Files
Odin/src/check_expr.c
2017-02-05 15:19:30 +00:00

5348 lines
144 KiB
C

void check_expr (Checker *c, Operand *operand, AstNode *expression);
void check_multi_expr (Checker *c, Operand *operand, AstNode *expression);
void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression);
ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint);
Type * check_type_extra (Checker *c, AstNode *expression, Type *named_type);
Type * check_type (Checker *c, AstNode *expression);
void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def);
Entity * check_selector (Checker *c, Operand *operand, AstNode *node, Type *type_hint);
void check_not_tuple (Checker *c, Operand *operand);
void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level);
gbString expr_to_string (AstNode *expression);
void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type);
void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type);
void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body);
void update_expr_type (Checker *c, AstNode *e, Type *type, bool final);
bool check_is_terminating (AstNode *node);
bool check_has_break (AstNode *stmt, bool implicit);
void check_stmt (Checker *c, AstNode *node, u32 flags);
void check_stmt_list (Checker *c, AstNodeArray stmts, u32 flags);
void check_init_constant (Checker *c, Entity *e, Operand *operand);
bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value);
Type * check_call_arguments (Checker *c, Operand *operand, Type *proc_type, AstNode *call);
gb_inline Type *check_type(Checker *c, AstNode *expression) {
return check_type_extra(c, expression, NULL);
}
void error_operand_not_expression(Operand *o) {
if (o->mode == Addressing_Type) {
gbString err = expr_to_string(o->expr);
error_node(o->expr, "`%s` is not an expression", err);
gb_string_free(err);
o->mode = Addressing_Invalid;
}
}
void error_operand_no_value(Operand *o) {
if (o->mode == Addressing_NoValue) {
gbString err = expr_to_string(o->expr);
error_node(o->expr, "`%s` used as value", err);
gb_string_free(err);
o->mode = Addressing_Invalid;
}
}
void check_scope_decls(Checker *c, AstNodeArray nodes, isize reserve_size) {
Scope *s = c->context.scope;
GB_ASSERT(!s->is_file);
check_collect_entities(c, nodes, false);
for_array(i, s->elements.entries) {
Entity *e = s->elements.entries.e[i].value;
switch (e->kind) {
case Entity_Constant:
case Entity_TypeName:
case Entity_Procedure:
break;
default:
continue;
}
DeclInfo **found = map_decl_info_get(&c->info.entities, hash_pointer(e));
if (found != NULL) {
DeclInfo *d = *found;
check_entity_decl(c, e, d, NULL);
}
}
for_array(i, s->elements.entries) {
Entity *e = s->elements.entries.e[i].value;
if (e->kind != Entity_Procedure) {
continue;
}
check_procedure_overloading(c, e);
}
}
bool check_is_assignable_to_using_subtype(Type *dst, Type *src) {
bool src_is_ptr;
Type *prev_src = src;
src = type_deref(src);
src_is_ptr = src != prev_src;
src = base_type(src);
if (is_type_struct(src)) {
for (isize i = 0; i < src->Record.field_count; i++) {
Entity *f = src->Record.fields[i];
if (f->kind == Entity_Variable && (f->flags & EntityFlag_Anonymous)) {
if (are_types_identical(dst, f->type)) {
return true;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(type_deref(dst), f->type)) {
return true;
}
}
bool ok = check_is_assignable_to_using_subtype(dst, f->type);
if (ok) {
return true;
}
}
}
}
return false;
}
// IMPORTANT TODO(bill): figure out the exact distance rules
// -1 is not convertable
// 0 is exact
// >0 is convertable
i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) {
if (operand->mode == Addressing_Invalid ||
type == t_invalid) {
return 0;
}
if (operand->mode == Addressing_Builtin) {
return -1;
}
Type *s = operand->type;
if (are_types_identical(s, type)) {
return 0;
}
Type *src = base_type(s);
Type *dst = base_type(type);
if (is_type_untyped_nil(src)) {
if (type_has_nil(dst)) {
return 1;
}
return -1;
}
if (is_type_untyped(src)) {
if (is_type_any(dst)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return 10;
}
if (dst->kind == Type_Basic) {
if (operand->mode == Addressing_Constant) {
if (check_representable_as_constant(c, operand->value, dst, NULL)) {
return 1;
}
return -1;
}
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) {
if (is_type_boolean(dst)) {
if (is_type_typed(type)) {
return 2;
}
return 1;
}
return -1;
}
}
}
if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) {
return 1;
}
if (is_type_maybe(dst)) {
Type *elem = base_type(dst)->Maybe.elem;
if (are_types_identical(elem, s)) {
return 1;
}
return -1;
}
if (check_is_assignable_to_using_subtype(operand->type, type)) {
return 4;
}
// ^T <- rawptr
#if 0
// TODO(bill): Should C-style (not C++) pointer cast be allowed?
if (is_type_pointer(dst) && is_type_rawptr(src)) {
return true;
}
#endif
#if 1
// TODO(bill): Should I allow this implicit conversion at all?!
// rawptr <- ^T
if (is_type_rawptr(dst) && is_type_pointer(src)) {
if (dst != type) {
return -1;
}
return 5;
}
#endif
if (is_type_union(dst)) {
for (isize i = 0; i < dst->Record.field_count; i++) {
Entity *f = dst->Record.fields[i];
if (are_types_identical(f->type, s)) {
return 1;
}
}
}
// if (is_type_proc(dst)) {
// if (are_types_identical(src, dst)) {
// return 1;
// }
// }
if (is_type_any(dst)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return 10;
}
return -1;
}
bool check_is_assignable_to_with_score(Checker *c, Operand *operand, Type *type, i64 *score_) {
i64 score = 0;
i64 distance = check_distance_between_types(c, operand, type);
bool ok = distance >= 0;
if (ok) {
// TODO(bill): A decent score function
score = gb_max(1000000 - distance*distance, 0);
}
if (score_) *score_ = score;
return ok;
}
bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) {
i64 score = 0;
return check_is_assignable_to_with_score(c, operand, type, &score);
}
// NOTE(bill): `content_name` is for debugging and error messages
void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) {
check_not_tuple(c, operand);
if (operand->mode == Addressing_Invalid) {
return;
}
if (is_type_untyped(operand->type)) {
Type *target_type = type;
if (type == NULL || is_type_any(type)) {
if (type == NULL && is_type_untyped_nil(operand->type)) {
error_node(operand->expr, "Use of untyped nil in %.*s", LIT(context_name));
operand->mode = Addressing_Invalid;
return;
}
target_type = default_type(operand->type);
GB_ASSERT(is_type_typed(target_type));
add_type_info_type(c, type);
add_type_info_type(c, target_type);
}
convert_to_typed(c, operand, target_type, 0);
if (operand->mode == Addressing_Invalid) {
return;
}
}
if (type == NULL) {
return;
}
if (!check_is_assignable_to(c, operand, type)) {
gbString type_str = type_to_string(type);
gbString op_type_str = type_to_string(operand->type);
gbString expr_str = expr_to_string(operand->expr);
if (operand->mode == Addressing_Builtin) {
// TODO(bill): is this a good enough error message?
error_node(operand->expr,
"Cannot assign builtin procedure `%s` in %.*s",
expr_str,
LIT(context_name));
} else {
// TODO(bill): is this a good enough error message?
error_node(operand->expr,
"Cannot assign value `%s` of type `%s` to `%s` in %.*s",
expr_str,
op_type_str,
type_str,
LIT(context_name));
}
operand->mode = Addressing_Invalid;
gb_string_free(expr_str);
gb_string_free(op_type_str);
gb_string_free(type_str);
return;
}
}
void populate_using_entity_map(Checker *c, AstNode *node, Type *t, MapEntity *entity_map) {
t = base_type(type_deref(t));
gbString str = expr_to_string(node);
if (t->kind == Type_Record) {
for (isize i = 0; i < t->Record.field_count; i++) {
Entity *f = t->Record.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
String name = f->token.string;
HashKey key = hash_string(name);
Entity **found = map_entity_get(entity_map, key);
if (found != NULL) {
Entity *e = *found;
// TODO(bill): Better type error
error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str);
} else {
map_entity_set(entity_map, key, f);
add_entity(c, c->context.scope, NULL, f);
if (f->flags & EntityFlag_Anonymous) {
populate_using_entity_map(c, node, f->type, entity_map);
}
}
}
}
gb_string_free(str);
}
void check_fields(Checker *c, AstNode *node, AstNodeArray decls,
Entity **fields, isize field_count,
String context) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
MapEntity entity_map = {0};
map_entity_init_with_reserve(&entity_map, c->tmp_allocator, 2*field_count);
isize other_field_index = 0;
Entity *using_index_expr = NULL;
if (node->kind == AstNode_UnionType) {
isize field_index = 0;
fields[field_index++] = make_entity_type_name(c->allocator, c->context.scope, empty_token, NULL);
for_array(decl_index, decls) {
AstNode *decl = decls.e[decl_index];
if (decl->kind != AstNode_Field) {
continue;
}
ast_node(f, Field, decl);
Type *base_type = check_type_extra(c, f->type, NULL);
for_array(name_index, f->names) {
AstNode *name = f->names.e[name_index];
if (!ast_node_expect(name, AstNode_Ident)) {
continue;
}
Token name_token = name->Ident;
Type *type = make_type_named(c->allocator, name_token.string, base_type, NULL);
Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, type);
type->Named.type_name = e;
add_entity(c, c->context.scope, name, e);
if (str_eq(name_token.string, str_lit("_"))) {
error(name_token, "`_` cannot be used a union subtype");
continue;
}
HashKey key = hash_string(name_token.string);
if (map_entity_get(&entity_map, key) != NULL) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this union", LIT(name_token.string));
} else {
map_entity_set(&entity_map, key, e);
fields[field_index++] = e;
}
add_entity_use(c, name, e);
}
}
} else {
isize field_index = 0;
for_array(decl_index, decls) {
AstNode *decl = decls.e[decl_index];
if (decl->kind != AstNode_Field) {
continue;
}
ast_node(f, Field, decl);
Type *type = check_type_extra(c, f->type, NULL);
if (f->flags&FieldFlag_using) {
if (f->names.count > 1) {
error_node(f->names.e[0], "Cannot apply `using` to more than one of the same type");
}
}
for_array(name_index, f->names) {
AstNode *name = f->names.e[name_index];
if (!ast_node_expect(name, AstNode_Ident)) {
continue;
}
Token name_token = name->Ident;
Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, f->flags&FieldFlag_using, cast(i32)field_index);
e->identifier = name;
if (str_eq(name_token.string, str_lit("_"))) {
fields[field_index++] = e;
} else {
HashKey key = hash_string(name_token.string);
if (map_entity_get(&entity_map, key) != NULL) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string));
} else {
map_entity_set(&entity_map, key, e);
fields[field_index++] = e;
add_entity(c, c->context.scope, name, e);
}
add_entity_use(c, name, e);
}
}
if (f->flags&FieldFlag_using) {
Type *t = base_type(type_deref(type));
if (!is_type_struct(t) && !is_type_raw_union(t) &&
f->names.count >= 1 &&
f->names.e[0]->kind == AstNode_Ident) {
Token name_token = f->names.e[0]->Ident;
if (is_type_indexable(t)) {
bool ok = true;
for_array(emi, entity_map.entries) {
Entity *e = entity_map.entries.e[emi].value;
if (e->kind == Entity_Variable && e->flags & EntityFlag_Anonymous) {
if (is_type_indexable(e->type)) {
if (e->identifier != f->names.e[0]) {
ok = false;
using_index_expr = e;
break;
}
}
}
}
if (ok) {
using_index_expr = fields[field_index-1];
} else {
fields[field_index-1]->flags &= ~EntityFlag_Anonymous;
error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string));
}
} else {
error(name_token, "`using` on a field `%.*s` must be a `struct` or `raw_union`", LIT(name_token.string));
continue;
}
}
populate_using_entity_map(c, node, type, &entity_map);
}
}
}
gb_temp_arena_memory_end(tmp);
}
// TODO(bill): Cleanup struct field reordering
// TODO(bill): Inline sorting procedure?
gb_global BaseTypeSizes __checker_sizes = {0};
gb_global gbAllocator __checker_allocator = {0};
GB_COMPARE_PROC(cmp_struct_entity_size) {
// Rule:
// Biggest to smallest alignment
// if same alignment: biggest to smallest size
// if same size: order by source order
Entity *x = *(Entity **)a;
Entity *y = *(Entity **)b;
GB_ASSERT(x != NULL);
GB_ASSERT(y != NULL);
GB_ASSERT(x->kind == Entity_Variable);
GB_ASSERT(y->kind == Entity_Variable);
i64 xa = type_align_of(__checker_sizes, __checker_allocator, x->type);
i64 ya = type_align_of(__checker_sizes, __checker_allocator, y->type);
i64 xs = type_size_of(__checker_sizes, __checker_allocator, x->type);
i64 ys = type_size_of(__checker_sizes, __checker_allocator, y->type);
if (xa == ya) {
if (xs == ys) {
i32 diff = x->Variable.field_index - y->Variable.field_index;
return diff < 0 ? -1 : diff > 0;
}
return xs > ys ? -1 : xs < ys;
}
return xa > ya ? -1 : xa < ya;
}
void check_struct_type(Checker *c, Type *struct_type, AstNode *node) {
GB_ASSERT(is_type_struct(struct_type));
ast_node(st, StructType, node);
isize field_count = 0;
for_array(field_index, st->fields) {
AstNode *field = st->fields.e[field_index];
switch (field->kind) {
case_ast_node(f, Field, field);
field_count += f->names.count;
case_end;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
check_fields(c, node, st->fields, fields, field_count, str_lit("struct"));
struct_type->Record.struct_is_packed = st->is_packed;
struct_type->Record.struct_is_ordered = st->is_ordered;
struct_type->Record.fields = fields;
struct_type->Record.fields_in_src_order = fields;
struct_type->Record.field_count = field_count;
if (!st->is_packed && !st->is_ordered) {
// NOTE(bill): Reorder fields for reduced size/performance
Entity **reordered_fields = gb_alloc_array(c->allocator, Entity *, field_count);
for (isize i = 0; i < field_count; i++) {
reordered_fields[i] = struct_type->Record.fields_in_src_order[i];
}
// NOTE(bill): Hacky thing
// TODO(bill): Probably make an inline sorting procedure rather than use global variables
__checker_sizes = c->sizes;
__checker_allocator = c->allocator;
// NOTE(bill): compound literal order must match source not layout
gb_sort_array(reordered_fields, field_count, cmp_struct_entity_size);
for (isize i = 0; i < field_count; i++) {
reordered_fields[i]->Variable.field_index = i;
}
struct_type->Record.fields = reordered_fields;
}
type_set_offsets(c->sizes, c->allocator, struct_type);
if (st->align != NULL) {
if (st->is_packed) {
syntax_error_node(st->align, "`#align` cannot be applied with `#packed`");
return;
}
Operand o = {0};
check_expr(c, &o, st->align);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error_node(st->align, "#align must be a constant");
}
return;
}
Type *type = base_type(o.type);
if (is_type_untyped(type) || is_type_integer(type)) {
if (o.value.kind == ExactValue_Integer) {
i64 align = o.value.value_integer;
if (align < 1 || !gb_is_power_of_two(align)) {
error_node(st->align, "#align must be a power of 2, got %lld", align);
return;
}
// NOTE(bill): Success!!!
i64 custom_align = gb_clamp(align, 1, c->sizes.max_align);
if (custom_align < align) {
warning_node(st->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align);
}
struct_type->Record.custom_align = custom_align;
return;
}
}
error_node(st->align, "#align must be an integer");
return;
}
}
void check_union_type(Checker *c, Type *union_type, AstNode *node) {
GB_ASSERT(is_type_union(union_type));
ast_node(ut, UnionType, node);
isize field_count = 1;
for_array(field_index, ut->fields) {
AstNode *field = ut->fields.e[field_index];
switch (field->kind) {
case_ast_node(f, Field, field);
field_count += f->names.count;
case_end;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
check_fields(c, node, ut->fields, fields, field_count, str_lit("union"));
union_type->Record.fields = fields;
union_type->Record.field_count = field_count;
}
void check_raw_union_type(Checker *c, Type *union_type, AstNode *node) {
GB_ASSERT(node->kind == AstNode_RawUnionType);
GB_ASSERT(is_type_raw_union(union_type));
ast_node(ut, RawUnionType, node);
isize field_count = 0;
for_array(field_index, ut->fields) {
AstNode *field = ut->fields.e[field_index];
switch (field->kind) {
case_ast_node(f, Field, field);
field_count += f->names.count;
case_end;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
check_fields(c, node, ut->fields, fields, field_count, str_lit("raw_union"));
union_type->Record.fields = fields;
union_type->Record.field_count = field_count;
}
// GB_COMPARE_PROC(cmp_enum_order) {
// // Rule:
// // Biggest to smallest alignment
// // if same alignment: biggest to smallest size
// // if same size: order by source order
// Entity *x = *(Entity **)a;
// Entity *y = *(Entity **)b;
// GB_ASSERT(x != NULL);
// GB_ASSERT(y != NULL);
// GB_ASSERT(x->kind == Entity_Constant);
// GB_ASSERT(y->kind == Entity_Constant);
// GB_ASSERT(x->Constant.value.kind == ExactValue_Integer);
// GB_ASSERT(y->Constant.value.kind == ExactValue_Integer);
// i64 i = x->Constant.value.value_integer;
// i64 j = y->Constant.value.value_integer;
// return i < j ? -1 : i > j;
// }
void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) {
ast_node(et, EnumType, node);
GB_ASSERT(is_type_enum(enum_type));
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
Type *base_type = t_int;
if (et->base_type != NULL) {
base_type = check_type(c, et->base_type);
}
if (base_type == NULL || !(is_type_integer(base_type) || is_type_float(base_type))) {
error_node(node, "Base type for enumeration must be numeric");
return;
}
// NOTE(bill): Must be up here for the `check_init_constant` system
enum_type->Record.enum_base_type = base_type;
MapEntity entity_map = {0}; // Key: String
map_entity_init_with_reserve(&entity_map, c->tmp_allocator, 2*(et->fields.count));
Entity **fields = gb_alloc_array(c->allocator, Entity *, et->fields.count);
isize field_count = 0;
Type *constant_type = enum_type;
if (named_type != NULL) {
constant_type = named_type;
}
ExactValue iota = make_exact_value_integer(-1);
ExactValue min_value = make_exact_value_integer(0);
ExactValue max_value = make_exact_value_integer(0);
for_array(i, et->fields) {
AstNode *field = et->fields.e[i];
AstNode *ident = NULL;
AstNode *init = NULL;
if (field->kind == AstNode_FieldValue) {
ast_node(fv, FieldValue, field);
if (fv->field == NULL || fv->field->kind != AstNode_Ident) {
error_node(field, "An enum field's name must be an identifier");
continue;
}
ident = fv->field;
init = fv->value;
} else if (field->kind == AstNode_Ident) {
ident = field;
} else {
error_node(field, "An enum field's name must be an identifier");
continue;
}
String name = ident->Ident.string;
if (init != NULL) {
Operand o = {0};
check_expr(c, &o, init);
if (o.mode != Addressing_Constant) {
error_node(init, "Enumeration value must be a constant");
o.mode = Addressing_Invalid;
}
if (o.mode != Addressing_Invalid) {
check_assignment(c, &o, constant_type, str_lit("enumeration"));
}
if (o.mode != Addressing_Invalid) {
iota = o.value;
} else {
iota = exact_binary_operator_value(Token_Add, iota, make_exact_value_integer(1));
}
} else {
iota = exact_binary_operator_value(Token_Add, iota, make_exact_value_integer(1));
}
// NOTE(bill): Skip blank identifiers
if (str_eq(name, str_lit("_"))) {
continue;
} else if (str_eq(name, str_lit("count"))) {
error_node(field, "`count` is a reserved identifier for enumerations");
continue;
} else if (str_eq(name, str_lit("min_value"))) {
error_node(field, "`min_value` is a reserved identifier for enumerations");
continue;
} else if (str_eq(name, str_lit("max_value"))) {
error_node(field, "`max_value` is a reserved identifier for enumerations");
continue;
}
if (compare_exact_values(Token_Gt, min_value, iota)) {
min_value = iota;
}
if (compare_exact_values(Token_Lt, max_value, iota)) {
max_value = iota;
}
Entity *e = make_entity_constant(c->allocator, c->context.scope, ident->Ident, constant_type, iota);
e->identifier = ident;
e->flags |= EntityFlag_Visited;
HashKey key = hash_string(name);
if (map_entity_get(&entity_map, key) != NULL) {
error_node(ident, "`%.*s` is already declared in this enumeration", LIT(name));
} else {
map_entity_set(&entity_map, key, e);
add_entity(c, c->context.scope, NULL, e);
fields[field_count++] = e;
add_entity_use(c, field, e);
}
}
GB_ASSERT(field_count <= et->fields.count);
enum_type->Record.fields = fields;
enum_type->Record.field_count = field_count;
enum_type->Record.enum_count = make_entity_constant(c->allocator, c->context.scope,
make_token_ident(str_lit("count")), t_int, make_exact_value_integer(field_count));
enum_type->Record.enum_min_value = make_entity_constant(c->allocator, c->context.scope,
make_token_ident(str_lit("min_value")), constant_type, min_value);
enum_type->Record.enum_max_value = make_entity_constant(c->allocator, c->context.scope,
make_token_ident(str_lit("max_value")), constant_type, max_value);
gb_temp_arena_memory_end(tmp);
}
Type *check_get_params(Checker *c, Scope *scope, AstNodeArray params, bool *is_variadic_) {
if (params.count == 0) {
return NULL;
}
isize variable_count = 0;
for_array(i, params) {
AstNode *field = params.e[i];
if (ast_node_expect(field, AstNode_Field)) {
ast_node(f, Field, field);
variable_count += f->names.count;
}
}
bool is_variadic = false;
Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count);
isize variable_index = 0;
for_array(i, params) {
if (params.e[i]->kind != AstNode_Field) {
continue;
}
ast_node(p, Field, params.e[i]);
AstNode *type_expr = p->type;
if (type_expr) {
if (type_expr->kind == AstNode_Ellipsis) {
type_expr = type_expr->Ellipsis.expr;
if (i+1 == params.count) {
is_variadic = true;
} else {
error_node(params.e[i], "Invalid AST: Invalid variadic parameter");
}
}
Type *type = check_type(c, type_expr);
if (p->flags&FieldFlag_no_alias) {
if (!is_type_pointer(type)) {
error_node(params.e[i], "`no_alias` can only be applied to fields of pointer type");
p->flags &= ~FieldFlag_no_alias; // Remove the flag
}
}
for_array(j, p->names) {
AstNode *name = p->names.e[j];
if (ast_node_expect(name, AstNode_Ident)) {
Entity *param = make_entity_param(c->allocator, scope, name->Ident, type,
p->flags&FieldFlag_using, p->flags&FieldFlag_immutable);
if (p->flags&FieldFlag_no_alias) {
param->flags |= EntityFlag_NoAlias;
}
if (p->flags&FieldFlag_immutable) {
param->Variable.is_immutable = true;
}
add_entity(c, scope, name, param);
variables[variable_index++] = param;
}
}
}
}
variable_count = variable_index;
if (is_variadic) {
GB_ASSERT(params.count > 0);
// NOTE(bill): Change last variadic parameter to be a slice
// Custom Calling convention for variadic parameters
Entity *end = variables[variable_count-1];
end->type = make_type_slice(c->allocator, end->type);
end->flags |= EntityFlag_Ellipsis;
}
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = variable_count;
if (is_variadic_) *is_variadic_ = is_variadic;
return tuple;
}
Type *check_get_results(Checker *c, Scope *scope, AstNodeArray results) {
if (results.count == 0) {
return NULL;
}
Type *tuple = make_type_tuple(c->allocator);
Entity **variables = gb_alloc_array(c->allocator, Entity *, results.count);
isize variable_index = 0;
for_array(i, results) {
AstNode *item = results.e[i];
Type *type = check_type(c, item);
Token token = ast_node_token(item);
token.string = str_lit(""); // NOTE(bill): results are not named
// TODO(bill): Should I have named results?
Entity *param = make_entity_param(c->allocator, scope, token, type, false, false);
// NOTE(bill): No need to record
variables[variable_index++] = param;
}
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = results.count;
return tuple;
}
void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) {
ast_node(pt, ProcType, proc_type_node);
bool variadic = false;
Type *params = check_get_params(c, c->context.scope, pt->params, &variadic);
Type *results = check_get_results(c, c->context.scope, pt->results);
isize param_count = 0;
isize result_count = 0;
if (params) param_count = params ->Tuple.variable_count;
if (results) result_count = results->Tuple.variable_count;
type->Proc.scope = c->context.scope;
type->Proc.params = params;
type->Proc.param_count = param_count;
type->Proc.results = results;
type->Proc.result_count = result_count;
type->Proc.variadic = variadic;
type->Proc.calling_convention = pt->calling_convention;
}
void check_identifier(Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint) {
GB_ASSERT(n->kind == AstNode_Ident);
o->mode = Addressing_Invalid;
o->expr = n;
String name = n->Ident.string;
Entity *e = scope_lookup_entity(c->context.scope, name);
if (e == NULL) {
if (str_eq(name, str_lit("_"))) {
error(n->Ident, "`_` cannot be used as a value type");
} else {
error(n->Ident, "Undeclared name: %.*s", LIT(name));
}
o->type = t_invalid;
o->mode = Addressing_Invalid;
if (named_type != NULL) {
set_base_type(named_type, t_invalid);
}
return;
}
bool is_overloaded = false;
isize overload_count = 0;
HashKey key = hash_string(name);
if (e->kind == Entity_Procedure) {
// NOTE(bill): Overloads are only allowed with the same scope
Scope *s = e->scope;
overload_count = map_entity_multi_count(&s->elements, key);
if (overload_count > 1) {
is_overloaded = true;
}
}
if (is_overloaded) {
Scope *s = e->scope;
bool skip = false;
Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count);
map_entity_multi_get_all(&s->elements, key, procs);
if (type_hint != NULL) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
// NOTE(bill): These should be done
for (isize i = 0; i < overload_count; i++) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {0};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(c, &x, type_hint)) {
e = procs[i];
add_entity_use(c, n, e);
skip = true;
break;
}
}
gb_temp_arena_memory_end(tmp);
}
if (!skip) {
o->mode = Addressing_Overload;
o->type = t_invalid;
o->overload_count = overload_count;
o->overload_entities = procs;
return;
}
gb_free(heap_allocator(), procs);
}
add_entity_use(c, n, e);
check_entity_decl(c, e, NULL, named_type);
if (e->type == NULL) {
compiler_error("Compiler error: How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name));
return;
}
Type *type = e->type;
switch (e->kind) {
case Entity_Constant:
if (type == t_invalid) {
o->type = t_invalid;
return;
}
o->value = e->Constant.value;
if (o->value.kind == ExactValue_Invalid) {
return;
}
o->mode = Addressing_Constant;
break;
case Entity_Variable:
e->flags |= EntityFlag_Used;
if (type == t_invalid) {
o->type = t_invalid;
return;
}
o->mode = Addressing_Variable;
if (e->Variable.is_immutable) {
o->mode = Addressing_Value;
}
break;
case Entity_TypeName: {
o->mode = Addressing_Type;
// TODO(bill): Fix cyclical dependancy checker
} break;
case Entity_Procedure:
o->mode = Addressing_Value;
break;
case Entity_Builtin:
o->builtin_id = e->Builtin.id;
o->mode = Addressing_Builtin;
break;
case Entity_ImportName:
error_node(n, "Use of import `%.*s` not in selector", LIT(e->ImportName.name));
return;
case Entity_LibraryName:
error_node(n, "Use of library `%.*s` not in #foreign tag", LIT(e->LibraryName.name));
return;
case Entity_Nil:
o->mode = Addressing_Value;
break;
default:
compiler_error("Compiler error: Unknown EntityKind");
break;
}
o->type = type;
}
i64 check_array_count(Checker *c, AstNode *e) {
if (e == NULL) {
return 0;
}
Operand o = {0};
check_expr(c, &o, e);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error_node(e, "Array count must be a constant");
}
return 0;
}
Type *type = base_type(o.type);
if (is_type_untyped(type) || is_type_integer(type)) {
if (o.value.kind == ExactValue_Integer) {
i64 count = o.value.value_integer;
if (count >= 0) {
return count;
}
error_node(e, "Invalid array count");
return 0;
}
}
error_node(e, "Array count must be an integer");
return 0;
}
Type *check_type_extra(Checker *c, AstNode *e, Type *named_type) {
ExactValue null_value = {ExactValue_Invalid};
Type *type = NULL;
gbString err_str = NULL;
if (e == NULL) {
type = t_invalid;
goto end;
}
switch (e->kind) {
case_ast_node(i, Ident, e);
Operand o = {0};
check_identifier(c, &o, e, named_type, NULL);
switch (o.mode) {
case Addressing_Invalid:
break;
case Addressing_Type: {
type = o.type;
goto end;
} break;
case Addressing_NoValue:
err_str = expr_to_string(e);
error_node(e, "`%s` used as a type", err_str);
break;
default:
err_str = expr_to_string(e);
error_node(e, "`%s` used as a type when not a type", err_str);
break;
}
case_end;
case_ast_node(se, SelectorExpr, e);
Operand o = {0};
check_selector(c, &o, e, NULL);
switch (o.mode) {
case Addressing_Invalid:
break;
case Addressing_Type:
GB_ASSERT(o.type != NULL);
type = o.type;
goto end;
case Addressing_NoValue:
err_str = expr_to_string(e);
error_node(e, "`%s` used as a type", err_str);
break;
default:
err_str = expr_to_string(e);
error_node(e, "`%s` is not a type", err_str);
break;
}
case_end;
case_ast_node(pe, ParenExpr, e);
type = check_type_extra(c, pe->expr, named_type);
goto end;
case_end;
case_ast_node(ue, UnaryExpr, e);
if (ue->op.kind == Token_Pointer) {
type = make_type_pointer(c->allocator, check_type(c, ue->expr));
goto end;
} /* else if (ue->op.kind == Token_Maybe) {
type = make_type_maybe(c->allocator, check_type(c, ue->expr));
goto end;
} */
case_end;
case_ast_node(ht, HelperType, e);
type = check_type(c, ht->type);
goto end;
case_end;
case_ast_node(pt, PointerType, e);
Type *elem = check_type(c, pt->type);
type = make_type_pointer(c->allocator, elem);
goto end;
case_end;
case_ast_node(mt, MaybeType, e);
Type *elem = check_type(c, mt->type);
type = make_type_maybe(c->allocator, elem);
goto end;
case_end;
case_ast_node(at, ArrayType, e);
if (at->count != NULL) {
Type *elem = check_type_extra(c, at->elem, NULL);
type = make_type_array(c->allocator, elem, check_array_count(c, at->count));
} else {
Type *elem = check_type(c, at->elem);
type = make_type_slice(c->allocator, elem);
}
goto end;
case_end;
case_ast_node(dat, DynamicArrayType, e);
Type *elem = check_type_extra(c, dat->elem, NULL);
type = make_type_dynamic_array(c->allocator, elem);
goto end;
case_end;
case_ast_node(vt, VectorType, e);
Type *elem = check_type(c, vt->elem);
Type *be = base_type(elem);
i64 count = check_array_count(c, vt->count);
if (is_type_vector(be) || (!is_type_boolean(be) && !is_type_numeric(be))) {
err_str = type_to_string(elem);
error_node(vt->elem, "Vector element type must be numerical or a boolean, got `%s`", err_str);
}
type = make_type_vector(c->allocator, elem, count);
goto end;
case_end;
case_ast_node(st, StructType, e);
type = make_type_struct(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_struct_type(c, type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(ut, UnionType, e);
type = make_type_union(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_union_type(c, type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(rut, RawUnionType, e);
type = make_type_raw_union(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_raw_union_type(c, type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(et, EnumType, e);
type = make_type_enum(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_enum_type(c, type, named_type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(pt, ProcType, e);
type = alloc_type(c->allocator, Type_Proc);
set_base_type(named_type, type);
check_open_scope(c, e);
check_procedure_type(c, type, e);
check_close_scope(c);
goto end;
case_end;
case_ast_node(ce, CallExpr, e);
Operand o = {0};
check_expr_or_type(c, &o, e);
if (o.mode == Addressing_Type) {
type = o.type;
goto end;
}
case_end;
}
err_str = expr_to_string(e);
error_node(e, "`%s` is not a type", err_str);
type = t_invalid;
end:
gb_string_free(err_str);
if (type == NULL) {
type = t_invalid;
}
if (is_type_named(type)) {
if (type->Named.base == NULL) {
gbString name = type_to_string(type);
error_node(e, "Invalid type definition of %s", name);
gb_string_free(name);
type->Named.base = t_invalid;
}
}
if (is_type_typed(type)) {
add_type_and_value(&c->info, e, Addressing_Type, type, null_value);
} else {
gbString name = type_to_string(type);
error_node(e, "Invalid type definition of %s", name);
gb_string_free(name);
type = t_invalid;
}
set_base_type(named_type, type);
return type;
}
bool check_unary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = base_type(base_vector_type(o->type));
gbString str = NULL;
switch (op.kind) {
case Token_Add:
case Token_Sub:
if (!is_type_numeric(type)) {
str = expr_to_string(o->expr);
error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str);
gb_string_free(str);
}
break;
case Token_Xor:
if (!is_type_integer(type)) {
error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
}
break;
case Token_Not:
if (!is_type_boolean(type)) {
str = expr_to_string(o->expr);
error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string));
gb_string_free(str);
}
break;
default:
error(op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
bool check_binary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = base_type(base_vector_type(o->type));
switch (op.kind) {
case Token_Sub:
case Token_SubEq:
if (!is_type_numeric(type) && !is_type_pointer(type)) {
error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string));
return false;
}
if (is_type_pointer(type)) {
o->type = t_int;
}
if (base_type(type) == t_rawptr) {
gbString str = type_to_string(type);
error_node(o->expr, "Invalid pointer type for pointer arithmetic: `%s`", str);
gb_string_free(str);
return false;
}
break;
case Token_Add:
case Token_Mul:
case Token_Quo:
case Token_AddEq:
case Token_MulEq:
case Token_QuoEq:
if (!is_type_numeric(type)) {
error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_And:
case Token_Or:
case Token_AndEq:
case Token_OrEq:
if (!is_type_integer(type) && !is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string));
return false;
}
break;
case Token_Mod:
case Token_Xor:
case Token_AndNot:
case Token_ModEq:
case Token_XorEq:
case Token_AndNotEq:
if (!is_type_integer(type)) {
error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
return false;
}
break;
case Token_CmpAnd:
case Token_CmpOr:
case Token_CmpAndEq:
case Token_CmpOrEq:
if (!is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string));
return false;
}
break;
default:
error(op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) {
if (in_value.kind == ExactValue_Invalid) {
// NOTE(bill): There's already been an error
return true;
}
type = base_type(base_enum_type(type));
if (is_type_boolean(type)) {
return in_value.kind == ExactValue_Bool;
} else if (is_type_string(type)) {
return in_value.kind == ExactValue_String;
} else if (is_type_integer(type)) {
ExactValue v = exact_value_to_integer(in_value);
if (v.kind != ExactValue_Integer) {
return false;
}
if (out_value) *out_value = v;
i64 i = v.value_integer;
u64 u = *cast(u64 *)&i;
i64 s = 8*type_size_of(c->sizes, c->allocator, type);
u64 umax = ~0ull;
if (s < 64) {
umax = (1ull << s) - 1ull;
} else {
// TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit integers and floats
s = 64;
}
i64 imax = (1ll << (s-1ll));
switch (type->Basic.kind) {
case Basic_i8:
case Basic_i16:
case Basic_i32:
case Basic_i64:
// case Basic_i128:
case Basic_int:
return gb_is_between(i, -imax, imax-1);
case Basic_u8:
case Basic_u16:
case Basic_u32:
case Basic_u64:
// case Basic_u128:
case Basic_uint:
return !(u < 0 || u > umax);
case Basic_UntypedInteger:
return true;
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
}
} else if (is_type_float(type)) {
ExactValue v = exact_value_to_float(in_value);
if (v.kind != ExactValue_Float) {
return false;
}
switch (type->Basic.kind) {
// case Basic_f16:
case Basic_f32:
case Basic_f64:
// case Basic_f128:
if (out_value) *out_value = v;
return true;
case Basic_UntypedFloat:
return true;
}
} else if (is_type_pointer(type)) {
if (in_value.kind == ExactValue_Pointer) {
return true;
}
if (in_value.kind == ExactValue_Integer) {
return false;
// return true;
}
if (out_value) *out_value = in_value;
}
return false;
}
void check_is_expressible(Checker *c, Operand *o, Type *type) {
GB_ASSERT(is_type_constant_type(type));
GB_ASSERT(o->mode == Addressing_Constant);
if (!check_representable_as_constant(c, o->value, type, &o->value)) {
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
if (is_type_numeric(o->type) && is_type_numeric(type)) {
if (!is_type_integer(o->type) && is_type_integer(type)) {
error_node(o->expr, "`%s` truncated to `%s`", a, b);
} else {
error_node(o->expr, "`%s = %lld` overflows `%s`", a, o->value.value_integer, b);
}
} else {
error_node(o->expr, "Cannot convert `%s` to `%s`", a, b);
}
gb_string_free(b);
gb_string_free(a);
o->mode = Addressing_Invalid;
}
}
bool check_is_expr_vector_index(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_IndexExpr) {
ast_node(ie, IndexExpr, expr);
Type *t = type_deref(type_of_expr(&c->info, ie->expr));
if (t != NULL) {
return is_type_vector(t);
}
}
return false;
}
bool check_is_vector_elem(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_SelectorExpr) {
ast_node(se, SelectorExpr, expr);
Type *t = type_deref(type_of_expr(&c->info, se->expr));
if (t != NULL && is_type_vector(t)) {
return true;
}
}
return false;
}
void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) {
switch (op.kind) {
case Token_Pointer: { // Pointer address
if (o->mode == Addressing_Type) {
o->type = make_type_pointer(c->allocator, o->type);
return;
}
if (o->mode != Addressing_Variable ||
check_is_expr_vector_index(c, o->expr) ||
check_is_vector_elem(c, o->expr)) {
if (ast_node_expect(node, AstNode_UnaryExpr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
error(op, "Cannot take the pointer address of `%s`", str);
gb_string_free(str);
}
o->mode = Addressing_Invalid;
return;
}
o->mode = Addressing_Value;
o->type = make_type_pointer(c->allocator, o->type);
return;
}
case Token_Maybe: { // Make maybe
Type *t = default_type(o->type);
if (o->mode == Addressing_Type) {
o->type = make_type_pointer(c->allocator, t);
return;
}
if (!is_operand_value(*o) || is_type_untyped(t)) {
if (ast_node_expect(node, AstNode_UnaryExpr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
error(op, "Cannot convert `%s` to a maybe", str);
gb_string_free(str);
}
o->mode = Addressing_Invalid;
return;
}
o->mode = Addressing_Value;
o->type = make_type_maybe(c->allocator, t);
return;
}
}
if (!check_unary_op(c, o, op)) {
o->mode = Addressing_Invalid;
return;
}
if (o->mode == Addressing_Constant) {
Type *type = base_type(o->type);
if (!is_type_constant_type(o->type)) {
gbString xt = type_to_string(o->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
o->mode = Addressing_Invalid;
return;
}
i32 precision = 0;
if (is_type_unsigned(type)) {
precision = cast(i32)(8 * type_size_of(c->sizes, c->allocator, type));
}
o->value = exact_unary_operator_value(op.kind, o->value, precision);
if (is_type_typed(type)) {
if (node != NULL) {
o->expr = node;
}
check_is_expressible(c, o, type);
}
return;
}
o->mode = Addressing_Value;
}
void check_comparison(Checker *c, Operand *x, Operand *y, TokenKind op) {
if (x->mode == Addressing_Type && y->mode == Addressing_Type) {
bool comp = are_types_identical(x->type, y->type);
switch (op) {
case Token_CmpEq: comp = comp; break;
case Token_NotEq: comp = !comp; break;
}
x->mode = Addressing_Constant;
x->type = t_untyped_bool;
x->value = make_exact_value_bool(comp);
return;
}
gbString err_str = NULL;
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
if (check_is_assignable_to(c, x, y->type) ||
check_is_assignable_to(c, y, x->type)) {
Type *err_type = x->type;
bool defined = false;
switch (op) {
case Token_CmpEq:
case Token_NotEq:
defined = is_type_comparable(x->type);
break;
case Token_Lt:
case Token_Gt:
case Token_LtEq:
case Token_GtEq: {
defined = is_type_ordered(x->type);
} break;
}
// CLEANUP(bill) NOTE(bill): there is an auto assignment to `any` which needs to be checked
if (is_type_any(x->type) && !is_type_any(y->type)) {
err_type = x->type;
defined = false;
} else if (is_type_any(y->type) && !is_type_any(x->type)) {
err_type = y->type;
defined = false;
}
if (!defined) {
gbString type_string = type_to_string(err_type);
err_str = gb_string_make(c->tmp_allocator,
gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(token_strings[op]), type_string));
gb_string_free(type_string);
}
} else {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
err_str = gb_string_make(c->tmp_allocator,
gb_bprintf("mismatched types `%s` and `%s`", xt, yt));
gb_string_free(yt);
gb_string_free(xt);
}
if (err_str != NULL) {
error_node(x->expr, "Cannot compare expression, %s", err_str);
x->type = t_untyped_bool;
} else {
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
x->value = make_exact_value_bool(compare_exact_values(op, x->value, y->value));
} else {
x->mode = Addressing_Value;
update_expr_type(c, x->expr, default_type(x->type), true);
update_expr_type(c, y->expr, default_type(y->type), true);
}
if (is_type_vector(base_type(y->type))) {
x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count);
} else {
x->type = t_untyped_bool;
}
}
if (err_str != NULL) {
gb_string_free(err_str);
}
gb_temp_arena_memory_end(tmp);
}
void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
ExactValue x_val = {0};
if (x->mode == Addressing_Constant) {
x_val = exact_value_to_integer(x->value);
}
bool x_is_untyped = is_type_untyped(x->type);
if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
gbString err_str = expr_to_string(x->expr);
error_node(node, "Shifted operand `%s` must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_unsigned(y->type)) {
} else if (is_type_untyped(y->type)) {
convert_to_typed(c, y, t_untyped_integer, 0);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
} else {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount `%s` must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (x->mode == Addressing_Constant) {
if (y->mode == Addressing_Constant) {
ExactValue y_val = exact_value_to_integer(y->value);
if (y_val.kind != ExactValue_Integer) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount `%s` must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
u64 amount = cast(u64)y_val.value_integer;
if (amount > 64) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount too large: `%s`", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (!is_type_integer(x->type)) {
// NOTE(bill): It could be an untyped float but still representable
// as an integer
x->type = t_untyped_integer;
}
x->value = exact_value_shift(be->op.kind, x_val, make_exact_value_integer(amount));
if (is_type_typed(x->type)) {
check_is_expressible(c, x, base_type(x->type));
}
return;
}
TokenPos pos = ast_node_token(x->expr).pos;
if (x_is_untyped) {
ExprInfo *info = map_expr_info_get(&c->info.untyped, hash_pointer(x->expr));
if (info != NULL) {
info->is_lhs = true;
}
x->mode = Addressing_Value;
// x->value = x_val;
return;
}
}
if (y->mode == Addressing_Constant && y->value.value_integer < 0) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount cannot be negative: `%s`", err_str);
gb_string_free(err_str);
}
if (!is_type_integer(x->type)) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift operand `%s` must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
x->mode = Addressing_Value;
}
bool check_is_castable_to(Checker *c, Operand *operand, Type *y) {
if (check_is_assignable_to(c, operand, y)) {
return true;
}
Type *x = operand->type;
Type *src = base_type(base_enum_type(x));
Type *dst = base_type(base_enum_type(y));
if (are_types_identical(src, dst)) {
return true;
}
if (dst->kind == Type_Array && src->kind == Type_Array) {
if (are_types_identical(dst->Array.elem, src->Array.elem)) {
return dst->Array.count == src->Array.count;
}
}
if (dst->kind == Type_Slice && src->kind == Type_Slice) {
return are_types_identical(dst->Slice.elem, src->Slice.elem);
}
// Cast between booleans and integers
if (is_type_boolean(src) || is_type_integer(src)) {
if (is_type_boolean(dst) || is_type_integer(dst)) {
return true;
}
}
// Cast between numbers
if (is_type_integer(src) || is_type_float(src)) {
if (is_type_integer(dst) || is_type_float(dst)) {
return true;
}
}
// Cast between pointers
if (is_type_pointer(src) && is_type_pointer(dst)) {
return true;
}
// (u)int <-> pointer
if (is_type_int_or_uint(src) && is_type_rawptr(dst)) {
return true;
}
if (is_type_rawptr(src) && is_type_int_or_uint(dst)) {
return true;
}
// []byte/[]u8 <-> string
if (is_type_u8_slice(src) && is_type_string(dst)) {
return true;
}
if (is_type_string(src) && is_type_u8_slice(dst)) {
if (is_type_typed(src)) {
return true;
}
}
// proc <-> proc
if (is_type_proc(src) && is_type_proc(dst)) {
return true;
}
// proc -> rawptr
if (is_type_proc(src) && is_type_rawptr(dst)) {
return true;
}
// rawptr -> proc
if (is_type_rawptr(src) && is_type_proc(dst)) {
return true;
}
return false;
}
String check_down_cast_name(Type *dst_, Type *src_) {
String result = {0};
Type *dst = type_deref(dst_);
Type *src = type_deref(src_);
Type *dst_s = base_type(dst);
GB_ASSERT(is_type_struct(dst_s) || is_type_raw_union(dst_s));
for (isize i = 0; i < dst_s->Record.field_count; i++) {
Entity *f = dst_s->Record.fields[i];
GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field);
if (f->flags & EntityFlag_Anonymous) {
if (are_types_identical(f->type, src_)) {
return f->token.string;
}
if (are_types_identical(type_deref(f->type), src_)) {
return f->token.string;
}
if (!is_type_pointer(f->type)) {
result = check_down_cast_name(f->type, src_);
if (result.len > 0) {
return result;
}
}
}
}
return result;
}
Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
GB_ASSERT(is_type_pointer(ptr->type));
GB_ASSERT(is_type_integer(offset->type));
GB_ASSERT(op == Token_Add || op == Token_Sub);
Operand operand = {0};
operand.mode = Addressing_Value;
operand.type = ptr->type;
operand.expr = node;
if (base_type(ptr->type) == t_rawptr) {
gbString str = type_to_string(ptr->type);
error_node(node, "Invalid pointer type for pointer arithmetic: `%s`", str);
gb_string_free(str);
operand.mode = Addressing_Invalid;
return operand;
}
if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) {
i64 elem_size = type_size_of(c->sizes, c->allocator, ptr->type);
i64 ptr_val = ptr->value.value_pointer;
i64 offset_val = exact_value_to_integer(offset->value).value_integer;
i64 new_ptr_val = ptr_val;
if (op == Token_Add) {
new_ptr_val += elem_size*offset_val;
} else {
new_ptr_val -= elem_size*offset_val;
}
operand.mode = Addressing_Constant;
operand.value = make_exact_value_pointer(new_ptr_val);
}
return operand;
}
void check_conversion(Checker *c, Operand *x, Type *type) {
bool is_const_expr = x->mode == Addressing_Constant;
bool can_convert = false;
Type *bt = base_type(type);
if (is_const_expr && is_type_constant_type(bt)) {
if (bt->kind == Type_Basic) {
if (check_representable_as_constant(c, x->value, bt, &x->value)) {
can_convert = true;
} else if (is_type_pointer(type) && check_is_castable_to(c, x, type)) {
can_convert = true;
}
}
} else if (check_is_castable_to(c, x, type)) {
if (x->mode != Addressing_Constant) {
x->mode = Addressing_Value;
}
can_convert = true;
}
if (!can_convert) {
gbString expr_str = expr_to_string(x->expr);
gbString to_type = type_to_string(type);
gbString from_type = type_to_string(x->type);
error_node(x->expr, "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type);
gb_string_free(from_type);
gb_string_free(to_type);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
Type *final_type = type;
if (is_const_expr && !is_type_constant_type(type)) {
final_type = default_type(x->type);
}
update_expr_type(c, x->expr, final_type, true);
}
x->type = type;
}
void check_binary_expr(Checker *c, Operand *x, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
Operand y_ = {0}, *y = &y_;
ast_node(be, BinaryExpr, node);
Token op = be->op;
switch (op.kind) {
case Token_CmpEq:
case Token_NotEq: {
// NOTE(bill): Allow comparisons between types
check_expr_or_type(c, x, be->left);
check_expr_or_type(c, y, be->right);
bool xt = x->mode == Addressing_Type;
bool yt = y->mode == Addressing_Type;
// If only one is a type, this is an error
if (xt ^ yt) {
GB_ASSERT(xt != yt);
if (xt) error_operand_not_expression(x);
if (yt) error_operand_not_expression(y);
}
} break;
default:
check_expr(c, x, be->left);
check_expr(c, y, be->right);
break;
}
if (x->mode == Addressing_Invalid) {
return;
}
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
x->expr = y->expr;
return;
}
if (token_is_shift(op.kind)) {
check_shift(c, x, y, node);
return;
}
if (op.kind == Token_Add || op.kind == Token_Sub) {
if (is_type_pointer(x->type) && is_type_integer(y->type)) {
*x = check_ptr_addition(c, op.kind, x, y, node);
return;
} else if (is_type_integer(x->type) && is_type_pointer(y->type)) {
if (op.kind == Token_Sub) {
gbString lhs = expr_to_string(x->expr);
gbString rhs = expr_to_string(y->expr);
error_node(node, "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs);
gb_string_free(rhs);
gb_string_free(lhs);
x->mode = Addressing_Invalid;
return;
}
*x = check_ptr_addition(c, op.kind, y, x, node);
return;
}
}
convert_to_typed(c, x, y->type, 0);
if (x->mode == Addressing_Invalid) {
return;
}
convert_to_typed(c, y, x->type, 0);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
if (token_is_comparison(op.kind)) {
check_comparison(c, x, y, op.kind);
return;
}
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", expr_str, xt, yt);
gb_string_free(expr_str);
gb_string_free(yt);
gb_string_free(xt);
}
x->mode = Addressing_Invalid;
return;
}
if (!check_binary_op(c, x, op)) {
x->mode = Addressing_Invalid;
return;
}
switch (op.kind) {
case Token_Quo:
case Token_Mod:
case Token_QuoEq:
case Token_ModEq:
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
y->mode == Addressing_Constant) {
bool fail = false;
switch (y->value.kind) {
case ExactValue_Integer:
if (y->value.value_integer == 0) {
fail = true;
}
break;
case ExactValue_Float:
if (y->value.value_float == 0.0) {
fail = true;
}
break;
}
if (fail) {
error_node(y->expr, "Division by zero not allowed");
x->mode = Addressing_Invalid;
return;
}
}
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
ExactValue a = x->value;
ExactValue b = y->value;
Type *type = base_type(x->type);
if (is_type_pointer(type)) {
GB_ASSERT(op.kind == Token_Sub);
i64 bytes = a.value_pointer - b.value_pointer;
i64 diff = bytes/type_size_of(c->sizes, c->allocator, type);
x->value = make_exact_value_pointer(diff);
return;
}
if (!is_type_constant_type(type)) {
gbString xt = type_to_string(x->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
x->mode = Addressing_Invalid;
return;
}
if (op.kind == Token_Quo && is_type_integer(type)) {
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
}
x->value = exact_binary_operator_value(op.kind, a, b);
if (is_type_typed(type)) {
if (node != NULL) {
x->expr = node;
}
check_is_expressible(c, x, type);
}
return;
}
x->mode = Addressing_Value;
}
void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) {
HashKey key = hash_pointer(e);
ExprInfo *found = map_expr_info_get(&c->info.untyped, key);
if (found == NULL) {
return;
}
ExprInfo old = *found;
switch (e->kind) {
case_ast_node(ue, UnaryExpr, e);
if (old.value.kind != ExactValue_Invalid) {
// NOTE(bill): if `e` is constant, the operands will be constant too.
// They don't need to be updated as they will be updated later and
// checked at the end of general checking stage.
break;
}
update_expr_type(c, ue->expr, type, final);
case_end;
case_ast_node(be, BinaryExpr, e);
if (old.value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
if (token_is_comparison(be->op.kind)) {
// NOTE(bill): Do nothing as the types are fine
} else if (token_is_shift(be->op.kind)) {
update_expr_type(c, be->left, type, final);
} else {
update_expr_type(c, be->left, type, final);
update_expr_type(c, be->right, type, final);
}
case_end;
case_ast_node(pe, ParenExpr, e);
update_expr_type(c, pe->expr, type, final);
case_end;
}
if (!final && is_type_untyped(type)) {
old.type = base_type(type);
map_expr_info_set(&c->info.untyped, key, old);
return;
}
// We need to remove it and then give it a new one
map_expr_info_remove(&c->info.untyped, key);
if (old.is_lhs && !is_type_integer(type)) {
gbString expr_str = expr_to_string(e);
gbString type_str = type_to_string(type);
error_node(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
gb_string_free(type_str);
gb_string_free(expr_str);
return;
}
add_type_and_value(&c->info, e, old.mode, type, old.value);
}
void update_expr_value(Checker *c, AstNode *e, ExactValue value) {
ExprInfo *found = map_expr_info_get(&c->info.untyped, hash_pointer(e));
if (found) {
found->value = value;
}
}
void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) {
gbString expr_str = expr_to_string(operand->expr);
gbString type_str = type_to_string(target_type);
char *extra_text = "";
if (operand->mode == Addressing_Constant) {
if (operand->value.value_integer == 0) {
if (str_ne(make_string_c(expr_str), str_lit("nil"))) { // HACK NOTE(bill): Just in case
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
extra_text = " - Did you want `nil`?";
}
}
}
error_node(operand->expr, "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text);
gb_string_free(type_str);
gb_string_free(expr_str);
operand->mode = Addressing_Invalid;
}
// NOTE(bill): Set initial level to 0
void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) {
GB_ASSERT_NOT_NULL(target_type);
if (operand->mode == Addressing_Invalid ||
operand->mode == Addressing_Type ||
is_type_typed(operand->type) ||
target_type == t_invalid) {
return;
}
if (is_type_untyped(target_type)) {
GB_ASSERT(operand->type->kind == Type_Basic);
GB_ASSERT(target_type->kind == Type_Basic);
BasicKind x_kind = operand->type->Basic.kind;
BasicKind y_kind = target_type->Basic.kind;
if (is_type_numeric(operand->type) && is_type_numeric(target_type)) {
if (x_kind < y_kind) {
operand->type = target_type;
update_expr_type(c, operand->expr, target_type, false);
}
} else if (x_kind != y_kind) {
goto error;
}
return;
}
Type *t = base_type(base_enum_type(target_type));
switch (t->kind) {
case Type_Basic:
if (operand->mode == Addressing_Constant) {
check_is_expressible(c, operand, t);
if (operand->mode == Addressing_Invalid) {
return;
}
update_expr_value(c, operand->expr, operand->value);
} else {
switch (operand->type->Basic.kind) {
case Basic_UntypedBool:
if (!is_type_boolean(target_type)) {
goto error;
}
break;
case Basic_UntypedInteger:
case Basic_UntypedFloat:
case Basic_UntypedRune:
if (!is_type_numeric(target_type)) {
goto error;
}
break;
case Basic_UntypedNil:
if (!type_has_nil(target_type)) {
goto error;
}
break;
}
}
break;
case Type_Maybe:
if (is_type_untyped_nil(operand->type)) {
// Okay
} else if (level == 0) {
goto error;
}
default:
if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
goto error;
}
target_type = t_untyped_nil;
break;
}
operand->type = target_type;
update_expr_type(c, operand->expr, target_type, true);
return;
error:
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
}
bool check_index_value(Checker *c, AstNode *index_value, i64 max_count, i64 *value) {
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, index_value);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
convert_to_typed(c, &operand, t_int, 0);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
if (!is_type_integer(operand.type)) {
gbString expr_str = expr_to_string(operand.expr);
error_node(operand.expr, "Index `%s` must be an integer", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (operand.mode == Addressing_Constant &&
(c->context.stmt_state_flags & StmtStateFlag_no_bounds_check) == 0) {
i64 i = exact_value_to_integer(operand.value).value_integer;
if (i < 0) {
gbString expr_str = expr_to_string(operand.expr);
error_node(operand.expr, "Index `%s` cannot be a negative value", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (max_count >= 0) { // NOTE(bill): Do array bound checking
if (value) *value = i;
if (i >= max_count) {
gbString expr_str = expr_to_string(operand.expr);
error_node(operand.expr, "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count);
gb_string_free(expr_str);
return false;
}
return true;
}
}
// NOTE(bill): It's alright :D
if (value) *value = -1;
return true;
}
Entity *check_selector(Checker *c, Operand *operand, AstNode *node, Type *type_hint) {
ast_node(se, SelectorExpr, node);
bool check_op_expr = true;
Entity *expr_entity = NULL;
Entity *entity = NULL;
Selection sel = {0}; // NOTE(bill): Not used if it's an import name
AstNode *op_expr = se->expr;
AstNode *selector = unparen_expr(se->selector);
if (selector == NULL) {
goto error;
}
// if (selector->kind != AstNode_Ident && selector->kind != AstNode_BasicLit) {
if (selector->kind != AstNode_Ident) {
error_node(selector, "Illegal selector kind: `%.*s`", LIT(ast_node_strings[selector->kind]));
goto error;
}
if (op_expr->kind == AstNode_Ident) {
b32 is_not_exported = true;
String name = op_expr->Ident.string;
Entity *e = scope_lookup_entity(c->context.scope, name);
add_entity_use(c, op_expr, e);
expr_entity = e;
if (e != NULL && e->kind == Entity_ImportName &&
selector->kind == AstNode_Ident) {
String sel_name = selector->Ident.string;
check_op_expr = false;
entity = scope_lookup_entity(e->ImportName.scope, sel_name);
if (entity == NULL) {
error_node(op_expr, "`%.*s` is not declared by `%.*s`", LIT(sel_name), LIT(name));
goto error;
}
check_entity_decl(c, entity, NULL, NULL);
GB_ASSERT(entity->type != NULL);
bool is_overloaded = false;
isize overload_count = 0;
HashKey key = {0};
if (entity->kind == Entity_Procedure) {
key = hash_string(entity->token.string);
// NOTE(bill): Overloads are only allowed with the same scope
Scope *s = entity->scope;
overload_count = map_entity_multi_count(&s->elements, key);
if (overload_count > 1) {
is_overloaded = true;
}
}
if (is_overloaded) {
Scope *s = entity->scope;
bool skip = false;
Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count);
map_entity_multi_get_all(&s->elements, key, procs);
for (isize i = 0; i < overload_count; /**/) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
// NOTE(bill): Check to see if it's imported
if (map_bool_get(&e->ImportName.scope->implicit, hash_pointer(procs[i]))) {
gb_swap(Entity *, procs[i], procs[overload_count-1]);
overload_count--;
continue;
}
Operand x = {0};
x.mode = Addressing_Value;
x.type = t;
if (type_hint != NULL) {
if (check_is_assignable_to(c, &x, type_hint)) {
entity = procs[i];
skip = true;
break;
}
}
i++;
}
if (overload_count > 0 && !skip) {
operand->mode = Addressing_Overload;
operand->type = t_invalid;
operand->expr = node;
operand->overload_count = overload_count;
operand->overload_entities = procs;
return procs[0];
}
}
bool *found = map_bool_get(&e->ImportName.scope->implicit, hash_pointer(entity));
if (!found) {
is_not_exported = false;
} else {
if (entity->kind == Entity_ImportName) {
is_not_exported = true;
}
}
if (is_not_exported) {
gbString sel_str = expr_to_string(selector);
error_node(op_expr, "`%s` is not exported by `%.*s`", sel_str, LIT(name));
gb_string_free(sel_str);
// NOTE(bill): Not really an error so don't goto error
}
}
}
if (check_op_expr) {
check_expr_base(c, operand, op_expr, NULL);
if (operand->mode == Addressing_Invalid) {
goto error;
}
}
if (entity == NULL && selector->kind == AstNode_Ident) {
sel = lookup_field(c->allocator, operand->type, selector->Ident.string, operand->mode == Addressing_Type);
entity = sel.entity;
}
if (entity == NULL && selector->kind == AstNode_BasicLit) {
if (is_type_struct(operand->type) || is_type_tuple(operand->type)) {
Type *type = base_type(operand->type);
Operand o = {0};
check_expr(c, &o, selector);
if (o.mode != Addressing_Constant ||
!is_type_integer(o.type)) {
error_node(op_expr, "Indexed based selectors must be a constant integer %s");
goto error;
}
i64 index = o.value.value_integer;
if (index < 0) {
error_node(o.expr, "Index %lld cannot be a negative value", index);
goto error;
}
i64 max_count = 0;
switch (type->kind) {
case Type_Record: max_count = type->Record.field_count; break;
case Type_Tuple: max_count = type->Tuple.variable_count; break;
}
if (index >= max_count) {
error_node(o.expr, "Index %lld is out of bounds range 0..<%lld", index, max_count);
goto error;
}
sel = lookup_field_from_index(heap_allocator(), type, index);
entity = sel.entity;
GB_ASSERT(entity != NULL);
} else {
error_node(op_expr, "Indexed based selectors may only be used on structs or tuples");
goto error;
}
}
if (entity == NULL) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error_node(op_expr, "`%s` (`%s`) has no field `%s`", op_str, type_str, sel_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
goto error;
}
if (expr_entity != NULL && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error_node(op_expr, "Cannot access non-constant field `%s` from `%s`", sel_str, op_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
goto error;
}
add_entity_use(c, selector, entity);
switch (entity->kind) {
case Entity_Constant:
operand->mode = Addressing_Constant;
operand->value = entity->Constant.value;
break;
case Entity_Variable:
// TODO(bill): This is the rule I need?
if (sel.indirect || operand->mode != Addressing_Value) {
operand->mode = Addressing_Variable;
} else {
operand->mode = Addressing_Value;
}
break;
case Entity_TypeName:
operand->mode = Addressing_Type;
break;
case Entity_Procedure:
operand->mode = Addressing_Value;
break;
case Entity_Builtin:
operand->mode = Addressing_Builtin;
operand->builtin_id = entity->Builtin.id;
break;
// NOTE(bill): These cases should never be hit but are here for sanity reasons
case Entity_Nil:
operand->mode = Addressing_Value;
break;
}
operand->type = entity->type;
operand->expr = node;
return entity;
error:
operand->mode = Addressing_Invalid;
operand->expr = node;
return NULL;
}
bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
BuiltinProc *bp = &builtin_procs[id];
{
char *err = NULL;
if (ce->args.count < bp->arg_count) {
err = "Too few";
} else if (ce->args.count > bp->arg_count && !bp->variadic) {
err = "Too many";
}
if (err) {
ast_node(proc, Ident, ce->proc);
error(ce->close, "`%s` arguments for `%.*s`, expected %td, got %td",
err, LIT(proc->string),
bp->arg_count, ce->args.count);
return false;
}
}
Operand prev_operand = *operand;
switch (id) {
case BuiltinProc_new:
case BuiltinProc_new_slice:
case BuiltinProc_size_of:
case BuiltinProc_align_of:
case BuiltinProc_offset_of:
case BuiltinProc_type_info:
// NOTE(bill): The first arg may be a Type, this will be checked case by case
break;
default:
check_multi_expr(c, operand, ce->args.e[0]);
}
switch (id) {
default:
GB_PANIC("Implement builtin procedure: %.*s", LIT(builtin_procs[id].name));
break;
case BuiltinProc_new: {
// new :: proc(Type) -> ^Type
Operand op = {0};
check_expr_or_type(c, &op, ce->args.e[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `new`");
return false;
}
operand->mode = Addressing_Value;
operand->type = make_type_pointer(c->allocator, type);
} break;
case BuiltinProc_new_slice: {
// new_slice :: proc(Type, len: int) -> []Type
Operand op = {0};
check_expr_or_type(c, &op, ce->args.e[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `new_slice`");
return false;
}
check_expr(c, &op, ce->args.e[1]);
if (op.mode == Addressing_Invalid) {
return false;
}
if (!is_type_integer(op.type)) {
gbString type_str = type_to_string(op.type);
error_node(call, "Length for `new_slice` must be an integer, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_Value;
operand->type = make_type_slice(c->allocator, type);
} break;
case BuiltinProc_free: {
// free :: proc(^Type)
// free :: proc([]Type)
// free :: proc(string)
Type *type = operand->type;
bool ok = false;
if (is_type_pointer(type)) {
ok = true;
} else if (is_type_slice(type)) {
ok = true;
} else if (is_type_string(type)) {
ok = true;
} else if (is_type_dynamic_array(type)) {
ok = true;
}
if (!ok) {
gbString type_str = type_to_string(type);
error_node(operand->expr, "Invalid type for `free`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_NoValue;
} break;
case BuiltinProc_reserve: {
// reserve :: proc(^[dynamic]Type, count: int) {
Type *type = operand->type;
if (!is_type_pointer(type)) {
gbString str = type_to_string(type);
error_node(operand->expr, "Expected a pointer to a dynamic array, got `%s`", str);
gb_string_free(str);
return false;
}
type = type_deref(type);
if (!is_type_dynamic_array(type)) {
gbString str = type_to_string(type);
error_node(operand->expr, "Expected a pointer to a dynamic array, got `%s`", str);
gb_string_free(str);
return false;
}
AstNode *capacity = ce->args.e[1];
Operand op = {0};
check_expr(c, &op, capacity);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *arg_type = base_type(op.type);
if (!is_type_integer(arg_type)) {
error_node(operand->expr, "`reserve` capacities must be an integer");
return false;
}
operand->type = NULL;
operand->mode = Addressing_NoValue;
} break;
case BuiltinProc_append: {
// append :: proc(^[dynamic]Type, item: ...Type) {
Type *type = operand->type;
if (!is_type_pointer(type)) {
gbString str = type_to_string(type);
error_node(operand->expr, "Expected a pointer to a dynamic array, got `%s`", str);
gb_string_free(str);
return false;
}
type = base_type(type_deref(type));
if (!is_type_dynamic_array(type)) {
gbString str = type_to_string(type);
error_node(operand->expr, "Expected a pointer to a dynamic array, got `%s`", str);
gb_string_free(str);
return false;
}
// TODO(bill): Semi-memory leaks
Type *elem = type->DynamicArray.elem;
Type *slice_elem = make_type_slice(c->allocator, elem);
Type *proc_type_params = make_type_tuple(c->allocator);
proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2);
proc_type_params->Tuple.variable_count = 2;
proc_type_params->Tuple.variables[0] = make_entity_param(c->allocator, NULL, blank_token, operand->type, false, false);
proc_type_params->Tuple.variables[1] = make_entity_param(c->allocator, NULL, blank_token, slice_elem, false, false);
Type *proc_type = make_type_proc(c->allocator, NULL, proc_type_params, 2, NULL, false, true, ProcCC_Odin);
check_call_arguments(c, &prev_operand, proc_type, call);
if (prev_operand.mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Value;
operand->type = t_int;
} break;
case BuiltinProc_size_of: {
// size_of :: proc(Type) -> untyped int
Type *type = check_type(c, ce->args.e[0]);
if (type == NULL || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `size_of`");
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, type));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_size_of_val:
// size_of_val :: proc(val: Type) -> untyped int
check_assignment(c, operand, NULL, str_lit("argument of `size_of_val`"));
if (operand->mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, operand->type));
operand->type = t_untyped_integer;
break;
case BuiltinProc_align_of: {
// align_of :: proc(Type) -> untyped int
Type *type = check_type(c, ce->args.e[0]);
if (type == NULL || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `align_of`");
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, type));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_align_of_val:
// align_of_val :: proc(val: Type) -> untyped int
check_assignment(c, operand, NULL, str_lit("argument of `align_of_val`"));
if (operand->mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, operand->type));
operand->type = t_untyped_integer;
break;
case BuiltinProc_offset_of: {
// offset_of :: proc(Type, field) -> untyped int
Operand op = {0};
Type *bt = check_type(c, ce->args.e[0]);
Type *type = base_type(bt);
if (type == NULL || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `offset_of`");
return false;
}
AstNode *field_arg = unparen_expr(ce->args.e[1]);
if (field_arg == NULL ||
field_arg->kind != AstNode_Ident) {
error_node(field_arg, "Expected an identifier for field argument");
return false;
}
if (is_type_array(type) || is_type_vector(type)) {
error_node(field_arg, "Invalid type for `offset_of`");
return false;
}
ast_node(arg, Ident, field_arg);
Selection sel = lookup_field(c->allocator, type, arg->string, operand->mode == Addressing_Type);
if (sel.entity == NULL) {
gbString type_str = type_to_string(bt);
error_node(ce->args.e[0],
"`%s` has no field named `%.*s`", type_str, LIT(arg->string));
gb_string_free(type_str);
return false;
}
if (sel.indirect) {
gbString type_str = type_to_string(bt);
error_node(ce->args.e[0],
"Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->string), type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_offset_of_from_selection(c->sizes, c->allocator, type, sel));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_offset_of_val: {
// offset_of_val :: proc(val: expression) -> untyped int
AstNode *arg = unparen_expr(ce->args.e[0]);
if (arg->kind != AstNode_SelectorExpr) {
gbString str = expr_to_string(arg);
error_node(arg, "`%s` is not a selector expression", str);
return false;
}
ast_node(s, SelectorExpr, arg);
check_expr(c, operand, s->expr);
if (operand->mode == Addressing_Invalid) {
return false;
}
Type *type = operand->type;
if (base_type(type)->kind == Type_Pointer) {
Type *p = base_type(type);
if (is_type_struct(p)) {
type = p->Pointer.elem;
}
}
if (is_type_array(type) || is_type_vector(type)) {
error_node(arg, "Invalid type for `offset_of_val`");
return false;
}
ast_node(i, Ident, s->selector);
Selection sel = lookup_field(c->allocator, type, i->string, operand->mode == Addressing_Type);
if (sel.entity == NULL) {
gbString type_str = type_to_string(type);
error_node(arg,
"`%s` has no field named `%.*s`", type_str, LIT(i->string));
return false;
}
if (sel.indirect) {
gbString type_str = type_to_string(type);
error_node(ce->args.e[0],
"Field `%.*s` is embedded via a pointer in `%s`", LIT(i->string), type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_Constant;
// IMPORTANT TODO(bill): Fix for anonymous fields
operand->value = make_exact_value_integer(type_offset_of_from_selection(c->sizes, c->allocator, type, sel));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_type_of_val:
// type_of_val :: proc(val: Type) -> type(Type)
check_assignment(c, operand, NULL, str_lit("argument of `type_of_val`"));
if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) {
return false;
}
if (operand->type == NULL || operand->type == t_invalid) {
error_node(operand->expr, "Invalid argument to `type_of_val`");
return false;
}
operand->mode = Addressing_Type;
break;
case BuiltinProc_type_info: {
// type_info :: proc(Type) -> ^Type_Info
if (c->context.scope->is_global) {
compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
}
// NOTE(bill): The type information may not be setup yet
init_preload(c);
AstNode *expr = ce->args.e[0];
Type *type = check_type(c, expr);
if (type == NULL || type == t_invalid) {
error_node(expr, "Invalid argument to `type_info`");
return false;
}
add_type_info_type(c, type);
operand->mode = Addressing_Value;
operand->type = t_type_info_ptr;
} break;
case BuiltinProc_type_info_of_val: {
// type_info_of_val :: proc(val: Type) -> ^Type_Info
if (c->context.scope->is_global) {
compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
}
// NOTE(bill): The type information may not be setup yet
init_preload(c);
AstNode *expr = ce->args.e[0];
check_assignment(c, operand, NULL, str_lit("argument of `type_info_of_val`"));
if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin)
return false;
add_type_info_type(c, operand->type);
operand->mode = Addressing_Value;
operand->type = t_type_info_ptr;
} break;
case BuiltinProc_compile_assert:
// compile_assert :: proc(cond: bool)
if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "`%s` is not a constant boolean", str);
gb_string_free(str);
return false;
}
if (!operand->value.value_bool) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "Compile time assertion: `%s`", str);
gb_string_free(str);
}
break;
case BuiltinProc_assert:
// assert :: proc(cond: bool)
if (!is_type_boolean(operand->type)) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "`%s` is not a boolean", str);
gb_string_free(str);
return false;
}
operand->mode = Addressing_NoValue;
break;
case BuiltinProc_panic:
// panic :: proc(msg: string)
if (!is_type_string(operand->type)) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "`%s` is not a string", str);
gb_string_free(str);
return false;
}
operand->mode = Addressing_NoValue;
break;
case BuiltinProc_copy: {
// copy :: proc(x, y: []Type) -> int
Type *dest_type = NULL, *src_type = NULL;
Type *d = base_type(operand->type);
if (d->kind == Type_Slice) {
dest_type = d->Slice.elem;
}
Operand op = {0};
check_expr(c, &op, ce->args.e[1]);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *s = base_type(op.type);
if (s->kind == Type_Slice) {
src_type = s->Slice.elem;
}
if (dest_type == NULL || src_type == NULL) {
error_node(call, "`copy` only expects slices as arguments");
return false;
}
if (!are_types_identical(dest_type, src_type)) {
gbString d_arg = expr_to_string(ce->args.e[0]);
gbString s_arg = expr_to_string(ce->args.e[1]);
gbString d_str = type_to_string(dest_type);
gbString s_str = type_to_string(src_type);
error_node(call,
"Arguments to `copy`, %s, %s, have different elem types: %s vs %s",
d_arg, s_arg, d_str, s_str);
gb_string_free(s_str);
gb_string_free(d_str);
gb_string_free(s_arg);
gb_string_free(d_arg);
return false;
}
operand->type = t_int; // Returns number of elems copied
operand->mode = Addressing_Value;
} break;
case BuiltinProc_swizzle: {
// swizzle :: proc(v: {N}T, T...) -> {M}T
Type *vector_type = base_type(operand->type);
if (!is_type_vector(vector_type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"You can only `swizzle` a vector, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
isize max_count = vector_type->Vector.count;
isize arg_count = 0;
for_array(i, ce->args) {
if (i == 0) {
continue;
}
AstNode *arg = ce->args.e[i];
Operand op = {0};
check_expr(c, &op, arg);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *arg_type = base_type(op.type);
if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) {
error_node(op.expr, "Indices to `swizzle` must be constant integers");
return false;
}
if (op.value.value_integer < 0) {
error_node(op.expr, "Negative `swizzle` index");
return false;
}
if (max_count <= op.value.value_integer) {
error_node(op.expr, "`swizzle` index exceeds vector length");
return false;
}
arg_count++;
}
if (arg_count > max_count) {
error_node(call, "Too many `swizzle` indices, %td > %td", arg_count, max_count);
return false;
}
Type *elem_type = vector_type->Vector.elem;
operand->type = make_type_vector(c->allocator, elem_type, arg_count);
operand->mode = Addressing_Value;
} break;
#if 0
case BuiltinProc_ptr_offset: {
// ptr_offset :: proc(ptr: ^T, offset: int) -> ^T
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error_node(call,
"Expected a pointer to `ptr_offset`, got `%s`",
type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
AstNode *offset = ce->args.e[1];
Operand op = {0};
check_expr(c, &op, offset);
if (op.mode == Addressing_Invalid)
return false;
Type *offset_type = base_type(op.type);
if (!is_type_integer(offset_type)) {
error_node(op.expr, "Pointer offsets for `ptr_offset` must be an integer");
return false;
}
if (operand->mode == Addressing_Constant &&
op.mode == Addressing_Constant) {
i64 ptr = operand->value.value_pointer;
i64 elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem);
ptr += elem_size * op.value.value_integer;
operand->value.value_pointer = ptr;
} else {
operand->mode = Addressing_Value;
}
} break;
case BuiltinProc_ptr_sub: {
// ptr_sub :: proc(a, b: ^T) -> int
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error_node(call,
"Expected a pointer to `ptr_add`, got `%s`",
type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
AstNode *offset = ce->args[1];
Operand op = {0};
check_expr(c, &op, offset);
if (op.mode == Addressing_Invalid)
return false;
if (!is_type_pointer(op.type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error_node(call,
"Expected a pointer to `ptr_add`, got `%s`",
type_str);
return false;
}
if (base_type(op.type) == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
if (!are_types_identical(operand->type, op.type)) {
gbString a = type_to_string(operand->type);
gbString b = type_to_string(op.type);
defer (gb_string_free(a));
defer (gb_string_free(b));
error_node(op.expr,
"`ptr_sub` requires to pointer of the same type. Got `%s` and `%s`.", a, b);
return false;
}
operand->type = t_int;
if (operand->mode == Addressing_Constant &&
op.mode == Addressing_Constant) {
u8 *ptr_a = cast(u8 *)operand->value.value_pointer;
u8 *ptr_b = cast(u8 *)op.value.value_pointer;
isize elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem);
operand->value = make_exact_value_integer((ptr_a - ptr_b) / elem_size);
} else {
operand->mode = Addressing_Value;
}
} break;
#endif
case BuiltinProc_slice_ptr: {
// slice_ptr :: proc(a: ^T, len: int) -> []T
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a pointer to `slice_ptr`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
AstNode *len = ce->args.e[1];
Operand op = {0};
check_expr(c, &op, len);
if (op.mode == Addressing_Invalid)
return false;
if (!is_type_integer(op.type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Length for `slice_ptr` must be an integer, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem);
operand->mode = Addressing_Value;
} break;
case BuiltinProc_min: {
// min :: proc(a, b: comparable) -> comparable
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric type to `min`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *other_arg = ce->args.e[1];
Operand a = *operand;
Operand b = {0};
check_expr(c, &b, other_arg);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error_node(call,
"Expected a comparable numeric type to `min`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (a.mode == Addressing_Constant &&
b.mode == Addressing_Constant) {
ExactValue x = a.value;
ExactValue y = b.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Lt, x, y)) {
operand->value = x;
operand->type = a.type;
} else {
operand->value = y;
operand->type = b.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &a, b.type, 0);
if (a.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &b, a.type, 0);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(a.type, b.type)) {
gbString type_a = type_to_string(a.type);
gbString type_b = type_to_string(b.type);
error_node(call,
"Mismatched types to `min`, `%s` vs `%s`",
type_a, type_b);
gb_string_free(type_b);
gb_string_free(type_a);
return false;
}
}
} break;
case BuiltinProc_max: {
// min :: proc(a, b: comparable) -> comparable
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *other_arg = ce->args.e[1];
Operand a = *operand;
Operand b = {0};
check_expr(c, &b, other_arg);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error_node(call,
"Expected a comparable numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (a.mode == Addressing_Constant &&
b.mode == Addressing_Constant) {
ExactValue x = a.value;
ExactValue y = b.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Gt, x, y)) {
operand->value = x;
operand->type = a.type;
} else {
operand->value = y;
operand->type = b.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &a, b.type, 0);
if (a.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &b, a.type, 0);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(a.type, b.type)) {
gbString type_a = type_to_string(a.type);
gbString type_b = type_to_string(b.type);
error_node(call,
"Mismatched types to `max`, `%s` vs `%s`",
type_a, type_b);
gb_string_free(type_b);
gb_string_free(type_a);
return false;
}
}
} break;
case BuiltinProc_abs: {
// abs :: proc(n: numeric) -> numeric
Type *type = base_type(operand->type);
if (!is_type_numeric(type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a numeric type to `abs`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (operand->mode == Addressing_Constant) {
switch (operand->value.kind) {
case ExactValue_Integer:
operand->value.value_integer = gb_abs(operand->value.value_integer);
break;
case ExactValue_Float:
operand->value.value_float = gb_abs(operand->value.value_float);
break;
default:
GB_PANIC("Invalid numeric constant");
break;
}
} else {
operand->mode = Addressing_Value;
}
operand->type = type;
} break;
case BuiltinProc_clamp: {
// clamp :: proc(a, min, max: comparable) -> comparable
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *min_arg = ce->args.e[1];
AstNode *max_arg = ce->args.e[2];
Operand x = *operand;
Operand y = {0};
Operand z = {0};
check_expr(c, &y, min_arg);
if (y.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
gbString type_str = type_to_string(y.type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
check_expr(c, &z, max_arg);
if (z.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
gbString type_str = type_to_string(z.type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant &&
z.mode == Addressing_Constant) {
ExactValue a = x.value;
ExactValue b = y.value;
ExactValue c = z.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Lt, a, b)) {
operand->value = b;
operand->type = y.type;
} else if (compare_exact_values(Token_Gt, a, c)) {
operand->value = c;
operand->type = z.type;
} else {
operand->value = a;
operand->type = x.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &x, y.type, 0);
if (x.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &y, x.type, 0);
if (y.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &x, z.type, 0);
if (x.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &z, x.type, 0);
if (z.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &y, z.type, 0);
if (y.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &z, y.type, 0);
if (z.mode == Addressing_Invalid) { return false; }
if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) {
gbString type_x = type_to_string(x.type);
gbString type_y = type_to_string(y.type);
gbString type_z = type_to_string(z.type);
error_node(call,
"Mismatched types to `clamp`, `%s`, `%s`, `%s`",
type_x, type_y, type_z);
gb_string_free(type_z);
gb_string_free(type_y);
gb_string_free(type_x);
return false;
}
}
} break;
}
return true;
}
typedef enum CallArgumentError {
CallArgumentError_None,
CallArgumentError_WrongTypes,
CallArgumentError_NonVariadicExpand,
CallArgumentError_VariadicTuple,
CallArgumentError_MultipleVariadicExpand,
CallArgumentError_ArgumentCount,
CallArgumentError_TooFewArguments,
CallArgumentError_TooManyArguments,
} CallArgumentError;
CallArgumentError check_call_arguments_internal(Checker *c, AstNode *call, Type *proc_type, Operand *operands, isize operand_count,
bool show_error, i64 *score_) {
ast_node(ce, CallExpr, call);
isize param_count = 0;
bool variadic = proc_type->Proc.variadic;
bool vari_expand = (ce->ellipsis.pos.line != 0);
i64 score = 0;
if (proc_type->Proc.params != NULL) {
param_count = proc_type->Proc.params->Tuple.variable_count;
if (variadic) {
param_count--;
}
}
if (vari_expand && !variadic) {
if (show_error) {
error(ce->ellipsis,
"Cannot use `..` in call to a non-variadic procedure: `%.*s`",
LIT(ce->proc->Ident.string));
}
if (score_) *score_ = score;
return CallArgumentError_NonVariadicExpand;
}
if (operand_count == 0 && param_count == 0) {
if (score_) *score_ = score;
return CallArgumentError_None;
}
i32 error_code = 0;
if (operand_count < param_count) {
error_code = -1;
} else if (!variadic && operand_count > param_count) {
error_code = +1;
}
if (error_code != 0) {
CallArgumentError err = CallArgumentError_TooManyArguments;
char *err_fmt = "Too many arguments for `%s`, expected %td arguments";
if (error_code < 0) {
err = CallArgumentError_TooFewArguments;
err_fmt = "Too few arguments for `%s`, expected %td arguments";
}
if (show_error) {
gbString proc_str = expr_to_string(ce->proc);
error_node(call, err_fmt, proc_str, param_count);
gb_string_free(proc_str);
}
if (score_) *score_ = score;
return err;
}
bool err = CallArgumentError_None;
GB_ASSERT(proc_type->Proc.params != NULL);
Entity **sig_params = proc_type->Proc.params->Tuple.variables;
isize operand_index = 0;
for (; operand_index < param_count; operand_index++) {
Type *t = sig_params[operand_index]->type;
Operand o = operands[operand_index];
if (variadic) {
o = operands[operand_index];
}
i64 s = 0;
if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
err = CallArgumentError_WrongTypes;
}
score += s;
}
if (variadic) {
bool variadic_expand = false;
Type *slice = sig_params[param_count]->type;
GB_ASSERT(is_type_slice(slice));
Type *elem = base_type(slice)->Slice.elem;
Type *t = elem;
for (; operand_index < operand_count; operand_index++) {
Operand o = operands[operand_index];
if (vari_expand) {
variadic_expand = true;
t = slice;
if (operand_index != param_count) {
if (show_error) {
error_node(o.expr, "`..` in a variadic procedure can only have one variadic argument at the end");
}
if (score_) *score_ = score;
return CallArgumentError_MultipleVariadicExpand;
}
}
i64 s = 0;
if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
err = CallArgumentError_WrongTypes;
}
score += s;
}
}
if (score_) *score_ = score;
return err;
}
typedef struct ValidProcAndScore {
isize index;
i64 score;
} ValidProcAndScore;
int valid_proc_and_score_cmp(void const *a, void const *b) {
i64 si = (cast(ValidProcAndScore const *)a)->score;
i64 sj = (cast(ValidProcAndScore const *)b)->score;
return sj < si ? -1 : sj > si;
}
Type *check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
Array(Operand) operands;
array_init_reserve(&operands, heap_allocator(), 2*ce->args.count);
for_array(i, ce->args) {
Operand o = {0};
check_multi_expr(c, &o, ce->args.e[i]);
if (o.type == NULL || o.type->kind != Type_Tuple) {
array_add(&operands, o);
} else {
TypeTuple *tuple = &o.type->Tuple;
for (isize j = 0; j < tuple->variable_count; j++) {
o.type = tuple->variables[j]->type;
array_add(&operands, o);
}
}
}
if (operand->mode == Addressing_Overload) {
GB_ASSERT(operand->overload_entities != NULL &&
operand->overload_count > 0);
isize overload_count = operand->overload_count;
Entity ** procs = operand->overload_entities;
ValidProcAndScore *valids = gb_alloc_array(heap_allocator(), ValidProcAndScore, overload_count);
isize valid_count = 0;
String name = procs[0]->token.string;
for (isize i = 0; i < overload_count; i++) {
Entity *e = procs[i];
DeclInfo **found = map_decl_info_get(&c->info.entities, hash_pointer(e));
GB_ASSERT(found != NULL);
DeclInfo *d = *found;
check_entity_decl(c, e, d, NULL);
}
for (isize i = 0; i < overload_count; i++) {
Entity *p = procs[i];
Type *proc_type = base_type(p->type);
if (proc_type != NULL && is_type_proc(proc_type)) {
i64 score = 0;
CallArgumentError err = check_call_arguments_internal(c, call, proc_type, operands.e, operands.count, false, &score);
if (err == CallArgumentError_None) {
valids[valid_count].index = i;
valids[valid_count].score = score;
valid_count++;
}
}
}
if (valid_count > 1) {
gb_sort_array(valids, valid_count, valid_proc_and_score_cmp);
i64 best_score = valids[0].score;
for (isize i = 0; i < valid_count; i++) {
if (best_score > valids[i].score) {
valid_count = i;
break;
}
best_score = valids[i].score;
}
}
if (valid_count == 0) {
error_node(operand->expr, "No overloads for `%.*s` that match with the given arguments", LIT(name));
proc_type = t_invalid;
} else if (valid_count > 1) {
error_node(operand->expr, "Ambiguous procedure call `%.*s`, could be:", LIT(name));
for (isize i = 0; i < valid_count; i++) {
Entity *proc = procs[valids[i].index];
TokenPos pos = proc->token.pos;
gbString pt = type_to_string(proc->type);
gb_printf_err("\t%.*s :: %s at %.*s(%td:%td)\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column);
gb_string_free(pt);
}
proc_type = t_invalid;
} else {
AstNode *expr = operand->expr;
while (expr->kind == AstNode_SelectorExpr) {
expr = expr->SelectorExpr.selector;
}
GB_ASSERT(expr->kind == AstNode_Ident);
Entity *e = procs[valids[0].index];
add_entity_use(c, expr, e);
proc_type = e->type;
i64 score = 0;
CallArgumentError err = check_call_arguments_internal(c, call, proc_type, operands.e, operands.count, true, &score);
}
gb_free(heap_allocator(), valids);
gb_free(heap_allocator(), procs);
} else {
i64 score = 0;
CallArgumentError err = check_call_arguments_internal(c, call, proc_type, operands.e, operands.count, true, &score);
array_free(&operands);
}
return proc_type;
}
Entity *find_using_index_expr(Type *t) {
t = base_type(t);
if (t->kind != Type_Record) {
return NULL;
}
for (isize i = 0; i < t->Record.field_count; i++) {
Entity *f = t->Record.fields[i];
if (f->kind == Entity_Variable &&
f->flags & (EntityFlag_Anonymous|EntityFlag_Field)) {
if (is_type_indexable(f->type)) {
return f;
}
Entity *res = find_using_index_expr(f->type);
if (res != NULL) {
return res;
}
}
}
return NULL;
}
ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
check_expr_or_type(c, operand, ce->proc);
if (operand->mode == Addressing_Invalid) {
for_array(i, ce->args) {
check_expr_base(c, operand, ce->args.e[i], NULL);
}
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
if (operand->mode == Addressing_Type) {
gbString str = type_to_string(operand->type);
error_node(call, "Expected a procedure, got a type `%s`", str);
gb_string_free(str);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
#if 0
Type *t = operand->type;
gbString str = type_to_string(t);
operand->mode = Addressing_Invalid;
isize arg_count = ce->args.count;
switch (arg_count) {
case 0: error_node(call, "Missing argument in convertion to `%s`", str); break;
default: error_node(call, "Too many arguments in convertion to `%s`", str); break;
case 1:
check_expr(c, operand, ce->args.e[0]);
if (operand->mode != Addressing_Invalid) {
check_conversion(c, operand, t);
}
break;
}
gb_string_free(str);
return Expr_Expr;
#endif
}
if (operand->mode == Addressing_Builtin) {
i32 id = operand->builtin_id;
if (!check_builtin_procedure(c, operand, call, id)) {
operand->mode = Addressing_Invalid;
}
operand->expr = call;
return builtin_procs[id].kind;
}
Type *proc_type = base_type(operand->type);
if (operand->mode != Addressing_Overload) {
bool valid_type = (proc_type != NULL) && is_type_proc(proc_type);
bool valid_mode = (operand->mode == Addressing_Value) || (operand->mode == Addressing_Variable);
if (!valid_type || !valid_mode) {
AstNode *e = operand->expr;
gbString str = expr_to_string(e);
error_node(e, "Cannot call a non-procedure: `%s` %d", str, operand->mode);
gb_string_free(str);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
}
proc_type = check_call_arguments(c, operand, proc_type, call);
gb_zero_item(operand);
Type *pt = base_type(proc_type);
if (pt == NULL || !is_type_proc(pt)) {
operand->mode = Addressing_Invalid;
operand->type = t_invalid;
operand->expr = call;
return Expr_Stmt;
}
switch (pt->Proc.result_count) {
case 0:
operand->mode = Addressing_NoValue;
break;
case 1:
operand->mode = Addressing_Value;
operand->type = pt->Proc.results->Tuple.variables[0]->type;
break;
default:
operand->mode = Addressing_Value;
operand->type = pt->Proc.results;
break;
}
operand->expr = call;
return Expr_Stmt;
}
ExprKind check_macro_call_expr(Checker *c, Operand *operand, AstNode *call) {
GB_ASSERT(call->kind == AstNode_MacroCallExpr);
ast_node(mce, MacroCallExpr, call);
error_node(call, "Macro call expressions are not yet supported");
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) {
check_expr_base(c, o, e, t);
check_not_tuple(c, o);
char *err_str = NULL;
switch (o->mode) {
case Addressing_NoValue:
err_str = "used as a value";
break;
case Addressing_Type:
err_str = "is not an expression";
break;
case Addressing_Builtin:
err_str = "must be called";
break;
}
if (err_str != NULL) {
gbString str = expr_to_string(e);
error_node(e, "`%s` %s", str, err_str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
}
bool check_set_index_data(Operand *o, Type *t, i64 *max_count) {
t = base_type(type_deref(t));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
if (o->mode == Addressing_Constant) {
*max_count = o->value.value_string.len;
}
if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = t_u8;
return true;
}
break;
case Type_Array:
*max_count = t->Array.count;
if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = t->Array.elem;
return true;
case Type_Vector:
*max_count = t->Vector.count;
if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = t->Vector.elem;
return true;
case Type_Slice:
o->type = t->Slice.elem;
o->mode = Addressing_Variable;
return true;
case Type_DynamicArray:
o->type = t->DynamicArray.elem;
o->mode = Addressing_Variable;
return true;
}
return false;
}
bool check_is_giving(AstNode *node, AstNode **give_expr) {
switch (node->kind) {
case_ast_node(es, ExprStmt, node);
if (es->expr->kind == AstNode_GiveExpr) {
if (give_expr) *give_expr = es->expr;
return true;
}
case_end;
case_ast_node(ge, GiveExpr, node);
if (give_expr) *give_expr = node;
return true;
case_end;
case_ast_node(be, BlockExpr, node);
// Iterate backwards
for (isize n = be->stmts.count-1; n >= 0; n--) {
AstNode *stmt = be->stmts.e[n];
if (stmt->kind == AstNode_EmptyStmt) {
continue;
}
if (stmt->kind == AstNode_ExprStmt && stmt->ExprStmt.expr->kind == AstNode_GiveExpr) {
if (give_expr) *give_expr = stmt->ExprStmt.expr;
return true;
}
}
case_end;
}
if (give_expr) *give_expr = NULL;
return false;
}
ExprKind check__expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExprKind kind = Expr_Stmt;
o->mode = Addressing_Invalid;
o->type = t_invalid;
switch (node->kind) {
default:
goto error;
break;
case_ast_node(be, BadExpr, node)
goto error;
case_end;
case_ast_node(i, IntervalExpr, node);
error_node(node, "Invalid use of an interval expression");
goto error;
case_end;
case_ast_node(i, Implicit, node)
switch (i->kind) {
case Token_context:
if (c->context.proc_name.len == 0) {
error_node(node, "`context` is only allowed within procedures");
goto error;
}
o->mode = Addressing_Value;
o->type = t_context;
break;
default:
error_node(node, "Illegal implicit name `%.*s`", LIT(i->string));
goto error;
}
case_end;
case_ast_node(i, Ident, node);
check_identifier(c, o, node, NULL, type_hint);
case_end;
case_ast_node(bl, BasicLit, node);
Type *t = t_invalid;
switch (bl->kind) {
case Token_Integer: t = t_untyped_integer; break;
case Token_Float: t = t_untyped_float; break;
case Token_String: t = t_untyped_string; break;
case Token_Rune: t = t_untyped_rune; break;
default: GB_PANIC("Unknown literal"); break;
}
o->mode = Addressing_Constant;
o->type = t;
o->value = make_exact_value_from_basic_literal(*bl);
case_end;
case_ast_node(bd, BasicDirective, node);
if (str_eq(bd->name, str_lit("file"))) {
o->type = t_untyped_string;
o->value = make_exact_value_string(bd->token.pos.file);
} else if (str_eq(bd->name, str_lit("line"))) {
o->type = t_untyped_integer;
o->value = make_exact_value_integer(bd->token.pos.line);
} else if (str_eq(bd->name, str_lit("procedure"))) {
if (c->proc_stack.count == 0) {
error_node(node, "#procedure may only be used within procedures");
o->type = t_untyped_string;
o->value = make_exact_value_string(str_lit(""));
} else {
o->type = t_untyped_string;
o->value = make_exact_value_string(c->context.proc_name);
}
} else {
GB_PANIC("Unknown basic basic directive");
}
o->mode = Addressing_Constant;
case_end;
case_ast_node(pl, ProcLit, node);
Type *type = check_type(c, pl->type);
if (type == NULL || !is_type_proc(type)) {
gbString str = expr_to_string(node);
error_node(node, "Invalid procedure literal `%s`", str);
gb_string_free(str);
check_close_scope(c);
goto error;
}
if (pl->tags != 0) {
error_node(node, "A procedure literal cannot have tags");
pl->tags = 0; // TODO(bill): Should I zero this?!
}
check_open_scope(c, pl->type);
check_procedure_later(c, c->curr_ast_file, empty_token, c->context.decl, type, pl->body, pl->tags);
// check_proc_body(c, empty_token, c->context.decl, type, pl->body);
check_close_scope(c);
o->mode = Addressing_Value;
o->type = type;
case_end;
case_ast_node(ge, GiveExpr, node);
if (c->proc_stack.count == 0) {
error_node(node, "A give expression is only allowed within a procedure");
goto error;
}
if (ge->results.count == 0) {
error_node(node, "`give` has no results");
goto error;
}
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
Array(Operand) operands;
array_init_reserve(&operands, c->tmp_allocator, 2*ge->results.count);
for_array(i, ge->results) {
AstNode *rhs = ge->results.e[i];
Operand o = {0};
check_multi_expr(c, &o, rhs);
if (!is_operand_value(o)) {
error_node(rhs, "Expected a value for a `give`");
continue;
}
if (o.type->kind != Type_Tuple) {
array_add(&operands, o);
} else {
TypeTuple *tuple = &o.type->Tuple;
for (isize j = 0; j < tuple->variable_count; j++) {
o.type = tuple->variables[j]->type;
array_add(&operands, o);
}
}
}
if (operands.count == 0) {
error_node(node, "`give` has no value");
gb_temp_arena_memory_end(tmp);
goto error;
} else if (operands.count == 1) {
Operand operand = operands.e[0];
Type *th = type_hint != NULL ? type_hint : c->context.type_hint;
if (th != NULL) {
convert_to_typed(c, &operand, th, 0);
}
// IMPORTANT NOTE(bill): This type could be untyped!!!
o->type = default_type(operand.type);
o->mode = Addressing_Value;
} else {
Type *tuple = make_type_tuple(c->allocator);
Entity **variables = gb_alloc_array(c->allocator, Entity *, operands.count);
isize variable_index = 0;
for_array(i, operands) {
Operand operand = operands.e[i];
// Type *type = default_type(operand.type);
Type *type = operand.type;
switch (operand.mode) {
case Addressing_Constant:
variables[variable_index++] = make_entity_constant(c->allocator, NULL, empty_token, type, operand.value);
break;
default:
variables[variable_index++] = make_entity_param(c->allocator, NULL, empty_token, type, false, true);
break;
}
}
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = operands.count;
o->type = tuple;
o->mode = Addressing_Value;
}
gb_temp_arena_memory_end(tmp);
case_end;
case_ast_node(be, BlockExpr, node);
if (c->proc_stack.count == 0) {
error_node(node, "A block expression is only allowed within a procedure");
goto error;
}
for (isize i = be->stmts.count-1; i >= 0; i--) {
if (be->stmts.e[i]->kind != AstNode_EmptyStmt) {
break;
}
be->stmts.count--;
}
if (be->stmts.count == 0) {
error_node(node, "Empty block expression");
goto error;
}
CheckerContext prev_context = c->context;
c->context.type_hint = type_hint;
check_open_scope(c, node);
check_stmt_list(c, be->stmts, Stmt_GiveAllowed);
check_close_scope(c);
c->context = prev_context;
AstNode *give_node = NULL;
if (!check_is_giving(node, &give_node) || give_node == NULL) {
error_node(node, "Missing give statement at end of block expression");
goto error;
}
GB_ASSERT(give_node != NULL && give_node->kind == AstNode_GiveExpr);
be->give_node = give_node;
Type *type = type_of_expr(&c->info, give_node);
if (type == NULL) {
goto error;
} else if (type == t_invalid) {
o->type = t_invalid;
o->mode = Addressing_Invalid;
} else {
o->type = type;
o->mode = Addressing_Value;
}
case_end;
case_ast_node(ie, IfExpr, node);
if (c->proc_stack.count == 0) {
error_node(node, "An if expression is only allowed within a procedure");
goto error;
}
check_open_scope(c, node);
if (ie->init != NULL) {
check_stmt(c, ie->init, 0);
}
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, ie->cond);
if (operand.mode != Addressing_Invalid && !is_type_boolean(operand.type)) {
error_node(ie->cond, "Non-boolean condition in if expression");
}
Operand x = {Addressing_Invalid};
Operand y = {Addressing_Invalid};
Type *if_type = NULL;
Type *else_type = NULL;
if (type_hint) {
gb_printf_err("here\n");
}
check_expr_with_type_hint(c, &x, ie->body, type_hint);
if_type = x.type;
if (ie->else_expr != NULL) {
switch (ie->else_expr->kind) {
case AstNode_IfExpr:
case AstNode_BlockExpr:
check_expr_with_type_hint(c, &y, ie->else_expr, if_type);
else_type = y.type;
break;
default:
error_node(ie->else_expr, "Invalid else expression in if expression");
break;
}
} else {
error_node(ie->else_expr, "An if expression must have an else expression");
check_close_scope(c);
goto error;
}
check_close_scope(c);
if (if_type == NULL || if_type == t_invalid ||
else_type == NULL || else_type == t_invalid) {
goto error;
}
convert_to_typed(c, &x, y.type, 0);
if (x.mode == Addressing_Invalid) {
goto error;
}
convert_to_typed(c, &y, x.type, 0);
if (y.mode == Addressing_Invalid) {
x.mode = Addressing_Invalid;
goto error;
}
if (!are_types_identical(if_type, else_type)) {
gbString its = type_to_string(if_type);
gbString ets = type_to_string(else_type);
error_node(node, "Mismatched types in if expression, %s vs %s", its, ets);
gb_string_free(ets);
gb_string_free(its);
goto error;
}
o->type = if_type;
o->mode = Addressing_Value;
case_end;
case_ast_node(cl, CompoundLit, node);
Type *type = type_hint;
bool ellipsis_array = false;
bool is_constant = true;
if (cl->type != NULL) {
type = NULL;
// [..]Type
if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) {
if (cl->type->ArrayType.count->kind == AstNode_Ellipsis) {
type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1);
ellipsis_array = true;
}
}
if (type == NULL) {
type = check_type(c, cl->type);
}
}
if (type == NULL) {
error_node(node, "Missing type in compound literal");
goto error;
}
Type *t = base_type(type);
switch (t->kind) {
case Type_Record: {
if (!is_type_struct(t)) {
if (cl->elems.count != 0) {
error_node(node, "Illegal compound literal");
}
break;
}
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
{ // Checker values
isize field_count = t->Record.field_count;
if (cl->elems.e[0]->kind == AstNode_FieldValue) {
bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count);
for_array(i, cl->elems) {
AstNode *elem = cl->elems.e[i];
if (elem->kind != AstNode_FieldValue) {
error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != AstNode_Ident) {
gbString expr_str = expr_to_string(fv->field);
error_node(elem, "Invalid field name `%s` in structure literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.string;
Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
if (sel.entity == NULL) {
error_node(elem, "Unknown field `%.*s` in structure literal", LIT(name));
continue;
}
if (sel.index.count > 1) {
error_node(elem, "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name));
continue;
}
Entity *field = t->Record.fields[sel.index.e[0]];
add_entity_use(c, fv->field, field);
if (fields_visited[sel.index.e[0]]) {
error_node(elem, "Duplicate field `%.*s` in structure literal", LIT(name));
continue;
}
fields_visited[sel.index.e[0]] = true;
check_expr(c, o, fv->value);
if (base_type(field->type) == t_any) {
is_constant = false;
}
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, field->type, str_lit("structure literal"));
}
} else {
for_array(index, cl->elems) {
AstNode *elem = cl->elems.e[index];
if (elem->kind == AstNode_FieldValue) {
error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
Entity *field = t->Record.fields_in_src_order[index];
check_expr(c, o, elem);
if (index >= field_count) {
error_node(o->expr, "Too many values in structure literal, expected %td", field_count);
break;
}
if (base_type(field->type) == t_any) {
is_constant = false;
}
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, field->type, str_lit("structure literal"));
}
if (cl->elems.count < field_count) {
error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
} break;
case Type_Slice:
case Type_Array:
case Type_Vector:
{
Type *elem_type = NULL;
String context_name = {0};
if (t->kind == Type_Slice) {
elem_type = t->Slice.elem;
context_name = str_lit("slice literal");
} else if (t->kind == Type_Vector) {
elem_type = t->Vector.elem;
context_name = str_lit("vector literal");
} else {
elem_type = t->Array.elem;
context_name = str_lit("array literal");
}
i64 max = 0;
isize index = 0;
isize elem_count = cl->elems.count;
if (base_type(elem_type) == t_any) {
is_constant = false;
}
for (; index < elem_count; index++) {
AstNode *e = cl->elems.e[index];
if (e->kind == AstNode_FieldValue) {
error_node(e,
"`field = value` is only allowed in struct literals");
continue;
}
if (t->kind == Type_Array &&
t->Array.count >= 0 &&
index >= t->Array.count) {
error_node(e, "Index %lld is out of bounds (>= %lld) for array literal", index, t->Array.count);
}
if (t->kind == Type_Vector &&
t->Vector.count >= 0 &&
index >= t->Vector.count) {
error_node(e, "Index %lld is out of bounds (>= %lld) for vector literal", index, t->Vector.count);
}
Operand operand = {0};
check_expr_with_type_hint(c, &operand, e, elem_type);
check_assignment(c, &operand, elem_type, context_name);
if (is_constant) {
is_constant = operand.mode == Addressing_Constant;
}
}
if (max < index) {
max = index;
}
if (t->kind == Type_Vector) {
if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) {
error_node(cl->elems.e[0], "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index);
}
}
if (t->kind == Type_Array && ellipsis_array) {
t->Array.count = max;
}
} break;
case Type_Basic: {
if (!is_type_any(t)) {
if (cl->elems.count != 0) {
error_node(node, "Illegal compound literal");
}
break;
}
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
{ // Checker values
Type *field_types[2] = {t_type_info_ptr, t_rawptr};
isize field_count = 2;
if (cl->elems.e[0]->kind == AstNode_FieldValue) {
bool fields_visited[2] = {0};
for_array(i, cl->elems) {
AstNode *elem = cl->elems.e[i];
if (elem->kind != AstNode_FieldValue) {
error_node(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != AstNode_Ident) {
gbString expr_str = expr_to_string(fv->field);
error_node(elem, "Invalid field name `%s` in `any` literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.string;
Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
if (sel.entity == NULL) {
error_node(elem, "Unknown field `%.*s` in `any` literal", LIT(name));
continue;
}
isize index = sel.index.e[0];
if (fields_visited[index]) {
error_node(elem, "Duplicate field `%.*s` in `any` literal", LIT(name));
continue;
}
fields_visited[index] = true;
check_expr(c, o, fv->value);
// NOTE(bill): `any` literals can never be constant
is_constant = false;
check_assignment(c, o, field_types[index], str_lit("`any` literal"));
}
} else {
for_array(index, cl->elems) {
AstNode *elem = cl->elems.e[index];
if (elem->kind == AstNode_FieldValue) {
error_node(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed");
continue;
}
check_expr(c, o, elem);
if (index >= field_count) {
error_node(o->expr, "Too many values in `any` literal, expected %td", field_count);
break;
}
// NOTE(bill): `any` literals can never be constant
is_constant = false;
check_assignment(c, o, field_types[index], str_lit("`any` literal"));
}
if (cl->elems.count < field_count) {
error(cl->close, "Too few values in `any` literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
} break;
default: {
gbString str = type_to_string(type);
error_node(node, "Invalid compound literal type `%s`", str);
gb_string_free(str);
goto error;
} break;
}
if (is_constant) {
o->mode = Addressing_Constant;
o->value = make_exact_value_compound(node);
} else {
o->mode = Addressing_Value;
}
o->type = type;
case_end;
case_ast_node(pe, ParenExpr, node);
kind = check_expr_base(c, o, pe->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(te, TagExpr, node);
// TODO(bill): Tag expressions
error_node(node, "Tag expressions are not supported yet");
kind = check_expr_base(c, o, te->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(re, RunExpr, node);
// TODO(bill): Tag expressions
kind = check_expr_base(c, o, re->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(ce, CastExpr, node);
Type *t = check_type(c, ce->type);
check_expr(c, o, ce->expr);
if (o->mode == Addressing_Invalid) {
goto error;
}
switch (ce->token.kind) {
case Token_cast:
check_conversion(c, o, t);
break;
case Token_transmute: {
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Cannot transmute constant expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Cannot transmute untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
i64 srcz = type_size_of(c->sizes, c->allocator, o->type);
i64 dstz = type_size_of(c->sizes, c->allocator, t);
if (srcz != dstz) {
gbString expr_str = expr_to_string(o->expr);
gbString type_str = type_to_string(t);
error_node(o->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
gb_string_free(type_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
o->type = t;
} break;
case Token_union_cast: {
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Cannot `union_cast` a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Cannot `union_cast` an untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
bool src_is_ptr = is_type_pointer(o->type);
bool dst_is_ptr = is_type_pointer(t);
Type *src = type_deref(o->type);
Type *dst = type_deref(t);
Type *bsrc = base_type(src);
Type *bdst = base_type(dst);
if (src_is_ptr != dst_is_ptr) {
gbString src_type_str = type_to_string(o->type);
gbString dst_type_str = type_to_string(t);
error_node(o->expr, "Invalid `union_cast` types: `%s` and `%s`", src_type_str, dst_type_str);
gb_string_free(dst_type_str);
gb_string_free(src_type_str);
o->mode = Addressing_Invalid;
goto error;
}
if (!is_type_union(src)) {
error_node(o->expr, "`union_cast` can only operate on unions");
o->mode = Addressing_Invalid;
goto error;
}
bool ok = false;
for (isize i = 1; i < bsrc->Record.field_count; i++) {
Entity *f = bsrc->Record.fields[i];
if (are_types_identical(f->type, dst)) {
ok = true;
break;
}
}
if (!ok) {
gbString expr_str = expr_to_string(o->expr);
gbString dst_type_str = type_to_string(t);
error_node(o->expr, "Cannot `union_cast` `%s` to `%s`", expr_str, dst_type_str);
gb_string_free(dst_type_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
Entity **variables = gb_alloc_array(c->allocator, Entity *, 2);
variables[0] = make_entity_param(c->allocator, NULL, empty_token, t, false, true);
variables[1] = make_entity_param(c->allocator, NULL, empty_token, t_bool, false, true);
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = 2;
o->type = tuple;
o->mode = Addressing_Value;
} break;
case Token_down_cast: {
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Cannot `down_cast` a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Cannot `down_cast` an untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
if (!(is_type_pointer(o->type) && is_type_pointer(t))) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Can only `down_cast` pointers: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
Type *src = type_deref(o->type);
Type *dst = type_deref(t);
Type *bsrc = base_type(src);
Type *bdst = base_type(dst);
if (!(is_type_struct(bsrc) || is_type_raw_union(bsrc))) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Can only `down_cast` pointer from structs or unions: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
if (!(is_type_struct(bdst) || is_type_raw_union(bdst))) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Can only `down_cast` pointer to structs or unions: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
String param_name = check_down_cast_name(dst, src);
if (param_name.len == 0) {
gbString expr_str = expr_to_string(o->expr);
error_node(o->expr, "Illegal `down_cast`: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
goto error;
}
o->mode = Addressing_Value;
o->type = t;
} break;
default:
GB_PANIC("Unknown cast expression");
}
case_end;
case_ast_node(ue, UnaryExpr, node);
check_expr_base(c, o, ue->expr, type_hint);
if (o->mode == Addressing_Invalid) {
goto error;
}
check_unary_expr(c, o, ue->op, node);
if (o->mode == Addressing_Invalid) {
goto error;
}
case_end;
case_ast_node(be, BinaryExpr, node);
check_binary_expr(c, o, node);
if (o->mode == Addressing_Invalid) {
goto error;
}
case_end;
case_ast_node(se, SelectorExpr, node);
check_selector(c, o, node, type_hint);
case_end;
case_ast_node(ie, IndexExpr, node);
check_expr(c, o, ie->expr);
if (o->mode == Addressing_Invalid) {
goto error;
}
Type *t = base_type(type_deref(o->type));
bool is_const = o->mode == Addressing_Constant;
i64 max_count = -1;
bool valid = check_set_index_data(o, t, &max_count);
if (is_const) {
valid = false;
}
if (!valid && (is_type_struct(t) || is_type_raw_union(t))) {
Entity *found = find_using_index_expr(t);
if (found != NULL) {
valid = check_set_index_data(o, found->type, &max_count);
}
}
if (!valid) {
gbString str = expr_to_string(o->expr);
if (is_const) {
error_node(o->expr, "Cannot index a constant `%s`", str);
} else {
error_node(o->expr, "Cannot index `%s`", str);
}
gb_string_free(str);
goto error;
}
if (ie->index == NULL) {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Missing index for `%s`", str);
gb_string_free(str);
goto error;
}
i64 index = 0;
bool ok = check_index_value(c, ie->index, max_count, &index);
case_end;
case_ast_node(se, SliceExpr, node);
check_expr(c, o, se->expr);
if (o->mode == Addressing_Invalid) {
goto error;
}
bool valid = false;
i64 max_count = -1;
Type *t = base_type(type_deref(o->type));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
valid = true;
if (o->mode == Addressing_Constant) {
max_count = o->value.value_string.len;
}
o->type = t_string;
}
break;
case Type_Array:
valid = true;
max_count = t->Array.count;
if (o->mode != Addressing_Variable) {
gbString str = expr_to_string(node);
error_node(node, "Cannot slice array `%s`, value is not addressable", str);
gb_string_free(str);
goto error;
}
o->type = make_type_slice(c->allocator, t->Array.elem);
break;
case Type_Slice:
valid = true;
break;
case Type_DynamicArray:
valid = true;
break;
}
if (!valid) {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Cannot slice `%s`", str);
gb_string_free(str);
goto error;
}
o->mode = Addressing_Value;
i64 indices[2] = {0};
AstNode *nodes[2] = {se->low, se->high};
for (isize i = 0; i < gb_count_of(nodes); i++) {
i64 index = max_count;
if (nodes[i] != NULL) {
i64 capacity = -1;
if (max_count >= 0)
capacity = max_count;
i64 j = 0;
if (check_index_value(c, nodes[i], capacity, &j)) {
index = j;
}
} else if (i == 0) {
index = 0;
}
indices[i] = index;
}
for (isize i = 0; i < gb_count_of(indices); i++) {
i64 a = indices[i];
for (isize j = i+1; j < gb_count_of(indices); j++) {
i64 b = indices[j];
if (a > b && b >= 0) {
error(se->close, "Invalid slice indices: [%td > %td]", a, b);
}
}
}
case_end;
case_ast_node(ce, CallExpr, node);
return check_call_expr(c, o, node);
case_end;
case_ast_node(ce, MacroCallExpr, node);
return check_macro_call_expr(c, o, node);
case_end;
case_ast_node(de, DerefExpr, node);
check_expr_or_type(c, o, de->expr);
if (o->mode == Addressing_Invalid) {
goto error;
} else {
Type *t = base_type(o->type);
if (t->kind == Type_Pointer) {
o->mode = Addressing_Variable;
o->type = t->Pointer.elem;
} else {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Cannot dereference `%s`", str);
gb_string_free(str);
goto error;
}
}
case_end;
case_ast_node(de, DemaybeExpr, node);
check_expr_or_type(c, o, de->expr);
if (o->mode == Addressing_Invalid) {
goto error;
} else {
Type *t = base_type(o->type);
if (t->kind == Type_Maybe) {
Entity **variables = gb_alloc_array(c->allocator, Entity *, 2);
Type *elem = t->Maybe.elem;
Token tok = make_token_ident(str_lit(""));
variables[0] = make_entity_param(c->allocator, NULL, tok, elem, false, true);
variables[1] = make_entity_param(c->allocator, NULL, tok, t_bool, false, true);
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = 2;
o->type = tuple;
o->mode = Addressing_Variable;
} else {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Cannot demaybe `%s`", str);
gb_string_free(str);
goto error;
}
}
case_end;
case AstNode_ProcType:
case AstNode_PointerType:
case AstNode_MaybeType:
case AstNode_ArrayType:
case AstNode_VectorType:
case AstNode_StructType:
case AstNode_UnionType:
case AstNode_RawUnionType:
case AstNode_EnumType:
o->mode = Addressing_Type;
o->type = check_type(c, node);
break;
}
kind = Expr_Expr;
o->expr = node;
return kind;
error:
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExprKind kind = check__expr_base(c, o, node, type_hint);
Type *type = NULL;
ExactValue value = {ExactValue_Invalid};
switch (o->mode) {
case Addressing_Invalid:
type = t_invalid;
break;
case Addressing_NoValue:
type = NULL;
break;
case Addressing_Constant:
type = o->type;
value = o->value;
break;
default:
type = o->type;
break;
}
if (type != NULL && is_type_untyped(type)) {
add_untyped(&c->info, node, false, o->mode, type, value);
} else {
add_type_and_value(&c->info, node, o->mode, type, value);
}
return kind;
}
void check_multi_expr(Checker *c, Operand *o, AstNode *e) {
check_expr_base(c, o, e, NULL);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
error_operand_no_value(o);
break;
case Addressing_Type:
error_operand_not_expression(o);
break;
}
o->mode = Addressing_Invalid;
}
void check_not_tuple(Checker *c, Operand *o) {
if (o->mode == Addressing_Value) {
// NOTE(bill): Tuples are not first class thus never named
if (o->type->kind == Type_Tuple) {
isize count = o->type->Tuple.variable_count;
GB_ASSERT(count != 1);
error_node(o->expr,
"%td-valued tuple found where single value expected", count);
o->mode = Addressing_Invalid;
}
}
}
void check_expr(Checker *c, Operand *o, AstNode *e) {
check_multi_expr(c, o, e);
check_not_tuple(c, o);
}
void check_expr_or_type(Checker *c, Operand *o, AstNode *e) {
check_expr_base(c, o, e, NULL);
check_not_tuple(c, o);
error_operand_no_value(o);
}
gbString write_expr_to_string(gbString str, AstNode *node);
gbString write_params_to_string(gbString str, AstNodeArray params, char *sep) {
for_array(i, params) {
if (i > 0) {
str = gb_string_appendc(str, sep);
}
str = write_expr_to_string(str, params.e[i]);
}
return str;
}
gbString write_record_fields_to_string(gbString str, AstNodeArray params) {
for_array(i, params) {
if (i > 0) {
str = gb_string_appendc(str, " ");
}
str = write_expr_to_string(str, params.e[i]);
str = gb_string_appendc(str, ";");
}
return str;
}
gbString string_append_token(gbString str, Token token) {
if (token.string.len > 0) {
return gb_string_append_length(str, token.string.text, token.string.len);
}
return str;
}
gbString write_expr_to_string(gbString str, AstNode *node) {
if (node == NULL)
return str;
if (is_ast_node_stmt(node)) {
GB_ASSERT("stmt passed to write_expr_to_string");
}
switch (node->kind) {
default:
str = gb_string_appendc(str, "(BadExpr)");
break;
case_ast_node(i, Ident, node);
str = string_append_token(str, *i);
case_end;
case_ast_node(i, Implicit, node);
str = string_append_token(str, *i);
case_end;
case_ast_node(bl, BasicLit, node);
str = string_append_token(str, *bl);
case_end;
case_ast_node(pl, ProcLit, node);
str = write_expr_to_string(str, pl->type);
case_end;
case_ast_node(cl, CompoundLit, node);
str = write_expr_to_string(str, cl->type);
str = gb_string_appendc(str, "{");
for_array(i, cl->elems) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, cl->elems.e[i]);
}
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(be, BlockExpr, node);
str = gb_string_appendc(str, "block expression");
case_end;
case_ast_node(ie, IfExpr, node);
str = gb_string_appendc(str, "if expression");
case_end;
case_ast_node(te, TagExpr, node);
str = gb_string_appendc(str, "#");
str = string_append_token(str, te->name);
str = write_expr_to_string(str, te->expr);
case_end;
case_ast_node(ue, UnaryExpr, node);
str = string_append_token(str, ue->op);
str = write_expr_to_string(str, ue->expr);
case_end;
case_ast_node(de, DerefExpr, node);
str = write_expr_to_string(str, de->expr);
str = gb_string_appendc(str, "^");
case_end;
case_ast_node(de, DemaybeExpr, node);
str = write_expr_to_string(str, de->expr);
str = gb_string_appendc(str, "?");
case_end;
case_ast_node(be, BinaryExpr, node);
str = write_expr_to_string(str, be->left);
str = gb_string_appendc(str, " ");
str = string_append_token(str, be->op);
str = gb_string_appendc(str, " ");
str = write_expr_to_string(str, be->right);
case_end;
case_ast_node(pe, ParenExpr, node);
str = gb_string_appendc(str, "(");
str = write_expr_to_string(str, pe->expr);
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(se, SelectorExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_appendc(str, ".");
str = write_expr_to_string(str, se->selector);
case_end;
case_ast_node(ie, IndexExpr, node);
str = write_expr_to_string(str, ie->expr);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, ie->index);
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(se, SliceExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, se->low);
str = gb_string_appendc(str, ":");
str = write_expr_to_string(str, se->high);
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(e, Ellipsis, node);
str = gb_string_appendc(str, "..");
case_end;
case_ast_node(fv, FieldValue, node);
str = write_expr_to_string(str, fv->field);
str = gb_string_appendc(str, " = ");
str = write_expr_to_string(str, fv->value);
case_end;
case_ast_node(pt, PointerType, node);
str = gb_string_appendc(str, "^");
str = write_expr_to_string(str, pt->type);
case_end;
case_ast_node(mt, MaybeType, node);
str = gb_string_appendc(str, "?");
str = write_expr_to_string(str, mt->type);
case_end;
case_ast_node(at, ArrayType, node);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, at->count);
str = gb_string_appendc(str, "]");
str = write_expr_to_string(str, at->elem);
case_end;
case_ast_node(at, DynamicArrayType, node);
str = gb_string_appendc(str, "[dynamic]");
str = write_expr_to_string(str, at->elem);
case_end;
case_ast_node(vt, VectorType, node);
str = gb_string_appendc(str, "[vector ");
str = write_expr_to_string(str, vt->count);
str = gb_string_appendc(str, "]");
str = write_expr_to_string(str, vt->elem);
case_end;
case_ast_node(f, Field, node);
if (f->flags&FieldFlag_using) {
str = gb_string_appendc(str, "using ");
}
for_array(i, f->names) {
AstNode *name = f->names.e[i];
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, name);
}
str = gb_string_appendc(str, ": ");
if (f->flags&FieldFlag_ellipsis) {
str = gb_string_appendc(str, "...");
}
str = write_expr_to_string(str, f->type);
case_end;
case_ast_node(ce, CallExpr, node);
str = write_expr_to_string(str, ce->proc);
str = gb_string_appendc(str, "(");
for_array(i, ce->args) {
AstNode *arg = ce->args.e[i];
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, arg);
}
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(pt, ProcType, node);
str = gb_string_appendc(str, "proc(");
str = write_params_to_string(str, pt->params, ", ");
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(st, StructType, node);
str = gb_string_appendc(str, "struct ");
if (st->is_packed) str = gb_string_appendc(str, "#packed ");
if (st->is_ordered) str = gb_string_appendc(str, "#ordered ");
str = gb_string_appendc(str, "{");
str = write_record_fields_to_string(str, st->fields);
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(st, RawUnionType, node);
str = gb_string_appendc(str, "raw_union ");
str = gb_string_appendc(str, "{");
str = write_record_fields_to_string(str, st->fields);
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(st, UnionType, node);
str = gb_string_appendc(str, "union ");
str = gb_string_appendc(str, "{");
str = write_record_fields_to_string(str, st->fields);
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(et, EnumType, node);
str = gb_string_appendc(str, "enum ");
if (et->base_type != NULL) {
str = write_expr_to_string(str, et->base_type);
str = gb_string_appendc(str, " ");
}
str = gb_string_appendc(str, "{");
str = write_params_to_string(str, et->fields, ", ");
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(ht, HelperType, node);
str = gb_string_appendc(str, "type ");
str = write_expr_to_string(str, ht->type);
case_end;
}
return str;
}
gbString expr_to_string(AstNode *expression) {
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression);
}