Files
Odin/core/net/socket_linux.odin
2023-03-01 07:58:30 -08:00

532 lines
17 KiB
Odin

// +build linux
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
*/
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
package net
import "core:c"
import "core:os"
import "core:time"
Platform_Socket :: os.Socket
Create_Socket_Error :: enum c.int {
Family_Not_Supported_For_This_Socket = c.int(os.EAFNOSUPPORT),
No_Socket_Descriptors_Available = c.int(os.EMFILE),
No_Buffer_Space_Available = c.int(os.ENOBUFS),
No_Memory_Available_Available = c.int(os.ENOMEM),
Protocol_Unsupported_By_System = c.int(os.EPROTONOSUPPORT),
Wrong_Protocol_For_Socket = c.int(os.EPROTONOSUPPORT),
Family_And_Socket_Type_Mismatch = c.int(os.EPROTONOSUPPORT),
}
create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Network_Error) {
c_type, c_protocol, c_family: int
switch family {
case .IP4: c_family = os.AF_INET
case .IP6: c_family = os.AF_INET6
case:
unreachable()
}
switch protocol {
case .TCP: c_type = os.SOCK_STREAM; c_protocol = os.IPPROTO_TCP
case .UDP: c_type = os.SOCK_DGRAM; c_protocol = os.IPPROTO_UDP
case:
unreachable()
}
sock, ok := os.socket(c_family, c_type, c_protocol)
if ok != os.ERROR_NONE {
err = Create_Socket_Error(ok)
return
}
switch protocol {
case .TCP: return TCP_Socket(sock), nil
case .UDP: return UDP_Socket(sock), nil
case:
unreachable()
}
}
Dial_Error :: enum c.int {
Port_Required = -1,
Address_In_Use = c.int(os.EADDRINUSE),
In_Progress = c.int(os.EINPROGRESS),
Cannot_Use_Any_Address = c.int(os.EADDRNOTAVAIL),
Wrong_Family_For_Socket = c.int(os.EAFNOSUPPORT),
Refused = c.int(os.ECONNREFUSED),
Is_Listening_Socket = c.int(os.EACCES),
Already_Connected = c.int(os.EISCONN),
Network_Unreachable = c.int(os.ENETUNREACH), // Device is offline
Host_Unreachable = c.int(os.EHOSTUNREACH), // Remote host cannot be reached
No_Buffer_Space_Available = c.int(os.ENOBUFS),
Not_Socket = c.int(os.ENOTSOCK),
Timeout = c.int(os.ETIMEDOUT),
Would_Block = c.int(os.EWOULDBLOCK), // TODO: we may need special handling for this; maybe make a socket a struct with metadata?
}
dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (skt: TCP_Socket, err: Network_Error) {
if endpoint.port == 0 {
return 0, .Port_Required
}
family := family_from_endpoint(endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
_ = set_option(skt, .Reuse_Address, true)
sockaddr := endpoint_to_sockaddr(endpoint)
res := os.connect(Platform_Socket(skt), (^os.SOCKADDR)(&sockaddr), size_of(sockaddr))
if res != os.ERROR_NONE {
err = Dial_Error(res)
return
}
if options.no_delay {
_ = set_option(sock, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
}
return
}
Bind_Error :: enum c.int {
// Another application is currently bound to this endpoint.
Address_In_Use = c.int(os.EADDRINUSE),
// The address is not a local address on this machine.
Given_Nonlocal_Address = c.int(os.EADDRNOTAVAIL),
// To bind a UDP socket to the broadcast address, the appropriate socket option must be set.
Broadcast_Disabled = c.int(os.EACCES),
// The address family of the address does not match that of the socket.
Address_Family_Mismatch = c.int(os.EFAULT),
// The socket is already bound to an address.
Already_Bound = c.int(os.EINVAL),
// There are not enough ephemeral ports available.
No_Ports_Available = c.int(os.ENOBUFS),
}
bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Network_Error) {
sockaddr := endpoint_to_sockaddr(ep)
s := any_socket_to_socket(skt)
res := os.bind(Platform_Socket(s), (^os.SOCKADDR)(&sockaddr), size_of(sockaddr))
if res != os.ERROR_NONE {
err = Bind_Error(res)
}
return
}
// This type of socket becomes bound when you try to send data.
// This is likely what you want if you want to send data unsolicited.
//
// This is like a client TCP socket, except that it can send data to any remote endpoint without needing to establish a connection first.
make_unbound_udp_socket :: proc(family: Address_Family) -> (skt: UDP_Socket, err: Network_Error) {
sock := create_socket(family, .UDP) or_return
skt = sock.(UDP_Socket)
return
}
// This type of socket is bound immediately, which enables it to receive data on the port.
// Since it's UDP, it's also able to send data without receiving any first.
//
// This is like a listening TCP socket, except that data packets can be sent and received without needing to establish a connection first.
//
// The bound_address is the address of the network interface that you want to use, or a loopback address if you don't care which to use.
make_bound_udp_socket :: proc(bound_address: Address, port: int) -> (skt: UDP_Socket, err: Network_Error) {
skt = make_unbound_udp_socket(family_from_address(bound_address)) or_return
bind(skt, {bound_address, port}) or_return
return
}
Listen_Error :: enum c.int {
Address_In_Use = c.int(os.EADDRINUSE),
Already_Connected = c.int(os.EISCONN),
No_Socket_Descriptors_Available = c.int(os.EMFILE),
No_Buffer_Space_Available = c.int(os.ENOBUFS),
Nonlocal_Address = c.int(os.EADDRNOTAVAIL),
Not_Socket = c.int(os.ENOTSOCK),
Listening_Not_Supported_For_This_Socket = c.int(os.EOPNOTSUPP),
}
listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
assert(backlog > 0 && i32(backlog) < max(i32))
family := family_from_endpoint(interface_endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
//
// TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
set_option(sock, .Reuse_Address, true) or_return
bind(sock, interface_endpoint) or_return
res := os.listen(Platform_Socket(skt), backlog)
if res != os.ERROR_NONE {
err = Listen_Error(res)
return
}
return
}
Accept_Error :: enum c.int {
Not_Listening = c.int(os.EINVAL),
No_Socket_Descriptors_Available_For_Client_Socket = c.int(os.EMFILE),
No_Buffer_Space_Available = c.int(os.ENOBUFS),
Not_Socket = c.int(os.ENOTSOCK),
Not_Connection_Oriented_Socket = c.int(os.EOPNOTSUPP),
Would_Block = c.int(os.EWOULDBLOCK), // TODO: we may need special handling for this; maybe make a socket a struct with metadata?
}
accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (client: TCP_Socket, source: Endpoint, err: Network_Error) {
sockaddr: os.SOCKADDR_STORAGE_LH
sockaddrlen := c.int(size_of(sockaddr))
client_sock, ok := os.accept(Platform_Socket(sock), cast(^os.SOCKADDR) &sockaddr, &sockaddrlen)
if ok != os.ERROR_NONE {
err = Accept_Error(ok)
return
}
client = TCP_Socket(client_sock)
source = sockaddr_to_endpoint(&sockaddr)
if options.no_delay {
_ = set_option(client, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
}
return
}
close :: proc(skt: Any_Socket) {
s := any_socket_to_socket(skt)
os.close(os.Handle(Platform_Socket(s)))
}
TCP_Recv_Error :: enum c.int {
Shutdown = c.int(os.ESHUTDOWN),
Not_Connected = c.int(os.ENOTCONN),
Connection_Broken = c.int(os.ENETRESET),
Not_Socket = c.int(os.ENOTSOCK),
Aborted = c.int(os.ECONNABORTED),
Connection_Closed = c.int(os.ECONNRESET), // TODO(tetra): Determine when this is different from the syscall returning n=0 and maybe normalize them?
Offline = c.int(os.ENETDOWN),
Host_Unreachable = c.int(os.EHOSTUNREACH),
Interrupted = c.int(os.EINTR),
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
}
recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: Network_Error) {
if len(buf) <= 0 {
return
}
res, ok := os.recv(Platform_Socket(skt), buf, 0)
if ok != os.ERROR_NONE {
err = TCP_Recv_Error(ok)
return
}
return int(res), nil
}
UDP_Recv_Error :: enum c.int {
// The buffer is too small to fit the entire message, and the message was truncated.
// When this happens, the rest of message is lost.
Buffer_Too_Small = c.int(os.EMSGSIZE),
// The so-called socket is not an open socket.
Not_Socket = c.int(os.ENOTSOCK),
// The so-called socket is, in fact, not even a valid descriptor.
Not_Descriptor = c.int(os.EBADF),
// The buffer did not point to a valid location in memory.
Bad_Buffer = c.int(os.EFAULT),
// A signal occurred before any data was transmitted.
// See signal(7).
Interrupted = c.int(os.EINTR),
// The send timeout duration passed before all data was received.
// See Socket_Option.Receive_Timeout.
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
// The socket must be bound for this operation, but isn't.
Socket_Not_Bound = c.int(os.EINVAL),
}
recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: Network_Error) {
if len(buf) <= 0 {
return
}
from: os.SOCKADDR_STORAGE_LH = ---
fromsize := c.int(size_of(from))
// NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
// and no error is returned.
// However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
// We can use this fact to detect this condition and return .Buffer_Too_Small.
res, ok := os.recvfrom(Platform_Socket(skt), buf, os.MSG_TRUNC, cast(^os.SOCKADDR) &from, &fromsize)
if ok != os.ERROR_NONE {
err = UDP_Recv_Error(ok)
return
}
bytes_read = int(res)
remote_endpoint = sockaddr_to_endpoint(&from)
if bytes_read > len(buf) {
// NOTE(tetra): The buffer has been filled, with a partial message.
bytes_read = len(buf)
err = .Buffer_Too_Small
}
return
}
recv :: proc{recv_tcp, recv_udp}
// TODO
TCP_Send_Error :: enum c.int {
Aborted = c.int(os.ECONNABORTED), // TODO(tetra): merge with other errors?
Connection_Closed = c.int(os.ECONNRESET),
Not_Connected = c.int(os.ENOTCONN),
Shutdown = c.int(os.ESHUTDOWN),
// The send queue was full.
// This is usually a transient issue.
//
// This also shouldn't normally happen on Linux, as data is dropped if it
// doesn't fit in the send queue.
No_Buffer_Space_Available = c.int(os.ENOBUFS),
Offline = c.int(os.ENETDOWN),
Host_Unreachable = c.int(os.EHOSTUNREACH),
// A signal occurred before any data was transmitted.
// See signal(7).
Interrupted = c.int(os.EINTR),
// The send timeout duration passed before all data was sent.
// See Socket_Option.Send_Timeout.
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
// The so-called socket is not an open socket.
Not_Socket = c.int(os.ENOTSOCK),
}
// Repeatedly sends data until the entire buffer is sent.
// If a send fails before all data is sent, returns the amount
// sent up to that point.
send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: Network_Error) {
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res, ok := os.send(Platform_Socket(skt), remaining, 0)
if ok != os.ERROR_NONE {
err = TCP_Send_Error(ok)
return
}
bytes_written += int(res)
}
return
}
// TODO
UDP_Send_Error :: enum c.int {
// The message is too big. No data was sent.
Message_Too_Long = c.int(os.EMSGSIZE),
// TODO: not sure what the exact circumstances for this is yet
Network_Unreachable = c.int(os.ENETUNREACH),
// There are no more emphemeral outbound ports available to bind the socket to, in order to send.
No_Outbound_Ports_Available = c.int(os.EAGAIN),
// The send timeout duration passed before all data was sent.
// See Socket_Option.Send_Timeout.
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
// The so-called socket is not an open socket.
Not_Socket = c.int(os.ENOTSOCK),
// The so-called socket is, in fact, not even a valid descriptor.
Not_Descriptor = c.int(os.EBADF),
// The buffer did not point to a valid location in memory.
Bad_Buffer = c.int(os.EFAULT),
// A signal occurred before any data was transmitted.
// See signal(7).
Interrupted = c.int(os.EINTR),
// The send queue was full.
// This is usually a transient issue.
//
// This also shouldn't normally happen on Linux, as data is dropped if it
// doesn't fit in the send queue.
No_Buffer_Space_Available = c.int(os.ENOBUFS),
// No memory was available to properly manage the send queue.
No_Memory_Available = c.int(os.ENOMEM),
}
// Sends a single UDP datagram packet.
//
// Datagrams are limited in size; attempting to send more than this limit at once will result in a Message_Too_Long error.
// UDP packets are not guarenteed to be received in order.
send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: Network_Error) {
toaddr := endpoint_to_sockaddr(to)
res, os_err := os.sendto(Platform_Socket(skt), buf, 0, cast(^os.SOCKADDR) &toaddr, size_of(toaddr))
if os_err != os.ERROR_NONE {
err = UDP_Send_Error(os_err)
return
}
bytes_written = int(res)
return
}
send :: proc{send_tcp, send_udp}
Shutdown_Manner :: enum c.int {
Receive = c.int(os.SHUT_RD),
Send = c.int(os.SHUT_WR),
Both = c.int(os.SHUT_RDWR),
}
Shutdown_Error :: enum c.int {
Aborted = c.int(os.ECONNABORTED),
Reset = c.int(os.ECONNRESET),
Offline = c.int(os.ENETDOWN),
Not_Connected = c.int(os.ENOTCONN),
Not_Socket = c.int(os.ENOTSOCK),
Invalid_Manner = c.int(os.EINVAL),
}
shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
s := any_socket_to_socket(skt)
res := os.shutdown(Platform_Socket(s), int(manner))
if res != os.ERROR_NONE {
return Shutdown_Error(res)
}
return
}
Socket_Option :: enum c.int {
Reuse_Address = c.int(os.SO_REUSEADDR),
Keep_Alive = c.int(os.SO_KEEPALIVE),
Out_Of_Bounds_Data_Inline = c.int(os.SO_OOBINLINE),
TCP_Nodelay = c.int(os.TCP_NODELAY),
Linger = c.int(os.SO_LINGER),
Receive_Buffer_Size = c.int(os.SO_RCVBUF),
Send_Buffer_Size = c.int(os.SO_SNDBUF),
Receive_Timeout = c.int(os.SO_RCVTIMEO_NEW),
Send_Timeout = c.int(os.SO_SNDTIMEO_NEW),
}
Socket_Option_Error :: enum c.int {
Offline = c.int(os.ENETDOWN),
Timeout_When_Keepalive_Set = c.int(os.ENETRESET),
Invalid_Option_For_Socket = c.int(os.ENOPROTOOPT),
Reset_When_Keepalive_Set = c.int(os.ENOTCONN),
Not_Socket = c.int(os.ENOTSOCK),
}
set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
level := os.SOL_SOCKET if option != .TCP_Nodelay else os.IPPROTO_TCP
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
// it _has_ to be a b32.
// I haven't tested if you can give more than that.
bool_value: b32
int_value: i32
timeval_value: os.Timeval
ptr: rawptr
len: os.socklen_t
switch option {
case
.Reuse_Address,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay:
// TODO: verify whether these are options or not on Linux
// .Broadcast,
// .Conditional_Accept,
// .Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
ptr = &bool_value
len = size_of(bool_value)
case
.Linger,
.Send_Timeout,
.Receive_Timeout:
t, ok := value.(time.Duration)
if !ok do panic("set_option() value must be a time.Duration here", loc)
nanos := time.duration_nanoseconds(t)
timeval_value.nanoseconds = int(nanos % 1e9)
timeval_value.seconds = (nanos - i64(timeval_value.nanoseconds)) / 1e9
ptr = &timeval_value
len = size_of(timeval_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
// TODO: check for out of range values and return .Value_Out_Of_Range?
switch i in value {
case i8, u8: i2 := i; int_value = os.socklen_t((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = os.socklen_t((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = os.socklen_t((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = os.socklen_t((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = os.socklen_t((^u128)(&i2)^)
case int, uint: i2 := i; int_value = os.socklen_t((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
ptr = &int_value
len = size_of(int_value)
}
skt := any_socket_to_socket(s)
res := os.setsockopt(Platform_Socket(skt), int(level), int(option), ptr, len)
if res != os.ERROR_NONE {
return Socket_Option_Error(res)
}
return nil
}