Files
Odin/core/strings/strings.odin
2023-03-28 11:51:39 -07:00

3112 lines
69 KiB
Odin
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Procedures to manipulate UTF-8 encoded strings
package strings
import "core:io"
import "core:mem"
import "core:unicode"
import "core:unicode/utf8"
/*
Clones a string
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to be cloned
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: #caller_location)
**Returns** A cloned string
*/
clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string {
c := make([]byte, len(s), allocator, loc)
copy(c, s)
return string(c[:len(s)])
}
/*
Clones a string safely (returns early with an allocation error on failure)
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to be cloned
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: #caller_location)
**Returns**
- str: A cloned string
- err: A mem.Allocator_Error if an error occurs during allocation
*/
clone_safe :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (str: string, err: mem.Allocator_Error) {
c := make([]byte, len(s), allocator, loc) or_return
copy(c, s)
return string(c[:len(s)]), nil
}
/*
Clones a string and appends a null-byte to make it a cstring
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to be cloned
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: #caller_location)
**Returns** A cloned cstring with an appended null-byte
*/
clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring {
c := make([]byte, len(s)+1, allocator, loc)
copy(c, s)
c[len(s)] = 0
return cstring(&c[0])
}
/*
Transmutes a raw pointer into a string. Non-allocating.
**Inputs**
- ptr: A pointer to the start of the byte sequence
- len: The length of the byte sequence
NOTE: The created string is only valid as long as the pointer and length are valid.
**Returns** A string created from the byte pointer and length
*/
string_from_ptr :: proc(ptr: ^byte, len: int) -> string {
return transmute(string)mem.Raw_String{ptr, len}
}
/*
Transmutes a raw pointer (null-terminated) into a string. Non-allocating. Searches for a null-byte from `0..<len`, otherwhise `len` will be the end size
NOTE: The created string is only valid as long as the pointer and length are valid.
The string is truncated at the first null-byte encountered.
**Inputs**
- ptr: A pointer to the start of the null-terminated byte sequence
- len: The length of the byte sequence
**Returns** A string created from the null-terminated byte pointer and length
*/
string_from_zero_terminated_ptr :: proc(ptr: ^byte, len: int) -> string {
s := transmute(string)mem.Raw_String{ptr, len}
s = truncate_to_byte(s, 0)
return s
}
/*
Gets the raw byte pointer for the start of a string `str`
**Inputs**
- str: The input string
**Returns** A pointer to the start of the string's bytes
*/
ptr_from_string :: proc(str: string) -> ^byte {
d := transmute(mem.Raw_String)str
return d.data
}
/*
Converts a string `str` to a cstring
**Inputs**
- str: The input string
WARNING: This is unsafe because the original string may not contain a null-byte.
**Returns** The converted cstring
*/
unsafe_string_to_cstring :: proc(str: string) -> cstring {
d := transmute(mem.Raw_String)str
return cstring(d.data)
}
/*
Truncates a string `str` at the first occurrence of char/byte `b`
**Inputs**
- str: The input string
- b: The byte to truncate the string at
NOTE: Failure to find the byte results in returning the entire string.
**Returns** The truncated string
*/
truncate_to_byte :: proc(str: string, b: byte) -> string {
n := index_byte(str, b)
if n < 0 {
n = len(str)
}
return str[:n]
}
/*
Truncates a string `str` at the first occurrence of rune `r` as a slice of the original, entire string if not found
**Inputs**
- str: The input string
- r: The rune to truncate the string at
**Returns** The truncated string
*/
truncate_to_rune :: proc(str: string, r: rune) -> string {
n := index_rune(str, r)
if n < 0 {
n = len(str)
}
return str[:n]
}
/*
Clones a byte array `s` and appends a null-byte
*Allocates Using Provided Allocator*
**Inputs**
- s: The byte array to be cloned
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: `#caller_location`)
**Returns** A cloned string from the byte array with a null-byte
*/
clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> string {
c := make([]byte, len(s)+1, allocator, loc)
copy(c, s)
c[len(s)] = 0
return string(c[:len(s)])
}
/*
Clones a cstring `s` as a string
*Allocates Using Provided Allocator*
**Inputs**
- s: The cstring to be cloned
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: `#caller_location`)
**Returns** A cloned string from the cstring
*/
clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> string {
return clone(string(s), allocator, loc)
}
/*
Clones a string from a byte pointer `ptr` and a byte length `len`
*Allocates Using Provided Allocator*
**Inputs**
- ptr: A pointer to the start of the byte sequence
- len: The length of the byte sequence
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: `#caller_location`)
NOTE: Same as `string_from_ptr`, but perform an additional `clone` operation
**Returns** A cloned string from the byte pointer and length
*/
clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> string {
s := string_from_ptr(ptr, len)
return clone(s, allocator, loc)
}
// Overloaded procedure to clone from a string, `[]byte`, `cstring` or a `^byte` + length
clone_from :: proc{
clone,
clone_from_bytes,
clone_from_cstring,
clone_from_ptr,
}
/*
Clones a string from a null-terminated cstring `ptr` and a byte length `len`
*Allocates Using Provided Allocator*
**Inputs**
- ptr: A pointer to the start of the null-terminated cstring
- len: The byte length of the cstring
- allocator: (default: context.allocator)
- loc: The caller location for debugging purposes (default: `#caller_location`)
NOTE: Truncates at the first null-byte encountered or the byte length.
**Returns** A cloned string from the null-terminated cstring and byte length
*/
clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> string {
s := string_from_ptr((^u8)(ptr), len)
s = truncate_to_byte(s, 0)
return clone(s, allocator, loc)
}
/*
Compares two strings, returning a value representing which one comes first lexicographically.
-1 for `lhs`; 1 for `rhs`, or 0 if they are equal.
**Inputs**
- lhs: First string for comparison
- rhs: Second string for comparison
**Returns** -1 if `lhs` comes first, 1 if `rhs` comes first, or 0 if they are equal
*/
compare :: proc(lhs, rhs: string) -> int {
return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs)
}
/*
Returns the byte offset of the rune `r` in the string `s`, -1 when not found
**Inputs**
- s: The input string
- r: The rune to search for
**Returns** The byte offset of the rune `r` in the string `s`, or -1 if not found
*/
contains_rune :: proc(s: string, r: rune) -> int {
for c, offset in s {
if c == r {
return offset
}
}
return -1
}
/*
Returns true when the string `substr` is contained inside the string `s`
**Inputs**
- s: The input string
- substr: The substring to search for
Example:
import "core:fmt"
import "core:strings"
strings_contains_example :: proc() {
fmt.println(strings.contains("testing", "test"))
fmt.println(strings.contains("testing", "ing"))
fmt.println(strings.contains("testing", "text"))
}
Output:
true
true
false
**Returns** `true` if `substr` is contained inside the string `s`, `false` otherwise
*/
contains :: proc(s, substr: string) -> bool {
return index(s, substr) >= 0
}
/*
Returns `true` when the string `s` contains any of the characters inside the string `chars`
**Inputs**
- s: The input string
- chars: The characters to search for
Example:
import "core:fmt"
import "core:strings"
strings_contains_any_example :: proc() {
fmt.println(strings.contains_any("test", "test"))
fmt.println(strings.contains_any("test", "ts"))
fmt.println(strings.contains_any("test", "et"))
fmt.println(strings.contains_any("test", "a"))
}
Output:
true
true
true
false
**Returns** `true` if the string `s` contains any of the characters in `chars`, `false` otherwise
*/
contains_any :: proc(s, chars: string) -> bool {
return index_any(s, chars) >= 0
}
/*
Returns the UTF-8 rune count of the string `s`
**Inputs**
- s: The input string
Example:
import "core:fmt"
import "core:strings"
strings_rune_count_example :: proc() {
fmt.println(strings.rune_count("test"))
fmt.println(strings.rune_count("testö")) // where len("testö") == 6
}
Output:
4
5
**Returns** The UTF-8 rune count of the string `s`
*/
rune_count :: proc(s: string) -> int {
return utf8.rune_count_in_string(s)
}
/*
Returns whether the strings `u` and `v` are the same alpha characters, ignoring different casings
Works with UTF-8 string content
**Inputs**
- u: The first string for comparison
- v: The second string for comparison
Example:
import "core:fmt"
import "core:strings"
strings_equal_fold_example :: proc() {
fmt.println(strings.equal_fold("test", "test"))
fmt.println(strings.equal_fold("Test", "test"))
fmt.println(strings.equal_fold("Test", "tEsT"))
fmt.println(strings.equal_fold("test", "tes"))
}
Output:
true
true
true
false
**Returns** `true` if the strings `u` and `v` are the same alpha characters (ignoring case)
*/
equal_fold :: proc(u, v: string) -> bool {
s, t := u, v
loop: for s != "" && t != "" {
sr, tr: rune
if s[0] < utf8.RUNE_SELF {
sr, s = rune(s[0]), s[1:]
} else {
r, size := utf8.decode_rune_in_string(s)
sr, s = r, s[size:]
}
if t[0] < utf8.RUNE_SELF {
tr, t = rune(t[0]), t[1:]
} else {
r, size := utf8.decode_rune_in_string(t)
tr, t = r, t[size:]
}
if tr == sr { // easy case
continue loop
}
if tr < sr {
tr, sr = sr, tr
}
if tr < utf8.RUNE_SELF {
switch sr {
case 'A'..='Z':
if tr == (sr+'a')-'A' {
continue loop
}
}
return false
}
// TODO(bill): Unicode folding
return false
}
return s == t
}
/*
Returns the prefix length common between strings `a` and `b`
**Inputs**
- a: The first input string
- b: The second input string
Example:
import "core:fmt"
import "core:strings"
strings_prefix_length_example :: proc() {
fmt.println(strings.prefix_length("testing", "test"))
fmt.println(strings.prefix_length("testing", "te"))
fmt.println(strings.prefix_length("telephone", "te"))
fmt.println(strings.prefix_length("testing", "est"))
}
Output:
4
2
2
0
**Returns** The prefix length common between strings `a` and `b`
*/
prefix_length :: proc(a, b: string) -> (n: int) {
_len := min(len(a), len(b))
// Scan for matches including partial codepoints.
#no_bounds_check for n < _len && a[n] == b[n] {
n += 1
}
// Now scan to ignore partial codepoints.
if n > 0 {
s := a[:n]
n = 0
for {
r0, w := utf8.decode_rune(s[n:])
if r0 != utf8.RUNE_ERROR {
n += w
} else {
break
}
}
}
return
}
/*
Determines if a string `s` starts with a given `prefix`
**Inputs**
- s: The string to check for the `prefix`
- prefix: The prefix to look for
Example:
import "core:fmt"
import "core:strings"
strings_has_prefix_example :: proc() {
fmt.println(strings.has_prefix("testing", "test"))
fmt.println(strings.has_prefix("testing", "te"))
fmt.println(strings.has_prefix("telephone", "te"))
fmt.println(strings.has_prefix("testing", "est"))
}
Output:
true
true
true
false
**Returns** `true` if the string `s` starts with the `prefix`, otherwise `false`
*/
has_prefix :: proc(s, prefix: string) -> bool {
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
}
/*
Determines if a string `s` ends with a given `suffix`
Example:
import "core:fmt"
import "core:strings"
strings_has_suffix_example :: proc() {
fmt.println(strings.has_suffix("todo.txt", ".txt"))
fmt.println(strings.has_suffix("todo.doc", ".txt"))
fmt.println(strings.has_suffix("todo.doc.txt", ".txt"))
}
Output:
true
false
true
**Inputs**
- s: The string to check for the `suffix`
- suffix: The suffix to look for
**Returns** `true` if the string `s` ends with the `suffix`, otherwise `false`
*/
has_suffix :: proc(s, suffix: string) -> bool {
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}
/*
Joins a slice of strings `a` with a `sep` string
*Allocates Using Provided Allocator*
Example:
import "core:fmt"
import "core:strings"
strings_join_example :: proc() {
a := [?]string { "a", "b", "c" }
fmt.println(strings.join(a[:], " "))
fmt.println(strings.join(a[:], "-"))
fmt.println(strings.join(a[:], "..."))
}
Output:
a b c
a-b-c
a...b...c
**Inputs**
- a: A slice of strings to join
- sep: The separator string
- allocator: (default is context.allocator)
**Returns** A combined string from the slice of strings `a` separated with the `sep` string
*/
join :: proc(a: []string, sep: string, allocator := context.allocator) -> string {
if len(a) == 0 {
return ""
}
n := len(sep) * (len(a) - 1)
for s in a {
n += len(s)
}
b := make([]byte, n, allocator)
i := copy(b, a[0])
for s in a[1:] {
i += copy(b[i:], sep)
i += copy(b[i:], s)
}
return string(b)
}
/*
Joins a slice of strings `a` with a `sep` string, returns an error on allocation failure
*Allocates Using Provided Allocator*
**Inputs**
- a: A slice of strings to join
- sep: The separator string
- allocator: (default is context.allocator)
**Returns**
- str: A combined string from the slice of strings `a` separated with the `sep` string
- err: An error if allocation failed, otherwise `nil`
*/
join_safe :: proc(a: []string, sep: string, allocator := context.allocator) -> (str: string, err: mem.Allocator_Error) {
if len(a) == 0 {
return "", nil
}
n := len(sep) * (len(a) - 1)
for s in a {
n += len(s)
}
b := make([]byte, n, allocator) or_return
i := copy(b, a[0])
for s in a[1:] {
i += copy(b[i:], sep)
i += copy(b[i:], s)
}
return string(b), nil
}
/*
Returns a combined string from the slice of strings `a` without a separator
*Allocates Using Provided Allocator*
**Inputs**
- a: A slice of strings to concatenate
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_concatenate_example :: proc() {
a := [?]string { "a", "b", "c" }
fmt.println(strings.concatenate(a[:]))
}
Output:
abc
**Returns** The concatenated string
*/
concatenate :: proc(a: []string, allocator := context.allocator) -> string {
if len(a) == 0 {
return ""
}
n := 0
for s in a {
n += len(s)
}
b := make([]byte, n, allocator)
i := 0
for s in a {
i += copy(b[i:], s)
}
return string(b)
}
/*
Returns a combined string from the slice of strings `a` without a separator, or an error if allocation fails
*Allocates Using Provided Allocator*
**Inputs**
- a: A slice of strings to concatenate
- allocator: (default is context.allocator)
**Returns** The concatenated string, and an error if allocation fails
*/
concatenate_safe :: proc(a: []string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) {
if len(a) == 0 {
return "", nil
}
n := 0
for s in a {
n += len(s)
}
b := make([]byte, n, allocator) or_return
i := 0
for s in a {
i += copy(b[i:], s)
}
return string(b), nil
}
/*
Returns a substring of the input string `s` with the specified rune offset and length
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string to cut
- rune_offset: The starting rune index (default is 0). In runes, not bytes.
- rune_length: The number of runes to include in the substring (default is 0, which returns the remainder of the string). In runes, not bytes.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_cut_example :: proc() {
strings.cut("some example text", 0, 4) // -> "some"
strings.cut("some example text", 2, 2) // -> "me"
strings.cut("some example text", 5, 7) // -> "example"
}
Output:
some
me
example
**Returns** The substring
*/
cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator) -> (res: string) {
s := s; rune_length := rune_length
context.allocator = allocator
// If we signal that we want the entire remainder (length <= 0) *and*
// the offset is zero, then we can early out by cloning the input
if rune_offset == 0 && rune_length <= 0 {
return clone(s)
}
// We need to know if we have enough runes to cover offset + length.
rune_count := utf8.rune_count_in_string(s)
// We're asking for a substring starting after the end of the input string.
// That's just an empty string.
if rune_offset >= rune_count {
return ""
}
// If we don't specify the length of the substring, use the remainder.
if rune_length <= 0 {
rune_length = rune_count - rune_offset
}
// We don't yet know how many bytes we need exactly.
// But we do know it's bounded by the number of runes * 4 bytes,
// and can be no more than the size of the input string.
bytes_needed := min(rune_length * 4, len(s))
buf := make([]u8, bytes_needed)
byte_offset := 0
for i := 0; i < rune_count; i += 1 {
_, w := utf8.decode_rune_in_string(s)
// If the rune is part of the substring, copy it to the output buffer.
if i >= rune_offset {
for j := 0; j < w; j += 1 {
buf[byte_offset+j] = s[j]
}
byte_offset += w
}
// We're done if we reach the end of the input string, *or*
// if we've reached a specified length in runes.
if rune_length > 0 {
if i == rune_offset + rune_length - 1 { break }
}
s = s[w:]
}
return string(buf[:byte_offset])
}
/*
Splits the input string `s` into a slice of substrings separated by the specified `sep` string
*Allocates Using Provided Allocator*
*Used Internally - Private Function*
**Inputs**
- s: The input string to split
- sep: The separator string
- sep_save: A flag determining if the separator should be saved in the resulting substrings
- n: The maximum number of substrings to return, returns `nil` without alloc when `n=0`
- allocator: (default is context.allocator)
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice of substrings
*/
@private
_split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string {
s, n := s_, n_
if n == 0 {
return nil
}
if sep == "" {
l := utf8.rune_count_in_string(s)
if n < 0 || n > l {
n = l
}
res := make([dynamic]string, n, allocator)
for i := 0; i < n-1; i += 1 {
_, w := utf8.decode_rune_in_string(s)
res[i] = s[:w]
s = s[w:]
}
if n > 0 {
res[n-1] = s
}
return res[:]
}
if n < 0 {
n = count(s, sep) + 1
}
res := make([dynamic]string, n, allocator)
n -= 1
i := 0
for ; i < n; i += 1 {
m := index(s, sep)
if m < 0 {
break
}
res[i] = s[:m+sep_save]
s = s[m+len(sep):]
}
res[i] = s
return res[:i+1]
}
/*
Splits a string into parts based on a separator.
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to split.
- sep: The separator string used to split the input string.
- allocator: (default is context.allocator).
Example:
import "core:fmt"
import "core:strings"
strings_split_example :: proc() {
s := "aaa.bbb.ccc.ddd.eee" // 5 parts
ss := strings.split(s, ".")
fmt.println(ss)
}
Output:
["aaa", "bbb", "ccc", "ddd", "eee"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice of strings, each representing a part of the split string.
*/
split :: proc(s, sep: string, allocator := context.allocator) -> []string {
return _split(s, sep, 0, -1, allocator)
}
/*
Splits a string into parts based on a separator. If n < count of seperators, the remainder of the string is returned in the last entry.
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to split.
- sep: The separator string used to split the input string.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_split_n_example :: proc() {
s := "aaa.bbb.ccc.ddd.eee" // 5 parts present
ss := strings.split_n(s, ".",3) // total of 3 wanted
fmt.println(ss)
}
Output:
["aaa", "bbb", "ccc.ddd.eee"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice of strings, each representing a part of the split string.
*/
split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
return _split(s, sep, 0, n, allocator)
}
/*
Splits a string into parts after the separator, retaining it in the substrings.
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to split.
- sep: The separator string used to split the input string.
- allocator: (default is context.allocator).
Example:
import "core:fmt"
import "core:strings"
strings_split_after_example :: proc() {
a := "aaa.bbb.ccc.ddd.eee" // 5 parts
aa := strings.split_after(a, ".")
fmt.println(aa)
}
Output:
["aaa.", "bbb.", "ccc.", "ddd.", "eee"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice of strings, each representing a part of the split string after the separator.
*/
split_after :: proc(s, sep: string, allocator := context.allocator) -> []string {
return _split(s, sep, len(sep), -1, allocator)
}
/*
Splits a string into a total of `n` parts after the separator.
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to split.
- sep: The separator string used to split the input string.
- n: The maximum number of parts to split the string into.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_split_after_n_example :: proc() {
a := "aaa.bbb.ccc.ddd.eee"
aa := strings.split_after_n(a, ".", 3)
fmt.println(aa)
}
Output:
["aaa.", "bbb.", "ccc.ddd.eee"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice of strings with `n` parts or fewer if there weren't
*/
split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
return _split(s, sep, len(sep), n, allocator)
}
/*
Searches for the first occurrence of `sep` in the given string and returns the substring
up to (but not including) the separator, as well as a boolean indicating success.
*Used Internally - Private Function*
**Inputs**
- s: Pointer to the input string, which is modified during the search.
- sep: The separator string to search for.
- sep_save: Number of characters from the separator to include in the result.
**Returns** A tuple containing the resulting substring and a boolean indicating success.
*/
@private
_split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) {
// stop once the string is empty or nil
if s == nil || len(s^) == 0 {
return
}
if sep == "" {
res = s[:]
ok = true
s^ = s[len(s):]
return
}
m := index(s^, sep)
if m < 0 {
// not found
res = s[:]
ok = res != ""
s^ = s[len(s):]
} else {
res = s[:m+sep_save]
ok = true
s^ = s[m+len(sep):]
}
return
}
/*
Splits the input string by the byte separator in an iterator fashion.
**Inputs**
- s: Pointer to the input string, which is modified during the search.
- sep: The byte separator to search for.
Example:
import "core:fmt"
import "core:strings"
strings_split_by_byte_iterator_example :: proc() {
text := "a.b.c.d.e"
for str in strings.split_by_byte_iterator(&text, '.') {
fmt.println(str) // every loop -> a b c d e
}
}
Output:
a
b
c
d
e
**Returns** A tuple containing the resulting substring and a boolean indicating success.
*/
split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) {
m := index_byte(s^, sep)
if m < 0 {
// not found
res = s[:]
ok = res != ""
s^ = {}
} else {
res = s[:m]
ok = true
s^ = s[m+1:]
}
return
}
/*
Splits the input string by the separator string in an iterator fashion.
Destructively consumes the original string until the end.
**Inputs**
- s: Pointer to the input string, which is modified during the search.
- sep: The separator string to search for.
Example:
import "core:fmt"
import "core:strings"
strings_split_iterator_example :: proc() {
text := "a.b.c.d.e"
for str in strings.split_iterator(&text, ".") {
fmt.println(str)
}
}
Output:
a
b
c
d
e
**Returns** A tuple containing the resulting substring and a boolean indicating success.
*/
split_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
return _split_iterator(s, sep, 0)
}
/*
Splits the input string after every separator string in an iterator fashion.
Destructively consumes the original string until the end.
**Inputs**
- s: Pointer to the input string, which is modified during the search.
- sep: The separator string to search for.
Example:
import "core:fmt"
import "core:strings"
strings_split_after_iterator_example :: proc() {
text := "a.b.c.d.e"
for str in strings.split_after_iterator(&text, ".") {
fmt.println(str)
}
}
Output:
a.
b.
c.
d.
e
**Returns** A tuple containing the resulting substring and a boolean indicating success.
*/
split_after_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
return _split_iterator(s, sep, len(sep))
}
/*
Trims the carriage return character from the end of the input string.
*Used Internally - Private Function*
**Inputs**
- s: The input string to trim.
**Returns** The trimmed string as a slice of the original.
*/
@(private)
_trim_cr :: proc(s: string) -> string {
n := len(s)
if n > 0 {
if s[n-1] == '\r' {
return s[:n-1]
}
}
return s
}
/*
Splits the input string at every line break `\n`.
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string to split.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_split_lines_example :: proc() {
a := "a\nb\nc\nd\ne"
b := strings.split_lines(a)
fmt.println(b)
}
Output:
["a", "b", "c", "d", "e"]
**Returns** A slice (allocated) of the split string (slices into original string)
*/
split_lines :: proc(s: string, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, 0, -1, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
Splits the input string at every line break `\n` for `n` parts.
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string to split.
- n: The number of parts to split into.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_split_lines_n_example :: proc() {
a := "a\nb\nc\nd\ne"
b := strings.split_lines_n(a, 3)
fmt.println(b)
}
Output:
["a", "b", "c\nd\ne"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice (allocated) of the split string (slices into original string)
*/
split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, 0, n, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
Splits the input string at every line break `\n` leaving the `\n` in the resulting strings.
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string to split.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_split_lines_after_example :: proc() {
a := "a\nb\nc\nd\ne"
b := strings.split_lines_after(a)
fmt.println(b)
}
Output:
["a\n", "b\n", "c\n", "d\n", "e"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice (allocated) of the split string (slices into original string), with `\n` included.
*/
split_lines_after :: proc(s: string, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, len(sep), -1, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
Splits the input string at every line break `\n` leaving the `\n` in the resulting strings.
Only runs for n parts.
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string to split.
- n: The number of parts to split into.
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_split_lines_after_n_example :: proc() {
a := "a\nb\nc\nd\ne"
b := strings.split_lines_after_n(a, 3)
fmt.println(b)
}
Output:
["a\n", "b\n", "c\nd\ne"]
NOTE: Allocation occurs for the array, the splits are all views of the original string.
**Returns** A slice (allocated) of the split string (slices into original string), with `\n` included.
*/
split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, len(sep), n, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
Splits the input string at every line break `\n`.
Returns the current split string every iteration until the string is consumed.
**Inputs**
- s: Pointer to the input string, which is modified during the search.
Example:
import "core:fmt"
import "core:strings"
strings_split_lines_iterator_example :: proc() {
text := "a\nb\nc\nd\ne"
for str in strings.split_lines_iterator(&text) {
fmt.print(str) // every loop -> a b c d e
}
}
Output:
abcde
**Returns** A tuple containing the resulting substring and a boolean indicating success.
*/
split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
sep :: "\n"
line = _split_iterator(s, sep, 0) or_return
return _trim_cr(line), true
}
/*
Splits the input string at every line break `\n`.
Returns the current split string with line breaks included every iteration until the string is consumed.
**Inputs**
- s: Pointer to the input string, which is modified during the search.
Example:
import "core:fmt"
import "core:strings"
strings_split_lines_after_iterator_example :: proc() {
text := "a\nb\nc\nd\ne"
for str in strings.split_lines_after_iterator(&text) {
fmt.print(str) // every loop -> a\n b\n c\n d\n e\n
}
}
Output:
a
b
c
d
e
**Returns** A tuple containing the resulting substring with line breaks included and a boolean indicating success.
*/
split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
sep :: "\n"
line = _split_iterator(s, sep, len(sep)) or_return
return _trim_cr(line), true
}
/*
Returns the byte offset of the first byte `c` in the string s it finds, -1 when not found.
NOTE: Can't find UTF-8 based runes.
**Inputs**
- s: The input string to search in.
- c: The byte to search for.
Example:
import "core:fmt"
import "core:strings"
strings_index_byte_example :: proc() {
fmt.println(strings.index_byte("test", 't'))
fmt.println(strings.index_byte("test", 'e'))
fmt.println(strings.index_byte("test", 'x'))
fmt.println(strings.index_byte("teäst", 'ä'))
}
Output:
0
1
-1
-1
**Returns** The byte offset of the first occurrence of `c` in `s`, or -1 if not found.
*/
index_byte :: proc(s: string, c: byte) -> int {
for i := 0; i < len(s); i += 1 {
if s[i] == c {
return i
}
}
return -1
}
/*
Returns the byte offset of the last byte `c` in the string `s`, -1 when not found.
NOTE: Can't find UTF-8 based runes.
Example:
import "core:fmt"
import "core:strings"
strings_last_index_byte_example :: proc() {
fmt.println(strings.last_index_byte("test", 't'))
fmt.println(strings.last_index_byte("test", 'e'))
fmt.println(strings.last_index_byte("test", 'x'))
fmt.println(strings.last_index_byte("teäst", 'ä'))
}
Output:
3
1
-1
-1
**Returns** The byte offset of the last occurrence of `c` in `s`, or -1 if not found.
*/
last_index_byte :: proc(s: string, c: byte) -> int {
for i := len(s)-1; i >= 0; i -= 1 {
if s[i] == c {
return i
}
}
return -1
}
/*
Returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found.
Invalid runes return -1
Example:
import "core:fmt"
import "core:strings"
strings_index_rune_example :: proc() {
fmt.println(strings.index_rune("abcädef", 'x'))
fmt.println(strings.index_rune("abcädef", 'a'))
fmt.println(strings.index_rune("abcädef", 'b'))
fmt.println(strings.index_rune("abcädef", 'c'))
fmt.println(strings.index_rune("abcädef", 'ä'))
fmt.println(strings.index_rune("abcädef", 'd'))
fmt.println(strings.index_rune("abcädef", 'e'))
fmt.println(strings.index_rune("abcädef", 'f'))
}
Output:
-1
0
1
2
5
6
7
**Returns** The byte offset of the first occurrence of `r` in `s`, or -1 if not found.
*/
index_rune :: proc(s: string, r: rune) -> int {
switch {
case u32(r) < utf8.RUNE_SELF:
return index_byte(s, byte(r))
case r == utf8.RUNE_ERROR:
for c, i in s {
if c == utf8.RUNE_ERROR {
return i
}
}
return -1
case !utf8.valid_rune(r):
return -1
}
b, w := utf8.encode_rune(r)
return index(s, string(b[:w]))
}
@private PRIME_RABIN_KARP :: 16777619
/*
Returns the byte offset of the string `substr` in the string `s`, -1 when not found.
Example:
import "core:fmt"
import "core:strings"
strings_index_example :: proc() {
fmt.println(strings.index("test", "t"))
fmt.println(strings.index("test", "te"))
fmt.println(strings.index("test", "st"))
fmt.println(strings.index("test", "tt"))
}
Output:
0
0
2
-1
**Returns** The byte offset of the first occurrence of `substr` in `s`, or -1 if not found.
*/
index :: proc(s, substr: string) -> int {
hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
for i := 0; i < len(s); i += 1 {
hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
pow *= sq
}
sq *= sq
}
return
}
n := len(substr)
switch {
case n == 0:
return 0
case n == 1:
return index_byte(s, substr[0])
case n == len(s):
if s == substr {
return 0
}
return -1
case n > len(s):
return -1
}
hash, pow := hash_str_rabin_karp(substr)
h: u32
for i := 0; i < n; i += 1 {
h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && s[:n] == substr {
return 0
}
for i := n; i < len(s); /**/ {
h *= PRIME_RABIN_KARP
h += u32(s[i])
h -= pow * u32(s[i-n])
i += 1
if h == hash && s[i-n:i] == substr {
return i - n
}
}
return -1
}
/*
Returns the last byte offset of the string `substr` in the string `s`, -1 when not found.
Example:
import "core:fmt"
import "core:strings"
strings_last_index_example :: proc() {
fmt.println(strings.last_index("test", "t"))
fmt.println(strings.last_index("test", "te"))
fmt.println(strings.last_index("test", "st"))
fmt.println(strings.last_index("test", "tt"))
}
Output:
3
0
2
-1
**Returns** The byte offset of the last occurrence of `substr` in `s`, or -1 if not found.
*/
last_index :: proc(s, substr: string) -> int {
hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
for i := len(s) - 1; i >= 0; i -= 1 {
hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
pow *= sq
}
sq *= sq
}
return
}
n := len(substr)
switch {
case n == 0:
return len(s)
case n == 1:
return last_index_byte(s, substr[0])
case n == len(s):
return 0 if substr == s else -1
case n > len(s):
return -1
}
hash, pow := hash_str_rabin_karp_reverse(substr)
last := len(s) - n
h: u32
for i := len(s)-1; i >= last; i -= 1 {
h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && s[last:] == substr {
return last
}
for i := last-1; i >= 0; i -= 1 {
h *= PRIME_RABIN_KARP
h += u32(s[i])
h -= pow * u32(s[i+n])
if h == hash && s[i:i+n] == substr {
return i
}
}
return -1
}
/*
Returns the index of any first char of `chars` found in `s`, -1 if not found.
Example:
import "core:fmt"
import "core:strings"
strings_index_any_example :: proc() {
fmt.println(strings.index_any("test", "s"))
fmt.println(strings.index_any("test", "se"))
fmt.println(strings.index_any("test", "et"))
fmt.println(strings.index_any("test", "set"))
fmt.println(strings.index_any("test", "x"))
}
Output:
2
1
0
0
-1
**Returns** The index of the first character of `chars` found in `s`, or -1 if not found.
*/
index_any :: proc(s, chars: string) -> int {
if chars == "" {
return -1
}
if len(chars) == 1 {
r := rune(chars[0])
if r >= utf8.RUNE_SELF {
r = utf8.RUNE_ERROR
}
return index_rune(s, r)
}
if len(s) > 8 {
if as, ok := ascii_set_make(chars); ok {
for i in 0..<len(s) {
if ascii_set_contains(as, s[i]) {
return i
}
}
return -1
}
}
for c, i in s {
if index_rune(chars, c) >= 0 {
return i
}
}
return -1
}
/*
Finds the last occurrence of any character in `chars` within `s`. Iterates in reverse.
**Inputs**
- s: The string to search in
- chars: The characters to look for
Example:
import "core:fmt"
import "core:strings"
strings_last_index_any_example :: proc() {
fmt.println(strings.last_index_any("test", "s"))
fmt.println(strings.last_index_any("test", "se"))
fmt.println(strings.last_index_any("test", "et"))
fmt.println(strings.last_index_any("test", "set"))
fmt.println(strings.last_index_any("test", "x"))
}
Output:
2
2
3
3
-1
**Returns** The index of the last matching character, or -1 if not found
*/
last_index_any :: proc(s, chars: string) -> int {
if chars == "" {
return -1
}
if len(s) == 1 {
r := rune(s[0])
if r >= utf8.RUNE_SELF {
r = utf8.RUNE_ERROR
}
return index_rune(chars, r)
}
if len(s) > 8 {
if as, ok := ascii_set_make(chars); ok {
for i := len(s)-1; i >= 0; i -= 1 {
if ascii_set_contains(as, s[i]) {
return i
}
}
return -1
}
}
if len(chars) == 1 {
r := rune(chars[0])
if r >= utf8.RUNE_SELF {
r = utf8.RUNE_ERROR
}
for i := len(s); i > 0; /**/ {
c, w := utf8.decode_last_rune_in_string(s[:i])
i -= w
if c == r {
return i
}
}
return -1
}
for i := len(s); i > 0; /**/ {
r, w := utf8.decode_last_rune_in_string(s[:i])
i -= w
if index_rune(chars, r) >= 0 {
return i
}
}
return -1
}
/*
Finds the first occurrence of any substring in `substrs` within `s`
**Inputs**
- s: The string to search in
- substrs: The substrings to look for
**Returns** A tuple containing the index of the first matching substring, and its length (width)
*/
index_multi :: proc(s: string, substrs: []string) -> (idx: int, width: int) {
idx = -1
if s == "" || len(substrs) <= 0 {
return
}
// disallow "" substr
for substr in substrs {
if len(substr) == 0 {
return
}
}
lowest_index := len(s)
found := false
for substr in substrs {
if i := index(s, substr); i >= 0 {
if i < lowest_index {
lowest_index = i
width = len(substr)
found = true
}
}
}
if found {
idx = lowest_index
}
return
}
/*
Counts the number of non-overlapping occurrences of `substr` in `s`
**Inputs**
- s: The string to search in
- substr: The substring to count
Example:
import "core:fmt"
import "core:strings"
strings_count_example :: proc() {
fmt.println(strings.count("abbccc", "a"))
fmt.println(strings.count("abbccc", "b"))
fmt.println(strings.count("abbccc", "c"))
fmt.println(strings.count("abbccc", "ab"))
fmt.println(strings.count("abbccc", " "))
}
Output:
1
2
3
1
0
**Returns** The number of occurrences of `substr` in `s`, returns the rune_count + 1 of the string `s` on empty `substr`
*/
count :: proc(s, substr: string) -> int {
if len(substr) == 0 { // special case
return rune_count(s) + 1
}
if len(substr) == 1 {
c := substr[0]
switch len(s) {
case 0:
return 0
case 1:
return int(s[0] == c)
}
n := 0
for i := 0; i < len(s); i += 1 {
if s[i] == c {
n += 1
}
}
return n
}
// TODO(bill): Use a non-brute for approach
n := 0
str := s
for {
i := index(str, substr)
if i == -1 {
return n
}
n += 1
str = str[i+len(substr):]
}
return n
}
/*
Repeats the string `s` `count` times, concatenating the result
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to repeat
- count: The number of times to repeat `s`
- allocator: (default is context.allocator)
WARNING: Panics if count < 0
Example:
import "core:fmt"
import "core:strings"
strings_repeat_example :: proc() {
fmt.println(strings.repeat("abc", 2))
}
Output:
abcabc
**Returns** The concatenated repeated string
*/
repeat :: proc(s: string, count: int, allocator := context.allocator) -> string {
if count < 0 {
panic("strings: negative repeat count")
} else if count > 0 && (len(s)*count)/count != len(s) {
panic("strings: repeat count will cause an overflow")
}
b := make([]byte, len(s)*count, allocator)
i := copy(b, s)
for i < len(b) { // 2^N trick to reduce the need to copy
copy(b[i:], b[:i])
i *= 2
}
return string(b)
}
/*
Replaces all occurrences of `old` in `s` with `new`
*Allocates Using Provided Allocator*
**Inputs**
- s: The string to modify
- old: The substring to replace
- new: The substring to replace `old` with
- allocator: The allocator to use for the new string (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_replace_all_example :: proc() {
fmt.println(strings.replace_all("xyzxyz", "xyz", "abc"))
fmt.println(strings.replace_all("xyzxyz", "abc", "xyz"))
fmt.println(strings.replace_all("xyzxyz", "xy", "z"))
}
Output:
abcabc true
xyzxyz false
zzzz true
**Returns** A tuple containing the modified string and a boolean indicating if an allocation occurred during the replacement
*/
replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
return replace(s, old, new, -1, allocator)
}
/*
Replaces n instances of old in the string s with the new string
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- old: The substring to be replaced
- new: The replacement string
- n: The number of instances to replace (if `n < 0`, no limit on the number of replacements)
- allocator: (default: context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_replace_example :: proc() {
fmt.println(strings.replace("xyzxyz", "xyz", "abc", 2))
fmt.println(strings.replace("xyzxyz", "xyz", "abc", 1))
fmt.println(strings.replace("xyzxyz", "abc", "xyz", -1))
fmt.println(strings.replace("xyzxyz", "xy", "z", -1))
}
Output:
abcabc true
abcxyz true
xyzxyz false
zzzz true
**Returns** A tuple containing the modified string and a boolean indicating if an allocation occurred during the replacement
*/
replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
if old == new || n == 0 {
was_allocation = false
output = s
return
}
byte_count := n
if m := count(s, old); m == 0 {
was_allocation = false
output = s
return
} else if n < 0 || m < n {
byte_count = m
}
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
was_allocation = true
w := 0
start := 0
for i := 0; i < byte_count; i += 1 {
j := start
if len(old) == 0 {
if i > 0 {
_, width := utf8.decode_rune_in_string(s[start:])
j += width
}
} else {
j += index(s[start:], old)
}
w += copy(t[w:], s[start:j])
w += copy(t[w:], new)
start = j + len(old)
}
w += copy(t[w:], s[start:])
output = string(t[0:w])
return
}
/*
Removes the key string `n` times from the `s` string
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- key: The substring to be removed
- n: The number of instances to remove (if `n < 0`, no limit on the number of removes)
- allocator: (default: context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_remove_example :: proc() {
fmt.println(strings.remove("abcabc", "abc", 1))
fmt.println(strings.remove("abcabc", "abc", -1))
fmt.println(strings.remove("abcabc", "a", -1))
fmt.println(strings.remove("abcabc", "x", -1))
}
Output:
abc true
true
bcbc true
abcabc false
**Returns** A tuple containing the modified string and a boolean indicating if an allocation occurred during the removal
*/
remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
return replace(s, key, "", n, allocator)
}
/*
Removes all the `key` string instances from the `s` string
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- key: The substring to be removed
- allocator: (default: context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_remove_all_example :: proc() {
fmt.println(strings.remove_all("abcabc", "abc"))
fmt.println(strings.remove_all("abcabc", "a"))
fmt.println(strings.remove_all("abcabc", "x"))
}
Output:
true
bcbc true
abcabc false
**Returns** A tuple containing the modified string and a boolean indicating if an allocation occurred during the removal
*/
remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
return remove(s, key, -1, allocator)
}
// Returns true if is an ASCII space character ('\t', '\n', '\v', '\f', '\r', ' ')
@(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true}
// Returns true when the `r` rune is '\t', '\n', '\v', '\f', '\r' or ' '
is_ascii_space :: proc(r: rune) -> bool {
if r < utf8.RUNE_SELF {
return _ascii_space[u8(r)]
}
return false
}
// Returns true if the `r` rune is any ASCII or UTF-8 based whitespace character
is_space :: proc(r: rune) -> bool {
if r < 0x2000 {
switch r {
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
return true
}
} else {
if r <= 0x200a {
return true
}
switch r {
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
return true
}
}
return false
}
// Returns true if the `r` rune is a null-byte (`0x0`)
is_null :: proc(r: rune) -> bool {
return r == 0x0000
}
/*
Find the index of the first rune `r` in string `s` for which procedure `p` returns the same as truth, or -1 if no such rune appears.
**Inputs**
- s: The input string
- p: A procedure that takes a rune and returns a boolean
- truth: The boolean value to be matched (default: `true`)
Example:
import "core:fmt"
import "core:strings"
strings_index_proc_example :: proc() {
call :: proc(r: rune) -> bool {
return r == 'a'
}
fmt.println(strings.index_proc("abcabc", call))
fmt.println(strings.index_proc("cbacba", call))
fmt.println(strings.index_proc("cbacba", call, false))
fmt.println(strings.index_proc("abcabc", call, false))
fmt.println(strings.index_proc("xyz", call))
}
Output:
0
2
0
1
-1
**Returns** The index of the first matching rune, or -1 if no match was found
*/
index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
for r, i in s {
if p(r) == truth {
return i
}
}
return -1
}
// Same as `index_proc`, but the procedure p takes a raw pointer for state
index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
for r, i in s {
if p(state, r) == truth {
return i
}
}
return -1
}
// Finds the index of the *last* rune in the string s for which the procedure p returns the same value as truth
last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
r, size := utf8.decode_last_rune_in_string(s[:i])
i -= size
if p(r) == truth {
return i
}
}
return -1
}
// Same as `index_proc_with_state`, runs through the string in reverse
last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
r, size := utf8.decode_last_rune_in_string(s[:i])
i -= size
if p(state, r) == truth {
return i
}
}
return -1
}
/*
Trims the input string `s` from the left until the procedure `p` returns false
**Inputs**
- s: The input string
- p: A procedure that takes a rune and returns a boolean
Example:
import "core:fmt"
import "core:strings"
strings_trim_left_proc_example :: proc() {
find :: proc(r: rune) -> bool {
return r != 'i'
}
strings.trim_left_proc("testing", find)
}
Output:
ing
**Returns** The trimmed string as a slice of the original
*/
trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
i := index_proc(s, p, false)
if i == -1 {
return ""
}
return s[i:]
}
/*
Trims the input string `s` from the left until the procedure `p` with state returns false
**Inputs**
- s: The input string
- p: A procedure that takes a raw pointer and a rune and returns a boolean
- state: The raw pointer to be passed to the procedure `p`
**Returns** The trimmed string as a slice of the original
*/
trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
i := index_proc_with_state(s, p, state, false)
if i == -1 {
return ""
}
return s[i:]
}
/*
Trims the input string `s` from the right until the procedure `p` returns `false`
**Inputs**
- s: The input string
- p: A procedure that takes a rune and returns a boolean
Example:
import "core:fmt"
import "core:strings"
strings_trim_right_proc_example :: proc() {
find :: proc(r: rune) -> bool {
return r != 't'
}
fmt.println(strings.trim_right_proc("testing", find))
}
Output:
test
**Returns** The trimmed string as a slice of the original
*/
trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
i := last_index_proc(s, p, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
_, w := utf8.decode_rune_in_string(s[i:])
i += w
} else {
i += 1
}
return s[0:i]
}
/*
Trims the input string `s` from the right until the procedure `p` with state returns `false`
**Inputs**
- s: The input string
- p: A procedure that takes a raw pointer and a rune and returns a boolean
- state: The raw pointer to be passed to the procedure `p`
**Returns** The trimmed string as a slice of the original, empty when no match
*/
trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
i := last_index_proc_with_state(s, p, state, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
_, w := utf8.decode_rune_in_string(s[i:])
i += w
} else {
i += 1
}
return s[0:i]
}
// Procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
if state == nil {
return false
}
cutset := (^string)(state)^
for c in cutset {
if r == c {
return true
}
}
return false
}
/*
Trims the cutset string from the `s` string
**Inputs**
- s: The input string
- cutset: The set of characters to be trimmed from the left of the input string
**Returns** The trimmed string as a slice of the original
*/
trim_left :: proc(s: string, cutset: string) -> string {
if s == "" || cutset == "" {
return s
}
state := cutset
return trim_left_proc_with_state(s, is_in_cutset, &state)
}
/*
Trims the cutset string from the `s` string from the right
**Inputs**
- s: The input string
- cutset: The set of characters to be trimmed from the right of the input string
**Returns** The trimmed string as a slice of the original
*/
trim_right :: proc(s: string, cutset: string) -> string {
if s == "" || cutset == "" {
return s
}
state := cutset
return trim_right_proc_with_state(s, is_in_cutset, &state)
}
/*
Trims the cutset string from the `s` string, both from left and right
**Inputs**
- s: The input string
- cutset: The set of characters to be trimmed from both sides of the input string
**Returns** The trimmed string as a slice of the original
*/
trim :: proc(s: string, cutset: string) -> string {
return trim_right(trim_left(s, cutset), cutset)
}
/*
Trims until a valid non-space rune from the left, "\t\txyz\t\t" -> "xyz\t\t"
**Inputs**
- s: The input string
**Returns** The trimmed string as a slice of the original
*/
trim_left_space :: proc(s: string) -> string {
return trim_left_proc(s, is_space)
}
/*
Trims from the right until a valid non-space rune, "\t\txyz\t\t" -> "\t\txyz"
**Inputs**
- s: The input string
**Returns** The trimmed string as a slice of the original
*/
trim_right_space :: proc(s: string) -> string {
return trim_right_proc(s, is_space)
}
/*
Trims from both sides until a valid non-space rune, "\t\txyz\t\t" -> "xyz"
**Inputs**
- s: The input string
**Returns** The trimmed string as a slice of the original
*/
trim_space :: proc(s: string) -> string {
return trim_right_space(trim_left_space(s))
}
/*
Trims null runes from the left, "\x00\x00testing\x00\x00" -> "testing\x00\x00"
**Inputs**
- s: The input string
**Returns** The trimmed string as a slice of the original
*/
trim_left_null :: proc(s: string) -> string {
return trim_left_proc(s, is_null)
}
/*
Trims null runes from the right, "\x00\x00testing\x00\x00" -> "\x00\x00testing"
**Inputs**
- s: The input string
**Returns** The trimmed string as a slice of the original
*/
trim_right_null :: proc(s: string) -> string {
return trim_right_proc(s, is_null)
}
/*
Trims null runes from both sides, "\x00\x00testing\x00\x00" -> "testing"
**Inputs**
- s: The input string
**Returns** The trimmed string as a slice of the original
*/
trim_null :: proc(s: string) -> string {
return trim_right_null(trim_left_null(s))
}
/*
Trims a `prefix` string from the start of the `s` string and returns the trimmed string
**Inputs**
- s: The input string
- prefix: The prefix string to be removed
Example:
import "core:fmt"
import "core:strings"
strings_trim_prefix_example :: proc() {
fmt.println(strings.trim_prefix("testing", "test"))
fmt.println(strings.trim_prefix("testing", "abc"))
}
Output:
ing
testing
**Returns** The trimmed string as a slice of original, or the input string if no prefix was found
*/
trim_prefix :: proc(s, prefix: string) -> string {
if has_prefix(s, prefix) {
return s[len(prefix):]
}
return s
}
/*
Trims a `suffix` string from the end of the `s` string and returns the trimmed string
**Inputs**
- s: The input string
- suffix: The suffix string to be removed
Example:
import "core:fmt"
import "core:strings"
strings_trim_suffix_example :: proc() {
fmt.println(strings.trim_suffix("todo.txt", ".txt"))
fmt.println(strings.trim_suffix("todo.doc", ".txt"))
}
Output:
todo
todo.doc
**Returns** The trimmed string as a slice of original, or the input string if no suffix was found
*/
trim_suffix :: proc(s, suffix: string) -> string {
if has_suffix(s, suffix) {
return s[:len(s)-len(suffix)]
}
return s
}
/*
Splits the input string `s` by all possible `substrs` and returns an allocated array of strings
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- substrs: An array of substrings used for splitting
- allocator: (default is context.allocator)
NOTE: Allocation occurs for the array, the splits are all views of the original string.
Example:
import "core:fmt"
import "core:strings"
strings_split_multi_example :: proc() {
splits := [?]string { "---", "~~~", ".", "_", "," }
res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:])
fmt.println(res) // -> [testing, this, out, nice, done, last]
}
Output:
["testing", "this", "out", "nice", "done", "last"]
**Returns** An array of strings, or nil on empty substring or no matches
*/
split_multi :: proc(s: string, substrs: []string, allocator := context.allocator) -> []string #no_bounds_check {
if s == "" || len(substrs) <= 0 {
return nil
}
// disallow "" substr
for substr in substrs {
if len(substr) == 0 {
return nil
}
}
// calculate the needed len of `results`
n := 1
for it := s; len(it) > 0; {
i, w := index_multi(it, substrs)
if i < 0 {
break
}
n += 1
it = it[i+w:]
}
results := make([dynamic]string, 0, n, allocator)
{
it := s
for len(it) > 0 {
i, w := index_multi(it, substrs)
if i < 0 {
break
}
part := it[:i]
append(&results, part)
it = it[i+w:]
}
append(&results, it)
}
assert(len(results) == n)
return results[:]
}
/*
Splits the input string `s` by all possible `substrs` in an iterator fashion. The full string is returned if no match.
**Inputs**
- it: A pointer to the input string
- substrs: An array of substrings used for splitting
Example:
import "core:fmt"
import "core:strings"
strings_split_multi_iterate_example :: proc() {
it := "testing,this.out_nice---done~~~last"
splits := [?]string { "---", "~~~", ".", "_", "," }
for str in strings.split_multi_iterate(&it, splits[:]) {
fmt.println(str)
}
}
Output:
testing
this
out
nice
done
last
**Returns** A tuple containing the split string and a boolean indicating success or failure
*/
split_multi_iterate :: proc(it: ^string, substrs: []string) -> (res: string, ok: bool) #no_bounds_check {
if it == nil || len(it) == 0 || len(substrs) <= 0 {
return
}
// disallow "" substr
for substr in substrs {
if len(substr) == 0 {
return
}
}
// calculate the needed len of `results`
i, w := index_multi(it^, substrs)
if i >= 0 {
res = it[:i]
it^ = it[i+w:]
} else {
// last value
res = it^
it^ = it[len(it):]
}
ok = true
return
}
/*
Replaces invalid UTF-8 characters in the input string with a specified replacement string. Adjacent invalid bytes are only replaced once.
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- replacement: The string used to replace invalid UTF-8 characters
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_scrub_example :: proc() {
text := "Hello\xC0\x80World"
fmt.println(strings.scrub(text, "?")) // -> "Hello?World"
}
Output:
Hello?
**Returns** A new string with invalid UTF-8 characters replaced
*/
scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string {
str := s
b: Builder
builder_init(&b, 0, len(s), allocator)
has_error := false
cursor := 0
origin := str
for len(str) > 0 {
r, w := utf8.decode_rune_in_string(str)
if r == utf8.RUNE_ERROR {
if !has_error {
has_error = true
write_string(&b, origin[:cursor])
}
} else if has_error {
has_error = false
write_string(&b, replacement)
origin = origin[cursor:]
cursor = 0
}
cursor += w
str = str[w:]
}
return to_string(b)
}
/*
Reverses the input string `s`
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_reverse_example :: proc() {
a := "abcxyz"
b := strings.reverse(a)
fmt.println(a, b)
}
Output:
abcxyz zyxcba
**Returns** A reversed version of the input string
*/
reverse :: proc(s: string, allocator := context.allocator) -> string {
str := s
n := len(str)
buf := make([]byte, n)
i := n
for len(str) > 0 {
_, w := utf8.decode_rune_in_string(str)
i -= w
copy(buf[i:], str[:w])
str = str[w:]
}
return string(buf)
}
/*
Expands the input string by replacing tab characters with spaces to align to a specified tab size
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- tab_size: The number of spaces to use for each tab character
- allocator: (default is context.allocator)
Example:
import "core:fmt"
import "core:strings"
strings_expand_tabs_example :: proc() {
text := "abc1\tabc2\tabc3"
fmt.println(strings.expand_tabs(text, 4))
}
Output:
abc1 abc2 abc3
WARNING: Panics if tab_size <= 0
**Returns** A new string with tab characters expanded to the specified tab size
*/
expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string {
if tab_size <= 0 {
panic("tab size must be positive")
}
if s == "" {
return ""
}
b: Builder
builder_init(&b, allocator)
writer := to_writer(&b)
str := s
column: int
for len(str) > 0 {
r, w := utf8.decode_rune_in_string(str)
if r == '\t' {
expand := tab_size - column%tab_size
for i := 0; i < expand; i += 1 {
io.write_byte(writer, ' ')
}
column += expand
} else {
if r == '\n' {
column = 0
} else {
column += w
}
io.write_rune(writer, r)
}
str = str[w:]
}
return to_string(b)
}
/*
Splits the input string `str` by the separator `sep` string and returns 3 parts. The values are slices of the original string.
**Inputs**
- str: The input string
- sep: The separator string
Example:
import "core:fmt"
import "core:strings"
strings_partition_example :: proc() {
text := "testing this out"
strings.partition(text, " this ") // -> head: "testing", match: " this ", tail: "out"
strings.partition(text, "hi") // -> head: "testing t", match: "hi", tail: "s out"
strings.partition(text, "xyz") // -> head: "testing this out", match: "", tail: ""
}
Output:
testing this out
testing t hi s out
testing this out
**Returns** A tuple with `head` (before the split), `match` (the separator), and `tail` (the end of the split) strings
*/
partition :: proc(str, sep: string) -> (head, match, tail: string) {
i := index(str, sep)
if i == -1 {
head = str
return
}
head = str[:i]
match = str[i:i+len(sep)]
tail = str[i+len(sep):]
return
}
// Alias for centre_justify
center_justify :: centre_justify // NOTE(bill): Because Americans exist
/*
Centers the input string within a field of specified length by adding pad string on both sides, if its length is less than the target length.
*Allocates Using Provided Allocator*
**Inputs**
- str: The input string
- length: The desired length of the centered string, in runes
- pad: The string used for padding on both sides
- allocator: (default is context.allocator)
**Returns** A new string centered within a field of the specified length
*/
centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
n := rune_count(str)
if n >= length || pad == "" {
return clone(str, allocator)
}
remains := length-n
pad_len := rune_count(pad)
b: Builder
builder_init(&b, allocator)
builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad))
w := to_writer(&b)
write_pad_string(w, pad, pad_len, remains/2)
io.write_string(w, str)
write_pad_string(w, pad, pad_len, (remains+1)/2)
return to_string(b)
}
/*
Left-justifies the input string within a field of specified length by adding pad string on the right side, if its length is less than the target length.
*Allocates Using Provided Allocator*
**Inputs**
- str: The input string
- length: The desired length of the left-justified string
- pad: The string used for padding on the right side
- allocator: (default is context.allocator)
**Returns** A new string left-justified within a field of the specified length
*/
left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
n := rune_count(str)
if n >= length || pad == "" {
return clone(str, allocator)
}
remains := length-n
pad_len := rune_count(pad)
b: Builder
builder_init(&b, allocator)
builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad))
w := to_writer(&b)
io.write_string(w, str)
write_pad_string(w, pad, pad_len, remains)
return to_string(b)
}
/*
Right-justifies the input string within a field of specified length by adding pad string on the left side, if its length is less than the target length.
*Allocates Using Provided Allocator*
**Inputs**
- str: The input string
- length: The desired length of the right-justified string
- pad: The string used for padding on the left side
- allocator: (default is context.allocator)
**Returns** A new string right-justified within a field of the specified length
*/
right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
n := rune_count(str)
if n >= length || pad == "" {
return clone(str, allocator)
}
remains := length-n
pad_len := rune_count(pad)
b: Builder
builder_init(&b, allocator)
builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad))
w := to_writer(&b)
write_pad_string(w, pad, pad_len, remains)
io.write_string(w, str)
return to_string(b)
}
/*
Writes a given pad string a specified number of times to an `io.Writer`
**Inputs**
- w: The io.Writer to write the pad string to
- pad: The pad string to be written
- pad_len: The length of the pad string, in runes
- remains: The number of times to write the pad string, in runes
*/
@private
write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) {
repeats := remains / pad_len
for i := 0; i < repeats; i += 1 {
io.write_string(w, pad)
}
n := remains % pad_len
p := pad
for i := 0; i < n; i += 1 {
r, width := utf8.decode_rune_in_string(p)
io.write_rune(w, r)
p = p[width:]
}
}
/*
Splits a string into a slice of substrings at each instance of one or more consecutive white space characters, as defined by `unicode.is_space`
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- allocator: (default is context.allocator)
**Returns** A slice of substrings of the input string, or an empty slice if the input string only contains white space
*/
fields :: proc(s: string, allocator := context.allocator) -> []string #no_bounds_check {
n := 0
was_space := 1
set_bits := u8(0)
// check to see
for i in 0..<len(s) {
r := s[i]
set_bits |= r
is_space := int(_ascii_space[r])
n += was_space & ~is_space
was_space = is_space
}
if set_bits >= utf8.RUNE_SELF {
return fields_proc(s, unicode.is_space, allocator)
}
if n == 0 {
return nil
}
a := make([]string, n, allocator)
na := 0
field_start := 0
i := 0
for i < len(s) && _ascii_space[s[i]] {
i += 1
}
field_start = i
for i < len(s) {
if !_ascii_space[s[i]] {
i += 1
continue
}
a[na] = s[field_start : i]
na += 1
i += 1
for i < len(s) && _ascii_space[s[i]] {
i += 1
}
field_start = i
}
if field_start < len(s) {
a[na] = s[field_start:]
}
return a
}
/*
Splits a string into a slice of substrings at each run of unicode code points `r` satisfying the predicate `f(r)`
*Allocates Using Provided Allocator*
**Inputs**
- s: The input string
- f: A predicate function to determine the split points
- allocator: (default is context.allocator)
NOTE: fields_proc makes no guarantee about the order in which it calls `f(r)`, it assumes that `f` always returns the same value for a given `r`
**Returns** A slice of substrings of the input string, or an empty slice if all code points in the input string satisfy the predicate or if the input string is empty
*/
fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator) -> []string #no_bounds_check {
substrings := make([dynamic]string, 0, 32, allocator)
start, end := -1, -1
for r, offset in s {
end = offset
if f(r) {
if start >= 0 {
append(&substrings, s[start : end])
// -1 could be used, but just speed it up through bitwise not
// gotta love 2's complement
start = ~start
}
} else {
if start < 0 {
start = end
}
}
}
if start >= 0 {
append(&substrings, s[start : len(s)])
}
return substrings[:]
}
/*
Retrieves the first non-space substring from a mutable string reference and advances the reference. `s` is advanced from any space after the substring, or be an empty string if the substring was the remaining characters
**Inputs**
- s: A mutable string reference to be iterated
**Returns**
- field: The first non-space substring found
- ok: A boolean indicating if a non-space substring was found
*/
fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) {
start, end := -1, -1
for r, offset in s {
end = offset
if unicode.is_space(r) {
if start >= 0 {
field = s[start : end]
ok = true
s^ = s[end:]
return
}
} else {
if start < 0 {
start = end
}
}
}
// if either of these are true, the string did not contain any characters
if end < 0 || start < 0 {
return "", false
}
field = s[start:]
ok = true
s^ = s[len(s):]
return
}
/*
Computes the Levenshtein edit distance between two strings
*Allocates Using Provided Allocator (deletion occurs internal to proc)*
NOTE: Does not perform internal allocation if length of string `b`, in runes, is smaller than 64
**Inputs**
- a, b: The two strings to compare
- allocator: (default is context.allocator)
**Returns** The Levenshtein edit distance between the two strings
NOTE: This implementation is a single-row-version of the WagnerFischer algorithm, based on C code by Martin Ettl.
*/
levenshtein_distance :: proc(a, b: string, allocator := context.allocator) -> int {
LEVENSHTEIN_DEFAULT_COSTS: []int : {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63,
}
m, n := utf8.rune_count_in_string(a), utf8.rune_count_in_string(b)
if m == 0 {
return n
}
if n == 0 {
return m
}
costs: []int
if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
costs = make([]int, n + 1, allocator)
for k in 0..=n {
costs[k] = k
}
} else {
costs = LEVENSHTEIN_DEFAULT_COSTS
}
defer if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
delete(costs, allocator)
}
i: int
for c1 in a {
costs[0] = i + 1
corner := i
j: int
for c2 in b {
upper := costs[j + 1]
if c1 == c2 {
costs[j + 1] = corner
} else {
t := upper if upper < corner else corner
costs[j + 1] = (costs[j] if costs[j] < t else t) + 1
}
corner = upper
j += 1
}
i += 1
}
return costs[n]
}