mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-02 19:22:33 +00:00
532 lines
17 KiB
Odin
532 lines
17 KiB
Odin
// +build linux
|
|
/*
|
|
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
|
|
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
|
|
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
|
|
Made available under Odin's BSD-3 license.
|
|
|
|
List of contributors:
|
|
Tetralux: Initial implementation
|
|
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
|
|
Jeroen van Rijn: Cross platform unification, code style, documentation
|
|
*/
|
|
|
|
/*
|
|
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
|
|
For other protocols and their features, see subdirectories of this package.
|
|
*/
|
|
package net
|
|
|
|
import "core:c"
|
|
import "core:os"
|
|
import "core:time"
|
|
|
|
Platform_Socket :: os.Socket
|
|
|
|
Create_Socket_Error :: enum c.int {
|
|
Family_Not_Supported_For_This_Socket = c.int(os.EAFNOSUPPORT),
|
|
No_Socket_Descriptors_Available = c.int(os.EMFILE),
|
|
No_Buffer_Space_Available = c.int(os.ENOBUFS),
|
|
No_Memory_Available_Available = c.int(os.ENOMEM),
|
|
Protocol_Unsupported_By_System = c.int(os.EPROTONOSUPPORT),
|
|
Wrong_Protocol_For_Socket = c.int(os.EPROTONOSUPPORT),
|
|
Family_And_Socket_Type_Mismatch = c.int(os.EPROTONOSUPPORT),
|
|
}
|
|
|
|
create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Network_Error) {
|
|
c_type, c_protocol, c_family: int
|
|
|
|
switch family {
|
|
case .IP4: c_family = os.AF_INET
|
|
case .IP6: c_family = os.AF_INET6
|
|
case:
|
|
unreachable()
|
|
}
|
|
|
|
switch protocol {
|
|
case .TCP: c_type = os.SOCK_STREAM; c_protocol = os.IPPROTO_TCP
|
|
case .UDP: c_type = os.SOCK_DGRAM; c_protocol = os.IPPROTO_UDP
|
|
case:
|
|
unreachable()
|
|
}
|
|
|
|
sock, ok := os.socket(c_family, c_type, c_protocol)
|
|
if ok != os.ERROR_NONE {
|
|
err = Create_Socket_Error(ok)
|
|
return
|
|
}
|
|
|
|
switch protocol {
|
|
case .TCP: return TCP_Socket(sock), nil
|
|
case .UDP: return UDP_Socket(sock), nil
|
|
case:
|
|
unreachable()
|
|
}
|
|
}
|
|
|
|
|
|
Dial_Error :: enum c.int {
|
|
Port_Required = -1,
|
|
|
|
Address_In_Use = c.int(os.EADDRINUSE),
|
|
In_Progress = c.int(os.EINPROGRESS),
|
|
Cannot_Use_Any_Address = c.int(os.EADDRNOTAVAIL),
|
|
Wrong_Family_For_Socket = c.int(os.EAFNOSUPPORT),
|
|
Refused = c.int(os.ECONNREFUSED),
|
|
Is_Listening_Socket = c.int(os.EACCES),
|
|
Already_Connected = c.int(os.EISCONN),
|
|
Network_Unreachable = c.int(os.ENETUNREACH), // Device is offline
|
|
Host_Unreachable = c.int(os.EHOSTUNREACH), // Remote host cannot be reached
|
|
No_Buffer_Space_Available = c.int(os.ENOBUFS),
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
Timeout = c.int(os.ETIMEDOUT),
|
|
Would_Block = c.int(os.EWOULDBLOCK), // TODO: we may need special handling for this; maybe make a socket a struct with metadata?
|
|
}
|
|
|
|
dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (skt: TCP_Socket, err: Network_Error) {
|
|
if endpoint.port == 0 {
|
|
return 0, .Port_Required
|
|
}
|
|
|
|
family := family_from_endpoint(endpoint)
|
|
sock := create_socket(family, .TCP) or_return
|
|
skt = sock.(TCP_Socket)
|
|
|
|
// NOTE(tetra): This is so that if we crash while the socket is open, we can
|
|
// bypass the cooldown period, and allow the next run of the program to
|
|
// use the same address immediately.
|
|
_ = set_option(skt, .Reuse_Address, true)
|
|
|
|
sockaddr := endpoint_to_sockaddr(endpoint)
|
|
res := os.connect(Platform_Socket(skt), (^os.SOCKADDR)(&sockaddr), size_of(sockaddr))
|
|
if res != os.ERROR_NONE {
|
|
err = Dial_Error(res)
|
|
return
|
|
}
|
|
|
|
if options.no_delay {
|
|
_ = set_option(sock, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
|
|
Bind_Error :: enum c.int {
|
|
// Another application is currently bound to this endpoint.
|
|
Address_In_Use = c.int(os.EADDRINUSE),
|
|
// The address is not a local address on this machine.
|
|
Given_Nonlocal_Address = c.int(os.EADDRNOTAVAIL),
|
|
// To bind a UDP socket to the broadcast address, the appropriate socket option must be set.
|
|
Broadcast_Disabled = c.int(os.EACCES),
|
|
// The address family of the address does not match that of the socket.
|
|
Address_Family_Mismatch = c.int(os.EFAULT),
|
|
// The socket is already bound to an address.
|
|
Already_Bound = c.int(os.EINVAL),
|
|
// There are not enough ephemeral ports available.
|
|
No_Ports_Available = c.int(os.ENOBUFS),
|
|
}
|
|
|
|
bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Network_Error) {
|
|
sockaddr := endpoint_to_sockaddr(ep)
|
|
s := any_socket_to_socket(skt)
|
|
res := os.bind(Platform_Socket(s), (^os.SOCKADDR)(&sockaddr), size_of(sockaddr))
|
|
if res != os.ERROR_NONE {
|
|
err = Bind_Error(res)
|
|
}
|
|
return
|
|
}
|
|
|
|
|
|
// This type of socket becomes bound when you try to send data.
|
|
// This is likely what you want if you want to send data unsolicited.
|
|
//
|
|
// This is like a client TCP socket, except that it can send data to any remote endpoint without needing to establish a connection first.
|
|
make_unbound_udp_socket :: proc(family: Address_Family) -> (skt: UDP_Socket, err: Network_Error) {
|
|
sock := create_socket(family, .UDP) or_return
|
|
skt = sock.(UDP_Socket)
|
|
return
|
|
}
|
|
|
|
// This type of socket is bound immediately, which enables it to receive data on the port.
|
|
// Since it's UDP, it's also able to send data without receiving any first.
|
|
//
|
|
// This is like a listening TCP socket, except that data packets can be sent and received without needing to establish a connection first.
|
|
//
|
|
// The bound_address is the address of the network interface that you want to use, or a loopback address if you don't care which to use.
|
|
make_bound_udp_socket :: proc(bound_address: Address, port: int) -> (skt: UDP_Socket, err: Network_Error) {
|
|
skt = make_unbound_udp_socket(family_from_address(bound_address)) or_return
|
|
bind(skt, {bound_address, port}) or_return
|
|
return
|
|
}
|
|
|
|
|
|
|
|
Listen_Error :: enum c.int {
|
|
Address_In_Use = c.int(os.EADDRINUSE),
|
|
Already_Connected = c.int(os.EISCONN),
|
|
No_Socket_Descriptors_Available = c.int(os.EMFILE),
|
|
No_Buffer_Space_Available = c.int(os.ENOBUFS),
|
|
Nonlocal_Address = c.int(os.EADDRNOTAVAIL),
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
Listening_Not_Supported_For_This_Socket = c.int(os.EOPNOTSUPP),
|
|
}
|
|
|
|
listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
|
|
assert(backlog > 0 && i32(backlog) < max(i32))
|
|
|
|
family := family_from_endpoint(interface_endpoint)
|
|
sock := create_socket(family, .TCP) or_return
|
|
skt = sock.(TCP_Socket)
|
|
|
|
// NOTE(tetra): This is so that if we crash while the socket is open, we can
|
|
// bypass the cooldown period, and allow the next run of the program to
|
|
// use the same address immediately.
|
|
//
|
|
// TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
|
|
set_option(sock, .Reuse_Address, true) or_return
|
|
|
|
bind(sock, interface_endpoint) or_return
|
|
|
|
res := os.listen(Platform_Socket(skt), backlog)
|
|
if res != os.ERROR_NONE {
|
|
err = Listen_Error(res)
|
|
return
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
|
|
|
|
Accept_Error :: enum c.int {
|
|
Not_Listening = c.int(os.EINVAL),
|
|
No_Socket_Descriptors_Available_For_Client_Socket = c.int(os.EMFILE),
|
|
No_Buffer_Space_Available = c.int(os.ENOBUFS),
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
Not_Connection_Oriented_Socket = c.int(os.EOPNOTSUPP),
|
|
Would_Block = c.int(os.EWOULDBLOCK), // TODO: we may need special handling for this; maybe make a socket a struct with metadata?
|
|
}
|
|
|
|
accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (client: TCP_Socket, source: Endpoint, err: Network_Error) {
|
|
sockaddr: os.SOCKADDR_STORAGE_LH
|
|
sockaddrlen := c.int(size_of(sockaddr))
|
|
|
|
client_sock, ok := os.accept(Platform_Socket(sock), cast(^os.SOCKADDR) &sockaddr, &sockaddrlen)
|
|
if ok != os.ERROR_NONE {
|
|
err = Accept_Error(ok)
|
|
return
|
|
}
|
|
client = TCP_Socket(client_sock)
|
|
source = sockaddr_to_endpoint(&sockaddr)
|
|
if options.no_delay {
|
|
_ = set_option(client, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
|
|
}
|
|
return
|
|
}
|
|
|
|
|
|
|
|
close :: proc(skt: Any_Socket) {
|
|
s := any_socket_to_socket(skt)
|
|
os.close(os.Handle(Platform_Socket(s)))
|
|
}
|
|
|
|
|
|
|
|
TCP_Recv_Error :: enum c.int {
|
|
Shutdown = c.int(os.ESHUTDOWN),
|
|
Not_Connected = c.int(os.ENOTCONN),
|
|
Connection_Broken = c.int(os.ENETRESET),
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
Aborted = c.int(os.ECONNABORTED),
|
|
Connection_Closed = c.int(os.ECONNRESET), // TODO(tetra): Determine when this is different from the syscall returning n=0 and maybe normalize them?
|
|
Offline = c.int(os.ENETDOWN),
|
|
Host_Unreachable = c.int(os.EHOSTUNREACH),
|
|
Interrupted = c.int(os.EINTR),
|
|
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
|
|
}
|
|
|
|
recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: Network_Error) {
|
|
if len(buf) <= 0 {
|
|
return
|
|
}
|
|
res, ok := os.recv(Platform_Socket(skt), buf, 0)
|
|
if ok != os.ERROR_NONE {
|
|
err = TCP_Recv_Error(ok)
|
|
return
|
|
}
|
|
return int(res), nil
|
|
}
|
|
|
|
UDP_Recv_Error :: enum c.int {
|
|
// The buffer is too small to fit the entire message, and the message was truncated.
|
|
// When this happens, the rest of message is lost.
|
|
Buffer_Too_Small = c.int(os.EMSGSIZE),
|
|
// The so-called socket is not an open socket.
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
// The so-called socket is, in fact, not even a valid descriptor.
|
|
Not_Descriptor = c.int(os.EBADF),
|
|
// The buffer did not point to a valid location in memory.
|
|
Bad_Buffer = c.int(os.EFAULT),
|
|
// A signal occurred before any data was transmitted.
|
|
// See signal(7).
|
|
Interrupted = c.int(os.EINTR),
|
|
// The send timeout duration passed before all data was received.
|
|
// See Socket_Option.Receive_Timeout.
|
|
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
|
|
// The socket must be bound for this operation, but isn't.
|
|
Socket_Not_Bound = c.int(os.EINVAL),
|
|
}
|
|
|
|
recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: Network_Error) {
|
|
if len(buf) <= 0 {
|
|
return
|
|
}
|
|
|
|
from: os.SOCKADDR_STORAGE_LH = ---
|
|
fromsize := c.int(size_of(from))
|
|
|
|
// NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
|
|
// and no error is returned.
|
|
// However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
|
|
// We can use this fact to detect this condition and return .Buffer_Too_Small.
|
|
res, ok := os.recvfrom(Platform_Socket(skt), buf, os.MSG_TRUNC, cast(^os.SOCKADDR) &from, &fromsize)
|
|
if ok != os.ERROR_NONE {
|
|
err = UDP_Recv_Error(ok)
|
|
return
|
|
}
|
|
|
|
bytes_read = int(res)
|
|
remote_endpoint = sockaddr_to_endpoint(&from)
|
|
|
|
if bytes_read > len(buf) {
|
|
// NOTE(tetra): The buffer has been filled, with a partial message.
|
|
bytes_read = len(buf)
|
|
err = .Buffer_Too_Small
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
recv :: proc{recv_tcp, recv_udp}
|
|
|
|
|
|
|
|
// TODO
|
|
TCP_Send_Error :: enum c.int {
|
|
Aborted = c.int(os.ECONNABORTED), // TODO(tetra): merge with other errors?
|
|
Connection_Closed = c.int(os.ECONNRESET),
|
|
Not_Connected = c.int(os.ENOTCONN),
|
|
Shutdown = c.int(os.ESHUTDOWN),
|
|
// The send queue was full.
|
|
// This is usually a transient issue.
|
|
//
|
|
// This also shouldn't normally happen on Linux, as data is dropped if it
|
|
// doesn't fit in the send queue.
|
|
No_Buffer_Space_Available = c.int(os.ENOBUFS),
|
|
Offline = c.int(os.ENETDOWN),
|
|
Host_Unreachable = c.int(os.EHOSTUNREACH),
|
|
// A signal occurred before any data was transmitted.
|
|
// See signal(7).
|
|
Interrupted = c.int(os.EINTR),
|
|
// The send timeout duration passed before all data was sent.
|
|
// See Socket_Option.Send_Timeout.
|
|
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
|
|
// The so-called socket is not an open socket.
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
}
|
|
|
|
// Repeatedly sends data until the entire buffer is sent.
|
|
// If a send fails before all data is sent, returns the amount
|
|
// sent up to that point.
|
|
send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: Network_Error) {
|
|
for bytes_written < len(buf) {
|
|
limit := min(int(max(i32)), len(buf) - bytes_written)
|
|
remaining := buf[bytes_written:][:limit]
|
|
res, ok := os.send(Platform_Socket(skt), remaining, 0)
|
|
if ok != os.ERROR_NONE {
|
|
err = TCP_Send_Error(ok)
|
|
return
|
|
}
|
|
bytes_written += int(res)
|
|
}
|
|
return
|
|
}
|
|
|
|
// TODO
|
|
UDP_Send_Error :: enum c.int {
|
|
// The message is too big. No data was sent.
|
|
Message_Too_Long = c.int(os.EMSGSIZE),
|
|
// TODO: not sure what the exact circumstances for this is yet
|
|
Network_Unreachable = c.int(os.ENETUNREACH),
|
|
// There are no more emphemeral outbound ports available to bind the socket to, in order to send.
|
|
No_Outbound_Ports_Available = c.int(os.EAGAIN),
|
|
// The send timeout duration passed before all data was sent.
|
|
// See Socket_Option.Send_Timeout.
|
|
Timeout = c.int(os.EWOULDBLOCK), // NOTE: No, really. Presumably this means something different for nonblocking sockets...
|
|
// The so-called socket is not an open socket.
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
// The so-called socket is, in fact, not even a valid descriptor.
|
|
Not_Descriptor = c.int(os.EBADF),
|
|
// The buffer did not point to a valid location in memory.
|
|
Bad_Buffer = c.int(os.EFAULT),
|
|
// A signal occurred before any data was transmitted.
|
|
// See signal(7).
|
|
Interrupted = c.int(os.EINTR),
|
|
// The send queue was full.
|
|
// This is usually a transient issue.
|
|
//
|
|
// This also shouldn't normally happen on Linux, as data is dropped if it
|
|
// doesn't fit in the send queue.
|
|
No_Buffer_Space_Available = c.int(os.ENOBUFS),
|
|
// No memory was available to properly manage the send queue.
|
|
No_Memory_Available = c.int(os.ENOMEM),
|
|
}
|
|
|
|
// Sends a single UDP datagram packet.
|
|
//
|
|
// Datagrams are limited in size; attempting to send more than this limit at once will result in a Message_Too_Long error.
|
|
// UDP packets are not guarenteed to be received in order.
|
|
send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: Network_Error) {
|
|
toaddr := endpoint_to_sockaddr(to)
|
|
res, os_err := os.sendto(Platform_Socket(skt), buf, 0, cast(^os.SOCKADDR) &toaddr, size_of(toaddr))
|
|
if os_err != os.ERROR_NONE {
|
|
err = UDP_Send_Error(os_err)
|
|
return
|
|
}
|
|
bytes_written = int(res)
|
|
return
|
|
}
|
|
|
|
send :: proc{send_tcp, send_udp}
|
|
|
|
|
|
|
|
|
|
Shutdown_Manner :: enum c.int {
|
|
Receive = c.int(os.SHUT_RD),
|
|
Send = c.int(os.SHUT_WR),
|
|
Both = c.int(os.SHUT_RDWR),
|
|
}
|
|
|
|
Shutdown_Error :: enum c.int {
|
|
Aborted = c.int(os.ECONNABORTED),
|
|
Reset = c.int(os.ECONNRESET),
|
|
Offline = c.int(os.ENETDOWN),
|
|
Not_Connected = c.int(os.ENOTCONN),
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
Invalid_Manner = c.int(os.EINVAL),
|
|
}
|
|
|
|
shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
|
|
s := any_socket_to_socket(skt)
|
|
res := os.shutdown(Platform_Socket(s), int(manner))
|
|
if res != os.ERROR_NONE {
|
|
return Shutdown_Error(res)
|
|
}
|
|
return
|
|
}
|
|
|
|
|
|
|
|
|
|
Socket_Option :: enum c.int {
|
|
Reuse_Address = c.int(os.SO_REUSEADDR),
|
|
Keep_Alive = c.int(os.SO_KEEPALIVE),
|
|
Out_Of_Bounds_Data_Inline = c.int(os.SO_OOBINLINE),
|
|
TCP_Nodelay = c.int(os.TCP_NODELAY),
|
|
|
|
Linger = c.int(os.SO_LINGER),
|
|
|
|
Receive_Buffer_Size = c.int(os.SO_RCVBUF),
|
|
Send_Buffer_Size = c.int(os.SO_SNDBUF),
|
|
Receive_Timeout = c.int(os.SO_RCVTIMEO_NEW),
|
|
Send_Timeout = c.int(os.SO_SNDTIMEO_NEW),
|
|
}
|
|
|
|
Socket_Option_Error :: enum c.int {
|
|
Offline = c.int(os.ENETDOWN),
|
|
Timeout_When_Keepalive_Set = c.int(os.ENETRESET),
|
|
Invalid_Option_For_Socket = c.int(os.ENOPROTOOPT),
|
|
Reset_When_Keepalive_Set = c.int(os.ENOTCONN),
|
|
Not_Socket = c.int(os.ENOTSOCK),
|
|
}
|
|
|
|
set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
|
|
level := os.SOL_SOCKET if option != .TCP_Nodelay else os.IPPROTO_TCP
|
|
|
|
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
|
|
// it _has_ to be a b32.
|
|
// I haven't tested if you can give more than that.
|
|
bool_value: b32
|
|
int_value: i32
|
|
timeval_value: os.Timeval
|
|
|
|
ptr: rawptr
|
|
len: os.socklen_t
|
|
|
|
switch option {
|
|
case
|
|
.Reuse_Address,
|
|
.Keep_Alive,
|
|
.Out_Of_Bounds_Data_Inline,
|
|
.TCP_Nodelay:
|
|
// TODO: verify whether these are options or not on Linux
|
|
// .Broadcast,
|
|
// .Conditional_Accept,
|
|
// .Dont_Linger:
|
|
switch x in value {
|
|
case bool, b8:
|
|
x2 := x
|
|
bool_value = b32((^bool)(&x2)^)
|
|
case b16:
|
|
bool_value = b32(x)
|
|
case b32:
|
|
bool_value = b32(x)
|
|
case b64:
|
|
bool_value = b32(x)
|
|
case:
|
|
panic("set_option() value must be a boolean here", loc)
|
|
}
|
|
ptr = &bool_value
|
|
len = size_of(bool_value)
|
|
case
|
|
.Linger,
|
|
.Send_Timeout,
|
|
.Receive_Timeout:
|
|
t, ok := value.(time.Duration)
|
|
if !ok do panic("set_option() value must be a time.Duration here", loc)
|
|
|
|
nanos := time.duration_nanoseconds(t)
|
|
timeval_value.nanoseconds = int(nanos % 1e9)
|
|
timeval_value.seconds = (nanos - i64(timeval_value.nanoseconds)) / 1e9
|
|
|
|
ptr = &timeval_value
|
|
len = size_of(timeval_value)
|
|
case
|
|
.Receive_Buffer_Size,
|
|
.Send_Buffer_Size:
|
|
// TODO: check for out of range values and return .Value_Out_Of_Range?
|
|
switch i in value {
|
|
case i8, u8: i2 := i; int_value = os.socklen_t((^u8)(&i2)^)
|
|
case i16, u16: i2 := i; int_value = os.socklen_t((^u16)(&i2)^)
|
|
case i32, u32: i2 := i; int_value = os.socklen_t((^u32)(&i2)^)
|
|
case i64, u64: i2 := i; int_value = os.socklen_t((^u64)(&i2)^)
|
|
case i128, u128: i2 := i; int_value = os.socklen_t((^u128)(&i2)^)
|
|
case int, uint: i2 := i; int_value = os.socklen_t((^uint)(&i2)^)
|
|
case:
|
|
panic("set_option() value must be an integer here", loc)
|
|
}
|
|
ptr = &int_value
|
|
len = size_of(int_value)
|
|
}
|
|
|
|
skt := any_socket_to_socket(s)
|
|
res := os.setsockopt(Platform_Socket(skt), int(level), int(option), ptr, len)
|
|
if res != os.ERROR_NONE {
|
|
return Socket_Option_Error(res)
|
|
}
|
|
|
|
return nil
|
|
} |