Files
Odin/src/llvm_backend_expr.cpp

4770 lines
149 KiB
C++

gb_internal lbValue lb_emit_arith_matrix(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type, bool component_wise);
gb_internal lbValue lb_emit_logical_binary_expr(lbProcedure *p, TokenKind op, Ast *left, Ast *right, Type *final_type) {
lbModule *m = p->module;
lbBlock *rhs = lb_create_block(p, "logical.cmp.rhs");
lbBlock *done = lb_create_block(p, "logical.cmp.done");
lbValue short_circuit = {};
if (op == Token_CmpAnd) {
lb_build_cond(p, left, rhs, done);
short_circuit = lb_const_bool(m, t_llvm_bool, false);
} else if (op == Token_CmpOr) {
lb_build_cond(p, left, done, rhs);
short_circuit = lb_const_bool(m, t_llvm_bool, true);
}
if (rhs->preds.count == 0) {
lb_start_block(p, done);
return short_circuit;
}
if (done->preds.count == 0) {
lb_start_block(p, rhs);
if (lb_is_expr_untyped_const(right)) {
return lb_expr_untyped_const_to_typed(m, right, default_type(final_type));
}
return lb_build_expr(p, right);
}
Array<LLVMValueRef> incoming_values = {};
Array<LLVMBasicBlockRef> incoming_blocks = {};
array_init(&incoming_values, heap_allocator(), done->preds.count+1);
array_init(&incoming_blocks, heap_allocator(), done->preds.count+1);
for_array(i, done->preds) {
incoming_values[i] = short_circuit.value;
incoming_blocks[i] = done->preds[i]->block;
}
lb_start_block(p, rhs);
lbValue edge = {};
if (lb_is_expr_untyped_const(right)) {
edge = lb_expr_untyped_const_to_typed(m, right, t_llvm_bool);
} else {
edge = lb_emit_conv(p, lb_build_expr(p, right), t_llvm_bool);
}
GB_ASSERT(edge.type == t_llvm_bool);
incoming_values[done->preds.count] = edge.value;
incoming_blocks[done->preds.count] = p->curr_block->block;
lb_emit_jump(p, done);
lb_start_block(p, done);
LLVMTypeRef dst_type = lb_type(m, t_llvm_bool);
LLVMValueRef phi = nullptr;
GB_ASSERT(incoming_values.count == incoming_blocks.count);
GB_ASSERT(incoming_values.count > 0);
LLVMTypeRef phi_type = nullptr;
for (LLVMValueRef incoming_value : incoming_values) {
if (!LLVMIsConstant(incoming_value)) {
phi_type = LLVMTypeOf(incoming_value);
break;
}
}
lbValue res = {};
if (phi_type == nullptr) {
phi = LLVMBuildPhi(p->builder, dst_type, "");
LLVMAddIncoming(phi, incoming_values.data, incoming_blocks.data, cast(unsigned)incoming_values.count);
res.value = phi;
res.type = t_llvm_bool;
} else {
for_array(i, incoming_values) {
LLVMValueRef incoming_value = incoming_values[i];
LLVMTypeRef incoming_type = LLVMTypeOf(incoming_value);
if (phi_type != incoming_type) {
GB_ASSERT_MSG(LLVMIsConstant(incoming_value), "%s vs %s", LLVMPrintTypeToString(phi_type), LLVMPrintTypeToString(incoming_type));
bool ok = !!LLVMConstIntGetZExtValue(incoming_value);
incoming_values[i] = LLVMConstInt(phi_type, ok, false);
}
}
// NOTE(bill): this now only uses i1 for the logic to prevent issues with corrupted booleans which are not of value 0 or 1 (e.g. 2)
// Doing this may produce slightly worse code as a result but it will be correct behaviour
phi = LLVMBuildPhi(p->builder, phi_type, "");
LLVMAddIncoming(phi, incoming_values.data, incoming_blocks.data, cast(unsigned)incoming_values.count);
res.value = phi;
res.type = t_llvm_bool;
}
return lb_emit_conv(p, res, default_type(final_type));
}
gb_internal lbValue lb_emit_unary_arith(lbProcedure *p, TokenKind op, lbValue x, Type *type) {
switch (op) {
case Token_Add:
return x;
case Token_Not: // Boolean not
case Token_Xor: // Bitwise not
case Token_Sub: // Number negation
break;
case Token_Pointer:
GB_PANIC("This should be handled elsewhere");
break;
}
if (is_type_array_like(x.type)) {
// IMPORTANT TODO(bill): This is very wasteful with regards to stack memory
Type *tl = base_type(x.type);
lbValue val = lb_address_from_load_or_generate_local(p, x);
GB_ASSERT(is_type_array_like(type));
Type *elem_type = base_array_type(type);
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbAddr res_addr = lb_add_local(p, type, nullptr, false, true);
lbValue res = lb_addr_get_ptr(p, res_addr);
bool inline_array_arith = lb_can_try_to_inline_array_arith(type);
i32 count = cast(i32)get_array_type_count(tl);
LLVMTypeRef vector_type = nullptr;
if (op != Token_Not && lb_try_vector_cast(p->module, val, &vector_type)) {
LLVMValueRef vp = LLVMBuildPointerCast(p->builder, val.value, LLVMPointerType(vector_type, 0), "");
LLVMValueRef v = LLVMBuildLoad2(p->builder, vector_type, vp, "");
LLVMValueRef opv = nullptr;
switch (op) {
case Token_Xor:
opv = LLVMBuildNot(p->builder, v, "");
break;
case Token_Sub:
if (is_type_float(elem_type)) {
opv = LLVMBuildFNeg(p->builder, v, "");
} else {
opv = LLVMBuildNeg(p->builder, v, "");
}
break;
}
if (opv != nullptr) {
LLVMSetAlignment(res.value, cast(unsigned)lb_alignof(vector_type));
LLVMValueRef res_ptr = LLVMBuildPointerCast(p->builder, res.value, LLVMPointerType(vector_type, 0), "");
LLVMBuildStore(p->builder, opv, res_ptr);
return lb_emit_conv(p, lb_emit_load(p, res), type);
}
}
if (inline_array_arith) {
// inline
for (i32 i = 0; i < count; i++) {
lbValue e = lb_emit_load(p, lb_emit_array_epi(p, val, i));
lbValue z = lb_emit_unary_arith(p, op, e, elem_type);
lb_emit_store(p, lb_emit_array_epi(p, res, i), z);
}
} else {
auto loop_data = lb_loop_start(p, count, t_i32);
lbValue e = lb_emit_load(p, lb_emit_array_ep(p, val, loop_data.idx));
lbValue z = lb_emit_unary_arith(p, op, e, elem_type);
lb_emit_store(p, lb_emit_array_ep(p, res, loop_data.idx), z);
lb_loop_end(p, loop_data);
}
return lb_emit_load(p, res);
}
if (op == Token_Xor) {
lbValue cmp = {};
cmp.value = LLVMBuildNot(p->builder, x.value, "");
cmp.type = x.type;
return lb_emit_conv(p, cmp, type);
}
if (op == Token_Not) {
lbValue cmp = {};
LLVMValueRef zero = LLVMConstInt(lb_type(p->module, x.type), 0, false);
cmp.value = LLVMBuildICmp(p->builder, LLVMIntEQ, x.value, zero, "");
cmp.type = t_llvm_bool;
return lb_emit_conv(p, cmp, type);
}
if (op == Token_Sub && is_type_integer(type) && is_type_different_to_arch_endianness(type)) {
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue v = lb_emit_byte_swap(p, x, platform_type);
lbValue res = {};
res.value = LLVMBuildNeg(p->builder, v.value, "");
res.type = platform_type;
return lb_emit_byte_swap(p, res, type);
}
if (op == Token_Sub && is_type_float(type) && is_type_different_to_arch_endianness(type)) {
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue v = lb_emit_byte_swap(p, x, platform_type);
lbValue res = {};
res.value = LLVMBuildFNeg(p->builder, v.value, "");
res.type = platform_type;
return lb_emit_byte_swap(p, res, type);
}
lbValue res = {};
switch (op) {
case Token_Not: // Boolean not
case Token_Xor: // Bitwise not
res.value = LLVMBuildNot(p->builder, x.value, "");
res.type = x.type;
return res;
case Token_Sub: // Number negation
if (is_type_integer(x.type)) {
res.value = LLVMBuildNeg(p->builder, x.value, "");
} else if (is_type_float(x.type)) {
res.value = LLVMBuildFNeg(p->builder, x.value, "");
} else if (is_type_complex(x.type)) {
LLVMValueRef v0 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 0, ""), "");
LLVMValueRef v1 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 1, ""), "");
lbAddr addr = lb_add_local_generated(p, x.type, false);
LLVMTypeRef type = llvm_addr_type(p->module, addr.addr);
LLVMBuildStore(p->builder, v0, LLVMBuildStructGEP2(p->builder, type, addr.addr.value, 0, ""));
LLVMBuildStore(p->builder, v1, LLVMBuildStructGEP2(p->builder, type, addr.addr.value, 1, ""));
return lb_addr_load(p, addr);
} else if (is_type_quaternion(x.type)) {
LLVMValueRef v0 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 0, ""), "");
LLVMValueRef v1 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 1, ""), "");
LLVMValueRef v2 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 2, ""), "");
LLVMValueRef v3 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 3, ""), "");
lbAddr addr = lb_add_local_generated(p, x.type, false);
LLVMTypeRef type = llvm_addr_type(p->module, addr.addr);
LLVMBuildStore(p->builder, v0, LLVMBuildStructGEP2(p->builder, type, addr.addr.value, 0, ""));
LLVMBuildStore(p->builder, v1, LLVMBuildStructGEP2(p->builder, type, addr.addr.value, 1, ""));
LLVMBuildStore(p->builder, v2, LLVMBuildStructGEP2(p->builder, type, addr.addr.value, 2, ""));
LLVMBuildStore(p->builder, v3, LLVMBuildStructGEP2(p->builder, type, addr.addr.value, 3, ""));
return lb_addr_load(p, addr);
} else if (is_type_simd_vector(x.type)) {
Type *elem = base_array_type(x.type);
if (is_type_float(elem)) {
res.value = LLVMBuildFNeg(p->builder, x.value, "");
} else {
res.value = LLVMBuildNeg(p->builder, x.value, "");
}
} else if (is_type_matrix(x.type)) {
lbValue zero = {};
zero.value = LLVMConstNull(lb_type(p->module, type));
zero.type = type;
return lb_emit_arith_matrix(p, Token_Sub, zero, x, type, true);
} else {
GB_PANIC("Unhandled type %s", type_to_string(x.type));
}
res.type = x.type;
return res;
}
return res;
}
gb_internal bool lb_try_direct_vector_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type, lbValue *res_) {
GB_ASSERT(is_type_array_like(type));
Type *elem_type = base_array_type(type);
// NOTE(bill): Shift operations cannot be easily dealt with due to Odin's semantics
if (op == Token_Shl || op == Token_Shr) {
return false;
}
if (!LLVMIsALoadInst(lhs.value) || !LLVMIsALoadInst(rhs.value)) {
return false;
}
lbValue lhs_ptr = {};
lbValue rhs_ptr = {};
lhs_ptr.value = LLVMGetOperand(lhs.value, 0);
lhs_ptr.type = alloc_type_pointer(lhs.type);
rhs_ptr.value = LLVMGetOperand(rhs.value, 0);
rhs_ptr.type = alloc_type_pointer(rhs.type);
LLVMTypeRef vector_type0 = nullptr;
LLVMTypeRef vector_type1 = nullptr;
if (lb_try_vector_cast(p->module, lhs_ptr, &vector_type0) &&
lb_try_vector_cast(p->module, rhs_ptr, &vector_type1)) {
GB_ASSERT(vector_type0 == vector_type1);
LLVMTypeRef vector_type = vector_type0;
LLVMValueRef lhs_vp = LLVMBuildPointerCast(p->builder, lhs_ptr.value, LLVMPointerType(vector_type, 0), "");
LLVMValueRef rhs_vp = LLVMBuildPointerCast(p->builder, rhs_ptr.value, LLVMPointerType(vector_type, 0), "");
LLVMValueRef x = LLVMBuildLoad2(p->builder, vector_type, lhs_vp, "");
LLVMValueRef y = LLVMBuildLoad2(p->builder, vector_type, rhs_vp, "");
LLVMValueRef z = nullptr;
Type *integral_type = base_type(elem_type);
if (is_type_simd_vector(integral_type)) {
integral_type = core_array_type(integral_type);
}
if (is_type_bit_set(integral_type)) {
switch (op) {
case Token_Add: op = Token_Or; break;
case Token_Sub: op = Token_AndNot; break;
}
}
if (is_type_float(integral_type)) {
switch (op) {
case Token_Add:
z = LLVMBuildFAdd(p->builder, x, y, "");
break;
case Token_Sub:
z = LLVMBuildFSub(p->builder, x, y, "");
break;
case Token_Mul:
z = LLVMBuildFMul(p->builder, x, y, "");
break;
case Token_Quo:
z = LLVMBuildFDiv(p->builder, x, y, "");
break;
case Token_Mod:
z = LLVMBuildFRem(p->builder, x, y, "");
break;
default:
GB_PANIC("Unsupported vector operation %.*s", LIT(token_strings[op]));
break;
}
} else {
switch (op) {
case Token_Add:
z = LLVMBuildAdd(p->builder, x, y, "");
break;
case Token_Sub:
z = LLVMBuildSub(p->builder, x, y, "");
break;
case Token_Mul:
z = LLVMBuildMul(p->builder, x, y, "");
break;
case Token_Quo:
if (is_type_unsigned(integral_type)) {
z = LLVMBuildUDiv(p->builder, x, y, "");
} else {
z = LLVMBuildSDiv(p->builder, x, y, "");
}
break;
case Token_Mod:
if (is_type_unsigned(integral_type)) {
z = LLVMBuildURem(p->builder, x, y, "");
} else {
z = LLVMBuildSRem(p->builder, x, y, "");
}
break;
case Token_ModMod:
if (is_type_unsigned(integral_type)) {
z = LLVMBuildURem(p->builder, x, y, "");
} else {
LLVMValueRef a = LLVMBuildSRem(p->builder, x, y, "");
LLVMValueRef b = LLVMBuildAdd(p->builder, a, y, "");
z = LLVMBuildSRem(p->builder, b, y, "");
}
break;
case Token_And:
z = LLVMBuildAnd(p->builder, x, y, "");
break;
case Token_AndNot:
z = LLVMBuildAnd(p->builder, x, LLVMBuildNot(p->builder, y, ""), "");
break;
case Token_Or:
z = LLVMBuildOr(p->builder, x, y, "");
break;
case Token_Xor:
z = LLVMBuildXor(p->builder, x, y, "");
break;
default:
GB_PANIC("Unsupported vector operation");
break;
}
}
if (z != nullptr) {
lbAddr res = lb_add_local_generated_temp(p, type, lb_alignof(vector_type));
LLVMValueRef vp = LLVMBuildPointerCast(p->builder, res.addr.value, LLVMPointerType(vector_type, 0), "");
LLVMBuildStore(p->builder, z, vp);
lbValue v = lb_addr_load(p, res);
if (res_) *res_ = v;
return true;
}
}
return false;
}
gb_internal lbValue lb_emit_arith_array(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) {
GB_ASSERT(is_type_array_like(lhs.type) || is_type_array_like(rhs.type));
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
GB_ASSERT(is_type_array_like(type));
Type *elem_type = base_array_type(type);
i64 count = get_array_type_count(type);
unsigned n = cast(unsigned)count;
// NOTE(bill, 2021-06-12): Try to do a direct operation as a vector, if possible
lbValue direct_vector_res = {};
if (lb_try_direct_vector_arith(p, op, lhs, rhs, type, &direct_vector_res)) {
return direct_vector_res;
}
bool inline_array_arith = lb_can_try_to_inline_array_arith(type);
if (inline_array_arith) {
auto dst_ptrs = slice_make<lbValue>(temporary_allocator(), n);
auto a_loads = slice_make<lbValue>(temporary_allocator(), n);
auto b_loads = slice_make<lbValue>(temporary_allocator(), n);
auto c_ops = slice_make<lbValue>(temporary_allocator(), n);
for (unsigned i = 0; i < n; i++) {
a_loads[i].value = LLVMBuildExtractValue(p->builder, lhs.value, i, "");
a_loads[i].type = elem_type;
}
for (unsigned i = 0; i < n; i++) {
b_loads[i].value = LLVMBuildExtractValue(p->builder, rhs.value, i, "");
b_loads[i].type = elem_type;
}
for (unsigned i = 0; i < n; i++) {
c_ops[i] = lb_emit_arith(p, op, a_loads[i], b_loads[i], elem_type);
}
lbAddr res = lb_add_local_generated(p, type, false);
for (unsigned i = 0; i < n; i++) {
dst_ptrs[i] = lb_emit_array_epi(p, res.addr, i);
}
for (unsigned i = 0; i < n; i++) {
lb_emit_store(p, dst_ptrs[i], c_ops[i]);
}
return lb_addr_load(p, res);
} else {
lbValue x = lb_address_from_load_or_generate_local(p, lhs);
lbValue y = lb_address_from_load_or_generate_local(p, rhs);
lbAddr res = lb_add_local_generated(p, type, false);
auto loop_data = lb_loop_start(p, cast(isize)count, t_i32);
lbValue a_ptr = lb_emit_array_ep(p, x, loop_data.idx);
lbValue b_ptr = lb_emit_array_ep(p, y, loop_data.idx);
lbValue dst_ptr = lb_emit_array_ep(p, res.addr, loop_data.idx);
lbValue a = lb_emit_load(p, a_ptr);
lbValue b = lb_emit_load(p, b_ptr);
lbValue c = lb_emit_arith(p, op, a, b, elem_type);
lb_emit_store(p, dst_ptr, c);
lb_loop_end(p, loop_data);
return lb_addr_load(p, res);
}
}
gb_internal bool lb_is_matrix_simdable(Type *t) {
Type *mt = base_type(t);
GB_ASSERT(mt->kind == Type_Matrix);
Type *elem = core_type(mt->Matrix.elem);
if (is_type_complex(elem)) {
return false;
}
if (is_type_different_to_arch_endianness(elem)) {
return false;
}
switch (build_context.metrics.arch) {
default:
return false;
case TargetArch_amd64:
case TargetArch_arm64:
break;
}
if (type_align_of(t) < 16) {
// it's not aligned well enough to use the vector instructions
return false;
}
if ((mt->Matrix.row_count & 1) ^ (mt->Matrix.column_count & 1)) {
return false;
}
if (elem->kind == Type_Basic) {
switch (elem->Basic.kind) {
case Basic_f16:
case Basic_f16le:
case Basic_f16be:
switch (build_context.metrics.arch) {
case TargetArch_amd64:
return false;
case TargetArch_arm64:
// TODO(bill): determine when this is fine
return true;
case TargetArch_i386:
case TargetArch_wasm32:
case TargetArch_wasm64p32:
return false;
}
}
}
return true;
}
gb_internal LLVMValueRef lb_matrix_to_vector(lbProcedure *p, lbValue matrix) {
Type *mt = base_type(matrix.type);
GB_ASSERT(mt->kind == Type_Matrix);
LLVMTypeRef elem_type = lb_type(p->module, mt->Matrix.elem);
unsigned total_count = cast(unsigned)matrix_type_total_internal_elems(mt);
LLVMTypeRef total_matrix_type = LLVMVectorType(elem_type, total_count);
#if 1
LLVMValueRef ptr = lb_address_from_load_or_generate_local(p, matrix).value;
LLVMValueRef matrix_vector_ptr = LLVMBuildPointerCast(p->builder, ptr, LLVMPointerType(total_matrix_type, 0), "");
LLVMValueRef matrix_vector = LLVMBuildLoad2(p->builder, total_matrix_type, matrix_vector_ptr, "");
LLVMSetAlignment(matrix_vector, cast(unsigned)type_align_of(mt));
return matrix_vector;
#else
LLVMValueRef matrix_vector = LLVMBuildBitCast(p->builder, matrix.value, total_matrix_type, "");
return matrix_vector;
#endif
}
gb_internal LLVMValueRef lb_matrix_trimmed_vector_mask(lbProcedure *p, Type *mt) {
mt = base_type(mt);
GB_ASSERT(mt->kind == Type_Matrix);
unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
unsigned row_count = cast(unsigned)mt->Matrix.row_count;
unsigned column_count = cast(unsigned)mt->Matrix.column_count;
unsigned mask_elems_index = 0;
auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), row_count*column_count);
for (unsigned j = 0; j < column_count; j++) {
for (unsigned i = 0; i < row_count; i++) {
unsigned offset = stride*j + i;
mask_elems[mask_elems_index++] = lb_const_int(p->module, t_u32, offset).value;
}
}
LLVMValueRef mask = LLVMConstVector(mask_elems.data, cast(unsigned)mask_elems.count);
return mask;
}
gb_internal LLVMValueRef lb_matrix_to_trimmed_vector(lbProcedure *p, lbValue m) {
LLVMValueRef vector = lb_matrix_to_vector(p, m);
Type *mt = base_type(m.type);
GB_ASSERT(mt->kind == Type_Matrix);
unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
unsigned row_count = cast(unsigned)mt->Matrix.row_count;
if (stride == row_count) {
return vector;
}
LLVMValueRef mask = lb_matrix_trimmed_vector_mask(p, mt);
LLVMValueRef trimmed_vector = llvm_basic_shuffle(p, vector, mask);
return trimmed_vector;
}
gb_internal lbValue lb_emit_matrix_tranpose(lbProcedure *p, lbValue m, Type *type) {
if (is_type_array(m.type)) {
i32 rank = type_math_rank(m.type);
if (rank == 2) {
lbAddr addr = lb_add_local_generated(p, type, false);
lbValue dst = addr.addr;
lbValue src = m;
i32 n = cast(i32)get_array_type_count(m.type);
i32 m = cast(i32)get_array_type_count(type);
// m.type == [n][m]T
// type == [m][n]T
for (i32 j = 0; j < m; j++) {
lbValue dst_col = lb_emit_struct_ep(p, dst, j);
for (i32 i = 0; i < n; i++) {
lbValue dst_row = lb_emit_struct_ep(p, dst_col, i);
lbValue src_col = lb_emit_struct_ev(p, src, i);
lbValue src_row = lb_emit_struct_ev(p, src_col, j);
lb_emit_store(p, dst_row, src_row);
}
}
return lb_addr_load(p, addr);
}
// no-op
m.type = type;
return m;
}
Type *mt = base_type(m.type);
GB_ASSERT(mt->kind == Type_Matrix);
if (lb_is_matrix_simdable(mt)) {
unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
unsigned row_count = cast(unsigned)mt->Matrix.row_count;
unsigned column_count = cast(unsigned)mt->Matrix.column_count;
auto rows = slice_make<LLVMValueRef>(permanent_allocator(), row_count);
auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
LLVMValueRef vector = lb_matrix_to_vector(p, m);
for (unsigned i = 0; i < row_count; i++) {
for (unsigned j = 0; j < column_count; j++) {
unsigned offset = stride*j + i;
mask_elems[j] = lb_const_int(p->module, t_u32, offset).value;
}
// transpose mask
LLVMValueRef mask = LLVMConstVector(mask_elems.data, column_count);
LLVMValueRef row = llvm_basic_shuffle(p, vector, mask);
rows[i] = row;
}
lbAddr res = lb_add_local_generated(p, type, true);
for_array(i, rows) {
LLVMValueRef row = rows[i];
lbValue dst_row_ptr = lb_emit_matrix_epi(p, res.addr, 0, i);
LLVMValueRef ptr = dst_row_ptr.value;
ptr = LLVMBuildPointerCast(p->builder, ptr, LLVMPointerType(LLVMTypeOf(row), 0), "");
LLVMBuildStore(p->builder, row, ptr);
}
return lb_addr_load(p, res);
}
lbAddr res = lb_add_local_generated(p, type, true);
i64 row_count = mt->Matrix.row_count;
i64 column_count = mt->Matrix.column_count;
for (i64 j = 0; j < column_count; j++) {
for (i64 i = 0; i < row_count; i++) {
lbValue src = lb_emit_matrix_ev(p, m, i, j);
lbValue dst = lb_emit_matrix_epi(p, res.addr, j, i);
lb_emit_store(p, dst, src);
}
}
return lb_addr_load(p, res);
}
gb_internal lbValue lb_matrix_cast_vector_to_type(lbProcedure *p, LLVMValueRef vector, Type *type) {
lbAddr res = lb_add_local_generated(p, type, true);
LLVMValueRef res_ptr = res.addr.value;
unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(LLVMTypeOf(vector)));
LLVMSetAlignment(res_ptr, alignment);
res_ptr = LLVMBuildPointerCast(p->builder, res_ptr, LLVMPointerType(LLVMTypeOf(vector), 0), "");
LLVMBuildStore(p->builder, vector, res_ptr);
return lb_addr_load(p, res);
}
gb_internal lbValue lb_emit_matrix_flatten(lbProcedure *p, lbValue m, Type *type) {
if (is_type_array(m.type)) {
// no-op
m.type = type;
return m;
}
Type *mt = base_type(m.type);
GB_ASSERT(mt->kind == Type_Matrix);
if (lb_is_matrix_simdable(mt)) {
LLVMValueRef vector = lb_matrix_to_trimmed_vector(p, m);
return lb_matrix_cast_vector_to_type(p, vector, type);
}
lbAddr res = lb_add_local_generated(p, type, true);
i64 row_count = mt->Matrix.row_count;
i64 column_count = mt->Matrix.column_count;
for (i64 j = 0; j < column_count; j++) {
for (i64 i = 0; i < row_count; i++) {
lbValue src = lb_emit_matrix_ev(p, m, i, j);
lbValue dst = lb_emit_array_epi(p, res.addr, i + j*row_count);
lb_emit_store(p, dst, src);
}
}
return lb_addr_load(p, res);
}
gb_internal lbValue lb_emit_outer_product(lbProcedure *p, lbValue a, lbValue b, Type *type) {
Type *mt = base_type(type);
Type *at = base_type(a.type);
Type *bt = base_type(b.type);
GB_ASSERT(mt->kind == Type_Matrix);
GB_ASSERT(at->kind == Type_Array);
GB_ASSERT(bt->kind == Type_Array);
i64 row_count = mt->Matrix.row_count;
i64 column_count = mt->Matrix.column_count;
GB_ASSERT(row_count == at->Array.count);
GB_ASSERT(column_count == bt->Array.count);
lbAddr res = lb_add_local_generated(p, type, true);
for (i64 j = 0; j < column_count; j++) {
for (i64 i = 0; i < row_count; i++) {
lbValue x = lb_emit_struct_ev(p, a, cast(i32)i);
lbValue y = lb_emit_struct_ev(p, b, cast(i32)j);
lbValue src = lb_emit_arith(p, Token_Mul, x, y, mt->Matrix.elem);
lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
lb_emit_store(p, dst, src);
}
}
return lb_addr_load(p, res);
}
gb_internal lbValue lb_emit_matrix_mul(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
// TODO(bill): Handle edge case for f16 types on x86(-64) platforms
Type *xt = base_type(lhs.type);
Type *yt = base_type(rhs.type);
GB_ASSERT(is_type_matrix(type));
GB_ASSERT(is_type_matrix(xt));
GB_ASSERT(is_type_matrix(yt));
GB_ASSERT(xt->Matrix.column_count == yt->Matrix.row_count);
GB_ASSERT(are_types_identical(xt->Matrix.elem, yt->Matrix.elem));
Type *elem = xt->Matrix.elem;
unsigned outer_rows = cast(unsigned)xt->Matrix.row_count;
unsigned inner = cast(unsigned)xt->Matrix.column_count;
unsigned outer_columns = cast(unsigned)yt->Matrix.column_count;
if (lb_is_matrix_simdable(xt)) {
unsigned x_stride = cast(unsigned)matrix_type_stride_in_elems(xt);
unsigned y_stride = cast(unsigned)matrix_type_stride_in_elems(yt);
auto x_rows = slice_make<LLVMValueRef>(permanent_allocator(), outer_rows);
auto y_columns = slice_make<LLVMValueRef>(permanent_allocator(), outer_columns);
LLVMValueRef x_vector = lb_matrix_to_vector(p, lhs);
LLVMValueRef y_vector = lb_matrix_to_vector(p, rhs);
auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), inner);
for (unsigned i = 0; i < outer_rows; i++) {
for (unsigned j = 0; j < inner; j++) {
unsigned offset = x_stride*j + i;
mask_elems[j] = lb_const_int(p->module, t_u32, offset).value;
}
// transpose mask
LLVMValueRef mask = LLVMConstVector(mask_elems.data, inner);
LLVMValueRef row = llvm_basic_shuffle(p, x_vector, mask);
x_rows[i] = row;
}
for (unsigned i = 0; i < outer_columns; i++) {
LLVMValueRef mask = llvm_mask_iota(p->module, y_stride*i, inner);
LLVMValueRef column = llvm_basic_shuffle(p, y_vector, mask);
y_columns[i] = column;
}
lbAddr res = lb_add_local_generated(p, type, true);
for_array(i, x_rows) {
LLVMValueRef x_row = x_rows[i];
for_array(j, y_columns) {
LLVMValueRef y_column = y_columns[j];
LLVMValueRef elem = llvm_vector_dot(p, x_row, y_column);
lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
LLVMBuildStore(p->builder, elem, dst.value);
}
}
return lb_addr_load(p, res);
}
{
lbAddr res = lb_add_local_generated(p, type, true);
auto inners = slice_make<lbValue[2]>(permanent_allocator(), inner);
for (unsigned j = 0; j < outer_columns; j++) {
for (unsigned i = 0; i < outer_rows; i++) {
lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
for (unsigned k = 0; k < inner; k++) {
inners[k][0] = lb_emit_matrix_ev(p, lhs, i, k);
inners[k][1] = lb_emit_matrix_ev(p, rhs, k, j);
}
lbValue sum = lb_const_nil(p->module, elem);
for (unsigned k = 0; k < inner; k++) {
lbValue a = inners[k][0];
lbValue b = inners[k][1];
sum = lb_emit_mul_add(p, a, b, sum, elem);
}
lb_emit_store(p, dst, sum);
}
}
return lb_addr_load(p, res);
}
}
gb_internal lbValue lb_emit_matrix_mul_vector(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
// TODO(bill): Handle edge case for f16 types on x86(-64) platforms
Type *mt = base_type(lhs.type);
Type *vt = base_type(rhs.type);
GB_ASSERT(is_type_matrix(mt));
GB_ASSERT(is_type_array_like(vt));
i64 vector_count = get_array_type_count(vt);
GB_ASSERT(mt->Matrix.column_count == vector_count);
GB_ASSERT(are_types_identical(mt->Matrix.elem, base_array_type(vt)));
Type *elem = mt->Matrix.elem;
if (lb_is_matrix_simdable(mt)) {
unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
unsigned row_count = cast(unsigned)mt->Matrix.row_count;
unsigned column_count = cast(unsigned)mt->Matrix.column_count;
auto m_columns = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
auto v_rows = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
LLVMValueRef matrix_vector = lb_matrix_to_vector(p, lhs);
for (unsigned column_index = 0; column_index < column_count; column_index++) {
LLVMValueRef mask = llvm_mask_iota(p->module, stride*column_index, row_count);
LLVMValueRef column = llvm_basic_shuffle(p, matrix_vector, mask);
m_columns[column_index] = column;
}
for (unsigned row_index = 0; row_index < column_count; row_index++) {
LLVMValueRef value = lb_emit_struct_ev(p, rhs, row_index).value;
LLVMValueRef row = llvm_vector_broadcast(p, value, row_count);
v_rows[row_index] = row;
}
GB_ASSERT(column_count > 0);
LLVMValueRef vector = nullptr;
for (i64 i = 0; i < column_count; i++) {
if (i == 0) {
vector = llvm_vector_mul(p, m_columns[i], v_rows[i]);
} else {
vector = llvm_vector_mul_add(p, m_columns[i], v_rows[i], vector);
}
}
return lb_matrix_cast_vector_to_type(p, vector, type);
}
lbAddr res = lb_add_local_generated(p, type, true);
for (i64 i = 0; i < mt->Matrix.row_count; i++) {
for (i64 j = 0; j < mt->Matrix.column_count; j++) {
lbValue dst = lb_emit_matrix_epi(p, res.addr, i, 0);
lbValue d0 = lb_emit_load(p, dst);
lbValue a = lb_emit_matrix_ev(p, lhs, i, j);
lbValue b = lb_emit_struct_ev(p, rhs, cast(i32)j);
lbValue c = lb_emit_mul_add(p, a, b, d0, elem);
lb_emit_store(p, dst, c);
}
}
return lb_addr_load(p, res);
}
gb_internal lbValue lb_emit_vector_mul_matrix(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
// TODO(bill): Handle edge case for f16 types on x86(-64) platforms
Type *mt = base_type(rhs.type);
Type *vt = base_type(lhs.type);
GB_ASSERT(is_type_matrix(mt));
GB_ASSERT(is_type_array_like(vt));
i64 vector_count = get_array_type_count(vt);
GB_ASSERT(vector_count == mt->Matrix.row_count);
GB_ASSERT(are_types_identical(mt->Matrix.elem, base_array_type(vt)));
Type *elem = mt->Matrix.elem;
if (lb_is_matrix_simdable(mt)) {
unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
unsigned row_count = cast(unsigned)mt->Matrix.row_count;
unsigned column_count = cast(unsigned)mt->Matrix.column_count; gb_unused(column_count);
auto m_columns = slice_make<LLVMValueRef>(permanent_allocator(), row_count);
auto v_rows = slice_make<LLVMValueRef>(permanent_allocator(), row_count);
LLVMValueRef matrix_vector = lb_matrix_to_vector(p, rhs);
auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
for (unsigned row_index = 0; row_index < row_count; row_index++) {
for (unsigned column_index = 0; column_index < column_count; column_index++) {
unsigned offset = row_index + column_index*stride;
mask_elems[column_index] = lb_const_int(p->module, t_u32, offset).value;
}
// transpose mask
LLVMValueRef mask = LLVMConstVector(mask_elems.data, column_count);
LLVMValueRef column = llvm_basic_shuffle(p, matrix_vector, mask);
m_columns[row_index] = column;
}
for (unsigned column_index = 0; column_index < row_count; column_index++) {
LLVMValueRef value = lb_emit_struct_ev(p, lhs, column_index).value;
LLVMValueRef row = llvm_vector_broadcast(p, value, column_count);
v_rows[column_index] = row;
}
GB_ASSERT(row_count > 0);
LLVMValueRef vector = nullptr;
for (i64 i = 0; i < row_count; i++) {
if (i == 0) {
vector = llvm_vector_mul(p, v_rows[i], m_columns[i]);
} else {
vector = llvm_vector_mul_add(p, v_rows[i], m_columns[i], vector);
}
}
lbAddr res = lb_add_local_generated(p, type, true);
LLVMValueRef res_ptr = res.addr.value;
unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(LLVMTypeOf(vector)));
LLVMSetAlignment(res_ptr, alignment);
res_ptr = LLVMBuildPointerCast(p->builder, res_ptr, LLVMPointerType(LLVMTypeOf(vector), 0), "");
LLVMBuildStore(p->builder, vector, res_ptr);
return lb_addr_load(p, res);
}
lbAddr res = lb_add_local_generated(p, type, true);
for (i64 j = 0; j < mt->Matrix.column_count; j++) {
for (i64 k = 0; k < mt->Matrix.row_count; k++) {
lbValue dst = lb_emit_matrix_epi(p, res.addr, 0, j);
lbValue d0 = lb_emit_load(p, dst);
lbValue a = lb_emit_struct_ev(p, lhs, cast(i32)k);
lbValue b = lb_emit_matrix_ev(p, rhs, k, j);
lbValue c = lb_emit_mul_add(p, a, b, d0, elem);
lb_emit_store(p, dst, c);
}
}
return lb_addr_load(p, res);
}
gb_internal lbValue lb_emit_arith_matrix(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type, bool component_wise) {
GB_ASSERT(is_type_matrix(lhs.type) || is_type_matrix(rhs.type));
if (op == Token_Mul && !component_wise) {
Type *xt = base_type(lhs.type);
Type *yt = base_type(rhs.type);
if (xt->kind == Type_Matrix) {
if (yt->kind == Type_Matrix) {
return lb_emit_matrix_mul(p, lhs, rhs, type);
} else if (is_type_array_like(yt)) {
return lb_emit_matrix_mul_vector(p, lhs, rhs, type);
}
} else if (is_type_array_like(xt)) {
GB_ASSERT(yt->kind == Type_Matrix);
return lb_emit_vector_mul_matrix(p, lhs, rhs, type);
} else {
GB_ASSERT(xt->kind == Type_Basic);
GB_ASSERT(yt->kind == Type_Matrix);
GB_ASSERT(is_type_matrix(type));
Type *array_type = alloc_type_array(yt->Matrix.elem, matrix_type_total_internal_elems(yt));
GB_ASSERT(type_size_of(array_type) == type_size_of(yt));
lbValue array_lhs = lb_emit_conv(p, lhs, array_type);
lbValue array_rhs = rhs;
array_rhs.type = array_type;
lbValue array = lb_emit_arith(p, op, array_lhs, array_rhs, array_type);
array.type = type;
return array;
}
} else {
if (is_type_matrix(lhs.type)) {
rhs = lb_emit_conv(p, rhs, lhs.type);
} else {
lhs = lb_emit_conv(p, lhs, rhs.type);
}
Type *xt = base_type(lhs.type);
Type *yt = base_type(rhs.type);
GB_ASSERT_MSG(are_types_identical(xt, yt), "%s %.*s %s", type_to_string(lhs.type), LIT(token_strings[op]), type_to_string(rhs.type));
GB_ASSERT(xt->kind == Type_Matrix);
// element-wise arithmetic
// pretend it is an array
lbValue array_lhs = lhs;
lbValue array_rhs = rhs;
Type *array_type = alloc_type_array(xt->Matrix.elem, matrix_type_total_internal_elems(xt));
GB_ASSERT(type_size_of(array_type) == type_size_of(xt));
array_lhs.type = array_type;
array_rhs.type = array_type;
if (token_is_comparison(op)) {
lbValue res = lb_emit_comp(p, op, array_lhs, array_rhs);
return lb_emit_conv(p, res, type);
} else {
lbValue array = lb_emit_arith(p, op, array_lhs, array_rhs, array_type);
array.type = type;
return array;
}
}
GB_PANIC("TODO: lb_emit_arith_matrix");
return {};
}
gb_internal lbValue lb_emit_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) {
if (is_type_array_like(lhs.type) || is_type_array_like(rhs.type)) {
return lb_emit_arith_array(p, op, lhs, rhs, type);
} else if (is_type_matrix(lhs.type) || is_type_matrix(rhs.type)) {
return lb_emit_arith_matrix(p, op, lhs, rhs, type, false);
} else if (is_type_complex(type)) {
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
Type *ft = base_complex_elem_type(type);
if (op == Token_Quo) {
TEMPORARY_ALLOCATOR_GUARD();
auto args = array_make<lbValue>(temporary_allocator(), 2);
args[0] = lhs;
args[1] = rhs;
switch (type_size_of(ft)) {
case 4: return lb_emit_runtime_call(p, "quo_complex64", args);
case 8: return lb_emit_runtime_call(p, "quo_complex128", args);
default: GB_PANIC("Unknown float type"); break;
}
}
lbAddr res = lb_add_local_generated(p, type, false); // NOTE: initialized in full later
lbValue a = lb_emit_struct_ev(p, lhs, 0);
lbValue b = lb_emit_struct_ev(p, lhs, 1);
lbValue c = lb_emit_struct_ev(p, rhs, 0);
lbValue d = lb_emit_struct_ev(p, rhs, 1);
lbValue real = {};
lbValue imag = {};
switch (op) {
case Token_Add:
real = lb_emit_arith(p, Token_Add, a, c, ft);
imag = lb_emit_arith(p, Token_Add, b, d, ft);
break;
case Token_Sub:
real = lb_emit_arith(p, Token_Sub, a, c, ft);
imag = lb_emit_arith(p, Token_Sub, b, d, ft);
break;
case Token_Mul: {
lbValue x = lb_emit_arith(p, Token_Mul, a, c, ft);
lbValue y = lb_emit_arith(p, Token_Mul, b, d, ft);
real = lb_emit_arith(p, Token_Sub, x, y, ft);
lbValue z = lb_emit_arith(p, Token_Mul, b, c, ft);
lbValue w = lb_emit_arith(p, Token_Mul, a, d, ft);
imag = lb_emit_arith(p, Token_Add, z, w, ft);
break;
}
}
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 1), imag);
return lb_addr_load(p, res);
} else if (is_type_quaternion(type)) {
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
Type *ft = base_complex_elem_type(type);
if (op == Token_Add || op == Token_Sub) {
lbAddr res = lb_add_local_generated(p, type, false); // NOTE: initialized in full later
lbValue x0 = lb_emit_struct_ev(p, lhs, 0);
lbValue x1 = lb_emit_struct_ev(p, lhs, 1);
lbValue x2 = lb_emit_struct_ev(p, lhs, 2);
lbValue x3 = lb_emit_struct_ev(p, lhs, 3);
lbValue y0 = lb_emit_struct_ev(p, rhs, 0);
lbValue y1 = lb_emit_struct_ev(p, rhs, 1);
lbValue y2 = lb_emit_struct_ev(p, rhs, 2);
lbValue y3 = lb_emit_struct_ev(p, rhs, 3);
lbValue z0 = lb_emit_arith(p, op, x0, y0, ft);
lbValue z1 = lb_emit_arith(p, op, x1, y1, ft);
lbValue z2 = lb_emit_arith(p, op, x2, y2, ft);
lbValue z3 = lb_emit_arith(p, op, x3, y3, ft);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 0), z0);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 1), z1);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 2), z2);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 3), z3);
return lb_addr_load(p, res);
} else if (op == Token_Mul) {
TEMPORARY_ALLOCATOR_GUARD();
auto args = array_make<lbValue>(temporary_allocator(), 2);
args[0] = lhs;
args[1] = rhs;
switch (8*type_size_of(ft)) {
case 32: return lb_emit_runtime_call(p, "mul_quaternion128", args);
case 64: return lb_emit_runtime_call(p, "mul_quaternion256", args);
default: GB_PANIC("Unknown float type"); break;
}
} else if (op == Token_Quo) {
TEMPORARY_ALLOCATOR_GUARD();
auto args = array_make<lbValue>(temporary_allocator(), 2);
args[0] = lhs;
args[1] = rhs;
switch (8*type_size_of(ft)) {
case 32: return lb_emit_runtime_call(p, "quo_quaternion128", args);
case 64: return lb_emit_runtime_call(p, "quo_quaternion256", args);
default: GB_PANIC("Unknown float type"); break;
}
}
}
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
if (is_type_integer(type) && is_type_different_to_arch_endianness(type)) {
switch (op) {
case Token_AndNot:
case Token_And:
case Token_Or:
case Token_Xor:
goto handle_op;
}
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue x = lb_emit_byte_swap(p, lhs, integer_endian_type_to_platform_type(lhs.type));
lbValue y = lb_emit_byte_swap(p, rhs, integer_endian_type_to_platform_type(rhs.type));
lbValue res = lb_emit_arith(p, op, x, y, platform_type);
return lb_emit_byte_swap(p, res, type);
}
if (is_type_float(type) && is_type_different_to_arch_endianness(type)) {
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue x = lb_emit_conv(p, lhs, integer_endian_type_to_platform_type(lhs.type));
lbValue y = lb_emit_conv(p, rhs, integer_endian_type_to_platform_type(rhs.type));
lbValue res = lb_emit_arith(p, op, x, y, platform_type);
return lb_emit_byte_swap(p, res, type);
}
handle_op:;
lbValue res = {};
res.type = type;
// NOTE(bill): Bit Set Aliases for + and -
if (is_type_bit_set(type)) {
switch (op) {
case Token_Add: op = Token_Or; break;
case Token_Sub: op = Token_AndNot; break;
}
}
Type *integral_type = type;
if (is_type_simd_vector(integral_type)) {
integral_type = core_array_type(integral_type);
}
switch (op) {
case Token_Add:
if (is_type_float(integral_type)) {
res.value = LLVMBuildFAdd(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildAdd(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Sub:
if (is_type_float(integral_type)) {
res.value = LLVMBuildFSub(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSub(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Mul:
if (is_type_float(integral_type)) {
res.value = LLVMBuildFMul(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildMul(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Quo:
if (is_type_float(integral_type)) {
res.value = LLVMBuildFDiv(p->builder, lhs.value, rhs.value, "");
return res;
} else if (is_type_unsigned(integral_type)) {
res.value = LLVMBuildUDiv(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSDiv(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Mod:
if (is_type_float(integral_type)) {
res.value = LLVMBuildFRem(p->builder, lhs.value, rhs.value, "");
return res;
} else if (is_type_unsigned(integral_type)) {
res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSRem(p->builder, lhs.value, rhs.value, "");
return res;
case Token_ModMod:
if (is_type_unsigned(integral_type)) {
res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, "");
return res;
} else {
LLVMValueRef a = LLVMBuildSRem(p->builder, lhs.value, rhs.value, "");
LLVMValueRef b = LLVMBuildAdd(p->builder, a, rhs.value, "");
LLVMValueRef c = LLVMBuildSRem(p->builder, b, rhs.value, "");
res.value = c;
return res;
}
case Token_And:
res.value = LLVMBuildAnd(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Or:
res.value = LLVMBuildOr(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Xor:
res.value = LLVMBuildXor(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Shl:
{
rhs = lb_emit_conv(p, rhs, lhs.type);
LLVMValueRef lhsval = lhs.value;
LLVMValueRef bits = rhs.value;
LLVMValueRef bit_size = LLVMConstInt(lb_type(p->module, rhs.type), 8*type_size_of(lhs.type), false);
LLVMValueRef width_test = LLVMBuildICmp(p->builder, LLVMIntULT, bits, bit_size, "");
res.value = LLVMBuildShl(p->builder, lhsval, bits, "");
LLVMValueRef zero = LLVMConstNull(lb_type(p->module, lhs.type));
res.value = LLVMBuildSelect(p->builder, width_test, res.value, zero, "");
return res;
}
case Token_Shr:
{
rhs = lb_emit_conv(p, rhs, lhs.type);
LLVMValueRef lhsval = lhs.value;
LLVMValueRef bits = rhs.value;
bool is_unsigned = is_type_unsigned(integral_type);
LLVMValueRef bit_size = LLVMConstInt(lb_type(p->module, rhs.type), 8*type_size_of(lhs.type), false);
LLVMValueRef width_test = LLVMBuildICmp(p->builder, LLVMIntULT, bits, bit_size, "");
if (is_unsigned) {
res.value = LLVMBuildLShr(p->builder, lhsval, bits, "");
} else {
res.value = LLVMBuildAShr(p->builder, lhsval, bits, "");
}
LLVMValueRef zero = LLVMConstNull(lb_type(p->module, lhs.type));
res.value = LLVMBuildSelect(p->builder, width_test, res.value, zero, "");
return res;
}
case Token_AndNot:
{
LLVMValueRef new_rhs = LLVMBuildNot(p->builder, rhs.value, "");
res.value = LLVMBuildAnd(p->builder, lhs.value, new_rhs, "");
return res;
}
break;
}
GB_PANIC("unhandled operator of lb_emit_arith");
return {};
}
gb_internal lbValue lb_build_binary_expr(lbProcedure *p, Ast *expr) {
ast_node(be, BinaryExpr, expr);
TypeAndValue tv = type_and_value_of_expr(expr);
if (is_type_matrix(be->left->tav.type) || is_type_matrix(be->right->tav.type)) {
lbValue left = lb_build_expr(p, be->left);
lbValue right = lb_build_expr(p, be->right);
return lb_emit_arith_matrix(p, be->op.kind, left, right, default_type(tv.type), false);
}
switch (be->op.kind) {
case Token_Add:
case Token_Sub:
case Token_Mul:
case Token_Quo:
case Token_Mod:
case Token_ModMod:
case Token_And:
case Token_Or:
case Token_Xor:
case Token_AndNot: {
Type *type = default_type(tv.type);
lbValue left = lb_build_expr(p, be->left);
lbValue right = lb_build_expr(p, be->right);
return lb_emit_arith(p, be->op.kind, left, right, type);
}
case Token_Shl:
case Token_Shr: {
lbValue left, right;
Type *type = default_type(tv.type);
left = lb_build_expr(p, be->left);
if (lb_is_expr_untyped_const(be->right)) {
// NOTE(bill): RHS shift operands can still be untyped
// Just bypass the standard lb_build_expr
right = lb_expr_untyped_const_to_typed(p->module, be->right, type);
} else {
right = lb_build_expr(p, be->right);
}
return lb_emit_arith(p, be->op.kind, left, right, type);
}
case Token_CmpEq:
case Token_NotEq:
if (is_type_untyped_nil(be->right->tav.type)) {
lbValue left = lb_build_expr(p, be->left);
lbValue cmp = lb_emit_comp_against_nil(p, be->op.kind, left);
Type *type = default_type(tv.type);
return lb_emit_conv(p, cmp, type);
} else if (is_type_untyped_nil(be->left->tav.type)) {
lbValue right = lb_build_expr(p, be->right);
lbValue cmp = lb_emit_comp_against_nil(p, be->op.kind, right);
Type *type = default_type(tv.type);
return lb_emit_conv(p, cmp, type);
}
/*fallthrough*/
case Token_Lt:
case Token_LtEq:
case Token_Gt:
case Token_GtEq:
{
lbValue left = {};
lbValue right = {};
if (be->left->tav.mode == Addressing_Type) {
left = lb_typeid(p->module, be->left->tav.type);
}
if (be->right->tav.mode == Addressing_Type) {
right = lb_typeid(p->module, be->right->tav.type);
}
if (left.value == nullptr) left = lb_build_expr(p, be->left);
if (right.value == nullptr) right = lb_build_expr(p, be->right);
lbValue cmp = lb_emit_comp(p, be->op.kind, left, right);
Type *type = default_type(tv.type);
return lb_emit_conv(p, cmp, type);
}
case Token_CmpAnd:
case Token_CmpOr:
return lb_emit_logical_binary_expr(p, be->op.kind, be->left, be->right, tv.type);
case Token_in:
case Token_not_in:
{
lbValue left = lb_build_expr(p, be->left);
lbValue right = lb_build_expr(p, be->right);
Type *rt = base_type(right.type);
if (is_type_pointer(rt)) {
right = lb_emit_load(p, right);
rt = base_type(type_deref(rt));
}
switch (rt->kind) {
case Type_Map:
{
lbValue map_ptr = lb_address_from_load_or_generate_local(p, right);
lbValue key = left;
lbValue ptr = lb_internal_dynamic_map_get_ptr(p, map_ptr, key);
if (be->op.kind == Token_in) {
return lb_emit_conv(p, lb_emit_comp_against_nil(p, Token_NotEq, ptr), t_bool);
} else {
return lb_emit_conv(p, lb_emit_comp_against_nil(p, Token_CmpEq, ptr), t_bool);
}
}
break;
case Type_BitSet:
{
Type *key_type = rt->BitSet.elem;
GB_ASSERT(are_types_identical(left.type, key_type));
Type *it = bit_set_to_int(rt);
left = lb_emit_conv(p, left, it);
if (is_type_different_to_arch_endianness(it)) {
left = lb_emit_byte_swap(p, left, integer_endian_type_to_platform_type(it));
}
lbValue lower = lb_const_value(p->module, left.type, exact_value_i64(rt->BitSet.lower));
lbValue key = lb_emit_arith(p, Token_Sub, left, lower, left.type);
lbValue bit = lb_emit_arith(p, Token_Shl, lb_const_int(p->module, left.type, 1), key, left.type);
bit = lb_emit_conv(p, bit, it);
lbValue old_value = lb_emit_transmute(p, right, it);
lbValue new_value = lb_emit_arith(p, Token_And, old_value, bit, it);
if (be->op.kind == Token_in) {
return lb_emit_conv(p, lb_emit_comp(p, Token_NotEq, new_value, lb_const_int(p->module, new_value.type, 0)), t_bool);
} else {
return lb_emit_conv(p, lb_emit_comp(p, Token_CmpEq, new_value, lb_const_int(p->module, new_value.type, 0)), t_bool);
}
}
break;
default:
GB_PANIC("Invalid 'in' type");
}
break;
}
break;
default:
GB_PANIC("Invalid binary expression");
break;
}
return {};
}
gb_internal lbValue lb_emit_conv(lbProcedure *p, lbValue value, Type *t) {
lbModule *m = p->module;
t = reduce_tuple_to_single_type(t);
Type *src_type = value.type;
if (are_types_identical(t, src_type)) {
return value;
}
Type *src = core_type(src_type);
Type *dst = core_type(t);
GB_ASSERT(src != nullptr);
GB_ASSERT(dst != nullptr);
if (is_type_untyped_uninit(src)) {
return lb_const_undef(m, t);
}
if (is_type_untyped_nil(src)) {
return lb_const_nil(m, t);
}
if (LLVMIsConstant(value.value)) {
if (is_type_any(dst)) {
Type *st = default_type(src_type);
lbAddr default_value = lb_add_local_generated(p, st, false);
lb_addr_store(p, default_value, value);
lbValue data = lb_emit_conv(p, default_value.addr, t_rawptr);
lbValue id = lb_typeid(m, st);
lbAddr res = lb_add_local_generated(p, t, false);
lbValue a0 = lb_emit_struct_ep(p, res.addr, 0);
lbValue a1 = lb_emit_struct_ep(p, res.addr, 1);
lb_emit_store(p, a0, data);
lb_emit_store(p, a1, id);
return lb_addr_load(p, res);
} else if (dst->kind == Type_Basic) {
if (src->Basic.kind == Basic_string && dst->Basic.kind == Basic_cstring) {
String str = lb_get_const_string(m, value);
lbValue res = {};
res.type = t;
res.value = llvm_cstring(m, str);
return res;
}
// if (is_type_float(dst)) {
// return value;
// } else if (is_type_integer(dst)) {
// return value;
// }
// ExactValue ev = value->Constant.value;
// if (is_type_float(dst)) {
// ev = exact_value_to_float(ev);
// } else if (is_type_complex(dst)) {
// ev = exact_value_to_complex(ev);
// } else if (is_type_quaternion(dst)) {
// ev = exact_value_to_quaternion(ev);
// } else if (is_type_string(dst)) {
// // Handled elsewhere
// GB_ASSERT_MSG(ev.kind == ExactValue_String, "%d", ev.kind);
// } else if (is_type_integer(dst)) {
// ev = exact_value_to_integer(ev);
// } else if (is_type_pointer(dst)) {
// // IMPORTANT NOTE(bill): LLVM doesn't support pointer constants expect 'null'
// lbValue i = lb_add_module_constant(p->module, t_uintptr, ev);
// return lb_emit(p, lb_instr_conv(p, irConv_inttoptr, i, t_uintptr, dst));
// }
// return lb_const_value(p->module, t, ev);
}
}
if (are_types_identical(src, dst)) {
if (!are_types_identical(src_type, t)) {
return lb_emit_transmute(p, value, t);
}
return value;
}
// bool <-> llvm bool
if (is_type_boolean(src) && dst == t_llvm_bool) {
lbValue res = {};
res.value = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, src)), "");
res.type = t;
return res;
}
if (src == t_llvm_bool && is_type_boolean(dst)) {
lbValue res = {};
res.value = LLVMBuildZExt(p->builder, value.value, lb_type(m, dst), "");
res.type = t;
return res;
}
// integer -> integer
if (is_type_integer(src) && is_type_integer(dst)) {
GB_ASSERT(src->kind == Type_Basic &&
dst->kind == Type_Basic);
i64 sz = type_size_of(default_type(src));
i64 dz = type_size_of(default_type(dst));
if (sz == dz) {
if (dz > 1 && !types_have_same_internal_endian(src, dst)) {
return lb_emit_byte_swap(p, value, t);
}
lbValue res = {};
res.value = value.value;
res.type = t;
return res;
}
if (sz > 1 && is_type_different_to_arch_endianness(src)) {
Type *platform_src_type = integer_endian_type_to_platform_type(src);
value = lb_emit_byte_swap(p, value, platform_src_type);
}
LLVMOpcode op = LLVMTrunc;
if (dz < sz) {
op = LLVMTrunc;
} else if (dz == sz) {
// NOTE(bill): In LLVM, all integers are signed and rely upon 2's compliment
// NOTE(bill): Copy the value just for type correctness
op = LLVMBitCast;
} else if (dz > sz) {
op = is_type_unsigned(src) ? LLVMZExt : LLVMSExt; // zero extent
}
if (dz > 1 && is_type_different_to_arch_endianness(dst)) {
Type *platform_dst_type = integer_endian_type_to_platform_type(dst);
lbValue res = {};
res.value = LLVMBuildCast(p->builder, op, value.value, lb_type(m, platform_dst_type), "");
res.type = t;
return lb_emit_byte_swap(p, res, t);
} else {
lbValue res = {};
res.value = LLVMBuildCast(p->builder, op, value.value, lb_type(m, t), "");
res.type = t;
return res;
}
}
// boolean -> boolean/integer
if (is_type_boolean(src) && (is_type_boolean(dst) || is_type_integer(dst))) {
LLVMValueRef b = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, value.type)), "");
lbValue res = {};
res.value = LLVMBuildIntCast2(p->builder, b, lb_type(m, t), false, "");
res.type = t;
return res;
}
if (is_type_cstring(src) && is_type_u8_ptr(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_u8_ptr(src) && is_type_cstring(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_cstring(src) && is_type_u8_multi_ptr(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_u8_multi_ptr(src) && is_type_cstring(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_cstring(src) && is_type_rawptr(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_rawptr(src) && is_type_cstring(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (are_types_identical(src, t_cstring) && are_types_identical(dst, t_string)) {
TEMPORARY_ALLOCATOR_GUARD();
lbValue c = lb_emit_conv(p, value, t_cstring);
auto args = array_make<lbValue>(temporary_allocator(), 1);
args[0] = c;
lbValue s = lb_emit_runtime_call(p, "cstring_to_string", args);
return lb_emit_conv(p, s, dst);
}
// integer -> boolean
if (is_type_integer(src) && is_type_boolean(dst)) {
lbValue res = {};
res.value = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, value.type)), "");
res.type = t_llvm_bool;
return lb_emit_conv(p, res, t);
}
// float -> float
if (is_type_float(src) && is_type_float(dst)) {
i64 sz = type_size_of(src);
i64 dz = type_size_of(dst);
if (dz == sz) {
if (types_have_same_internal_endian(src, dst)) {
lbValue res = {};
res.type = t;
res.value = value.value;
return res;
} else {
return lb_emit_byte_swap(p, value, t);
}
}
if (is_type_different_to_arch_endianness(src) || is_type_different_to_arch_endianness(dst)) {
Type *platform_src_type = integer_endian_type_to_platform_type(src);
Type *platform_dst_type = integer_endian_type_to_platform_type(dst);
lbValue res = {};
res = lb_emit_conv(p, value, platform_src_type);
res = lb_emit_conv(p, res, platform_dst_type);
if (is_type_different_to_arch_endianness(dst)) {
res = lb_emit_byte_swap(p, res, t);
}
return lb_emit_conv(p, res, t);
}
lbValue res = {};
res.type = t;
if (dz >= sz) {
res.value = LLVMBuildFPExt(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildFPTrunc(p->builder, value.value, lb_type(m, t), "");
}
return res;
}
if (is_type_complex(src) && is_type_complex(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, false);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, lb_emit_struct_ev(p, value, 0), ft);
lbValue imag = lb_emit_conv(p, lb_emit_struct_ev(p, value, 1), ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 1), imag);
return lb_addr_load(p, gen);
}
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
// @QuaternionLayout
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, false);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue q0 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 0), ft);
lbValue q1 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 1), ft);
lbValue q2 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 2), ft);
lbValue q3 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 3), ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), q0);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 1), q1);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 2), q2);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), q3);
return lb_addr_load(p, gen);
}
if (is_type_integer(src) && is_type_complex(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, value, ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), real);
return lb_addr_load(p, gen);
}
if (is_type_float(src) && is_type_complex(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, value, ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), real);
return lb_addr_load(p, gen);
}
if (is_type_integer(src) && is_type_quaternion(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, value, ft);
// @QuaternionLayout
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), real);
return lb_addr_load(p, gen);
}
if (is_type_float(src) && is_type_quaternion(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, value, ft);
// @QuaternionLayout
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), real);
return lb_addr_load(p, gen);
}
if (is_type_complex(src) && is_type_quaternion(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, t, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, lb_emit_struct_ev(p, value, 0), ft);
lbValue imag = lb_emit_conv(p, lb_emit_struct_ev(p, value, 1), ft);
// @QuaternionLayout
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), imag);
return lb_addr_load(p, gen);
}
// float <-> integer
if (is_type_float(src) && is_type_integer(dst)) {
if (is_type_different_to_arch_endianness(src) || is_type_different_to_arch_endianness(dst)) {
Type *platform_src_type = integer_endian_type_to_platform_type(src);
Type *platform_dst_type = integer_endian_type_to_platform_type(dst);
lbValue res = {};
res = lb_emit_conv(p, value, platform_src_type);
res = lb_emit_conv(p, res, platform_dst_type);
return lb_emit_conv(p, res, t);
}
if (is_type_integer_128bit(dst)) {
TEMPORARY_ALLOCATOR_GUARD();
auto args = array_make<lbValue>(temporary_allocator(), 1);
args[0] = value;
char const *call = "fixunsdfdi";
if (is_type_unsigned(dst)) {
call = "fixunsdfti";
}
lbValue res_i128 = lb_emit_runtime_call(p, call, args);
return lb_emit_conv(p, res_i128, t);
}
lbValue res = {};
res.type = t;
if (is_type_unsigned(dst)) {
res.value = LLVMBuildFPToUI(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildFPToSI(p->builder, value.value, lb_type(m, t), "");
}
return res;
}
if (is_type_integer(src) && is_type_float(dst)) {
if (is_type_different_to_arch_endianness(src) || is_type_different_to_arch_endianness(dst)) {
Type *platform_src_type = integer_endian_type_to_platform_type(src);
Type *platform_dst_type = integer_endian_type_to_platform_type(dst);
lbValue res = {};
res = lb_emit_conv(p, value, platform_src_type);
res = lb_emit_conv(p, res, platform_dst_type);
if (is_type_different_to_arch_endianness(dst)) {
res = lb_emit_byte_swap(p, res, t);
}
return lb_emit_conv(p, res, t);
}
if (is_type_integer_128bit(src)) {
TEMPORARY_ALLOCATOR_GUARD();
auto args = array_make<lbValue>(temporary_allocator(), 1);
args[0] = value;
char const *call = "floattidf";
if (is_type_unsigned(src)) {
call = "floattidf_unsigned";
}
lbValue res_f64 = lb_emit_runtime_call(p, call, args);
return lb_emit_conv(p, res_f64, t);
}
lbValue res = {};
res.type = t;
if (is_type_unsigned(src)) {
res.value = LLVMBuildUIToFP(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildSIToFP(p->builder, value.value, lb_type(m, t), "");
}
return res;
}
if (is_type_simd_vector(dst)) {
Type *et = base_array_type(dst);
if (is_type_simd_vector(src)) {
Type *src_elem = core_array_type(src);
Type *dst_elem = core_array_type(dst);
GB_ASSERT(src->SimdVector.count == dst->SimdVector.count);
lbValue res = {};
res.type = t;
if (are_types_identical(src_elem, dst_elem)) {
res.value = value.value;
} else if (is_type_float(src_elem) && is_type_integer(dst_elem)) {
if (is_type_unsigned(dst_elem)) {
res.value = LLVMBuildFPToUI(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildFPToSI(p->builder, value.value, lb_type(m, t), "");
}
} else if (is_type_integer(src_elem) && is_type_float(dst_elem)) {
if (is_type_unsigned(src_elem)) {
res.value = LLVMBuildUIToFP(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildSIToFP(p->builder, value.value, lb_type(m, t), "");
}
} else if ((is_type_integer(src_elem) || is_type_boolean(src_elem)) && is_type_integer(dst_elem)) {
res.value = LLVMBuildIntCast2(p->builder, value.value, lb_type(m, t), !is_type_unsigned(src_elem), "");
} else if (is_type_float(src_elem) && is_type_float(dst_elem)) {
res.value = LLVMBuildFPCast(p->builder, value.value, lb_type(m, t), "");
} else if (is_type_integer(src_elem) && is_type_boolean(dst_elem)) {
LLVMValueRef i1vector = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(LLVMTypeOf(value.value)), "");
res.value = LLVMBuildIntCast2(p->builder, i1vector, lb_type(m, t), !is_type_unsigned(src_elem), "");
} else {
GB_PANIC("Unhandled simd vector conversion: %s -> %s", type_to_string(src), type_to_string(dst));
}
return res;
} else {
i64 count = get_array_type_count(dst);
LLVMTypeRef vt = lb_type(m, t);
LLVMTypeRef llvm_u32 = lb_type(m, t_u32);
LLVMValueRef elem = lb_emit_conv(p, value, et).value;
LLVMValueRef vector = LLVMConstNull(vt);
for (i64 i = 0; i < count; i++) {
LLVMValueRef idx = LLVMConstInt(llvm_u32, i, false);
vector = LLVMBuildInsertElement(p->builder, vector, elem, idx, "");
}
lbValue res = {};
res.type = t;
res.value = vector;
return res;
}
}
// Pointer <-> uintptr
if (is_type_pointer(src) && is_type_uintptr(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_uintptr(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_multi_pointer(src) && is_type_uintptr(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_uintptr(src) && is_type_multi_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_union(dst)) {
for (Type *vt : dst->Union.variants) {
if (are_types_identical(vt, src_type)) {
lbAddr parent = lb_add_local_generated(p, t, true);
lb_emit_store_union_variant(p, parent.addr, value, vt);
return lb_addr_load(p, parent);
}
}
if (dst->Union.variants.count == 1) {
Type *vt = dst->Union.variants[0];
if (internal_check_is_assignable_to(src_type, vt)) {
value = lb_emit_conv(p, value, vt);
lbAddr parent = lb_add_local_generated(p, t, true);
lb_emit_store_union_variant(p, parent.addr, value, vt);
return lb_addr_load(p, parent);
}
}
}
// NOTE(bill): This has to be done before 'Pointer <-> Pointer' as it's
// subtype polymorphism casting
if (check_is_assignable_to_using_subtype(src_type, t)) {
Type *st = type_deref(src_type);
st = type_deref(st);
bool st_is_ptr = is_type_pointer(src_type);
st = base_type(st);
Type *dt = t;
GB_ASSERT(is_type_struct(st) || is_type_raw_union(st));
Selection sel = {};
sel.index.allocator = heap_allocator();
defer (array_free(&sel.index));
if (lookup_subtype_polymorphic_selection(t, src_type, &sel)) {
if (sel.entity == nullptr) {
GB_PANIC("invalid subtype cast %s -> ", type_to_string(src_type), type_to_string(t));
}
if (st_is_ptr) {
lbValue res = lb_emit_deep_field_gep(p, value, sel);
Type *rt = res.type;
if (!are_types_identical(rt, dt) && are_types_identical(type_deref(rt), dt)) {
res = lb_emit_load(p, res);
}
return res;
} else {
if (is_type_pointer(value.type)) {
Type *rt = value.type;
if (!are_types_identical(rt, dt) && are_types_identical(type_deref(rt), dt)) {
value = lb_emit_load(p, value);
} else {
value = lb_emit_deep_field_gep(p, value, sel);
return lb_emit_load(p, value);
}
}
return lb_emit_deep_field_ev(p, value, sel);
}
}
}
// Pointer <-> Pointer
if (is_type_pointer(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_multi_pointer(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_pointer(src) && is_type_multi_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_multi_pointer(src) && is_type_multi_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// proc <-> proc
if (is_type_proc(src) && is_type_proc(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// pointer -> proc
if (is_type_pointer(src) && is_type_proc(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// proc -> pointer
if (is_type_proc(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// []byte/[]u8 <-> string
if (is_type_u8_slice(src) && is_type_string(dst)) {
return lb_emit_transmute(p, value, t);
}
if (is_type_string(src) && is_type_u8_slice(dst)) {
return lb_emit_transmute(p, value, t);
}
if (is_type_array_like(dst)) {
Type *elem = base_array_type(dst);
lbValue e = lb_emit_conv(p, value, elem);
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbAddr v = lb_add_local_generated(p, t, false);
isize index_count = cast(isize)get_array_type_count(dst);
for (isize i = 0; i < index_count; i++) {
lbValue elem = lb_emit_array_epi(p, v.addr, i);
lb_emit_store(p, elem, e);
}
return lb_addr_load(p, v);
}
if (is_type_matrix(dst) && !is_type_matrix(src)) {
GB_ASSERT_MSG(dst->Matrix.row_count == dst->Matrix.column_count, "%s <- %s", type_to_string(dst), type_to_string(src));
Type *elem = base_array_type(dst);
lbValue e = lb_emit_conv(p, value, elem);
lbAddr v = lb_add_local_generated(p, t, false);
lbValue zero = lb_const_value(p->module, elem, exact_value_i64(0), true);
for (i64 j = 0; j < dst->Matrix.column_count; j++) {
for (i64 i = 0; i < dst->Matrix.row_count; i++) {
lbValue ptr = lb_emit_matrix_epi(p, v.addr, i, j);
lb_emit_store(p, ptr, i == j ? e : zero);
}
}
return lb_addr_load(p, v);
}
if (is_type_matrix(dst) && is_type_matrix(src)) {
GB_ASSERT(dst->kind == Type_Matrix);
GB_ASSERT(src->kind == Type_Matrix);
lbAddr v = lb_add_local_generated(p, t, true);
if (is_matrix_square(dst) && is_matrix_square(dst)) {
for (i64 j = 0; j < dst->Matrix.column_count; j++) {
for (i64 i = 0; i < dst->Matrix.row_count; i++) {
if (i < src->Matrix.row_count && j < src->Matrix.column_count) {
lbValue d = lb_emit_matrix_epi(p, v.addr, i, j);
lbValue s = lb_emit_matrix_ev(p, value, i, j);
lb_emit_store(p, d, s);
} else if (i == j) {
lbValue d = lb_emit_matrix_epi(p, v.addr, i, j);
lbValue s = lb_const_value(p->module, dst->Matrix.elem, exact_value_i64(1), true);
lb_emit_store(p, d, s);
}
}
}
} else {
i64 dst_count = dst->Matrix.row_count*dst->Matrix.column_count;
i64 src_count = src->Matrix.row_count*src->Matrix.column_count;
GB_ASSERT(dst_count == src_count);
lbValue pdst = v.addr;
lbValue psrc = lb_address_from_load_or_generate_local(p, value);
bool same_elem_base_types = are_types_identical(
base_type(dst->Matrix.elem),
base_type(src->Matrix.elem)
);
if (same_elem_base_types && type_size_of(dst) == type_size_of(src)) {
lb_mem_copy_overlapping(p, v.addr, psrc, lb_const_int(p->module, t_int, type_size_of(dst)));
} else {
for (i64 i = 0; i < src_count; i++) {
lbValue dp = lb_emit_array_epi(p, v.addr, matrix_column_major_index_to_offset(dst, i));
lbValue sp = lb_emit_array_epi(p, psrc, matrix_column_major_index_to_offset(src, i));
lbValue s = lb_emit_load(p, sp);
s = lb_emit_conv(p, s, dst->Matrix.elem);
lb_emit_store(p, dp, s);
}
}
}
return lb_addr_load(p, v);
}
if (is_type_any(dst)) {
if (is_type_untyped_uninit(src)) {
return lb_const_undef(p->module, t);
}
if (is_type_untyped_nil(src)) {
return lb_const_nil(p->module, t);
}
lbAddr result = lb_add_local_generated(p, t, true);
Type *st = default_type(src_type);
lbValue data = lb_address_from_load_or_generate_local(p, value);
GB_ASSERT_MSG(is_type_pointer(data.type), "%s", type_to_string(data.type));
GB_ASSERT_MSG(is_type_typed(st), "%s", type_to_string(st));
data = lb_emit_conv(p, data, t_rawptr);
lbValue id = lb_typeid(p->module, st);
lbValue any_data = lb_emit_struct_ep(p, result.addr, 0);
lbValue any_id = lb_emit_struct_ep(p, result.addr, 1);
lb_emit_store(p, any_data, data);
lb_emit_store(p, any_id, id);
return lb_addr_load(p, result);
}
i64 src_sz = type_size_of(src);
i64 dst_sz = type_size_of(dst);
if (src_sz == dst_sz) {
// bit_set <-> integer
if (is_type_integer(src) && is_type_bit_set(dst)) {
lbValue res = lb_emit_conv(p, value, bit_set_to_int(dst));
res.type = t;
return res;
}
if (is_type_bit_set(src) && is_type_integer(dst)) {
lbValue bs = value;
bs.type = bit_set_to_int(src);
return lb_emit_conv(p, bs, dst);
}
// typeid <-> integer
if (is_type_integer(src) && is_type_typeid(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_typeid(src) && is_type_integer(dst)) {
return lb_emit_transmute(p, value, dst);
}
}
if (is_type_untyped(src)) {
if (is_type_string(src) && is_type_string(dst)) {
lbAddr result = lb_add_local_generated(p, t, false);
lb_addr_store(p, result, value);
return lb_addr_load(p, result);
}
}
gb_printf_err("%.*s\n", LIT(p->name));
gb_printf_err("lb_emit_conv: src -> dst\n");
gb_printf_err("Not Identical %s != %s\n", type_to_string(src_type), type_to_string(t));
gb_printf_err("Not Identical %s != %s\n", type_to_string(src), type_to_string(dst));
gb_printf_err("Not Identical %p != %p\n", src_type, t);
gb_printf_err("Not Identical %p != %p\n", src, dst);
GB_PANIC("Invalid type conversion: '%s' to '%s' for procedure '%.*s'",
type_to_string(src_type), type_to_string(t),
LIT(p->name));
return {};
}
gb_internal lbValue lb_compare_records(lbProcedure *p, TokenKind op_kind, lbValue left, lbValue right, Type *type) {
GB_ASSERT((is_type_struct(type) || is_type_union(type)) && is_type_comparable(type));
lbValue left_ptr = lb_address_from_load_or_generate_local(p, left);
lbValue right_ptr = lb_address_from_load_or_generate_local(p, right);
lbValue res = {};
if (type_size_of(type) == 0) {
switch (op_kind) {
case Token_CmpEq:
return lb_const_bool(p->module, t_bool, true);
case Token_NotEq:
return lb_const_bool(p->module, t_bool, false);
}
GB_PANIC("invalid operator");
}
TEMPORARY_ALLOCATOR_GUARD();
if (is_type_simple_compare(type)) {
// TODO(bill): Test to see if this is actually faster!!!!
auto args = array_make<lbValue>(temporary_allocator(), 3);
args[0] = lb_emit_conv(p, left_ptr, t_rawptr);
args[1] = lb_emit_conv(p, right_ptr, t_rawptr);
args[2] = lb_const_int(p->module, t_int, type_size_of(type));
res = lb_emit_runtime_call(p, "memory_equal", args);
} else {
lbValue value = lb_equal_proc_for_type(p->module, type);
auto args = array_make<lbValue>(temporary_allocator(), 2);
args[0] = lb_emit_conv(p, left_ptr, t_rawptr);
args[1] = lb_emit_conv(p, right_ptr, t_rawptr);
res = lb_emit_call(p, value, args);
}
if (op_kind == Token_NotEq) {
res = lb_emit_unary_arith(p, Token_Not, res, res.type);
}
return res;
}
gb_internal lbValue lb_emit_comp(lbProcedure *p, TokenKind op_kind, lbValue left, lbValue right) {
Type *a = core_type(left.type);
Type *b = core_type(right.type);
GB_ASSERT(gb_is_between(op_kind, Token__ComparisonBegin+1, Token__ComparisonEnd-1));
lbValue nil_check = {};
if (is_type_untyped_nil(left.type)) {
nil_check = lb_emit_comp_against_nil(p, op_kind, right);
} else if (is_type_untyped_nil(right.type)) {
nil_check = lb_emit_comp_against_nil(p, op_kind, left);
}
if (nil_check.value != nullptr) {
return nil_check;
}
if (are_types_identical(a, b)) {
// NOTE(bill): No need for a conversion
} else if (lb_is_const(left) || lb_is_const_nil(left)) {
left = lb_emit_conv(p, left, right.type);
} else if (lb_is_const(right) || lb_is_const_nil(right)) {
right = lb_emit_conv(p, right, left.type);
} else {
Type *lt = left.type;
Type *rt = right.type;
lt = left.type;
rt = right.type;
i64 ls = type_size_of(lt);
i64 rs = type_size_of(rt);
// NOTE(bill): Quick heuristic, larger types are usually the target type
if (ls < rs) {
left = lb_emit_conv(p, left, rt);
} else if (ls > rs) {
right = lb_emit_conv(p, right, lt);
} else {
if (is_type_union(rt)) {
left = lb_emit_conv(p, left, rt);
} else {
right = lb_emit_conv(p, right, lt);
}
}
}
a = core_type(left.type);
b = core_type(right.type);
if (is_type_matrix(a) && (op_kind == Token_CmpEq || op_kind == Token_NotEq)) {
Type *tl = base_type(a);
lbValue lhs = lb_address_from_load_or_generate_local(p, left);
lbValue rhs = lb_address_from_load_or_generate_local(p, right);
// TODO(bill): Test to see if this is actually faster!!!!
auto args = array_make<lbValue>(permanent_allocator(), 3);
args[0] = lb_emit_conv(p, lhs, t_rawptr);
args[1] = lb_emit_conv(p, rhs, t_rawptr);
args[2] = lb_const_int(p->module, t_int, type_size_of(tl));
lbValue val = lb_emit_runtime_call(p, "memory_compare", args);
lbValue res = lb_emit_comp(p, op_kind, val, lb_const_nil(p->module, val.type));
return lb_emit_conv(p, res, t_bool);
}
if (is_type_array(a) || is_type_enumerated_array(a)) {
Type *tl = base_type(a);
lbValue lhs = lb_address_from_load_or_generate_local(p, left);
lbValue rhs = lb_address_from_load_or_generate_local(p, right);
TokenKind cmp_op = Token_And;
lbValue res = lb_const_bool(p->module, t_llvm_bool, true);
if (op_kind == Token_NotEq) {
res = lb_const_bool(p->module, t_llvm_bool, false);
cmp_op = Token_Or;
} else if (op_kind == Token_CmpEq) {
res = lb_const_bool(p->module, t_llvm_bool, true);
cmp_op = Token_And;
}
bool inline_array_arith = lb_can_try_to_inline_array_arith(tl);
i32 count = 0;
switch (tl->kind) {
case Type_Array: count = cast(i32)tl->Array.count; break;
case Type_EnumeratedArray: count = cast(i32)tl->EnumeratedArray.count; break;
}
if (inline_array_arith) {
// inline
lbAddr val = lb_add_local_generated(p, t_bool, false);
lb_addr_store(p, val, res);
for (i32 i = 0; i < count; i++) {
lbValue x = lb_emit_load(p, lb_emit_array_epi(p, lhs, i));
lbValue y = lb_emit_load(p, lb_emit_array_epi(p, rhs, i));
lbValue cmp = lb_emit_comp(p, op_kind, x, y);
lbValue new_res = lb_emit_arith(p, cmp_op, lb_addr_load(p, val), cmp, t_bool);
lb_addr_store(p, val, lb_emit_conv(p, new_res, t_bool));
}
return lb_addr_load(p, val);
} else {
if (is_type_simple_compare(tl) && (op_kind == Token_CmpEq || op_kind == Token_NotEq)) {
// TODO(bill): Test to see if this is actually faster!!!!
auto args = array_make<lbValue>(permanent_allocator(), 3);
args[0] = lb_emit_conv(p, lhs, t_rawptr);
args[1] = lb_emit_conv(p, rhs, t_rawptr);
args[2] = lb_const_int(p->module, t_int, type_size_of(tl));
lbValue val = lb_emit_runtime_call(p, "memory_compare", args);
lbValue res = lb_emit_comp(p, op_kind, val, lb_const_nil(p->module, val.type));
return lb_emit_conv(p, res, t_bool);
} else {
lbAddr val = lb_add_local_generated(p, t_bool, false);
lb_addr_store(p, val, res);
auto loop_data = lb_loop_start(p, count, t_i32);
{
lbValue i = loop_data.idx;
lbValue x = lb_emit_load(p, lb_emit_array_ep(p, lhs, i));
lbValue y = lb_emit_load(p, lb_emit_array_ep(p, rhs, i));
lbValue cmp = lb_emit_comp(p, op_kind, x, y);
lbValue new_res = lb_emit_arith(p, cmp_op, lb_addr_load(p, val), cmp, t_bool);
lb_addr_store(p, val, lb_emit_conv(p, new_res, t_bool));
}
lb_loop_end(p, loop_data);
return lb_addr_load(p, val);
}
}
}
if ((is_type_struct(a) || is_type_union(a)) && is_type_comparable(a)) {
return lb_compare_records(p, op_kind, left, right, a);
}
if ((is_type_struct(b) || is_type_union(b)) && is_type_comparable(b)) {
return lb_compare_records(p, op_kind, left, right, b);
}
if (is_type_string(a)) {
if (is_type_cstring(a)) {
left = lb_emit_conv(p, left, t_string);
right = lb_emit_conv(p, right, t_string);
}
char const *runtime_procedure = nullptr;
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "string_eq"; break;
case Token_NotEq: runtime_procedure = "string_ne"; break;
case Token_Lt: runtime_procedure = "string_lt"; break;
case Token_Gt: runtime_procedure = "string_gt"; break;
case Token_LtEq: runtime_procedure = "string_le"; break;
case Token_GtEq: runtime_procedure = "string_gt"; break;
}
GB_ASSERT(runtime_procedure != nullptr);
auto args = array_make<lbValue>(permanent_allocator(), 2);
args[0] = left;
args[1] = right;
return lb_emit_runtime_call(p, runtime_procedure, args);
}
if (is_type_complex(a)) {
char const *runtime_procedure = "";
i64 sz = 8*type_size_of(a);
switch (sz) {
case 32:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "complex32_eq"; break;
case Token_NotEq: runtime_procedure = "complex32_ne"; break;
}
break;
case 64:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "complex64_eq"; break;
case Token_NotEq: runtime_procedure = "complex64_ne"; break;
}
break;
case 128:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "complex128_eq"; break;
case Token_NotEq: runtime_procedure = "complex128_ne"; break;
}
break;
}
GB_ASSERT(runtime_procedure != nullptr);
auto args = array_make<lbValue>(permanent_allocator(), 2);
args[0] = left;
args[1] = right;
return lb_emit_runtime_call(p, runtime_procedure, args);
}
if (is_type_quaternion(a)) {
char const *runtime_procedure = "";
i64 sz = 8*type_size_of(a);
switch (sz) {
case 64:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "quaternion64_eq"; break;
case Token_NotEq: runtime_procedure = "quaternion64_ne"; break;
}
break;
case 128:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "quaternion128_eq"; break;
case Token_NotEq: runtime_procedure = "quaternion128_ne"; break;
}
break;
case 256:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "quaternion256_eq"; break;
case Token_NotEq: runtime_procedure = "quaternion256_ne"; break;
}
break;
}
GB_ASSERT(runtime_procedure != nullptr);
auto args = array_make<lbValue>(permanent_allocator(), 2);
args[0] = left;
args[1] = right;
return lb_emit_runtime_call(p, runtime_procedure, args);
}
if (is_type_bit_set(a)) {
switch (op_kind) {
case Token_Lt:
case Token_LtEq:
case Token_Gt:
case Token_GtEq:
{
Type *it = bit_set_to_int(a);
lbValue lhs = lb_emit_transmute(p, left, it);
lbValue rhs = lb_emit_transmute(p, right, it);
lbValue res = lb_emit_arith(p, Token_And, lhs, rhs, it);
if (op_kind == Token_Lt || op_kind == Token_LtEq) {
// (lhs & rhs) == lhs
res.value = LLVMBuildICmp(p->builder, LLVMIntEQ, res.value, lhs.value, "");
res.type = t_llvm_bool;
} else if (op_kind == Token_Gt || op_kind == Token_GtEq) {
// (lhs & rhs) == rhs
res.value = LLVMBuildICmp(p->builder, LLVMIntEQ, res.value, rhs.value, "");
res.type = t_llvm_bool;
}
// NOTE(bill): Strict subsets
if (op_kind == Token_Lt || op_kind == Token_Gt) {
// res &~ (lhs == rhs)
lbValue eq = {};
eq.value = LLVMBuildICmp(p->builder, LLVMIntEQ, lhs.value, rhs.value, "");
eq.type = t_llvm_bool;
res = lb_emit_arith(p, Token_AndNot, res, eq, t_llvm_bool);
}
return res;
}
case Token_CmpEq:
case Token_NotEq:
{
LLVMIntPredicate pred = {};
switch (op_kind) {
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
lbValue res = {};
res.type = t_llvm_bool;
res.value = LLVMBuildICmp(p->builder, pred, left.value, right.value, "");
return res;
}
}
}
if (op_kind != Token_CmpEq && op_kind != Token_NotEq) {
Type *t = left.type;
if (is_type_integer(t) && is_type_different_to_arch_endianness(t)) {
Type *platform_type = integer_endian_type_to_platform_type(t);
lbValue x = lb_emit_byte_swap(p, left, platform_type);
lbValue y = lb_emit_byte_swap(p, right, platform_type);
left = x;
right = y;
} else if (is_type_float(t) && is_type_different_to_arch_endianness(t)) {
Type *platform_type = integer_endian_type_to_platform_type(t);
lbValue x = lb_emit_conv(p, left, platform_type);
lbValue y = lb_emit_conv(p, right, platform_type);
left = x;
right = y;
}
}
a = core_type(left.type);
b = core_type(right.type);
lbValue res = {};
res.type = t_llvm_bool;
if (is_type_integer(a) ||
is_type_boolean(a) ||
is_type_pointer(a) ||
is_type_multi_pointer(a) ||
is_type_proc(a) ||
is_type_enum(a)) {
LLVMIntPredicate pred = {};
if (is_type_unsigned(left.type)) {
switch (op_kind) {
case Token_Gt: pred = LLVMIntUGT; break;
case Token_GtEq: pred = LLVMIntUGE; break;
case Token_Lt: pred = LLVMIntULT; break;
case Token_LtEq: pred = LLVMIntULE; break;
}
} else {
switch (op_kind) {
case Token_Gt: pred = LLVMIntSGT; break;
case Token_GtEq: pred = LLVMIntSGE; break;
case Token_Lt: pred = LLVMIntSLT; break;
case Token_LtEq: pred = LLVMIntSLE; break;
}
}
switch (op_kind) {
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
LLVMValueRef lhs = left.value;
LLVMValueRef rhs = right.value;
if (LLVMTypeOf(lhs) != LLVMTypeOf(rhs)) {
if (lb_is_type_kind(LLVMTypeOf(lhs), LLVMPointerTypeKind)) {
rhs = LLVMBuildPointerCast(p->builder, rhs, LLVMTypeOf(lhs), "");
}
}
res.value = LLVMBuildICmp(p->builder, pred, lhs, rhs, "");
} else if (is_type_float(a)) {
LLVMRealPredicate pred = {};
switch (op_kind) {
case Token_CmpEq: pred = LLVMRealOEQ; break;
case Token_Gt: pred = LLVMRealOGT; break;
case Token_GtEq: pred = LLVMRealOGE; break;
case Token_Lt: pred = LLVMRealOLT; break;
case Token_LtEq: pred = LLVMRealOLE; break;
case Token_NotEq: pred = LLVMRealONE; break;
}
res.value = LLVMBuildFCmp(p->builder, pred, left.value, right.value, "");
} else if (is_type_typeid(a)) {
LLVMIntPredicate pred = {};
switch (op_kind) {
case Token_Gt: pred = LLVMIntUGT; break;
case Token_GtEq: pred = LLVMIntUGE; break;
case Token_Lt: pred = LLVMIntULT; break;
case Token_LtEq: pred = LLVMIntULE; break;
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
res.value = LLVMBuildICmp(p->builder, pred, left.value, right.value, "");
} else if (is_type_simd_vector(a)) {
LLVMValueRef mask = nullptr;
Type *elem = base_array_type(a);
if (is_type_float(elem)) {
LLVMRealPredicate pred = {};
switch (op_kind) {
case Token_CmpEq: pred = LLVMRealOEQ; break;
case Token_NotEq: pred = LLVMRealONE; break;
}
mask = LLVMBuildFCmp(p->builder, pred, left.value, right.value, "");
} else {
LLVMIntPredicate pred = {};
switch (op_kind) {
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
mask = LLVMBuildICmp(p->builder, pred, left.value, right.value, "");
}
GB_ASSERT_MSG(mask != nullptr, "Unhandled comparison kind %s (%s) %.*s %s (%s)", type_to_string(left.type), type_to_string(base_type(left.type)), LIT(token_strings[op_kind]), type_to_string(right.type), type_to_string(base_type(right.type)));
/* NOTE(bill, 2022-05-28):
Thanks to Per Vognsen, sign extending <N x i1> to
a vector of the same width as the input vector, bit casting to an integer,
and then comparing against zero is the better option
See: https://lists.llvm.org/pipermail/llvm-dev/2012-September/053046.html
// Example assuming 128-bit vector
%1 = <4 x float> ...
%2 = <4 x float> ...
%3 = fcmp oeq <4 x float> %1, %2
%4 = sext <4 x i1> %3 to <4 x i32>
%5 = bitcast <4 x i32> %4 to i128
%6 = icmp ne i128 %5, 0
br i1 %6, label %true1, label %false2
This will result in 1 cmpps + 1 ptest + 1 br
(even without SSE4.1, contrary to what the mail list states, because of pmovmskb)
*/
unsigned count = cast(unsigned)get_array_type_count(a);
unsigned elem_sz = cast(unsigned)(type_size_of(elem)*8);
LLVMTypeRef mask_type = LLVMVectorType(LLVMIntTypeInContext(p->module->ctx, elem_sz), count);
mask = LLVMBuildSExtOrBitCast(p->builder, mask, mask_type, "");
LLVMTypeRef mask_int_type = LLVMIntTypeInContext(p->module->ctx, cast(unsigned)(8*type_size_of(a)));
LLVMValueRef mask_int = LLVMBuildBitCast(p->builder, mask, mask_int_type, "");
res.value = LLVMBuildICmp(p->builder, LLVMIntNE, mask_int, LLVMConstNull(LLVMTypeOf(mask_int)), "");
return res;
} else {
GB_PANIC("Unhandled comparison kind %s (%s) %.*s %s (%s)", type_to_string(left.type), type_to_string(base_type(left.type)), LIT(token_strings[op_kind]), type_to_string(right.type), type_to_string(base_type(right.type)));
}
return res;
}
gb_internal lbValue lb_emit_comp_against_nil(lbProcedure *p, TokenKind op_kind, lbValue x) {
lbValue res = {};
res.type = t_llvm_bool;
Type *t = x.type;
Type *bt = base_type(t);
TypeKind type_kind = bt->kind;
switch (type_kind) {
case Type_Basic:
switch (bt->Basic.kind) {
case Basic_rawptr:
case Basic_cstring:
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, x.value, "");
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, x.value, "");
}
return res;
case Basic_any:
{
// TODO(bill): is this correct behaviour for nil comparison for any?
lbValue data = lb_emit_struct_ev(p, x, 0);
lbValue ti = lb_emit_struct_ev(p, x, 1);
if (op_kind == Token_CmpEq) {
LLVMValueRef a = LLVMBuildIsNull(p->builder, data.value, "");
LLVMValueRef b = LLVMBuildIsNull(p->builder, ti.value, "");
res.value = LLVMBuildOr(p->builder, a, b, "");
return res;
} else if (op_kind == Token_NotEq) {
LLVMValueRef a = LLVMBuildIsNotNull(p->builder, data.value, "");
LLVMValueRef b = LLVMBuildIsNotNull(p->builder, ti.value, "");
res.value = LLVMBuildAnd(p->builder, a, b, "");
return res;
}
}
break;
case Basic_typeid:
lbValue invalid_typeid = lb_const_value(p->module, t_typeid, exact_value_i64(0));
return lb_emit_comp(p, op_kind, x, invalid_typeid);
}
break;
case Type_Enum:
case Type_Pointer:
case Type_MultiPointer:
case Type_Proc:
case Type_BitSet:
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, x.value, "");
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, x.value, "");
}
return res;
case Type_Slice:
{
lbValue data = lb_emit_struct_ev(p, x, 0);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, data.value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, data.value, "");
return res;
}
}
break;
case Type_DynamicArray:
{
lbValue data = lb_emit_struct_ev(p, x, 0);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, data.value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, data.value, "");
return res;
}
}
break;
case Type_Map:
{
lbValue data_ptr = lb_emit_struct_ev(p, x, 0);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, data_ptr.value, "");
return res;
} else {
res.value = LLVMBuildIsNotNull(p->builder, data_ptr.value, "");
return res;
}
}
break;
case Type_Union:
{
if (type_size_of(t) == 0) {
if (op_kind == Token_CmpEq) {
return lb_const_bool(p->module, t_llvm_bool, true);
} else if (op_kind == Token_NotEq) {
return lb_const_bool(p->module, t_llvm_bool, false);
}
} else if (is_type_union_maybe_pointer(t)) {
lbValue tag = lb_emit_transmute(p, x, t_rawptr);
return lb_emit_comp_against_nil(p, op_kind, tag);
} else {
lbValue tag = lb_emit_union_tag_value(p, x);
return lb_emit_comp(p, op_kind, tag, lb_zero(p->module, tag.type));
}
}
case Type_Struct:
if (is_type_soa_struct(t)) {
Type *bt = base_type(t);
if (bt->Struct.soa_kind == StructSoa_Slice) {
LLVMValueRef the_value = {};
if (bt->Struct.fields.count == 0) {
lbValue len = lb_soa_struct_len(p, x);
the_value = len.value;
} else {
lbValue first_field = lb_emit_struct_ev(p, x, 0);
the_value = first_field.value;
}
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, the_value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, the_value, "");
return res;
}
} else if (bt->Struct.soa_kind == StructSoa_Dynamic) {
LLVMValueRef the_value = {};
if (bt->Struct.fields.count == 0) {
lbValue cap = lb_soa_struct_cap(p, x);
the_value = cap.value;
} else {
lbValue first_field = lb_emit_struct_ev(p, x, 0);
the_value = first_field.value;
}
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, the_value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, the_value, "");
return res;
}
}
} else if (is_type_struct(t) && type_has_nil(t)) {
auto args = array_make<lbValue>(permanent_allocator(), 2);
lbValue lhs = lb_address_from_load_or_generate_local(p, x);
args[0] = lb_emit_conv(p, lhs, t_rawptr);
args[1] = lb_const_int(p->module, t_int, type_size_of(t));
lbValue val = lb_emit_runtime_call(p, "memory_compare_zero", args);
lbValue res = lb_emit_comp(p, op_kind, val, lb_const_int(p->module, t_int, 0));
return res;
}
break;
}
GB_PANIC("Unknown handled type: %s -> %s", type_to_string(t), type_to_string(bt));
return {};
}
gb_internal lbValue lb_make_soa_pointer(lbProcedure *p, Type *type, lbValue const &addr, lbValue const &index) {
lbAddr v = lb_add_local_generated(p, type, false);
lbValue ptr = lb_emit_struct_ep(p, v.addr, 0);
lbValue idx = lb_emit_struct_ep(p, v.addr, 1);
lb_emit_store(p, ptr, addr);
lb_emit_store(p, idx, lb_emit_conv(p, index, t_int));
return lb_addr_load(p, v);
}
gb_internal lbValue lb_build_unary_and(lbProcedure *p, Ast *expr) {
ast_node(ue, UnaryExpr, expr);
auto tv = type_and_value_of_expr(expr);
Ast *ue_expr = unparen_expr(ue->expr);
if (ue_expr->kind == Ast_IndexExpr && tv.mode == Addressing_OptionalOkPtr && is_type_tuple(tv.type)) {
Type *tuple = tv.type;
Type *map_type = type_of_expr(ue_expr->IndexExpr.expr);
Type *ot = base_type(map_type);
Type *t = base_type(type_deref(ot));
bool deref = t != ot;
GB_ASSERT(t->kind == Type_Map);
ast_node(ie, IndexExpr, ue_expr);
lbValue map_val = lb_build_addr_ptr(p, ie->expr);
if (deref) {
map_val = lb_emit_load(p, map_val);
}
lbValue key = lb_build_expr(p, ie->index);
key = lb_emit_conv(p, key, t->Map.key);
lbAddr addr = lb_addr_map(map_val, key, t, alloc_type_pointer(t->Map.value));
lbValue ptr = lb_addr_get_ptr(p, addr);
lbValue ok = lb_emit_comp_against_nil(p, Token_NotEq, ptr);
ok = lb_emit_conv(p, ok, tuple->Tuple.variables[1]->type);
lbAddr res = lb_add_local_generated(p, tuple, false);
lbValue gep0 = lb_emit_struct_ep(p, res.addr, 0);
lbValue gep1 = lb_emit_struct_ep(p, res.addr, 1);
lb_emit_store(p, gep0, ptr);
lb_emit_store(p, gep1, ok);
return lb_addr_load(p, res);
} else if (is_type_soa_pointer(tv.type)) {
ast_node(ie, IndexExpr, ue_expr);
lbValue addr = lb_build_addr_ptr(p, ie->expr);
lbValue index = lb_build_expr(p, ie->index);
if (!build_context.no_bounds_check) {
// TODO(bill): soa bounds checking
}
return lb_make_soa_pointer(p, tv.type, addr, index);
} else if (ue_expr->kind == Ast_CompoundLit) {
lbValue v = lb_build_expr(p, ue->expr);
Type *type = v.type;
lbAddr addr = {};
if (p->is_startup) {
addr = lb_add_global_generated(p->module, type, v);
} else {
addr = lb_add_local_generated(p, type, false);
}
lb_addr_store(p, addr, v);
return addr.addr;
} else if (ue_expr->kind == Ast_TypeAssertion) {
if (is_type_tuple(tv.type)) {
Type *tuple = tv.type;
Type *ptr_type = tuple->Tuple.variables[0]->type;
Type *ok_type = tuple->Tuple.variables[1]->type;
ast_node(ta, TypeAssertion, ue_expr);
TokenPos pos = ast_token(expr).pos;
Type *type = type_of_expr(ue_expr);
GB_ASSERT(!is_type_tuple(type));
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
lbValue v = e;
if (!is_type_pointer(v.type)) {
v = lb_address_from_load_or_generate_local(p, v);
}
Type *src_type = type_deref(v.type);
Type *dst_type = type;
lbValue src_tag = {};
lbValue dst_tag = {};
if (is_type_union_maybe_pointer(src_type)) {
src_tag = lb_emit_comp_against_nil(p, Token_NotEq, v);
dst_tag = lb_const_bool(p->module, t_bool, true);
} else {
src_tag = lb_emit_load(p, lb_emit_union_tag_ptr(p, v));
dst_tag = lb_const_union_tag(p->module, src_type, dst_type);
}
lbValue ok = lb_emit_comp(p, Token_CmpEq, src_tag, dst_tag);
lbValue data_ptr = lb_emit_conv(p, v, ptr_type);
lbAddr res = lb_add_local_generated(p, tuple, true);
lbValue gep0 = lb_emit_struct_ep(p, res.addr, 0);
lbValue gep1 = lb_emit_struct_ep(p, res.addr, 1);
lb_emit_store(p, gep0, lb_emit_select(p, ok, data_ptr, lb_const_nil(p->module, ptr_type)));
lb_emit_store(p, gep1, lb_emit_conv(p, ok, ok_type));
return lb_addr_load(p, res);
} else if (is_type_any(t)) {
lbValue v = e;
if (is_type_pointer(v.type)) {
v = lb_emit_load(p, v);
}
lbValue data_ptr = lb_emit_conv(p, lb_emit_struct_ev(p, v, 0), ptr_type);
lbValue any_id = lb_emit_struct_ev(p, v, 1);
lbValue id = lb_typeid(p->module, type);
lbValue ok = lb_emit_comp(p, Token_CmpEq, any_id, id);
lbAddr res = lb_add_local_generated(p, tuple, false);
lbValue gep0 = lb_emit_struct_ep(p, res.addr, 0);
lbValue gep1 = lb_emit_struct_ep(p, res.addr, 1);
lb_emit_store(p, gep0, lb_emit_select(p, ok, data_ptr, lb_const_nil(p->module, ptr_type)));
lb_emit_store(p, gep1, lb_emit_conv(p, ok, ok_type));
return lb_addr_load(p, res);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(type));
}
} else {
GB_ASSERT(is_type_pointer(tv.type));
ast_node(ta, TypeAssertion, ue_expr);
TokenPos pos = ast_token(expr).pos;
Type *type = type_of_expr(ue_expr);
GB_ASSERT(!is_type_tuple(type));
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
lbValue v = e;
if (!is_type_pointer(v.type)) {
v = lb_address_from_load_or_generate_local(p, v);
}
Type *src_type = type_deref(v.type);
Type *dst_type = type;
if ((p->state_flags & StateFlag_no_type_assert) == 0) {
lbValue src_tag = {};
lbValue dst_tag = {};
if (is_type_union_maybe_pointer(src_type)) {
src_tag = lb_emit_comp_against_nil(p, Token_NotEq, v);
dst_tag = lb_const_bool(p->module, t_bool, true);
} else {
src_tag = lb_emit_load(p, lb_emit_union_tag_ptr(p, v));
dst_tag = lb_const_union_tag(p->module, src_type, dst_type);
}
isize arg_count = 6;
if (build_context.no_rtti) {
arg_count = 4;
}
lbValue ok = lb_emit_comp(p, Token_CmpEq, src_tag, dst_tag);
auto args = array_make<lbValue>(permanent_allocator(), arg_count);
args[0] = ok;
args[1] = lb_find_or_add_entity_string(p->module, get_file_path_string(pos.file_id));
args[2] = lb_const_int(p->module, t_i32, pos.line);
args[3] = lb_const_int(p->module, t_i32, pos.column);
if (!build_context.no_rtti) {
args[4] = lb_typeid(p->module, src_type);
args[5] = lb_typeid(p->module, dst_type);
}
lb_emit_runtime_call(p, "type_assertion_check", args);
}
lbValue data_ptr = v;
return lb_emit_conv(p, data_ptr, tv.type);
} else if (is_type_any(t)) {
lbValue v = e;
if (is_type_pointer(v.type)) {
v = lb_emit_load(p, v);
}
lbValue data_ptr = lb_emit_struct_ev(p, v, 0);
if ((p->state_flags & StateFlag_no_type_assert) == 0) {
GB_ASSERT(!build_context.no_rtti);
lbValue any_id = lb_emit_struct_ev(p, v, 1);
lbValue id = lb_typeid(p->module, type);
lbValue ok = lb_emit_comp(p, Token_CmpEq, any_id, id);
auto args = array_make<lbValue>(permanent_allocator(), 6);
args[0] = ok;
args[1] = lb_find_or_add_entity_string(p->module, get_file_path_string(pos.file_id));
args[2] = lb_const_int(p->module, t_i32, pos.line);
args[3] = lb_const_int(p->module, t_i32, pos.column);
args[4] = any_id;
args[5] = id;
lb_emit_runtime_call(p, "type_assertion_check", args);
}
return lb_emit_conv(p, data_ptr, tv.type);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(type));
}
}
}
return lb_build_addr_ptr(p, ue->expr);
}
gb_internal lbValue lb_build_expr_internal(lbProcedure *p, Ast *expr);
gb_internal lbValue lb_build_expr(lbProcedure *p, Ast *expr) {
u16 prev_state_flags = p->state_flags;
defer (p->state_flags = prev_state_flags);
if (expr->state_flags != 0) {
u16 in = expr->state_flags;
u16 out = p->state_flags;
if (in & StateFlag_bounds_check) {
out |= StateFlag_bounds_check;
out &= ~StateFlag_no_bounds_check;
} else if (in & StateFlag_no_bounds_check) {
out |= StateFlag_no_bounds_check;
out &= ~StateFlag_bounds_check;
}
if (in & StateFlag_type_assert) {
out |= StateFlag_type_assert;
out &= ~StateFlag_no_type_assert;
} else if (in & StateFlag_no_type_assert) {
out |= StateFlag_no_type_assert;
out &= ~StateFlag_type_assert;
}
p->state_flags = out;
}
// IMPORTANT NOTE(bill):
// Selector Call Expressions (foo->bar(...))
// must only evaluate `foo` once as it gets transformed into
// `foo.bar(foo, ...)`
// And if `foo` is a procedure call or something more complex, storing the value
// once is a very good idea
// If a stored value is found, it must be removed from the cache
if (expr->state_flags & StateFlag_SelectorCallExpr) {
lbValue *pp = map_get(&p->selector_values, expr);
if (pp != nullptr) {
lbValue res = *pp;
map_remove(&p->selector_values, expr);
return res;
}
lbAddr *pa = map_get(&p->selector_addr, expr);
if (pa != nullptr) {
lbAddr res = *pa;
map_remove(&p->selector_addr, expr);
return lb_addr_load(p, res);
}
}
lbValue res = lb_build_expr_internal(p, expr);
if (expr->state_flags & StateFlag_SelectorCallExpr) {
map_set(&p->selector_values, expr, res);
}
return res;
}
gb_internal lbValue lb_build_expr_internal(lbProcedure *p, Ast *expr) {
lbModule *m = p->module;
expr = unparen_expr(expr);
TokenPos expr_pos = ast_token(expr).pos;
TypeAndValue tv = type_and_value_of_expr(expr);
Type *type = type_of_expr(expr);
GB_ASSERT_MSG(tv.mode != Addressing_Invalid, "invalid expression '%s' (tv.mode = %d, tv.type = %s) @ %s\n Current Proc: %.*s : %s", expr_to_string(expr), tv.mode, type_to_string(tv.type), token_pos_to_string(expr_pos), LIT(p->name), type_to_string(p->type));
if (tv.value.kind != ExactValue_Invalid) {
// NOTE(bill): The commented out code below is just for debug purposes only
// if (is_type_untyped(type)) {
// gb_printf_err("%s %s : %s @ %p\n", token_pos_to_string(expr_pos), expr_to_string(expr), type_to_string(expr->tav.type), expr);
// GB_PANIC("%s\n", type_to_string(tv.type));
// }
// NOTE(bill): Short on constant values
return lb_const_value(p->module, type, tv.value);
} else if (tv.mode == Addressing_Type) {
// NOTE(bill, 2023-01-16): is this correct? I hope so at least
return lb_typeid(m, tv.type);
}
switch (expr->kind) {
case_ast_node(bl, BasicLit, expr);
TokenPos pos = bl->token.pos;
GB_PANIC("Non-constant basic literal %s - %.*s", token_pos_to_string(pos), LIT(token_strings[bl->token.kind]));
case_end;
case_ast_node(bd, BasicDirective, expr);
TokenPos pos = bd->token.pos;
GB_PANIC("Non-constant basic literal %s - %.*s", token_pos_to_string(pos), LIT(bd->name.string));
case_end;
case_ast_node(i, Implicit, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(u, Uninit, expr)
lbValue res = {};
if (is_type_untyped(type)) {
res.value = nullptr;
res.type = t_untyped_uninit;
} else {
res.value = LLVMGetUndef(lb_type(m, type));
res.type = type;
}
return res;
case_end;
case_ast_node(i, Ident, expr);
Entity *e = entity_from_expr(expr);
e = strip_entity_wrapping(e);
GB_ASSERT_MSG(e != nullptr, "%s in %.*s %p", expr_to_string(expr), LIT(p->name), expr);
if (e->kind == Entity_Builtin) {
Token token = ast_token(expr);
GB_PANIC("TODO(bill): lb_build_expr Entity_Builtin '%.*s'\n"
"\t at %s", LIT(builtin_procs[e->Builtin.id].name),
token_pos_to_string(token.pos));
return {};
} else if (e->kind == Entity_Nil) {
lbValue res = {};
res.value = nullptr;
res.type = e->type;
return res;
}
GB_ASSERT(e->kind != Entity_ProcGroup);
return lb_find_ident(p, m, e, expr);
case_end;
case_ast_node(de, DerefExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(se, SelectorExpr, expr);
TypeAndValue tav = type_and_value_of_expr(expr);
GB_ASSERT(tav.mode != Addressing_Invalid);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ise, ImplicitSelectorExpr, expr);
TypeAndValue tav = type_and_value_of_expr(expr);
GB_ASSERT(tav.mode == Addressing_Constant);
return lb_const_value(p->module, type, tv.value);
case_end;
case_ast_node(se, SelectorCallExpr, expr);
GB_ASSERT(se->modified_call);
return lb_build_call_expr(p, se->call);
case_end;
case_ast_node(te, TernaryIfExpr, expr);
LLVMValueRef incoming_values[2] = {};
LLVMBasicBlockRef incoming_blocks[2] = {};
GB_ASSERT(te->y != nullptr);
lbBlock *then = lb_create_block(p, "if.then");
lbBlock *done = lb_create_block(p, "if.done"); // NOTE(bill): Append later
lbBlock *else_ = lb_create_block(p, "if.else");
lb_build_cond(p, te->cond, then, else_);
lb_start_block(p, then);
Type *type = default_type(type_of_expr(expr));
LLVMTypeRef llvm_type = lb_type(p->module, type);
incoming_values[0] = lb_emit_conv(p, lb_build_expr(p, te->x), type).value;
if (is_type_internally_pointer_like(type)) {
incoming_values[0] = LLVMBuildBitCast(p->builder, incoming_values[0], llvm_type, "");
}
lb_emit_jump(p, done);
lb_start_block(p, else_);
incoming_values[1] = lb_emit_conv(p, lb_build_expr(p, te->y), type).value;
if (is_type_internally_pointer_like(type)) {
incoming_values[1] = LLVMBuildBitCast(p->builder, incoming_values[1], llvm_type, "");
}
lb_emit_jump(p, done);
lb_start_block(p, done);
lbValue res = {};
res.value = LLVMBuildPhi(p->builder, llvm_type, "");
res.type = type;
GB_ASSERT(p->curr_block->preds.count >= 2);
incoming_blocks[0] = p->curr_block->preds[0]->block;
incoming_blocks[1] = p->curr_block->preds[1]->block;
LLVMAddIncoming(res.value, incoming_values, incoming_blocks, 2);
return res;
case_end;
case_ast_node(te, TernaryWhenExpr, expr);
TypeAndValue tav = type_and_value_of_expr(te->cond);
GB_ASSERT(tav.mode == Addressing_Constant);
GB_ASSERT(tav.value.kind == ExactValue_Bool);
if (tav.value.value_bool) {
return lb_build_expr(p, te->x);
} else {
return lb_build_expr(p, te->y);
}
case_end;
case_ast_node(oe, OrElseExpr, expr);
return lb_emit_or_else(p, oe->x, oe->y, tv);
case_end;
case_ast_node(oe, OrReturnExpr, expr);
return lb_emit_or_return(p, oe->expr, tv);
case_end;
case_ast_node(ta, TypeAssertion, expr);
TokenPos pos = ast_token(expr).pos;
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
if (ta->ignores[0]) {
// NOTE(bill): This is not needed for optimization levels other than 0
return lb_emit_union_cast_only_ok_check(p, e, type, pos);
}
return lb_emit_union_cast(p, e, type, pos);
} else if (is_type_any(t)) {
return lb_emit_any_cast(p, e, type, pos);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(e.type));
}
case_end;
case_ast_node(tc, TypeCast, expr);
lbValue e = lb_build_expr(p, tc->expr);
switch (tc->token.kind) {
case Token_cast:
return lb_emit_conv(p, e, type);
case Token_transmute:
return lb_emit_transmute(p, e, type);
}
GB_PANIC("Invalid AST TypeCast");
case_end;
case_ast_node(ac, AutoCast, expr);
lbValue value = lb_build_expr(p, ac->expr);
return lb_emit_conv(p, value, type);
case_end;
case_ast_node(ue, UnaryExpr, expr);
switch (ue->op.kind) {
case Token_And:
return lb_build_unary_and(p, expr);
default:
{
lbValue v = lb_build_expr(p, ue->expr);
return lb_emit_unary_arith(p, ue->op.kind, v, type);
}
}
case_end;
case_ast_node(be, BinaryExpr, expr);
return lb_build_binary_expr(p, expr);
case_end;
case_ast_node(pl, ProcLit, expr);
return lb_generate_anonymous_proc_lit(p->module, p->name, expr, p);
case_end;
case_ast_node(cl, CompoundLit, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ce, CallExpr, expr);
return lb_build_call_expr(p, expr);
case_end;
case_ast_node(se, SliceExpr, expr);
if (is_type_slice(type_of_expr(se->expr))) {
// NOTE(bill): Quick optimization
if (se->high == nullptr &&
(se->low == nullptr || lb_is_expr_constant_zero(se->low))) {
return lb_build_expr(p, se->expr);
}
}
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ie, IndexExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ie, MatrixIndexExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ia, InlineAsmExpr, expr);
Type *t = type_of_expr(expr);
GB_ASSERT(is_type_asm_proc(t));
String asm_string = {};
String constraints_string = {};
TypeAndValue tav;
tav = type_and_value_of_expr(ia->asm_string);
GB_ASSERT(is_type_string(tav.type));
GB_ASSERT(tav.value.kind == ExactValue_String);
asm_string = tav.value.value_string;
tav = type_and_value_of_expr(ia->constraints_string);
GB_ASSERT(is_type_string(tav.type));
GB_ASSERT(tav.value.kind == ExactValue_String);
constraints_string = tav.value.value_string;
LLVMInlineAsmDialect dialect = LLVMInlineAsmDialectATT;
switch (ia->dialect) {
case InlineAsmDialect_Default: dialect = LLVMInlineAsmDialectATT; break;
case InlineAsmDialect_ATT: dialect = LLVMInlineAsmDialectATT; break;
case InlineAsmDialect_Intel: dialect = LLVMInlineAsmDialectIntel; break;
default: GB_PANIC("Unhandled inline asm dialect"); break;
}
LLVMTypeRef func_type = lb_type_internal_for_procedures_raw(p->module, t);
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, asm_string, constraints_string, ia->has_side_effects, ia->has_side_effects, dialect);
GB_ASSERT(the_asm != nullptr);
return {the_asm, t};
case_end;
}
GB_PANIC("lb_build_expr: %.*s", LIT(ast_strings[expr->kind]));
return {};
}
gb_internal lbAddr lb_get_soa_variable_addr(lbProcedure *p, Entity *e) {
return map_must_get(&p->module->soa_values, e);
}
gb_internal lbValue lb_get_using_variable(lbProcedure *p, Entity *e) {
GB_ASSERT(e->kind == Entity_Variable && e->flags & EntityFlag_Using);
String name = e->token.string;
Entity *parent = e->using_parent;
Selection sel = lookup_field(parent->type, name, false);
GB_ASSERT(sel.entity != nullptr);
lbValue *pv = map_get(&p->module->values, parent);
lbValue v = {};
if (pv == nullptr && parent->flags & EntityFlag_SoaPtrField) {
// NOTE(bill): using SOA value (probably from for-in statement)
lbAddr parent_addr = lb_get_soa_variable_addr(p, parent);
v = lb_addr_get_ptr(p, parent_addr);
} else if (pv != nullptr) {
v = *pv;
} else {
GB_ASSERT_MSG(e->using_expr != nullptr, "%.*s", LIT(name));
v = lb_build_addr_ptr(p, e->using_expr);
}
GB_ASSERT(v.value != nullptr);
GB_ASSERT_MSG(parent->type == type_deref(v.type), "%s %s", type_to_string(parent->type), type_to_string(v.type));
lbValue ptr = lb_emit_deep_field_gep(p, v, sel);
if (parent->scope) {
if ((parent->scope->flags & (ScopeFlag_File|ScopeFlag_Pkg)) == 0) {
lb_add_debug_local_variable(p, ptr.value, e->type, e->token);
}
} else {
lb_add_debug_local_variable(p, ptr.value, e->type, e->token);
}
return ptr;
}
gb_internal lbAddr lb_build_addr_from_entity(lbProcedure *p, Entity *e, Ast *expr) {
GB_ASSERT(e != nullptr);
if (e->kind == Entity_Constant) {
Type *t = default_type(type_of_expr(expr));
lbValue v = lb_const_value(p->module, t, e->Constant.value);
lbAddr g = lb_add_global_generated(p->module, t, v);
return g;
}
lbValue v = {};
lbValue *found = map_get(&p->module->values, e);
if (found) {
v = *found;
} else if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) {
// NOTE(bill): Calculate the using variable every time
v = lb_get_using_variable(p, e);
} else if (e->flags & EntityFlag_SoaPtrField) {
return lb_get_soa_variable_addr(p, e);
}
if (v.value == nullptr) {
return lb_addr(lb_find_value_from_entity(p->module, e));
// error(expr, "%.*s Unknown value: %.*s, entity: %p %.*s",
// LIT(p->name),
// LIT(e->token.string), e, LIT(entity_strings[e->kind]));
// GB_PANIC("Unknown value");
}
return lb_addr(v);
}
gb_internal lbAddr lb_build_array_swizzle_addr(lbProcedure *p, AstCallExpr *ce, TypeAndValue const &tv) {
isize index_count = ce->args.count-1;
lbAddr addr = lb_build_addr(p, ce->args[0]);
if (index_count == 0) {
return addr;
}
Type *type = base_type(lb_addr_type(addr));
GB_ASSERT(type->kind == Type_Array);
i64 count = type->Array.count;
if (count <= 4) {
u8 indices[4] = {};
u8 index_count = 0;
for (i32 i = 1; i < ce->args.count; i++) {
TypeAndValue tv = type_and_value_of_expr(ce->args[i]);
GB_ASSERT(is_type_integer(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Integer);
i64 src_index = big_int_to_i64(&tv.value.value_integer);
indices[index_count++] = cast(u8)src_index;
}
return lb_addr_swizzle(lb_addr_get_ptr(p, addr), tv.type, index_count, indices);
}
auto indices = slice_make<i32>(permanent_allocator(), ce->args.count-1);
isize index_index = 0;
for (i32 i = 1; i < ce->args.count; i++) {
TypeAndValue tv = type_and_value_of_expr(ce->args[i]);
GB_ASSERT(is_type_integer(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Integer);
i64 src_index = big_int_to_i64(&tv.value.value_integer);
indices[index_index++] = cast(i32)src_index;
}
return lb_addr_swizzle_large(lb_addr_get_ptr(p, addr), tv.type, indices);
}
gb_internal lbAddr lb_build_addr_internal(lbProcedure *p, Ast *expr);
gb_internal lbAddr lb_build_addr(lbProcedure *p, Ast *expr) {
expr = unparen_expr(expr);
// IMPORTANT NOTE(bill):
// Selector Call Expressions (foo->bar(...))
// must only evaluate `foo` once as it gets transformed into
// `foo.bar(foo, ...)`
// And if `foo` is a procedure call or something more complex, storing the value
// once is a very good idea
// If a stored value is found, it must be removed from the cache
if (expr->state_flags & StateFlag_SelectorCallExpr) {
lbAddr *pp = map_get(&p->selector_addr, expr);
if (pp != nullptr) {
lbAddr res = *pp;
map_remove(&p->selector_addr, expr);
return res;
}
}
lbAddr addr = lb_build_addr_internal(p, expr);
if (expr->state_flags & StateFlag_SelectorCallExpr) {
map_set(&p->selector_addr, expr, addr);
}
return addr;
}
gb_internal void lb_build_addr_compound_lit_populate(lbProcedure *p, Slice<Ast *> const &elems, Array<lbCompoundLitElemTempData> *temp_data, Type *compound_type) {
Type *bt = base_type(compound_type);
Type *et = nullptr;
switch (bt->kind) {
case Type_Array: et = bt->Array.elem; break;
case Type_EnumeratedArray: et = bt->EnumeratedArray.elem; break;
case Type_Slice: et = bt->Slice.elem; break;
case Type_BitSet: et = bt->BitSet.elem; break;
case Type_DynamicArray: et = bt->DynamicArray.elem; break;
case Type_SimdVector: et = bt->SimdVector.elem; break;
case Type_Matrix: et = bt->Matrix.elem; break;
}
GB_ASSERT(et != nullptr);
// NOTE(bill): Separate value, gep, store into their own chunks
for_array(i, elems) {
Ast *elem = elems[i];
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
if (lb_is_elem_const(fv->value, et)) {
continue;
}
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op != Token_RangeHalf) {
hi += 1;
}
lbValue value = lb_emit_conv(p, lb_build_expr(p, fv->value), et);
GB_ASSERT((hi-lo) > 0);
if (bt->kind == Type_Matrix) {
for (i64 k = lo; k < hi; k++) {
lbCompoundLitElemTempData data = {};
data.value = value;
data.elem_index = matrix_row_major_index_to_offset(bt, k);
array_add(temp_data, data);
}
} else {
enum {MAX_ELEMENT_AMOUNT = 32};
if ((hi-lo) <= MAX_ELEMENT_AMOUNT) {
for (i64 k = lo; k < hi; k++) {
lbCompoundLitElemTempData data = {};
data.value = value;
data.elem_index = k;
array_add(temp_data, data);
}
} else {
lbCompoundLitElemTempData data = {};
data.value = value;
data.elem_index = lo;
data.elem_length = hi-lo;
array_add(temp_data, data);
}
}
} else {
auto tav = fv->field->tav;
GB_ASSERT(tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(tav.value);
lbValue value = lb_emit_conv(p, lb_build_expr(p, fv->value), et);
GB_ASSERT(!is_type_tuple(value.type));
lbCompoundLitElemTempData data = {};
data.value = value;
data.expr = fv->value;
if (bt->kind == Type_Matrix) {
data.elem_index = matrix_row_major_index_to_offset(bt, index);
} else {
data.elem_index = index;
}
array_add(temp_data, data);
}
} else {
if (bt->kind != Type_DynamicArray && lb_is_elem_const(elem, et)) {
continue;
}
lbValue field_expr = lb_build_expr(p, elem);
GB_ASSERT(!is_type_tuple(field_expr.type));
lbValue ev = lb_emit_conv(p, field_expr, et);
lbCompoundLitElemTempData data = {};
data.value = ev;
if (bt->kind == Type_Matrix) {
data.elem_index = matrix_row_major_index_to_offset(bt, i);
} else {
data.elem_index = i;
}
array_add(temp_data, data);
}
}
}
gb_internal void lb_build_addr_compound_lit_assign_array(lbProcedure *p, Array<lbCompoundLitElemTempData> const &temp_data) {
for (auto const &td : temp_data) {
if (td.value.value != nullptr) {
if (td.elem_length > 0) {
auto loop_data = lb_loop_start(p, cast(isize)td.elem_length, t_i32);
{
lbValue dst = td.gep;
dst = lb_emit_ptr_offset(p, dst, loop_data.idx);
lb_emit_store(p, dst, td.value);
}
lb_loop_end(p, loop_data);
} else {
lb_emit_store(p, td.gep, td.value);
}
}
}
}
gb_internal lbAddr lb_build_addr_index_expr(lbProcedure *p, Ast *expr) {
ast_node(ie, IndexExpr, expr);
Type *t = base_type(type_of_expr(ie->expr));
bool deref = is_type_pointer(t);
t = base_type(type_deref(t));
if (is_type_soa_struct(t)) {
// SOA STRUCTURES!!!!
lbValue val = lb_build_addr_ptr(p, ie->expr);
if (deref) {
val = lb_emit_load(p, val);
}
lbValue index = lb_build_expr(p, ie->index);
return lb_addr_soa_variable(val, index, ie->index);
}
if (ie->expr->tav.mode == Addressing_SoaVariable) {
// SOA Structures for slices/dynamic arrays
GB_ASSERT(is_type_pointer(type_of_expr(ie->expr)));
lbValue field = lb_build_expr(p, ie->expr);
lbValue index = lb_build_expr(p, ie->index);
if (!build_context.no_bounds_check) {
// TODO HACK(bill): Clean up this hack to get the length for bounds checking
// GB_ASSERT(LLVMIsALoadInst(field.value));
// lbValue a = {};
// a.value = LLVMGetOperand(field.value, 0);
// a.type = alloc_type_pointer(field.type);
// irInstr *b = &a->Instr;
// GB_ASSERT(b->kind == irInstr_StructElementPtr);
// lbValue base_struct = b->StructElementPtr.address;
// GB_ASSERT(is_type_soa_struct(type_deref(ir_type(base_struct))));
// lbValue len = ir_soa_struct_len(p, base_struct);
// lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
lbValue val = lb_emit_ptr_offset(p, field, index);
return lb_addr(val);
}
GB_ASSERT_MSG(is_type_indexable(t), "%s %s", type_to_string(t), expr_to_string(expr));
if (is_type_map(t)) {
lbAddr map_addr = lb_build_addr(p, ie->expr);
lbValue key = lb_build_expr(p, ie->index);
key = lb_emit_conv(p, key, t->Map.key);
Type *result_type = type_of_expr(expr);
lbValue map_ptr = lb_addr_get_ptr(p, map_addr);
if (is_type_pointer(type_deref(map_ptr.type))) {
map_ptr = lb_emit_load(p, map_ptr);
}
return lb_addr_map(map_ptr, key, t, result_type);
}
switch (t->kind) {
case Type_Array: {
lbValue array = {};
array = lb_build_addr_ptr(p, ie->expr);
if (deref) {
array = lb_emit_load(p, array);
}
lbValue index = lb_build_expr(p, ie->index);
index = lb_emit_conv(p, index, t_int);
lbValue elem = lb_emit_array_ep(p, array, index);
auto index_tv = type_and_value_of_expr(ie->index);
if (index_tv.mode != Addressing_Constant) {
lbValue len = lb_const_int(p->module, t_int, t->Array.count);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
return lb_addr(elem);
}
case Type_EnumeratedArray: {
lbValue array = {};
array = lb_build_addr_ptr(p, ie->expr);
if (deref) {
array = lb_emit_load(p, array);
}
Type *index_type = t->EnumeratedArray.index;
auto index_tv = type_and_value_of_expr(ie->index);
lbValue index = {};
if (compare_exact_values(Token_NotEq, *t->EnumeratedArray.min_value, exact_value_i64(0))) {
if (index_tv.mode == Addressing_Constant) {
ExactValue idx = exact_value_sub(index_tv.value, *t->EnumeratedArray.min_value);
index = lb_const_value(p->module, index_type, idx);
} else {
index = lb_emit_arith(p, Token_Sub,
lb_build_expr(p, ie->index),
lb_const_value(p->module, index_type, *t->EnumeratedArray.min_value),
index_type);
index = lb_emit_conv(p, index, t_int);
}
} else {
index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
}
lbValue elem = lb_emit_array_ep(p, array, index);
if (index_tv.mode != Addressing_Constant) {
lbValue len = lb_const_int(p->module, t_int, t->EnumeratedArray.count);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
return lb_addr(elem);
}
case Type_Slice: {
lbValue slice = {};
slice = lb_build_expr(p, ie->expr);
if (deref) {
slice = lb_emit_load(p, slice);
}
lbValue elem = lb_slice_elem(p, slice);
lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lbValue len = lb_slice_len(p, slice);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
case Type_MultiPointer: {
lbValue multi_ptr = {};
multi_ptr = lb_build_expr(p, ie->expr);
if (deref) {
multi_ptr = lb_emit_load(p, multi_ptr);
}
lbValue index = lb_build_expr(p, ie->index);
index = lb_emit_conv(p, index, t_int);
lbValue v = {};
LLVMValueRef indices[1] = {index.value};
v.value = LLVMBuildGEP2(p->builder, lb_type(p->module, t->MultiPointer.elem), multi_ptr.value, indices, 1, "foo");
v.type = alloc_type_pointer(t->MultiPointer.elem);
return lb_addr(v);
}
case Type_RelativeSlice: {
lbAddr slice_addr = {};
if (deref) {
slice_addr = lb_addr(lb_build_expr(p, ie->expr));
} else {
slice_addr = lb_build_addr(p, ie->expr);
}
lbValue slice = lb_addr_load(p, slice_addr);
lbValue elem = lb_slice_elem(p, slice);
lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lbValue len = lb_slice_len(p, slice);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
case Type_DynamicArray: {
lbValue dynamic_array = {};
dynamic_array = lb_build_expr(p, ie->expr);
if (deref) {
dynamic_array = lb_emit_load(p, dynamic_array);
}
lbValue elem = lb_dynamic_array_elem(p, dynamic_array);
lbValue len = lb_dynamic_array_len(p, dynamic_array);
lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
case Type_Matrix: {
lbValue matrix = {};
matrix = lb_build_addr_ptr(p, ie->expr);
if (deref) {
matrix = lb_emit_load(p, matrix);
}
lbValue index = lb_build_expr(p, ie->index);
index = lb_emit_conv(p, index, t_int);
lbValue elem = lb_emit_matrix_ep(p, matrix, lb_const_int(p->module, t_int, 0), index);
elem = lb_emit_conv(p, elem, alloc_type_pointer(type_of_expr(expr)));
auto index_tv = type_and_value_of_expr(ie->index);
if (index_tv.mode != Addressing_Constant) {
lbValue len = lb_const_int(p->module, t_int, t->Matrix.column_count);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
return lb_addr(elem);
}
case Type_Basic: { // Basic_string
lbValue str;
lbValue elem;
lbValue len;
lbValue index;
str = lb_build_expr(p, ie->expr);
if (deref) {
str = lb_emit_load(p, str);
}
elem = lb_string_elem(p, str);
len = lb_string_len(p, str);
index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
return lb_addr(lb_emit_ptr_offset(p, elem, index));
}
}
return {};
}
gb_internal lbAddr lb_build_addr_slice_expr(lbProcedure *p, Ast *expr) {
ast_node(se, SliceExpr, expr);
lbValue low = lb_const_int(p->module, t_int, 0);
lbValue high = {};
if (se->low != nullptr) {
low = lb_correct_endianness(p, lb_build_expr(p, se->low));
}
if (se->high != nullptr) {
high = lb_correct_endianness(p, lb_build_expr(p, se->high));
}
bool no_indices = se->low == nullptr && se->high == nullptr;
lbAddr addr = lb_build_addr(p, se->expr);
lbValue base = lb_addr_load(p, addr);
Type *type = base_type(base.type);
if (is_type_pointer(type)) {
type = base_type(type_deref(type));
addr = lb_addr(base);
base = lb_addr_load(p, addr);
}
switch (type->kind) {
case Type_Slice: {
Type *slice_type = type;
lbValue len = lb_slice_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_slice_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
case Type_RelativeSlice:
GB_PANIC("TODO(bill): Type_RelativeSlice should be handled above already on the lb_addr_load");
break;
case Type_DynamicArray: {
Type *elem_type = type->DynamicArray.elem;
Type *slice_type = alloc_type_slice(elem_type);
lbValue len = lb_dynamic_array_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_dynamic_array_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
case Type_MultiPointer: {
lbAddr res = lb_add_local_generated(p, type_of_expr(expr), false);
if (se->high == nullptr) {
lbValue offset = base;
LLVMValueRef indices[1] = {low.value};
offset.value = LLVMBuildGEP2(p->builder, lb_type(p->module, offset.type->MultiPointer.elem), offset.value, indices, 1, "");
lb_addr_store(p, res, offset);
} else {
low = lb_emit_conv(p, low, t_int);
high = lb_emit_conv(p, high, t_int);
lb_emit_multi_pointer_slice_bounds_check(p, se->open, low, high);
LLVMValueRef indices[1] = {low.value};
LLVMValueRef ptr = LLVMBuildGEP2(p->builder, lb_type(p->module, base.type->MultiPointer.elem), base.value, indices, 1, "");
LLVMValueRef len = LLVMBuildSub(p->builder, high.value, low.value, "");
LLVMValueRef gep0 = lb_emit_struct_ep(p, res.addr, 0).value;
LLVMValueRef gep1 = lb_emit_struct_ep(p, res.addr, 1).value;
LLVMBuildStore(p->builder, ptr, gep0);
LLVMBuildStore(p->builder, len, gep1);
}
return res;
}
case Type_Array: {
Type *slice_type = alloc_type_slice(type->Array.elem);
lbValue len = lb_const_int(p->module, t_int, type->Array.count);
if (high.value == nullptr) high = len;
bool low_const = type_and_value_of_expr(se->low).mode == Addressing_Constant;
bool high_const = type_and_value_of_expr(se->high).mode == Addressing_Constant;
if (!low_const || !high_const) {
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
}
lbValue elem = lb_emit_ptr_offset(p, lb_array_elem(p, lb_addr_get_ptr(p, addr)), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
case Type_Basic: {
GB_ASSERT(type == t_string);
lbValue len = lb_string_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_string_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr str = lb_add_local_generated(p, t_string, false);
lb_fill_string(p, str, elem, new_len);
return str;
}
case Type_Struct:
if (is_type_soa_struct(type)) {
lbValue len = lb_soa_struct_len(p, lb_addr_get_ptr(p, addr));
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
#if 1
lbAddr dst = lb_add_local_generated(p, type_of_expr(expr), true);
if (type->Struct.soa_kind == StructSoa_Fixed) {
i32 field_count = cast(i32)type->Struct.fields.count;
for (i32 i = 0; i < field_count; i++) {
lbValue field_dst = lb_emit_struct_ep(p, dst.addr, i);
lbValue field_src = lb_emit_struct_ep(p, lb_addr_get_ptr(p, addr), i);
field_src = lb_emit_array_ep(p, field_src, low);
lb_emit_store(p, field_dst, field_src);
}
lbValue len_dst = lb_emit_struct_ep(p, dst.addr, field_count);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lb_emit_store(p, len_dst, new_len);
} else if (type->Struct.soa_kind == StructSoa_Slice) {
if (no_indices) {
lb_addr_store(p, dst, base);
} else {
i32 field_count = cast(i32)type->Struct.fields.count - 1;
for (i32 i = 0; i < field_count; i++) {
lbValue field_dst = lb_emit_struct_ep(p, dst.addr, i);
lbValue field_src = lb_emit_struct_ev(p, base, i);
field_src = lb_emit_ptr_offset(p, field_src, low);
lb_emit_store(p, field_dst, field_src);
}
lbValue len_dst = lb_emit_struct_ep(p, dst.addr, field_count);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lb_emit_store(p, len_dst, new_len);
}
} else if (type->Struct.soa_kind == StructSoa_Dynamic) {
i32 field_count = cast(i32)type->Struct.fields.count - 3;
for (i32 i = 0; i < field_count; i++) {
lbValue field_dst = lb_emit_struct_ep(p, dst.addr, i);
lbValue field_src = lb_emit_struct_ev(p, base, i);
field_src = lb_emit_ptr_offset(p, field_src, low);
lb_emit_store(p, field_dst, field_src);
}
lbValue len_dst = lb_emit_struct_ep(p, dst.addr, field_count);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lb_emit_store(p, len_dst, new_len);
}
return dst;
#endif
}
break;
}
GB_PANIC("Unknown slicable type");
return {};
}
gb_internal lbAddr lb_build_addr_compound_lit(lbProcedure *p, Ast *expr) {
ast_node(cl, CompoundLit, expr);
Type *type = type_of_expr(expr);
Type *bt = base_type(type);
lbAddr v = lb_add_local_generated(p, type, true);
TEMPORARY_ALLOCATOR_GUARD();
Type *et = nullptr;
switch (bt->kind) {
case Type_Array: et = bt->Array.elem; break;
case Type_EnumeratedArray: et = bt->EnumeratedArray.elem; break;
case Type_Slice: et = bt->Slice.elem; break;
case Type_BitSet: et = bt->BitSet.elem; break;
case Type_SimdVector: et = bt->SimdVector.elem; break;
case Type_Matrix: et = bt->Matrix.elem; break;
}
String proc_name = {};
if (p->entity) {
proc_name = p->entity->token.string;
}
TokenPos pos = ast_token(expr).pos;
switch (bt->kind) {
default: GB_PANIC("Unknown CompoundLit type: %s", type_to_string(type)); break;
case Type_Struct: {
// TODO(bill): "constant" '#raw_union's are not initialized constantly at the moment.
// NOTE(bill): This is due to the layout of the unions when printed to LLVM-IR
bool is_raw_union = is_type_raw_union(bt);
GB_ASSERT(is_type_struct(bt) || is_raw_union);
TypeStruct *st = &bt->Struct;
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
lbValue comp_lit_ptr = lb_addr_get_ptr(p, v);
for_array(field_index, cl->elems) {
Ast *elem = cl->elems[field_index];
lbValue field_expr = {};
Entity *field = nullptr;
isize index = field_index;
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(bt, name, false);
GB_ASSERT(!sel.indirect);
elem = fv->value;
if (sel.index.count > 1) {
if (lb_is_nested_possibly_constant(type, sel, elem)) {
continue;
}
lbValue dst = lb_emit_deep_field_gep(p, comp_lit_ptr, sel);
field_expr = lb_build_expr(p, elem);
field_expr = lb_emit_conv(p, field_expr, sel.entity->type);
lb_emit_store(p, dst, field_expr);
continue;
}
index = sel.index[0];
} else {
Selection sel = lookup_field_from_index(bt, st->fields[field_index]->Variable.field_index);
GB_ASSERT(sel.index.count == 1);
GB_ASSERT(!sel.indirect);
index = sel.index[0];
}
field = st->fields[index];
Type *ft = field->type;
if (!is_raw_union && !is_type_typeid(ft) && lb_is_elem_const(elem, ft)) {
continue;
}
field_expr = lb_build_expr(p, elem);
lbValue gep = {};
if (is_raw_union) {
gep = lb_emit_conv(p, comp_lit_ptr, alloc_type_pointer(ft));
} else {
gep = lb_emit_struct_ep(p, comp_lit_ptr, cast(i32)index);
}
Type *fet = field_expr.type;
GB_ASSERT(fet->kind != Type_Tuple);
// HACK TODO(bill): THIS IS A MASSIVE HACK!!!!
if (is_type_union(ft) && !are_types_identical(fet, ft) && !is_type_untyped(fet)) {
GB_ASSERT_MSG(union_variant_index(ft, fet) > 0, "%s", type_to_string(fet));
lb_emit_store_union_variant(p, gep, field_expr, fet);
} else {
lbValue fv = lb_emit_conv(p, field_expr, ft);
lb_emit_store(p, gep, fv);
}
}
}
break;
}
case Type_Map: {
if (cl->elems.count == 0) {
break;
}
GB_ASSERT(!build_context.no_dynamic_literals);
lbValue err = lb_dynamic_map_reserve(p, v.addr, 2*cl->elems.count, pos);
gb_unused(err);
for (Ast *elem : cl->elems) {
ast_node(fv, FieldValue, elem);
lbValue key = lb_build_expr(p, fv->field);
lbValue value = lb_build_expr(p, fv->value);
lb_internal_dynamic_map_set(p, v.addr, type, key, value, elem);
}
break;
}
case Type_Array: {
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
lb_build_addr_compound_lit_populate(p, cl->elems, &temp_data, type);
lbValue dst_ptr = lb_addr_get_ptr(p, v);
for_array(i, temp_data) {
i32 index = cast(i32)(temp_data[i].elem_index);
temp_data[i].gep = lb_emit_array_epi(p, dst_ptr, index);
}
lb_build_addr_compound_lit_assign_array(p, temp_data);
}
break;
}
case Type_EnumeratedArray: {
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
lb_build_addr_compound_lit_populate(p, cl->elems, &temp_data, type);
lbValue dst_ptr = lb_addr_get_ptr(p, v);
i64 index_offset = exact_value_to_i64(*bt->EnumeratedArray.min_value);
for_array(i, temp_data) {
i32 index = cast(i32)(temp_data[i].elem_index - index_offset);
temp_data[i].gep = lb_emit_array_epi(p, dst_ptr, index);
}
lb_build_addr_compound_lit_assign_array(p, temp_data);
}
break;
}
case Type_Slice: {
if (cl->elems.count > 0) {
lbValue slice = lb_const_value(p->module, type, exact_value_compound(expr));
lbValue data = lb_slice_elem(p, slice);
auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
lb_build_addr_compound_lit_populate(p, cl->elems, &temp_data, type);
for_array(i, temp_data) {
temp_data[i].gep = lb_emit_ptr_offset(p, data, lb_const_int(p->module, t_int, temp_data[i].elem_index));
}
lb_build_addr_compound_lit_assign_array(p, temp_data);
{
lbValue count = {};
count.type = t_int;
unsigned len_index = lb_convert_struct_index(p->module, type, 1);
if (lb_is_const(slice)) {
unsigned indices[1] = {len_index};
count.value = LLVMConstExtractValue(slice.value, indices, gb_count_of(indices));
} else {
count.value = LLVMBuildExtractValue(p->builder, slice.value, len_index, "");
}
lb_fill_slice(p, v, data, count);
}
}
break;
}
case Type_DynamicArray: {
if (cl->elems.count == 0) {
break;
}
GB_ASSERT(!build_context.no_dynamic_literals);
Type *et = bt->DynamicArray.elem;
lbValue size = lb_const_int(p->module, t_int, type_size_of(et));
lbValue align = lb_const_int(p->module, t_int, type_align_of(et));
i64 item_count = gb_max(cl->max_count, cl->elems.count);
{
auto args = array_make<lbValue>(temporary_allocator(), 5);
args[0] = lb_emit_conv(p, lb_addr_get_ptr(p, v), t_rawptr);
args[1] = size;
args[2] = align;
args[3] = lb_const_int(p->module, t_int, item_count);
args[4] = lb_emit_source_code_location_as_global(p, proc_name, pos);
lb_emit_runtime_call(p, "__dynamic_array_reserve", args);
}
lbValue items = lb_generate_local_array(p, et, item_count);
auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
lb_build_addr_compound_lit_populate(p, cl->elems, &temp_data, type);
for_array(i, temp_data) {
temp_data[i].gep = lb_emit_array_epi(p, items, temp_data[i].elem_index);
}
lb_build_addr_compound_lit_assign_array(p, temp_data);
{
auto args = array_make<lbValue>(temporary_allocator(), 6);
args[0] = lb_emit_conv(p, v.addr, t_rawptr);
args[1] = size;
args[2] = align;
args[3] = lb_emit_conv(p, items, t_rawptr);
args[4] = lb_const_int(p->module, t_int, item_count);
args[5] = lb_emit_source_code_location_as_global(p, proc_name, pos);
lb_emit_runtime_call(p, "__dynamic_array_append", args);
}
break;
}
case Type_Basic: {
GB_ASSERT(is_type_any(bt));
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
String field_names[2] = {
str_lit("data"),
str_lit("id"),
};
Type *field_types[2] = {
t_rawptr,
t_typeid,
};
for_array(field_index, cl->elems) {
Ast *elem = cl->elems[field_index];
lbValue field_expr = {};
isize index = field_index;
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
Selection sel = lookup_field(bt, fv->field->Ident.token.string, false);
index = sel.index[0];
elem = fv->value;
} else {
TypeAndValue tav = type_and_value_of_expr(elem);
Selection sel = lookup_field(bt, field_names[field_index], false);
index = sel.index[0];
}
field_expr = lb_build_expr(p, elem);
GB_ASSERT(field_expr.type->kind != Type_Tuple);
Type *ft = field_types[index];
lbValue fv = lb_emit_conv(p, field_expr, ft);
lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index);
lb_emit_store(p, gep, fv);
}
}
break;
}
case Type_BitSet: {
i64 sz = type_size_of(type);
if (cl->elems.count > 0 && sz > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
lbValue lower = lb_const_value(p->module, t_int, exact_value_i64(bt->BitSet.lower));
for (Ast *elem : cl->elems) {
GB_ASSERT(elem->kind != Ast_FieldValue);
if (lb_is_elem_const(elem, et)) {
continue;
}
lbValue expr = lb_build_expr(p, elem);
GB_ASSERT(expr.type->kind != Type_Tuple);
Type *it = bit_set_to_int(bt);
lbValue one = lb_const_value(p->module, it, exact_value_i64(1));
lbValue e = lb_emit_conv(p, expr, it);
e = lb_emit_arith(p, Token_Sub, e, lower, it);
e = lb_emit_arith(p, Token_Shl, one, e, it);
lbValue old_value = lb_emit_transmute(p, lb_addr_load(p, v), it);
lbValue new_value = lb_emit_arith(p, Token_Or, old_value, e, it);
new_value = lb_emit_transmute(p, new_value, type);
lb_addr_store(p, v, new_value);
}
}
break;
}
case Type_Matrix: {
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
lb_build_addr_compound_lit_populate(p, cl->elems, &temp_data, type);
lbValue dst_ptr = lb_addr_get_ptr(p, v);
for_array(i, temp_data) {
temp_data[i].gep = lb_emit_array_epi(p, dst_ptr, temp_data[i].elem_index);
}
lb_build_addr_compound_lit_assign_array(p, temp_data);
}
break;
}
case Type_SimdVector: {
if (cl->elems.count > 0) {
lbValue vector_value = lb_const_value(p->module, type, exact_value_compound(expr));
defer (lb_addr_store(p, v, vector_value));
auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
lb_build_addr_compound_lit_populate(p, cl->elems, &temp_data, type);
// TODO(bill): reduce the need for individual `insertelement` if a `shufflevector`
// might be a better option
for (auto const &td : temp_data) {
if (td.value.value != nullptr) {
if (td.elem_length > 0) {
for (i64 k = 0; k < td.elem_length; k++) {
LLVMValueRef index = lb_const_int(p->module, t_u32, td.elem_index + k).value;
vector_value.value = LLVMBuildInsertElement(p->builder, vector_value.value, td.value.value, index, "");
}
} else {
LLVMValueRef index = lb_const_int(p->module, t_u32, td.elem_index).value;
vector_value.value = LLVMBuildInsertElement(p->builder, vector_value.value, td.value.value, index, "");
}
}
}
}
break;
}
}
return v;
}
gb_internal lbAddr lb_build_addr_internal(lbProcedure *p, Ast *expr) {
switch (expr->kind) {
case_ast_node(i, Implicit, expr);
lbAddr v = {};
switch (i->kind) {
case Token_context:
v = lb_find_or_generate_context_ptr(p);
break;
}
GB_ASSERT(v.addr.value != nullptr);
return v;
case_end;
case_ast_node(i, Ident, expr);
if (is_blank_ident(expr)) {
lbAddr val = {};
return val;
}
String name = i->token.string;
Entity *e = entity_of_node(expr);
return lb_build_addr_from_entity(p, e, expr);
case_end;
case_ast_node(se, SelectorExpr, expr);
Ast *sel_node = unparen_expr(se->selector);
if (sel_node->kind == Ast_Ident) {
String selector = sel_node->Ident.token.string;
TypeAndValue tav = type_and_value_of_expr(se->expr);
if (tav.mode == Addressing_Invalid) {
// NOTE(bill): Imports
Entity *imp = entity_of_node(se->expr);
if (imp != nullptr) {
GB_ASSERT(imp->kind == Entity_ImportName);
}
return lb_build_addr(p, unparen_expr(se->selector));
}
Type *type = base_type(tav.type);
if (tav.mode == Addressing_Type) { // Addressing_Type
Selection sel = lookup_field(tav.type, selector, true);
if (sel.pseudo_field) {
GB_ASSERT(sel.entity->kind == Entity_Procedure);
return lb_addr(lb_find_value_from_entity(p->module, sel.entity));
}
GB_PANIC("Unreachable %.*s", LIT(selector));
}
if (se->swizzle_count > 0) {
Type *array_type = base_type(type_deref(tav.type));
GB_ASSERT(array_type->kind == Type_Array);
u8 swizzle_count = se->swizzle_count;
u8 swizzle_indices_raw = se->swizzle_indices;
u8 swizzle_indices[4] = {};
for (u8 i = 0; i < swizzle_count; i++) {
u8 index = swizzle_indices_raw>>(i*2) & 3;
swizzle_indices[i] = index;
}
lbValue a = {};
if (is_type_pointer(tav.type)) {
a = lb_build_expr(p, se->expr);
} else {
lbAddr addr = lb_build_addr(p, se->expr);
a = lb_addr_get_ptr(p, addr);
}
GB_ASSERT(is_type_array(expr->tav.type));
return lb_addr_swizzle(a, expr->tav.type, swizzle_count, swizzle_indices);
}
Selection sel = lookup_field(type, selector, false);
GB_ASSERT(sel.entity != nullptr);
if (sel.pseudo_field) {
GB_ASSERT(sel.entity->kind == Entity_Procedure);
Entity *e = entity_of_node(sel_node);
return lb_addr(lb_find_value_from_entity(p->module, e));
}
{
lbAddr addr = lb_build_addr(p, se->expr);
if (addr.kind == lbAddr_Map) {
lbValue v = lb_addr_load(p, addr);
lbValue a = lb_address_from_load_or_generate_local(p, v);
a = lb_emit_deep_field_gep(p, a, sel);
return lb_addr(a);
} else if (addr.kind == lbAddr_Context) {
GB_ASSERT(sel.index.count > 0);
if (addr.ctx.sel.index.count >= 0) {
sel = selection_combine(addr.ctx.sel, sel);
}
addr.ctx.sel = sel;
addr.kind = lbAddr_Context;
return addr;
} else if (addr.kind == lbAddr_SoaVariable) {
lbValue index = addr.soa.index;
i32 first_index = sel.index[0];
Selection sub_sel = sel;
sub_sel.index.data += 1;
sub_sel.index.count -= 1;
lbValue arr = lb_emit_struct_ep(p, addr.addr, first_index);
Type *t = base_type(type_deref(addr.addr.type));
GB_ASSERT(is_type_soa_struct(t));
if (addr.soa.index_expr != nullptr && (!lb_is_const(addr.soa.index) || t->Struct.soa_kind != StructSoa_Fixed)) {
lbValue len = lb_soa_struct_len(p, addr.addr);
lb_emit_bounds_check(p, ast_token(addr.soa.index_expr), addr.soa.index, len);
}
lbValue item = {};
if (t->Struct.soa_kind == StructSoa_Fixed) {
item = lb_emit_array_ep(p, arr, index);
} else {
item = lb_emit_ptr_offset(p, lb_emit_load(p, arr), index);
}
if (sub_sel.index.count > 0) {
item = lb_emit_deep_field_gep(p, item, sub_sel);
}
return lb_addr(item);
} else if (addr.kind == lbAddr_Swizzle) {
GB_ASSERT(sel.index.count > 0);
// NOTE(bill): just patch the index in place
sel.index[0] = addr.swizzle.indices[sel.index[0]];
} else if (addr.kind == lbAddr_SwizzleLarge) {
GB_ASSERT(sel.index.count > 0);
// NOTE(bill): just patch the index in place
sel.index[0] = addr.swizzle.indices[sel.index[0]];
}
lbValue a = lb_addr_get_ptr(p, addr);
a = lb_emit_deep_field_gep(p, a, sel);
return lb_addr(a);
}
} else {
GB_PANIC("Unsupported selector expression");
}
case_end;
case_ast_node(se, SelectorCallExpr, expr);
lbValue e = lb_build_expr(p, expr);
return lb_addr(lb_address_from_load_or_generate_local(p, e));
case_end;
case_ast_node(ta, TypeAssertion, expr);
TokenPos pos = ast_token(expr).pos;
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
Type *type = type_of_expr(expr);
lbAddr v = lb_add_local_generated(p, type, false);
lb_addr_store(p, v, lb_emit_union_cast(p, lb_build_expr(p, ta->expr), type, pos));
return v;
} else if (is_type_any(t)) {
Type *type = type_of_expr(expr);
return lb_emit_any_cast_addr(p, lb_build_expr(p, ta->expr), type, pos);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(e.type));
}
case_end;
case_ast_node(ue, UnaryExpr, expr);
switch (ue->op.kind) {
case Token_And: {
lbValue ptr = lb_build_expr(p, expr);
return lb_addr(lb_address_from_load_or_generate_local(p, ptr));
}
default:
GB_PANIC("Invalid unary expression for lb_build_addr");
}
case_end;
case_ast_node(be, BinaryExpr, expr);
lbValue v = lb_build_expr(p, expr);
Type *t = v.type;
if (is_type_pointer(t)) {
return lb_addr(v);
}
return lb_addr(lb_address_from_load_or_generate_local(p, v));
case_end;
case_ast_node(ie, IndexExpr, expr);
return lb_build_addr_index_expr(p, expr);
case_end;
case_ast_node(ie, MatrixIndexExpr, expr);
Type *t = base_type(type_of_expr(ie->expr));
bool deref = is_type_pointer(t);
t = base_type(type_deref(t));
lbValue m = {};
m = lb_build_addr_ptr(p, ie->expr);
if (deref) {
m = lb_emit_load(p, m);
}
lbValue row_index = lb_build_expr(p, ie->row_index);
lbValue column_index = lb_build_expr(p, ie->column_index);
row_index = lb_emit_conv(p, row_index, t_int);
column_index = lb_emit_conv(p, column_index, t_int);
lbValue elem = lb_emit_matrix_ep(p, m, row_index, column_index);
auto row_index_tv = type_and_value_of_expr(ie->row_index);
auto column_index_tv = type_and_value_of_expr(ie->column_index);
if (row_index_tv.mode != Addressing_Constant || column_index_tv.mode != Addressing_Constant) {
lbValue row_count = lb_const_int(p->module, t_int, t->Matrix.row_count);
lbValue column_count = lb_const_int(p->module, t_int, t->Matrix.column_count);
lb_emit_matrix_bounds_check(p, ast_token(ie->row_index), row_index, column_index, row_count, column_count);
}
return lb_addr(elem);
case_end;
case_ast_node(se, SliceExpr, expr);
return lb_build_addr_slice_expr(p, expr);
case_end;
case_ast_node(de, DerefExpr, expr);
Type *t = type_of_expr(de->expr);
if (is_type_relative_pointer(t)) {
lbAddr addr = lb_build_addr(p, de->expr);
addr.relative.deref = true;
return addr;
} else if (is_type_soa_pointer(t)) {
lbValue value = lb_build_expr(p, de->expr);
lbValue ptr = lb_emit_struct_ev(p, value, 0);
lbValue idx = lb_emit_struct_ev(p, value, 1);
return lb_addr_soa_variable(ptr, idx, nullptr);
}
lbValue addr = lb_build_expr(p, de->expr);
return lb_addr(addr);
case_end;
case_ast_node(ce, CallExpr, expr);
BuiltinProcId builtin_id = BuiltinProc_Invalid;
if (ce->proc->tav.mode == Addressing_Builtin) {
Entity *e = entity_of_node(ce->proc);
if (e != nullptr) {
builtin_id = cast(BuiltinProcId)e->Builtin.id;
} else {
builtin_id = BuiltinProc_DIRECTIVE;
}
}
auto const &tv = expr->tav;
if (builtin_id == BuiltinProc_swizzle &&
is_type_array(tv.type)) {
// NOTE(bill, 2021-08-09): `swizzle` has some bizarre semantics so it needs to be
// specialized here for to be addressable
return lb_build_array_swizzle_addr(p, ce, tv);
}
// NOTE(bill): This is make sure you never need to have an 'array_ev'
lbValue e = lb_build_expr(p, expr);
#if 1
return lb_addr(lb_address_from_load_or_generate_local(p, e));
#else
lbAddr v = lb_add_local_generated(p, e.type, false);
lb_addr_store(p, v, e);
return v;
#endif
case_end;
case_ast_node(cl, CompoundLit, expr);
return lb_build_addr_compound_lit(p, expr);
case_end;
case_ast_node(tc, TypeCast, expr);
Type *type = type_of_expr(expr);
lbValue x = lb_build_expr(p, tc->expr);
lbValue e = {};
switch (tc->token.kind) {
case Token_cast:
e = lb_emit_conv(p, x, type);
break;
case Token_transmute:
e = lb_emit_transmute(p, x, type);
break;
default:
GB_PANIC("Invalid AST TypeCast");
}
lbAddr v = lb_add_local_generated(p, type, false);
lb_addr_store(p, v, e);
return v;
case_end;
case_ast_node(ac, AutoCast, expr);
return lb_build_addr(p, ac->expr);
case_end;
case_ast_node(te, TernaryIfExpr, expr);
LLVMValueRef incoming_values[2] = {};
LLVMBasicBlockRef incoming_blocks[2] = {};
GB_ASSERT(te->y != nullptr);
lbBlock *then = lb_create_block(p, "if.then");
lbBlock *done = lb_create_block(p, "if.done"); // NOTE(bill): Append later
lbBlock *else_ = lb_create_block(p, "if.else");
lb_build_cond(p, te->cond, then, else_);
lb_start_block(p, then);
Type *ptr_type = alloc_type_pointer(default_type(type_of_expr(expr)));
incoming_values[0] = lb_emit_conv(p, lb_build_addr_ptr(p, te->x), ptr_type).value;
lb_emit_jump(p, done);
lb_start_block(p, else_);
incoming_values[1] = lb_emit_conv(p, lb_build_addr_ptr(p, te->y), ptr_type).value;
lb_emit_jump(p, done);
lb_start_block(p, done);
lbValue res = {};
res.value = LLVMBuildPhi(p->builder, lb_type(p->module, ptr_type), "");
res.type = ptr_type;
GB_ASSERT(p->curr_block->preds.count >= 2);
incoming_blocks[0] = p->curr_block->preds[0]->block;
incoming_blocks[1] = p->curr_block->preds[1]->block;
LLVMAddIncoming(res.value, incoming_values, incoming_blocks, 2);
return lb_addr(res);
case_end;
case_ast_node(oe, OrElseExpr, expr);
lbValue ptr = lb_address_from_load_or_generate_local(p, lb_build_expr(p, expr));
return lb_addr(ptr);
case_end;
case_ast_node(oe, OrReturnExpr, expr);
lbValue ptr = lb_address_from_load_or_generate_local(p, lb_build_expr(p, expr));
return lb_addr(ptr);
case_end;
}
TokenPos token_pos = ast_token(expr).pos;
GB_PANIC("Unexpected address expression\n"
"\tAst: %.*s @ "
"%s\n",
LIT(ast_strings[expr->kind]),
token_pos_to_string(token_pos));
return {};
}