space character, defined by unicode.is_space
|
|
// returning a slice of substrings of s or an empty slice if s only contains white space
|
|
fields :: proc(s: string, allocator := context.allocator) -> []string #no_bounds_check {
|
|
n := 0
|
|
was_space := 1
|
|
set_bits := u8(0)
|
|
|
|
// check to see
|
|
for i in 0..<len(s) {
|
|
r := s[i]
|
|
set_bits |= r
|
|
is_space := int(_ascii_space[r])
|
|
n += was_space & ~is_space
|
|
was_space = is_space
|
|
}
|
|
|
|
if set_bits >= utf8.RUNE_SELF {
|
|
return fields_proc(s, unicode.is_space, allocator)
|
|
}
|
|
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
|
|
a := make([]string, n, allocator)
|
|
na := 0
|
|
field_start := 0
|
|
i := 0
|
|
for i < len(s) && _ascii_space[s[i]] {
|
|
i += 1
|
|
}
|
|
field_start = i
|
|
for i < len(s) {
|
|
if !_ascii_space[s[i]] {
|
|
i += 1
|
|
continue
|
|
}
|
|
a[na] = s[field_start : i]
|
|
na += 1
|
|
i += 1
|
|
for i < len(s) && _ascii_space[s[i]] {
|
|
i += 1
|
|
}
|
|
field_start = i
|
|
}
|
|
if field_start < len(s) {
|
|
a[na] = s[field_start:]
|
|
}
|
|
return a
|
|
}
|
|
|
|
|
|
// fields_proc splits the string s at each run of unicode code points `ch` satisfying f(ch)
|
|
// returns a slice of substrings of s
|
|
// If all code points in s satisfy f(ch) or string is empty, an empty slice is returned
|
|
//
|
|
// fields_proc makes no guarantee about the order in which it calls f(ch)
|
|
// it assumes that `f` always returns the same value for a given ch
|
|
fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator) -> []string #no_bounds_check {
|
|
substrings := make([dynamic]string, 0, 32, allocator)
|
|
|
|
start, end := -1, -1
|
|
for r, offset in s {
|
|
end = offset
|
|
if f(r) {
|
|
if start >= 0 {
|
|
append(&substrings, s[start : end])
|
|
// -1 could be used, but just speed it up through bitwise not
|
|
// gotta love 2's complement
|
|
start = ~start
|
|
}
|
|
} else {
|
|
if start < 0 {
|
|
start = end
|
|
}
|
|
}
|
|
}
|
|
|
|
if start >= 0 {
|
|
append(&substrings, s[start : len(s)])
|
|
}
|
|
|
|
return substrings[:]
|
|
}
|