Files
Odin/core/net/socket_windows.odin

452 lines
13 KiB
Odin

#+build windows
package net
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's BSD-3 license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
Feoramund: FreeBSD platform code
*/
import "core:c"
import win "core:sys/windows"
import "core:time"
Socket_Option :: enum c.int {
// bool: Whether the address that this socket is bound to can be reused by other sockets.
// This allows you to bypass the cooldown period if a program dies while the socket is bound.
Reuse_Address = win.SO_REUSEADDR,
// bool: Whether other programs will be inhibited from binding the same endpoint as this socket.
Exclusive_Addr_Use = win.SO_EXCLUSIVEADDRUSE,
// bool: When true, keepalive packets will be automatically be sent for this connection. TODO: verify this understanding
Keep_Alive = win.SO_KEEPALIVE,
// bool: When true, client connections will immediately be sent a TCP/IP RST response, rather than being accepted.
Conditional_Accept = win.SO_CONDITIONAL_ACCEPT,
// bool: If true, when the socket is closed, but data is still waiting to be sent, discard that data.
Dont_Linger = win.SO_DONTLINGER,
// bool: When true, 'out-of-band' data sent over the socket will be read by a normal net.recv() call, the same as normal 'in-band' data.
Out_Of_Bounds_Data_Inline = win.SO_OOBINLINE,
// bool: When true, disables send-coalescing, therefore reducing latency.
TCP_Nodelay = win.TCP_NODELAY,
// win.LINGER: Customizes how long (if at all) the socket will remain open when there
// is some remaining data waiting to be sent, and net.close() is called.
Linger = win.SO_LINGER,
// win.DWORD: The size, in bytes, of the OS-managed receive-buffer for this socket.
Receive_Buffer_Size = win.SO_RCVBUF,
// win.DWORD: The size, in bytes, of the OS-managed send-buffer for this socket.
Send_Buffer_Size = win.SO_SNDBUF,
// win.DWORD: For blocking sockets, the time in milliseconds to wait for incoming data to be received, before giving up and returning .Timeout.
// For non-blocking sockets, ignored.
// Use a value of zero to potentially wait forever.
Receive_Timeout = win.SO_RCVTIMEO,
// win.DWORD: For blocking sockets, the time in milliseconds to wait for outgoing data to be sent, before giving up and returning .Timeout.
// For non-blocking sockets, ignored.
// Use a value of zero to potentially wait forever.
Send_Timeout = win.SO_SNDTIMEO,
// bool: Allow sending to, receiving from, and binding to, a broadcast address.
Broadcast = win.SO_BROADCAST,
}
Shutdown_Manner :: enum c.int {
Receive = win.SD_RECEIVE,
Send = win.SD_SEND,
Both = win.SD_BOTH,
}
@(init, private)
ensure_winsock_initialized :: proc "contextless" () {
win.ensure_winsock_initialized()
}
@(private)
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) {
c_type, c_protocol, c_family: c.int
switch family {
case .IP4: c_family = win.AF_INET
case .IP6: c_family = win.AF_INET6
case:
unreachable()
}
switch protocol {
case .TCP: c_type = win.SOCK_STREAM; c_protocol = win.IPPROTO_TCP
case .UDP: c_type = win.SOCK_DGRAM; c_protocol = win.IPPROTO_UDP
case:
unreachable()
}
sock := win.socket(c_family, c_type, c_protocol)
if sock == win.INVALID_SOCKET {
err = _create_socket_error()
return
}
switch protocol {
case .TCP: return TCP_Socket(sock), nil
case .UDP: return UDP_Socket(sock), nil
case:
unreachable()
}
}
@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (socket: TCP_Socket, err: Network_Error) {
if endpoint.port == 0 {
err = .Port_Required
return
}
family := family_from_endpoint(endpoint)
sock := create_socket(family, .TCP) or_return
socket = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
_ = set_option(socket, .Reuse_Address, true)
sockaddr := _endpoint_to_sockaddr(endpoint)
res := win.connect(win.SOCKET(socket), &sockaddr, size_of(sockaddr))
if res < 0 {
err = _dial_error()
close(socket)
return {}, err
}
if options.no_delay {
_ = set_option(sock, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
}
return
}
@(private)
_bind :: proc(socket: Any_Socket, ep: Endpoint) -> (err: Bind_Error) {
sockaddr := _endpoint_to_sockaddr(ep)
sock := any_socket_to_socket(socket)
res := win.bind(win.SOCKET(sock), &sockaddr, size_of(sockaddr))
if res < 0 {
err = _bind_error()
}
return
}
@(private)
_listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (socket: TCP_Socket, err: Network_Error) {
family := family_from_endpoint(interface_endpoint)
sock := create_socket(family, .TCP) or_return
socket = sock.(TCP_Socket)
defer if err != nil { close(socket) }
// NOTE(tetra): While I'm not 100% clear on it, my understanding is that this will
// prevent hijacking of the server's endpoint by other applications.
set_option(socket, .Exclusive_Addr_Use, true) or_return
bind(sock, interface_endpoint) or_return
if res := win.listen(win.SOCKET(socket), i32(backlog)); res == win.SOCKET_ERROR {
err = _listen_error()
}
return
}
@(private)
_bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
sockaddr: win.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
if win.getsockname(win.SOCKET(any_socket_to_socket(sock)), &sockaddr, &sockaddrlen) == win.SOCKET_ERROR {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&sockaddr)
return
}
@(private)
_peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
sockaddr: win.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
res := win.getpeername(win.SOCKET(any_socket_to_socket(sock)), &sockaddr, &sockaddrlen)
if res < 0 {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&sockaddr)
return
}
@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) {
for {
sockaddr: win.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
client_sock := win.accept(win.SOCKET(sock), &sockaddr, &sockaddrlen)
if int(client_sock) == win.SOCKET_ERROR {
e := win.WSAGetLastError()
if e == win.WSAECONNRESET {
// NOTE(tetra): Reset just means that a client that connection immediately lost the connection.
// There's no need to concern the user with this, so we handle it for them.
// On Linux, this error isn't possible in the first place according the man pages, so we also
// can do this to match the behaviour.
continue
}
err = _accept_error()
return
}
client = TCP_Socket(client_sock)
source = _sockaddr_to_endpoint(&sockaddr)
if options.no_delay {
_ = set_option(client, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
}
return
}
}
@(private)
_close :: proc(socket: Any_Socket) {
if s := any_socket_to_socket(socket); s != {} {
win.closesocket(win.SOCKET(s))
}
}
@(private)
_recv_tcp :: proc(socket: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) {
if len(buf) <= 0 {
return
}
res := win.recv(win.SOCKET(socket), raw_data(buf), c.int(len(buf)), 0)
if res < 0 {
err = _tcp_recv_error()
return
}
return int(res), nil
}
@(private)
_recv_udp :: proc(socket: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) {
if len(buf) <= 0 {
return
}
from: win.SOCKADDR_STORAGE_LH
fromsize := c.int(size_of(from))
res := win.recvfrom(win.SOCKET(socket), raw_data(buf), c.int(len(buf)), 0, &from, &fromsize)
if res < 0 {
err = _udp_recv_error()
return
}
bytes_read = int(res)
remote_endpoint = _sockaddr_to_endpoint(&from)
return
}
@(private)
_send_tcp :: proc(socket: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) {
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:]
res := win.send(win.SOCKET(socket), raw_data(remaining), c.int(limit), 0)
if res < 0 {
err = _tcp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_send_udp :: proc(socket: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) {
toaddr := _endpoint_to_sockaddr(to)
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:]
res := win.sendto(win.SOCKET(socket), raw_data(remaining), c.int(limit), 0, &toaddr, size_of(toaddr))
if res < 0 {
err = _udp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_shutdown :: proc(socket: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) {
s := any_socket_to_socket(socket)
res := win.shutdown(win.SOCKET(s), c.int(manner))
if res < 0 {
return _shutdown_error()
}
return
}
@(private)
_set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error {
level := win.SOL_SOCKET if option != .TCP_Nodelay else win.IPPROTO_TCP
bool_value: b32
int_value: i32
linger_value: win.LINGER
ptr: rawptr
len: c.int
switch option {
case
.Reuse_Address,
.Exclusive_Addr_Use,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay,
.Broadcast,
.Conditional_Accept,
.Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
ptr = &bool_value
len = size_of(bool_value)
case .Linger:
t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
num_secs := i64(time.duration_seconds(t))
if num_secs > i64(max(u16)) {
return .Invalid_Value
}
linger_value.l_onoff = 1
linger_value.l_linger = c.ushort(num_secs)
ptr = &linger_value
len = size_of(linger_value)
case
.Receive_Timeout,
.Send_Timeout:
t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
int_value = i32(time.duration_milliseconds(t))
ptr = &int_value
len = size_of(int_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
switch i in value {
case i8, u8: i2 := i; int_value = c.int((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = c.int((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = c.int((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = c.int((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = c.int((^u128)(&i2)^)
case int, uint: i2 := i; int_value = c.int((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
ptr = &int_value
len = size_of(int_value)
}
socket := any_socket_to_socket(s)
res := win.setsockopt(win.SOCKET(socket), c.int(level), c.int(option), ptr, len)
if res < 0 {
return _socket_option_error()
}
return nil
}
@(private)
_set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) {
socket := any_socket_to_socket(socket)
arg: win.DWORD = 0 if should_block else 1
res := win.ioctlsocket(win.SOCKET(socket), transmute(win.c_long)win.FIONBIO, &arg)
if res == win.SOCKET_ERROR {
return _set_blocking_error()
}
return nil
}
@(private)
_endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: win.SOCKADDR_STORAGE_LH) {
switch a in ep.address {
case IP4_Address:
(^win.sockaddr_in)(&sockaddr)^ = win.sockaddr_in {
sin_port = u16be(win.USHORT(ep.port)),
sin_addr = transmute(win.in_addr) a,
sin_family = u16(win.AF_INET),
}
return
case IP6_Address:
(^win.sockaddr_in6)(&sockaddr)^ = win.sockaddr_in6 {
sin6_port = u16be(win.USHORT(ep.port)),
sin6_addr = transmute(win.in6_addr) a,
sin6_family = u16(win.AF_INET6),
}
return
}
unreachable()
}
@(private)
_sockaddr_to_endpoint :: proc(native_addr: ^win.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) {
switch native_addr.ss_family {
case u16(win.AF_INET):
addr := cast(^win.sockaddr_in) native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte) addr.sin_addr),
port = port,
}
case u16(win.AF_INET6):
addr := cast(^win.sockaddr_in6) native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}