Files
Odin/core/strconv/decimal/decimal.odin

269 lines
4.7 KiB
Odin

// Multiple precision decimal numbers
// NOTE: This is only for floating point printing and nothing else
package strconv_decimal
Decimal :: struct {
digits: [384]byte, // big-endian digits
count: int,
decimal_point: int,
neg, trunc: bool,
}
decimal_to_string :: proc(buf: []byte, a: ^Decimal) -> string {
digit_zero :: proc(buf: []byte) -> int {
for _, i in buf {
buf[i] = '0'
}
return len(buf)
}
n := 10 + a.count + abs(a.decimal_point)
// TODO(bill): make this work with a buffer that's not big enough
assert(len(buf) >= n)
b := buf[0:n]
if a.count == 0 {
b[0] = '0'
return string(b[0:1])
}
w := 0
if a.decimal_point <= 0 {
b[w] = '0'; w += 1
b[w] = '.'; w += 1
w += digit_zero(b[w : w-a.decimal_point])
w += copy(b[w:], a.digits[0:a.count])
} else if a.decimal_point < a.count {
w += copy(b[w:], a.digits[0:a.decimal_point])
b[w] = '.'; w += 1
w += copy(b[w:], a.digits[a.decimal_point : a.count])
} else {
w += copy(b[w:], a.digits[0:a.count])
w += digit_zero(b[w : w+a.decimal_point-a.count])
}
return string(b[0:w])
}
// trim trailing zeros
trim :: proc(a: ^Decimal) {
for a.count > 0 && a.digits[a.count-1] == '0' {
a.count -= 1
}
if a.count == 0 {
a.decimal_point = 0
}
}
assign :: proc(a: ^Decimal, idx: u64) {
buf: [64]byte
n := 0
for i := idx; i > 0; {
j := i/10
i -= 10*j
buf[n] = byte('0'+i)
n += 1
i = j
}
a.count = 0
for n -= 1; n >= 0; n -= 1 {
a.digits[a.count] = buf[n]
a.count += 1
}
a.decimal_point = a.count
trim(a)
}
shift_right :: proc(a: ^Decimal, k: uint) {
r := 0 // read index
w := 0 // write index
n: uint
for ; n>>k == 0; r += 1 {
if r >= a.count {
if n == 0 {
// Just in case
a.count = 0
return
}
for n>>k == 0 {
n = n * 10
r += 1
}
break
}
c := uint(a.digits[r])
n = n*10 + c - '0'
}
a.decimal_point -= r-1
mask: uint = (1<<k) - 1
for ; r < a.count; r += 1 {
c := uint(a.digits[r])
dig := n>>k
n &= mask
a.digits[w] = byte('0' + dig)
w += 1
n = n*10 + c - '0'
}
for n > 0 {
dig := n>>k
n &= mask
if w < len(a.digits) {
a.digits[w] = byte('0' + dig)
w += 1
} else if dig > 0 {
a.trunc = true
}
n *= 10
}
a.count = w
trim(a)
}
shift_left :: proc(a: ^Decimal, k: uint) {
// NOTE(bill): used to determine buffer size required for the decimal from the binary shift
// 'k' means `1<<k` == `2^k` which equates to roundup(k*log10(2)) digits required
log10_2 :: 0.301029995663981195213738894724493026768189881462108541310
capacity := int(f64(k)*log10_2 + 1)
r := a.count // read index
w := a.count+capacity // write index
d := len(a.digits)
n: uint
for r -= 1; r >= 0; r -= 1 {
n += (uint(a.digits[r]) - '0') << k
quo := n/10
rem := n - 10*quo
w -= 1
if w < d {
a.digits[w] = byte('0' + rem)
} else if rem != 0 {
a.trunc = true
}
n = quo
}
for n > 0 {
quo := n/10
rem := n - 10*quo
w -= 1
if w < d {
a.digits[w] = byte('0' + rem)
} else if rem != 0 {
a.trunc = true
}
n = quo
}
// NOTE(bill): Remove unused buffer size
assert(w >= 0)
capacity -= w
a.count = min(a.count+capacity, d)
a.decimal_point += capacity
trim(a)
}
shift :: proc(a: ^Decimal, i: int) {
uint_size :: 8*size_of(uint)
max_shift :: uint_size-4
switch k := i; {
case a.count == 0:
// no need to update
case k > 0:
for k > max_shift {
shift_left(a, max_shift)
k -= max_shift
}
shift_left(a, uint(k))
case k < 0:
for k < -max_shift {
shift_right(a, max_shift)
k += max_shift
}
shift_right(a, uint(-k))
}
}
can_round_up :: proc(a: ^Decimal, nd: int) -> bool {
if nd < 0 || nd >= a.count { return false }
if a.digits[nd] == '5' && nd+1 == a.count {
if a.trunc {
return true
}
return nd > 0 && (a.digits[nd-1]-'0')%2 != 0
}
return a.digits[nd] >= '5'
}
round :: proc(a: ^Decimal, nd: int) {
if nd < 0 || nd >= a.count { return }
if can_round_up(a, nd) {
round_up(a, nd)
} else {
round_down(a, nd)
}
}
round_up :: proc(a: ^Decimal, nd: int) {
if nd < 0 || nd >= a.count { return }
for i := nd-1; i >= 0; i -= 1 {
if c := a.digits[i]; c < '9' {
a.digits[i] += 1
a.count = i+1
return
}
}
// Number is just 9s
a.digits[0] = '1'
a.count = 1
a.decimal_point += 1
}
round_down :: proc(a: ^Decimal, nd: int) {
if nd < 0 || nd >= a.count { return }
a.count = nd
trim(a)
}
// Extract integer part, rounded appropriately. There are no guarantees about overflow.
rounded_integer :: proc(a: ^Decimal) -> u64 {
if a.decimal_point > 20 {
return 0xffff_ffff_ffff_ffff
}
i: int = 0
n: u64 = 0
m := min(a.decimal_point, a.count)
for ; i < m; i += 1 {
n = n*10 + u64(a.digits[i]-'0')
}
for ; i < a.decimal_point; i += 1 {
n *= 10
}
if can_round_up(a, a.decimal_point) {
n += 1
}
return n
}