Files
Odin/src/ssa.cpp

2576 lines
70 KiB
C++

struct ssaModule;
struct ssaValue;
struct ssaValueArgs;
struct ssaDefer;
struct ssaBlock;
struct ssaProc;
struct ssaEdge;
struct ssaRegister;
struct ssaTargetList;
String ssa_mangle_name(ssaModule *m, String path, Entity *e);
#include "ssa_op.cpp"
#define SSA_DEFAULT_VALUE_ARG_CAPACITY 8
struct ssaValueArgs {
ssaValue ** e;
isize count;
isize capacity;
ssaValue * backing[SSA_DEFAULT_VALUE_ARG_CAPACITY];
gbAllocator allocator;
ssaValue *&operator[](isize i) {
GB_ASSERT(0 <= i && i <= count);
return e[i];
}
ssaValue * const &operator[](isize i) const {
GB_ASSERT(0 <= i && i <= count);
return e[i];
}
};
struct ssaValue {
i32 id; // Unique identifier but the pointer could be used too
ssaOp op; // Operation that computes this value
Type * type;
ssaBlock * block; // Containing basic block
i32 uses;
ssaValueArgs args;
ExactValue exact_value; // Used for constants
String comment_string;
};
enum ssaBlockKind {
ssaBlock_Invalid,
// NOTE(bill): These are the generic block types and for more specific
// architectures, these could become conditions blocks like amd64 LT or EQ
ssaBlock_Entry, // Entry point
ssaBlock_Plain,
ssaBlock_Defer, // Similar to a plain block but generated by a `defer` statement
ssaBlock_If,
ssaBlock_Ret,
ssaBlock_RetJmp, // Stores return value and jumps to Ret block
ssaBlock_Exit,
ssaBlock_Count,
};
enum ssaBranchPrediction {
ssaBranch_Unknown = 0,
ssaBranch_Likely = +1,
ssaBranch_Unlikely = -1,
};
enum ssaDeferKind {
ssaDefer_Node,
ssaDefer_Instr,
};
struct ssaDefer {
ssaDeferKind kind;
i32 scope_level;
ssaBlock * block;
union {
AstNode * stmt;
ssaValue * instr;
};
};
enum ssaDeferExitKind {
ssaDeferExit_Default,
ssaDeferExit_Return,
ssaDeferExit_Branch,
};
// ssaEdge represents a control flow graph (CFG) edge
struct ssaEdge {
// Succs array: Block To
// Preds array: Block From
ssaBlock *block;
// Index of reverse edge
isize index;
};
struct ssaBlock {
i32 id; // Unique identifier but the pointer could be used too
ssaBlockKind kind;
ssaProc * proc; // Containing procedure
String name; // Optional
i32 scope_level;
// Likely branch direction
ssaBranchPrediction likeliness;
// Determines how a block exits
// It depends on the type of block:
// - BlockIf will be a boolean value
// - BlockExit will be a memory control value
ssaValue *control;
Array<ssaValue *> values;
Array<ssaEdge> preds;
Array<ssaEdge> succs;
};
struct ssaTargetList {
ssaTargetList *prev;
ssaBlock * break_;
ssaBlock * continue_;
ssaBlock * fallthrough_;
};
struct ssaProc {
ssaModule * module; // Parent module
gbAllocator allocator; // Same allocator as the parent module
String name; // Mangled name
Entity * entity;
DeclInfo * decl_info;
Array<ssaBlock *> blocks;
ssaBlock * entry; // Entry block
ssaBlock * exit; // Exit block
ssaBlock * curr_block;
ssaTargetList * target_list;
i32 block_id;
i32 value_id;
Map<ssaValue *> values; // Key: Entity *
Array<ssaDefer> defer_stmts;
i32 scope_level;
};
struct ssaRegister {
i32 id;
i32 size;
};
struct ssaModule {
CheckerInfo * info;
gbAllocator allocator;
gbArena arena;
gbAllocator tmp_allocator;
gbArena tmp_arena;
Map<Entity *> min_dep_map; // Key: Entity *
Map<ssaValue *> values; // Key: Entity *
// List of registers for the specific architecture
Array<ssaRegister> registers;
ssaProc *proc; // current procedure
Entity *entry_point_entity;
u32 stmt_state_flags;
Array<ssaProc *> procs;
Array<ssaValue *> procs_to_generate;
};
enum ssaAddrKind {
ssaAddr_Default,
ssaAddr_Map,
};
struct ssaAddr {
ssaValue * addr;
ssaAddrKind kind;
};
void ssa_push_target_list(ssaProc *p, ssaBlock *break_, ssaBlock *continue_, ssaBlock *fallthrough_) {
ssaTargetList *tl = gb_alloc_item(p->allocator, ssaTargetList);
tl->prev = p->target_list;
tl->break_ = break_;
tl->continue_ = continue_;
tl->fallthrough_ = fallthrough_;
p->target_list = tl;
}
void ssa_pop_target_list(ssaProc *p) {
p->target_list = p->target_list->prev;
}
ssaBlock *ssa_new_block(ssaProc *p, ssaBlockKind kind, char *name) {
ssaBlock *b = gb_alloc_item(p->allocator, ssaBlock);
b->id = p->block_id++;
b->kind = kind;
b->proc = p;
p->scope_level = p->scope_level;
if (name != NULL || name[0] != 0) {
b->name = make_string_c(name);
}
array_init(&b->values, heap_allocator());
array_init(&b->preds, heap_allocator());
array_init(&b->succs, heap_allocator());
array_add(&p->blocks, b);
return b;
}
void ssa_clear_block(ssaProc *p, ssaBlock *b) {
GB_ASSERT(b->proc != NULL);
array_clear(&b->values);
array_clear(&b->preds);
array_clear(&b->succs);
b->proc = NULL;
b->kind = ssaBlock_Plain;
}
void ssa_start_block(ssaProc *p, ssaBlock *b) {
GB_ASSERT(p->curr_block == NULL);
p->curr_block = b;
}
ssaBlock *ssa_end_block(ssaProc *p) {
ssaBlock *b = p->curr_block;
if (b == NULL) {
return NULL;
}
p->curr_block = NULL;
return b;
}
void ssa_add_edge_to(ssaBlock *b, ssaBlock *c) {
if (b == NULL) {
return;
}
GB_ASSERT(c != NULL);
isize i = b->succs.count;
isize j = b->preds.count;
ssaEdge s = {c, j};
ssaEdge p = {b, i};
array_add(&b->succs, s);
array_add(&c->preds, p);
}
void ssa_set_control(ssaBlock *b, ssaValue *v) {
if (b->control != NULL) {
b->control->uses--;
}
b->control = v;
if (v != NULL) {
v->uses++;
}
}
void ssa_emit_jump(ssaProc *p, ssaBlock *edge) {
ssa_add_edge_to(ssa_end_block(p), edge);
}
void ssa_init_value_args(ssaValueArgs *va, gbAllocator a) {
va->e = va->backing;
va->count = 0;
va->capacity = gb_count_of(va->backing);
va->allocator = a;
}
void ssa_add_arg(ssaValueArgs *va, ssaValue *arg) {
if (va->count >= va->capacity) {
isize capacity = 2*va->capacity;
if (va->e == va->backing) { // Replace the backing with an allocated version instead
ssaValue **new_args = gb_alloc_array(va->allocator, ssaValue *, capacity);
gb_memcopy_array(new_args, va->e, va->count);
va->e = new_args;
} else {
isize old_cap_size = va->capacity * gb_size_of(ssaValue *);
isize new_cap_size = capacity * gb_size_of(ssaValue *);
*(cast(void **)&va->e) = gb_resize(va->allocator, va->e, old_cap_size, new_cap_size);
}
va->capacity = capacity;
}
va->e[va->count++] = arg; arg->uses++;
}
ssaValue *ssa_new_value(ssaProc *p, ssaOp op, Type *t, ssaBlock *b) {
GB_ASSERT(b != NULL);
ssaValue *v = gb_alloc_item(p->allocator, ssaValue);
v->id = p->value_id++;
v->op = op;
v->type = t;
v->block = b;
ssa_init_value_args(&v->args, p->allocator);
array_add(&b->values, v);
return v;
}
ssaValue *ssa_new_value0(ssaProc *p, ssaOp op, Type *t) {
ssaValue *v = ssa_new_value(p, op, t, p->curr_block);
return v;
}
ssaValue *ssa_new_value0v(ssaProc *p, ssaOp op, Type *t, ExactValue exact_value) {
ssaValue *v = ssa_new_value0(p, op, t);
v->exact_value = exact_value;
return v;
}
ssaValue *ssa_new_value1(ssaProc *p, ssaOp op, Type *t, ssaValue *arg) {
ssaValue *v = ssa_new_value(p, op, t, p->curr_block);
ssa_add_arg(&v->args, arg);
return v;
}
ssaValue *ssa_new_value1v(ssaProc *p, ssaOp op, Type *t, ExactValue exact_value, ssaValue *arg) {
ssaValue *v = ssa_new_value1(p, op, t, arg);
v->exact_value = exact_value;
return v;
}
ssaValue *ssa_new_value1i(ssaProc *p, ssaOp op, Type *t, i64 i, ssaValue *arg) {
return ssa_new_value1v(p, op, t, exact_value_i64(i), arg);
}
ssaValue *ssa_new_value2(ssaProc *p, ssaOp op, Type *t, ssaValue *arg0, ssaValue *arg1) {
ssaValue *v = ssa_new_value(p, op, t, p->curr_block);
ssa_add_arg(&v->args, arg0);
ssa_add_arg(&v->args, arg1);
return v;
}
ssaValue *ssa_new_value2v(ssaProc *p, ssaOp op, Type *t, ExactValue exact_value, ssaValue *arg0, ssaValue *arg1) {
ssaValue *v = ssa_new_value2(p, op, t, arg0, arg1);
v->exact_value = exact_value;
return v;
}
ssaValue *ssa_new_value3(ssaProc *p, ssaOp op, Type *t, ssaValue *arg0, ssaValue *arg1, ssaValue *arg2) {
ssaValue *v = ssa_new_value(p, op, t, p->curr_block);
ssa_add_arg(&v->args, arg0);
ssa_add_arg(&v->args, arg1);
ssa_add_arg(&v->args, arg2);
return v;
}
ssaValue *ssa_new_value3v(ssaProc *p, ssaOp op, Type *t, ExactValue exact_value, ssaValue *arg0, ssaValue *arg1, ssaValue *arg2) {
ssaValue *v = ssa_new_value3(p, op, t, arg0, arg1, arg2);
v->exact_value = exact_value;
return v;
}
ssaValue *ssa_new_value4(ssaProc *p, ssaOp op, Type *t, ssaValue *arg0, ssaValue *arg1, ssaValue *arg2, ssaValue *arg3) {
ssaValue *v = ssa_new_value(p, op, t, p->curr_block);
ssa_add_arg(&v->args, arg0);
ssa_add_arg(&v->args, arg1);
ssa_add_arg(&v->args, arg2);
ssa_add_arg(&v->args, arg3);
return v;
}
ssaValue *ssa_const_val(ssaProc *p, ssaOp op, Type *t, ExactValue exact_value) {
return ssa_new_value0v(p, op, t, exact_value);
}
ssaValue *ssa_const_bool (ssaProc *p, Type *t, bool c) { return ssa_const_val(p, ssaOp_ConstBool, t, exact_value_bool(c)); }
ssaValue *ssa_const_i8 (ssaProc *p, Type *t, i8 c) { return ssa_const_val(p, ssaOp_Const8, t, exact_value_i64(cast(i64)c)); }
ssaValue *ssa_const_i16 (ssaProc *p, Type *t, i16 c) { return ssa_const_val(p, ssaOp_Const16, t, exact_value_i64(cast(i64)c)); }
ssaValue *ssa_const_i32 (ssaProc *p, Type *t, i32 c) { return ssa_const_val(p, ssaOp_Const32, t, exact_value_i64(cast(i64)c)); }
ssaValue *ssa_const_i64 (ssaProc *p, Type *t, i64 c) { return ssa_const_val(p, ssaOp_Const64, t, exact_value_i64(cast(i64)c)); }
ssaValue *ssa_const_f32 (ssaProc *p, Type *t, f32 c) { return ssa_const_val(p, ssaOp_Const32F, t, exact_value_float(c)); }
ssaValue *ssa_const_f64 (ssaProc *p, Type *t, f64 c) { return ssa_const_val(p, ssaOp_Const64F, t, exact_value_float(c)); }
ssaValue *ssa_const_string (ssaProc *p, Type *t, String c) { return ssa_const_val(p, ssaOp_ConstString, t, exact_value_string(c)); }
ssaValue *ssa_const_empty_string(ssaProc *p, Type *t) { return ssa_const_val(p, ssaOp_ConstString, t, empty_exact_value); }
ssaValue *ssa_const_slice (ssaProc *p, Type *t, ExactValue v) { return ssa_const_val(p, ssaOp_ConstSlice, t, v); }
ssaValue *ssa_const_nil (ssaProc *p, Type *t) { return ssa_const_val(p, ssaOp_ConstNil, t, empty_exact_value); }
ssaValue *ssa_const_int(ssaProc *p, Type *t, i64 c) {
switch (8*type_size_of(p->allocator, t)) {
case 8: return ssa_const_i8 (p, t, cast(i8)c);
case 16: return ssa_const_i16(p, t, cast(i16)c);
case 32: return ssa_const_i32(p, t, cast(i32)c);
case 64: return ssa_const_i64(p, t, cast(i64)c);
}
GB_PANIC("Unknown int size");
return NULL;
}
ssaAddr ssa_build_addr (ssaProc *p, AstNode *expr);
ssaValue *ssa_build_expr (ssaProc *p, AstNode *expr);
void ssa_build_stmt (ssaProc *p, AstNode *node);
void ssa_build_stmt_list(ssaProc *p, Array<AstNode *> nodes);
ssaValue *ssa_emit_deep_field_ptr_index(ssaProc *p, ssaValue *e, Selection sel);
void ssa_reset_value_args(ssaValue *v) {
for_array(i, v->args) {
v->args[i]->uses--;
}
v->args.count = 0;
}
void ssa_reset(ssaValue *v, ssaOp op) {
v->op = op;
v->exact_value = empty_exact_value;
ssa_reset_value_args(v);
}
ssaValue *ssa_get_last_value(ssaBlock *b) {
if (b == NULL) {
return NULL;
}
isize len = b->values.count;
if (len <= 0) {
return 0;
}
ssaValue *v = b->values[len-1];
return v;
}
void ssa_emit_comment(ssaProc *p, String s) {
// ssa_new_value0v(p, ssaOp_Comment, NULL, exact_value_string(s));
}
void ssa_build_defer_stmt(ssaProc *p, ssaDefer d) {
// ssaValue *last_instr = ssa_get_last_value(p->curr_block);
ssaBlock *b = ssa_new_block(p, ssaBlock_Plain, "defer");
ssa_emit_jump(p, b);
ssa_start_block(p, b);
ssa_emit_comment(p, str_lit("defer"));
if (d.kind == ssaDefer_Node) {
ssa_build_stmt(p, d.stmt);
} else if (d.kind == ssaDefer_Instr) {
// NOTE(bill): Need to make a new copy
ssaValue *v = cast(ssaValue *)gb_alloc_copy(p->allocator, d.instr, gb_size_of(ssaValue));
array_add(&p->curr_block->values, v);
}
}
void ssa_emit_defer_stmts(ssaProc *p, ssaDeferExitKind kind, ssaBlock *b) {
isize count = p->defer_stmts.count;
for (isize i = count-1; i >= 0; i--) {
ssaDefer d = p->defer_stmts[i];
if (kind == ssaDeferExit_Default) {
gb_printf_err("scope_level %d %d\n", p->scope_level, d.scope_level);
if (p->scope_level == d.scope_level &&
d.scope_level > 1) {
ssa_build_defer_stmt(p, d);
array_pop(&p->defer_stmts);
continue;
} else {
break;
}
} else if (kind == ssaDeferExit_Return) {
ssa_build_defer_stmt(p, d);
} else if (kind == ssaDeferExit_Branch) {
GB_ASSERT(b != NULL);
i32 lower_limit = b->scope_level+1;
if (lower_limit < d.scope_level) {
ssa_build_defer_stmt(p, d);
}
}
}
}
ssaDefer ssa_add_defer_node(ssaProc *p, i32 scope_level, AstNode *stmt) {
ssaDefer d = {ssaDefer_Node};
d.scope_level = scope_level;
d.block = p->curr_block;
d.stmt = stmt;
array_add(&p->defer_stmts, d);
return d;
}
void ssa_open_scope(ssaProc *p) {
p->scope_level++;
}
void ssa_close_scope(ssaProc *p, ssaDeferExitKind kind, ssaBlock *b) {
ssa_emit_defer_stmts(p, kind, b);
GB_ASSERT(p->scope_level > 0);
p->scope_level--;
}
ssaValue *ssa_emit_load(ssaProc *p, ssaValue *v) {
GB_ASSERT(is_type_pointer(v->type));
return ssa_new_value1(p, ssaOp_Load, type_deref(v->type), v);
}
ssaValue *ssa_emit_store(ssaProc *p, ssaValue *dst, ssaValue *v) {
GB_ASSERT(is_type_pointer(dst->type));
#if 1
// NOTE(bill): Sanity check
Type *a = core_type(type_deref(dst->type));
Type *b = core_type(v->type);
if (!is_type_untyped(b)) {
GB_ASSERT_MSG(are_types_identical(a, b), "%s %s", type_to_string(a), type_to_string(b));
}
#endif
return ssa_new_value2(p, ssaOp_Store, dst->type, dst, v);
}
bool ssa_is_op_const(ssaOp op) {
switch (op) {
case ssaOp_ConstBool:
case ssaOp_ConstString:
case ssaOp_ConstSlice:
case ssaOp_ConstNil:
case ssaOp_Const8:
case ssaOp_Const16:
case ssaOp_Const32:
case ssaOp_Const64:
case ssaOp_Const32F:
case ssaOp_Const64F:
return true;
}
return false;
}
bool ssa_is_blank_ident(AstNode *node) {
if (node->kind == AstNode_Ident) {
ast_node(i, Ident, node);
return is_blank_ident(i->string);
}
return false;
}
ssaAddr ssa_addr(ssaValue *v) {
if (v != NULL) {
GB_ASSERT(is_type_pointer(v->type));
}
ssaAddr addr = {0};
addr.addr = v;
return addr;
}
Type *ssa_addr_type(ssaAddr addr) {
if (addr.addr == NULL) {
return NULL;
}
if (addr.kind == ssaAddr_Map) {
GB_PANIC("TODO: ssa_addr_type");
return NULL;
}
Type *t = addr.addr->type;
GB_ASSERT(is_type_pointer(t));
return type_deref(t);
}
ssaProc *ssa_new_proc(ssaModule *m, String name, Entity *entity, DeclInfo *decl_info) {
ssaProc *p = gb_alloc_item(m->allocator, ssaProc);
p->module = m;
p->allocator = m->allocator;
p->name = name;
p->entity = entity;
p->decl_info = decl_info;
array_init(&p->blocks, heap_allocator());
array_init(&p->defer_stmts, heap_allocator());
map_init(&p->values, heap_allocator());
return p;
}
ssaAddr ssa_add_local(ssaProc *p, Entity *e, AstNode *expr) {
Type *t = make_type_pointer(p->allocator, e->type);
ssaBlock *cb = p->curr_block;
p->curr_block = p->entry;
ssaValue *local = ssa_new_value0(p, ssaOp_Local, t);
p->curr_block = cb;
map_set(&p->values, hash_pointer(e), local);
map_set(&p->module->values, hash_pointer(e), local);
local->comment_string = e->token.string;
ssa_new_value1(p, ssaOp_Zero, t, local);
return ssa_addr(local);
}
ssaAddr ssa_add_local_for_ident(ssaProc *p, AstNode *name) {
Entity **found = map_get(&p->module->info->definitions, hash_pointer(name));
if (found) {
Entity *e = *found;
return ssa_add_local(p, e, name);
}
return ssa_addr(NULL);
}
ssaAddr ssa_add_local_generated(ssaProc *p, Type *t) {
GB_ASSERT(t != NULL);
Scope *scope = NULL;
if (p->curr_block) {
// scope = p->curr_block->scope;
}
Entity *e = make_entity_variable(p->allocator, scope, empty_token, t, false);
return ssa_add_local(p, e, NULL);
}
#define SSA_MAX_STRUCT_FIELD_COUNT 4
bool can_ssa_type(Type *t) {
i64 s = type_size_of(heap_allocator(), t);
if (s > 4*build_context.word_size) {
return false;
}
t = core_type(t);
switch (t->kind) {
case Type_Array:
return t->Array.count == 0;
case Type_Vector:
return s < 2*build_context.word_size;
case Type_DynamicArray:
return false;
case Type_Map:
return false;
case Type_Tuple:
if (t->Tuple.variable_count > SSA_MAX_STRUCT_FIELD_COUNT) {
return false;
}
for (isize i = 0; i < t->Tuple.variable_count; i++) {
if (!can_ssa_type(t->Tuple.variables[i]->type)) {
return false;
}
}
return true;
case Type_Record:
if (t->Record.kind == TypeRecord_Union) {
return false;
} else if (t->Record.kind == TypeRecord_Struct) {
if (t->Record.field_count > SSA_MAX_STRUCT_FIELD_COUNT) {
return false;
}
for (isize i = 0; i < t->Record.field_count; i++) {
if (!can_ssa_type(t->Record.fields[i]->type)) {
return false;
}
}
}
return true;
}
return true;
}
void ssa_addr_store(ssaProc *p, ssaAddr addr, ssaValue *value) {
if (addr.addr == NULL) {
return;
}
if (addr.kind == ssaAddr_Map) {
GB_PANIC("TODO(bill): ssa_addr_store");
return;
}
ssa_emit_store(p, addr.addr, value);
}
ssaValue *ssa_addr_load(ssaProc *p, ssaAddr addr) {
if (addr.addr == NULL) {
return NULL;
}
if (addr.kind == ssaAddr_Map) {
GB_PANIC("here\n");
return NULL;
}
Type *t = addr.addr->type;
Type *bt = base_type(t);
if (bt->kind == Type_Proc) {
return addr.addr;
}
return ssa_emit_load(p, addr.addr);
}
ssaValue *ssa_get_using_variable(ssaProc *p, Entity *e) {
GB_ASSERT(e->kind == Entity_Variable && e->flags & EntityFlag_Using);
String name = e->token.string;
Entity *parent = e->using_parent;
Selection sel = lookup_field(p->allocator, parent->type, name, false);
GB_ASSERT(sel.entity != NULL);
ssaValue **pv = map_get(&p->module->values, hash_pointer(parent));
ssaValue *v = NULL;
if (pv != NULL) {
v = *pv;
} else {
v = ssa_build_addr(p, e->using_expr).addr;
}
GB_ASSERT(v != NULL);
GB_ASSERT(type_deref(v->type) == parent->type);
return ssa_emit_deep_field_ptr_index(p, v, sel);
}
ssaAddr ssa_build_addr_from_entity(ssaProc *p, Entity *e, AstNode *expr) {
GB_ASSERT(e != NULL);
ssaValue *v = NULL;
ssaValue **found = map_get(&p->module->values, hash_pointer(e));
if (found) {
v = *found;
} else if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) {
// NOTE(bill): Calculate the using variable every time
v = ssa_get_using_variable(p, e);
}
if (v == NULL) {
GB_PANIC("Unknown value: %.*s, entity: %p %.*s\n", LIT(e->token.string), e, LIT(entity_strings[e->kind]));
}
return ssa_addr(v);
}
ssaValue *ssa_emit_conv(ssaProc *p, ssaValue *v, Type *t) {
Type *src_type = v->type;
if (are_types_identical(t, src_type)) {
return v;
}
Type *src = core_type(src_type);
Type *dst = core_type(t);
if (is_type_untyped_nil(src)) {
return ssa_const_nil(p, t);
}
// Pointer <-> Pointer
if (is_type_pointer(src) && is_type_pointer(dst)) {
return ssa_new_value1(p, ssaOp_Copy, dst, v);
}
// proc <-> proc
if (is_type_proc(src) && is_type_proc(dst)) {
return ssa_new_value1(p, ssaOp_Copy, dst, v);
}
// pointer -> proc
if (is_type_pointer(src) && is_type_proc(dst)) {
return ssa_new_value1(p, ssaOp_Copy, dst, v);
}
// proc -> pointer
if (is_type_proc(src) && is_type_pointer(dst)) {
return ssa_new_value1(p, ssaOp_Copy, dst, v);
}
gb_printf_err("ssa_emit_conv: src -> dst\n");
gb_printf_err("Not Identical %s != %s\n", type_to_string(src_type), type_to_string(t));
gb_printf_err("Not Identical %s != %s\n", type_to_string(src), type_to_string(dst));
GB_PANIC("Invalid type conversion: `%s` to `%s`", type_to_string(src_type), type_to_string(t));
return NULL;
}
// NOTE(bill): Returns NULL if not possible
ssaValue *ssa_address_from_load_or_generate_local(ssaProc *p, ssaValue *v) {
if (v->op == ssaOp_Load) {
return v->args[0];
}
ssaAddr addr = ssa_add_local_generated(p, v->type);
ssa_new_value2(p, ssaOp_Store, addr.addr->type, addr.addr, v);
return addr.addr;
}
ssaValue *ssa_emit_array_index(ssaProc *p, ssaValue *v, ssaValue *index) {
GB_ASSERT(v != NULL);
GB_ASSERT(is_type_pointer(v->type));
Type *t = base_type(type_deref(v->type));
GB_ASSERT_MSG(is_type_array(t) || is_type_vector(t), "%s", type_to_string(t));
Type *elem_ptr = NULL;
if (is_type_array(t)) {
elem_ptr = make_type_pointer(p->allocator, t->Array.elem);
} else if (is_type_vector(t)) {
elem_ptr = make_type_pointer(p->allocator, t->Vector.elem);
}
return ssa_new_value2(p, ssaOp_ArrayIndex, elem_ptr, v, index);
}
ssaValue *ssa_emit_ptr_index(ssaProc *p, ssaValue *s, i64 index) {
gbAllocator a = p->allocator;
Type *t = base_type(type_deref(s->type));
Type *result_type = NULL;
if (is_type_struct(t)) {
GB_ASSERT(t->Record.field_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Record.field_count-1));
result_type = make_type_pointer(a, t->Record.fields[index]->type);
} else if (is_type_union(t)) {
type_set_offsets(a, t);
GB_ASSERT(t->Record.field_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Record.field_count-1));
result_type = make_type_pointer(a, t->Record.fields[index]->type);
} else if (is_type_tuple(t)) {
GB_ASSERT(t->Tuple.variable_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Tuple.variable_count-1));
result_type = make_type_pointer(a, t->Tuple.variables[index]->type);
} else if (is_type_slice(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, make_type_pointer(a, t->Slice.elem)); break;
case 1: result_type = make_type_pointer(a, t_int); break;
case 2: result_type = make_type_pointer(a, t_int); break;
}
} else if (is_type_string(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, t_u8_ptr); break;
case 1: result_type = make_type_pointer(a, t_int); break;
}
} else if (is_type_any(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, t_type_info_ptr); break;
case 1: result_type = make_type_pointer(a, t_rawptr); break;
}
} else if (is_type_dynamic_array(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, make_type_pointer(a, t->DynamicArray.elem)); break;
case 1: result_type = t_int_ptr; break;
case 2: result_type = t_int_ptr; break;
case 3: result_type = t_allocator_ptr; break;
}
} else if (is_type_dynamic_map(t)) {
Type *gst = t->Map.generated_struct_type;
switch (index) {
case 0: result_type = make_type_pointer(a, gst->Record.fields[0]->type); break;
case 1: result_type = make_type_pointer(a, gst->Record.fields[1]->type); break;
}
}else {
GB_PANIC("TODO(bill): ssa_emit_ptr_index type: %s, %d", type_to_string(s->type), index);
}
GB_ASSERT(result_type != NULL);
return ssa_new_value1i(p, ssaOp_PtrIndex, result_type, index, s);
}
ssaValue *ssa_emit_value_index(ssaProc *p, ssaValue *s, i64 index) {
if (s->op == ssaOp_Load) {
if (!can_ssa_type(s->type)) {
ssaValue *e = ssa_emit_ptr_index(p, s->args[0], index);
return ssa_emit_load(p, e);
}
}
GB_ASSERT(can_ssa_type(s->type));
gbAllocator a = p->allocator;
Type *t = base_type(s->type);
Type *result_type = NULL;
if (is_type_struct(t)) {
GB_ASSERT(t->Record.field_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Record.field_count-1));
result_type = t->Record.fields[index]->type;
} else if (is_type_union(t)) {
type_set_offsets(a, t);
GB_ASSERT(t->Record.field_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Record.field_count-1));
result_type = t->Record.fields[index]->type;
} else if (is_type_tuple(t)) {
GB_ASSERT(t->Tuple.variable_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Tuple.variable_count-1));
result_type = t->Tuple.variables[index]->type;
} else if (is_type_slice(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, t->Slice.elem); break;
case 1: result_type = t_int; break;
case 2: result_type = t_int; break;
}
} else if (is_type_string(t)) {
switch (index) {
case 0: result_type = t_u8_ptr; break;
case 1: result_type = t_int; break;
}
} else if (is_type_any(t)) {
switch (index) {
case 0: result_type = t_type_info_ptr; break;
case 1: result_type = t_rawptr; break;
}
} else if (is_type_dynamic_array(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, t->DynamicArray.elem); break;
case 1: result_type = t_int; break;
case 2: result_type = t_int; break;
case 3: result_type = t_allocator; break;
}
} else if (is_type_dynamic_map(t)) {
Type *gst = t->Map.generated_struct_type;
switch (index) {
case 0: result_type = gst->Record.fields[0]->type; break;
case 1: result_type = gst->Record.fields[1]->type; break;
}
} else {
GB_PANIC("TODO(bill): struct_ev type: %s, %d", type_to_string(s->type), index);
}
GB_ASSERT(result_type != NULL);
return ssa_new_value1i(p, ssaOp_ValueIndex, result_type, index, s);
}
ssaValue *ssa_emit_deep_field_ptr_index(ssaProc *p, ssaValue *e, Selection sel) {
GB_ASSERT(sel.index.count > 0);
Type *type = type_deref(e->type);
for_array(i, sel.index) {
i32 index = cast(i32)sel.index[i];
if (is_type_pointer(type)) {
type = type_deref(type);
e = ssa_emit_load(p, e);
}
type = base_type(type);
if (is_type_raw_union(type)) {
type = type->Record.fields[index]->type;
e = ssa_emit_conv(p, e, make_type_pointer(p->allocator, type));
} else if (type->kind == Type_Record) {
type = type->Record.fields[index]->type;
e = ssa_emit_ptr_index(p, e, index);
} else if (type->kind == Type_Tuple) {
type = type->Tuple.variables[index]->type;
e = ssa_emit_ptr_index(p, e, index);
}else if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_any: {
if (index == 0) {
type = t_type_info_ptr;
} else if (index == 1) {
type = t_rawptr;
}
e = ssa_emit_ptr_index(p, e, index);
} break;
case Basic_string:
e = ssa_emit_ptr_index(p, e, index);
break;
default:
GB_PANIC("un-gep-able type");
break;
}
} else if (type->kind == Type_Slice) {
e = ssa_emit_ptr_index(p, e, index);
} else if (type->kind == Type_DynamicArray) {
e = ssa_emit_ptr_index(p, e, index);
} else if (type->kind == Type_Vector) {
e = ssa_emit_array_index(p, e, ssa_const_int(p, t_int, index));
} else if (type->kind == Type_Array) {
e = ssa_emit_array_index(p, e, ssa_const_int(p, t_int, index));
} else if (type->kind == Type_Map) {
e = ssa_emit_ptr_index(p, e, 1);
switch (index) {
case 0: e = ssa_emit_ptr_index(p, e, 1); break; // count
case 1: e = ssa_emit_ptr_index(p, e, 2); break; // capacity
case 2: e = ssa_emit_ptr_index(p, e, 3); break; // allocator
}
} else {
GB_PANIC("un-gep-able type");
}
}
return e;
}
ssaValue *ssa_emit_deep_field_value_index(ssaProc *p, ssaValue *e, Selection sel) {
GB_ASSERT(sel.index.count > 0);
Type *type = e->type;
if (e->op == ssaOp_Load) {
if (!can_ssa_type(e->type)) {
ssaValue *ptr = ssa_emit_deep_field_ptr_index(p, e->args[0], sel);
return ssa_emit_load(p, ptr);
}
}
GB_ASSERT(can_ssa_type(e->type));
for_array(i, sel.index) {
i32 index = cast(i32)sel.index[i];
if (is_type_pointer(type)) {
e = ssa_emit_load(p, e);
}
type = base_type(type);
if (is_type_raw_union(type)) {
GB_PANIC("TODO(bill): IS THIS EVEN CORRECT?");
type = type->Record.fields[index]->type;
e = ssa_emit_conv(p, e, type);
} else if (type->kind == Type_Map) {
e = ssa_emit_value_index(p, e, 1);
switch (index) {
case 0: e = ssa_emit_value_index(p, e, 1); break; // count
case 1: e = ssa_emit_value_index(p, e, 2); break; // capacity
case 2: e = ssa_emit_value_index(p, e, 3); break; // allocator
}
} else {
e = ssa_emit_value_index(p, e, index);
}
}
return e;
}
ssaAddr ssa_build_addr(ssaProc *p, AstNode *expr) {
switch (expr->kind) {
case_ast_node(i, Ident, expr);
if (ssa_is_blank_ident(expr)) {
ssaAddr val = {0};
return val;
}
Entity *e = entity_of_ident(p->module->info, expr);
return ssa_build_addr_from_entity(p, e, expr);
case_end;
case_ast_node(pe, ParenExpr, expr);
return ssa_build_addr(p, unparen_expr(expr));
case_end;
case_ast_node(se, SelectorExpr, expr);
ssa_emit_comment(p, str_lit("SelectorExpr"));
AstNode *sel = unparen_expr(se->selector);
if (sel->kind == AstNode_Ident) {
String selector = sel->Ident.string;
TypeAndValue tav = type_and_value_of_expr(p->module->info, se->expr);
if (tav.mode == Addressing_Invalid) {
// NOTE(bill): Imports
Entity *imp = entity_of_ident(p->module->info, se->expr);
if (imp != NULL) {
GB_ASSERT(imp->kind == Entity_ImportName);
}
return ssa_build_addr(p, se->selector);
}
Type *type = base_type(tav.type);
if (tav.mode == Addressing_Type) { // Addressing_Type
GB_PANIC("TODO: SelectorExpr Addressing_Type");
// Selection sel = lookup_field(p->allocator, type, selector, true);
// Entity *e = sel.entity;
// GB_ASSERT(e->kind == Entity_Variable);
// GB_ASSERT(e->flags & EntityFlag_TypeField);
// String name = e->token.string;
// if (name == "names") {
// ssaValue *ti_ptr = ir_type_info(p, type);
// ssaValue *names_ptr = NULL;
// if (is_type_enum(type)) {
// ssaValue *enum_info = ssa_emit_conv(p, ti_ptr, t_type_info_enum_ptr);
// names_ptr = ssa_emit_ptr_index(p, enum_info, 1);
// } else if (type->kind == Type_Record) {
// ssaValue *record_info = ssa_emit_conv(p, ti_ptr, t_type_info_record_ptr);
// names_ptr = ssa_emit_ptr_index(p, record_info, 1);
// }
// return ssa_addr(names_ptr);
// } else {
// GB_PANIC("Unhandled TypeField %.*s", LIT(name));
// }
GB_PANIC("Unreachable");
}
Selection sel = lookup_field(p->allocator, type, selector, false);
GB_ASSERT(sel.entity != NULL);
ssaValue *a = ssa_build_addr(p, se->expr).addr;
a = ssa_emit_deep_field_ptr_index(p, a, sel);
return ssa_addr(a);
} else {
Type *type = base_type(type_of_expr(p->module->info, se->expr));
GB_ASSERT(is_type_integer(type));
ExactValue val = type_and_value_of_expr(p->module->info, sel).value;
i64 index = i128_to_i64(val.value_integer);
Selection sel = lookup_field_from_index(p->allocator, type, index);
GB_ASSERT(sel.entity != NULL);
ssaValue *a = ssa_build_addr(p, se->expr).addr;
a = ssa_emit_deep_field_ptr_index(p, a, sel);
return ssa_addr(a);
}
case_end;
case_ast_node(ue, UnaryExpr, expr);
switch (ue->op.kind) {
case Token_Pointer: {
return ssa_build_addr(p, ue->expr);
}
default:
GB_PANIC("Invalid unary expression for ssa_build_addr");
}
case_end;
case_ast_node(be, BinaryExpr, expr);
GB_PANIC("Invalid binary expression for ssa_build_addr: %.*s\n", LIT(be->op.string));
case_end;
case_ast_node(ie, IndexExpr, expr);
GB_PANIC("TODO(bill): ssa_build_addr IndexExpr");
case_end;
case_ast_node(se, SliceExpr, expr);
GB_PANIC("TODO(bill): ssa_build_addr SliceExpr");
case_end;
case_ast_node(de, DerefExpr, expr);
ssaValue *addr = ssa_build_expr(p, de->expr);
return ssa_addr(addr);
case_end;
case_ast_node(ce, CallExpr, expr);
ssaValue *e = ssa_build_expr(p, expr);
ssaValue *v = ssa_address_from_load_or_generate_local(p, e);
return ssa_addr(v);
case_end;
case_ast_node(cl, CompoundLit, expr);
GB_PANIC("TODO(bill): ssa_build_addr CompoundLit");
case_end;
}
TokenPos token_pos = ast_node_token(expr).pos;
GB_PANIC("Unexpected address expression\n"
"\tAstNode: %.*s @ "
"%.*s(%td:%td)\n",
LIT(ast_node_strings[expr->kind]),
LIT(token_pos.file), token_pos.line, token_pos.column);
return ssa_addr(NULL);
}
Type *ssa_proper_type(Type *t) {
t = default_type(core_type(t));
if (t->kind == Type_Basic) {
switch (t->Basic.kind) {
case Basic_int:
if (build_context.word_size == 8) {
return t_i64;
}
return t_i32;
case Basic_uint:
if (build_context.word_size == 8) {
return t_u64;
}
return t_u32;
}
}
return t;
}
ssaOp ssa_determine_op(TokenKind op, Type *t) {
t = ssa_proper_type(t);
if (t->kind == Type_Basic) {
switch (t->Basic.kind) {
case Basic_bool:
switch (op) {
case Token_And: return ssaOp_And8;
case Token_Or: return ssaOp_Or8;
case Token_Xor: return ssaOp_Xor8;
case Token_AndNot: return ssaOp_AndNot8;
}
break;
case Basic_i8:
switch (op) {
case Token_Add: return ssaOp_Add8;
case Token_Sub: return ssaOp_Sub8;
case Token_Mul: return ssaOp_Mul8;
case Token_Quo: return ssaOp_Div8;
case Token_Mod: return ssaOp_Mod8;
case Token_And: return ssaOp_And8;
case Token_Or: return ssaOp_Or8;
case Token_Xor: return ssaOp_Xor8;
case Token_AndNot: return ssaOp_AndNot8;
case Token_Lt: return ssaOp_Lt8;
case Token_LtEq: return ssaOp_Le8;
case Token_Gt: return ssaOp_Gt8;
case Token_GtEq: return ssaOp_Ge8;
case Token_CmpEq: return ssaOp_Eq8;
case Token_NotEq: return ssaOp_Ne8;
}
break;
case Basic_u8:
switch (op) {
case Token_Add: return ssaOp_Add8;
case Token_Sub: return ssaOp_Sub8;
case Token_Mul: return ssaOp_Mul8;
case Token_Quo: return ssaOp_Div8U;
case Token_Mod: return ssaOp_Mod8U;
case Token_And: return ssaOp_And8;
case Token_Or: return ssaOp_Or8;
case Token_Xor: return ssaOp_Xor8;
case Token_AndNot: return ssaOp_AndNot8;
case Token_Lt: return ssaOp_Lt8;
case Token_LtEq: return ssaOp_Le8;
case Token_Gt: return ssaOp_Gt8;
case Token_GtEq: return ssaOp_Ge8;
case Token_CmpEq: return ssaOp_Eq8;
case Token_NotEq: return ssaOp_Ne8;
}
break;
case Basic_i16:
switch (op) {
case Token_Add: return ssaOp_Add16;
case Token_Sub: return ssaOp_Sub16;
case Token_Mul: return ssaOp_Mul16;
case Token_Quo: return ssaOp_Div16;
case Token_Mod: return ssaOp_Mod16;
case Token_And: return ssaOp_And16;
case Token_Or: return ssaOp_Or16;
case Token_Xor: return ssaOp_Xor16;
case Token_AndNot: return ssaOp_AndNot16;
case Token_Lt: return ssaOp_Lt16;
case Token_LtEq: return ssaOp_Le16;
case Token_Gt: return ssaOp_Gt16;
case Token_GtEq: return ssaOp_Ge16;
case Token_CmpEq: return ssaOp_Eq16;
case Token_NotEq: return ssaOp_Ne16;
}
break;
case Basic_u16:
switch (op) {
case Token_Add: return ssaOp_Add16;
case Token_Sub: return ssaOp_Sub16;
case Token_Mul: return ssaOp_Mul16;
case Token_Quo: return ssaOp_Div16U;
case Token_Mod: return ssaOp_Mod16U;
case Token_And: return ssaOp_And16;
case Token_Or: return ssaOp_Or16;
case Token_Xor: return ssaOp_Xor16;
case Token_AndNot: return ssaOp_AndNot16;
case Token_Lt: return ssaOp_Lt16;
case Token_LtEq: return ssaOp_Le16;
case Token_Gt: return ssaOp_Gt16;
case Token_GtEq: return ssaOp_Ge16;
case Token_CmpEq: return ssaOp_Eq16;
case Token_NotEq: return ssaOp_Ne16;
}
break;
case Basic_i32:
switch (op) {
case Token_Add: return ssaOp_Add32;
case Token_Sub: return ssaOp_Sub32;
case Token_Mul: return ssaOp_Mul32;
case Token_Quo: return ssaOp_Div32;
case Token_Mod: return ssaOp_Mod32;
case Token_And: return ssaOp_And32;
case Token_Or: return ssaOp_Or32;
case Token_Xor: return ssaOp_Xor32;
case Token_AndNot: return ssaOp_AndNot32;
case Token_Lt: return ssaOp_Lt32;
case Token_LtEq: return ssaOp_Le32;
case Token_Gt: return ssaOp_Gt32;
case Token_GtEq: return ssaOp_Ge32;
case Token_CmpEq: return ssaOp_Eq32;
case Token_NotEq: return ssaOp_Ne32;
}
break;
case Basic_u32:
switch (op) {
case Token_Add: return ssaOp_Add32;
case Token_Sub: return ssaOp_Sub32;
case Token_Mul: return ssaOp_Mul32;
case Token_Quo: return ssaOp_Div32U;
case Token_Mod: return ssaOp_Mod32U;
case Token_And: return ssaOp_And32;
case Token_Or: return ssaOp_Or32;
case Token_Xor: return ssaOp_Xor32;
case Token_AndNot: return ssaOp_AndNot32;
case Token_Lt: return ssaOp_Lt32;
case Token_LtEq: return ssaOp_Le32;
case Token_Gt: return ssaOp_Gt32;
case Token_GtEq: return ssaOp_Ge32;
case Token_CmpEq: return ssaOp_Eq32;
case Token_NotEq: return ssaOp_Ne32;
}
break;
case Basic_i64:
switch (op) {
case Token_Add: return ssaOp_Add64;
case Token_Sub: return ssaOp_Sub64;
case Token_Mul: return ssaOp_Mul64;
case Token_Quo: return ssaOp_Div64;
case Token_Mod: return ssaOp_Mod64;
case Token_And: return ssaOp_And64;
case Token_Or: return ssaOp_Or64;
case Token_Xor: return ssaOp_Xor64;
case Token_AndNot: return ssaOp_AndNot64;
case Token_Lt: return ssaOp_Lt64;
case Token_LtEq: return ssaOp_Le64;
case Token_Gt: return ssaOp_Gt64;
case Token_GtEq: return ssaOp_Ge64;
case Token_CmpEq: return ssaOp_Eq64;
case Token_NotEq: return ssaOp_Ne64;
}
break;
case Basic_u64:
switch (op) {
case Token_Add: return ssaOp_Add64;
case Token_Sub: return ssaOp_Sub64;
case Token_Mul: return ssaOp_Mul64;
case Token_Quo: return ssaOp_Div64U;
case Token_Mod: return ssaOp_Mod64U;
case Token_And: return ssaOp_And64;
case Token_Or: return ssaOp_Or64;
case Token_Xor: return ssaOp_Xor64;
case Token_AndNot: return ssaOp_AndNot64;
case Token_Lt: return ssaOp_Lt64;
case Token_LtEq: return ssaOp_Le64;
case Token_Gt: return ssaOp_Gt64;
case Token_GtEq: return ssaOp_Ge64;
case Token_CmpEq: return ssaOp_Eq64;
case Token_NotEq: return ssaOp_Ne64;
}
break;
case Basic_f32:
switch (op) {
case Token_Add: return ssaOp_Add32F;
case Token_Sub: return ssaOp_Sub32F;
case Token_Mul: return ssaOp_Mul32F;
case Token_Quo: return ssaOp_Div32F;
case Token_Lt: return ssaOp_Lt32F;
case Token_LtEq: return ssaOp_Le32F;
case Token_Gt: return ssaOp_Gt32F;
case Token_GtEq: return ssaOp_Ge32F;
case Token_CmpEq: return ssaOp_Eq32F;
case Token_NotEq: return ssaOp_Ne32F;
}
break;
case Basic_f64:
switch (op) {
case Token_Add: return ssaOp_Add64F;
case Token_Sub: return ssaOp_Sub64F;
case Token_Mul: return ssaOp_Mul64F;
case Token_Quo: return ssaOp_Div64F;
case Token_Lt: return ssaOp_Lt64F;
case Token_LtEq: return ssaOp_Le64F;
case Token_Gt: return ssaOp_Gt64F;
case Token_GtEq: return ssaOp_Ge64F;
case Token_CmpEq: return ssaOp_Eq64F;
case Token_NotEq: return ssaOp_Ne64F;
}
break;
}
}
GB_PANIC("Invalid Op for type");
return ssaOp_Invalid;
}
ssaValue *ssa_emit_comp(ssaProc *p, TokenKind op, ssaValue *x, ssaValue *y) {
GB_ASSERT(x != NULL && y != NULL);
Type *a = core_type(x->type);
Type *b = core_type(y->type);
if (are_types_identical(a, b)) {
// NOTE(bill): No need for a conversion
} else if (ssa_is_op_const(x->op)) {
x = ssa_emit_conv(p, x, y->type);
} else if (ssa_is_op_const(y->op)) {
y = ssa_emit_conv(p, y, x->type);
}
Type *result = t_bool;
if (is_type_vector(a)) {
result = make_type_vector(p->allocator, t_bool, a->Vector.count);
}
if (is_type_vector(a)) {
ssa_emit_comment(p, str_lit("vector.comp.begin"));
Type *tl = base_type(a);
ssaValue *lhs = ssa_address_from_load_or_generate_local(p, x);
ssaValue *rhs = ssa_address_from_load_or_generate_local(p, y);
GB_ASSERT(is_type_vector(result));
Type *elem_type = base_type(result)->Vector.elem;
ssaAddr addr = ssa_add_local_generated(p, result);
for (i32 i = 0; i < tl->Vector.count; i++) {
ssaValue *index = ssa_const_int(p, t_int, i);
ssaValue *x = ssa_emit_load(p, ssa_emit_array_index(p, lhs, index));
ssaValue *y = ssa_emit_load(p, ssa_emit_array_index(p, rhs, index));
ssaValue *z = ssa_emit_comp(p, op, x, y);
ssa_emit_store(p, ssa_emit_array_index(p, addr.addr, index), z);
}
ssa_emit_comment(p, str_lit("vector.comp.end"));
return ssa_addr_load(p, addr);
}
return ssa_new_value2(p, ssa_determine_op(op, x->type), x->type, x, y);
}
ssaValue *ssa_emit_unary_arith(ssaProc *p, TokenKind op, ssaValue *x, Type *type) {
if (is_type_vector(x->type)) {
ssa_emit_comment(p, str_lit("vector.arith.begin"));
// IMPORTANT TODO(bill): This is very wasteful with regards to stack memory
Type *tl = base_type(x->type);
ssaValue *val = ssa_address_from_load_or_generate_local(p, x);
GB_ASSERT(is_type_vector(type));
Type *elem_type = base_type(type)->Vector.elem;
ssaAddr res = ssa_add_local_generated(p, type);
for (i64 i = 0; i < tl->Vector.count; i++) {
ssaValue *index = ssa_const_int(p, t_int, i);
ssaValue *e = ssa_emit_load(p, ssa_emit_array_index(p, val, index));
ssaValue *z = ssa_emit_unary_arith(p, op, e, elem_type);
ssa_emit_store(p, ssa_emit_array_index(p, res.addr, index), z);
}
ssa_emit_comment(p, str_lit("vector.arith.end"));
return ssa_addr_load(p, res);
}
switch (op) {
case Token_Pointer: {
GB_PANIC("Token_Pointer should be handled elsewhere");
} break;
case Token_Add:
return x;
case Token_Not: // Boolean not
return ssa_new_value1(p, ssaOp_NotB, type, x);
case Token_Xor: { // Bitwise not
isize bits = 8*type_size_of(p->allocator, x->type);
switch (bits) {
case 8: return ssa_new_value1(p, ssaOp_Not8, type, x);
case 16: return ssa_new_value1(p, ssaOp_Not16, type, x);
case 32: return ssa_new_value1(p, ssaOp_Not32, type, x);
case 64: return ssa_new_value1(p, ssaOp_Not64, type, x);
}
GB_PANIC("unknown integer size");
} break;
case Token_Sub: { // 0-x
isize bits = 8*type_size_of(p->allocator, x->type);
if (is_type_integer(x->type)) {
switch (bits) {
case 8: return ssa_new_value1(p, ssaOp_Neg8, type, x);
case 16: return ssa_new_value1(p, ssaOp_Neg16, type, x);
case 32: return ssa_new_value1(p, ssaOp_Neg32, type, x);
case 64: return ssa_new_value1(p, ssaOp_Neg64, type, x);
}
} else if (is_type_float(x->type)) {
switch (bits) {
case 32: return ssa_new_value1(p, ssaOp_Neg32F, type, x);
case 64: return ssa_new_value1(p, ssaOp_Neg64F, type, x);
}
}
GB_PANIC("unknown type for -x");
} break;
}
return NULL;
}
ssaValue *ssa_emit_arith(ssaProc *p, TokenKind op, ssaValue *x, ssaValue *y, Type *type) {
if (is_type_vector(x->type)) {
GB_PANIC("TODO(bill): ssa_emit_arith vector");
} else if (is_type_complex(x->type)) {
GB_PANIC("TODO(bill): ssa_emit_arith complex");
}
if (op == Token_Add) {
if (is_type_pointer(x->type)) {
GB_PANIC("TODO(bill): Ptr arith");
ssaValue *ptr = ssa_emit_conv(p, x, type);
ssaValue *offset = y;
// return ssa_emit_ptr_offset(p, ptr, offset);
} else if (is_type_pointer(y->type)) {
GB_PANIC("TODO(bill): Ptr arith");
ssaValue *ptr = ssa_emit_conv(p, y, type);
ssaValue *offset = x;
// return ssa_emit_ptr_offset(p, ptr, offset);
}
} else if (op == Token_Sub) {
if (is_type_pointer(x->type) && is_type_integer(y->type)) {
GB_PANIC("TODO(bill): Ptr arith");
// ptr - int
ssaValue *ptr = ssa_emit_conv(p, x, type);
ssaValue *offset = y;
// return ssa_emit_ptr_offset(p, ptr, offset);
} else if (is_type_pointer(x->type) && is_type_pointer(y->type)) {
GB_ASSERT(is_type_integer(type));
Type *ptr_type = base_type(x->type);
GB_ASSERT(!is_type_rawptr(ptr_type));
ssaValue *elem_size = ssa_const_int(p, t_int, type_size_of(p->allocator, ptr_type->Pointer.elem));
ssaValue *a = ssa_emit_conv(p, x, type);
ssaValue *b = ssa_emit_conv(p, y, type);
ssaValue *diff = ssa_emit_arith(p, op, a, b, type);
return ssa_emit_arith(p, Token_Quo, diff, elem_size, type);
}
}
switch (op) {
case Token_Add:
case Token_Sub:
case Token_Mul:
case Token_Quo:
case Token_Mod:
case Token_And:
case Token_Or:
case Token_Xor:
case Token_AndNot:
GB_ASSERT(x != NULL && y != NULL);
return ssa_new_value2(p, ssa_determine_op(op, x->type), type, x, y);
}
return NULL;
}
ssaValue *ssa_build_cond(ssaProc *p, AstNode *cond, ssaBlock *yes, ssaBlock *no) {
switch (cond->kind) {
case_ast_node(pe, ParenExpr, cond);
return ssa_build_cond(p, pe->expr, yes, no);
case_end;
case_ast_node(ue, UnaryExpr, cond);
if (ue->op.kind == Token_Not) {
return ssa_build_cond(p, ue->expr, no, yes);
}
case_end;
case_ast_node(be, BinaryExpr, cond);
if (be->op.kind == Token_CmpAnd) {
ssaBlock *block = ssa_new_block(p, ssaBlock_Plain, "cmd.and");
ssa_build_cond(p, be->left, block, no);
ssa_start_block(p, block);
return ssa_build_cond(p, be->right, yes, no);
} else if (be->op.kind == Token_CmpOr) {
ssaBlock *block = ssa_new_block(p, ssaBlock_Plain, "cmp.or");
ssa_build_cond(p, be->left, yes, block);
ssa_start_block(p, block);
return ssa_build_cond(p, be->right, yes, no);
}
case_end;
}
ssaValue *c = ssa_build_expr(p, cond);
ssaBlock *b = ssa_end_block(p);
b->kind = ssaBlock_If;
ssa_set_control(b, c);
ssa_add_edge_to(b, yes);
ssa_add_edge_to(b, no);
return c;
}
ssaValue *ssa_emit_logical_binary_expr(ssaProc *p, AstNode *expr) {
ast_node(be, BinaryExpr, expr);
ssaBlock *rhs = ssa_new_block(p, ssaBlock_Plain, "logical.cmp.rhs");
ssaBlock *done = ssa_new_block(p, ssaBlock_Plain, "logical.cmp.done");
GB_ASSERT(p->curr_block != NULL);
Type *type = default_type(type_of_expr(p->module->info, expr));
bool short_circuit_value = false;
if (be->op.kind == Token_CmpAnd) {
ssa_build_cond(p, be->left, rhs, done);
short_circuit_value = false;
} else if (be->op.kind == Token_CmpOr) {
ssa_build_cond(p, be->left, done, rhs);
short_circuit_value = true;
}
if (rhs->preds.count == 0) {
ssa_start_block(p, done);
return ssa_const_bool(p, type, short_circuit_value);
}
if (done->preds.count == 0) {
ssa_start_block(p, rhs);
return ssa_build_expr(p, be->right);
}
ssa_start_block(p, rhs);
ssaValue *short_circuit = ssa_const_bool(p, type, short_circuit_value);
ssaValueArgs edges = {0};
ssa_init_value_args(&edges, p->allocator);
for_array(i, done->preds) {
ssa_add_arg(&edges, short_circuit);
}
ssa_add_arg(&edges, ssa_build_expr(p, be->right));
ssa_emit_jump(p, done);
ssa_start_block(p, done);
ssaValue *phi = ssa_new_value0(p, ssaOp_Phi, type);
phi->args = edges;
return phi;
}
ssaValue *ssa_build_expr(ssaProc *p, AstNode *expr) {
expr = unparen_expr(expr);
TypeAndValue tv = type_and_value_of_expr(p->module->info, expr);
GB_ASSERT(tv.mode != Addressing_Invalid);
if (tv.value.kind != ExactValue_Invalid) {
Type *t = core_type(tv.type);
if (is_type_boolean(t)) {
return ssa_const_bool(p, tv.type, tv.value.value_bool);
} else if (is_type_string(t)) {
GB_ASSERT(tv.value.kind == ExactValue_String);
return ssa_const_string(p, tv.type, tv.value.value_string);
} else if(is_type_slice(t)) {
return ssa_const_slice(p, tv.type, tv.value);
} else if (is_type_integer(t)) {
GB_ASSERT(tv.value.kind == ExactValue_Integer);
i64 s = 8*type_size_of(p->allocator, t);
switch (s) {
case 8: return ssa_const_i8 (p, tv.type, i128_to_i64(tv.value.value_integer));
case 16: return ssa_const_i16(p, tv.type, i128_to_i64(tv.value.value_integer));
case 32: return ssa_const_i32(p, tv.type, i128_to_i64(tv.value.value_integer));
case 64: return ssa_const_i64(p, tv.type, i128_to_i64(tv.value.value_integer));
default: GB_PANIC("Unknown integer size");
}
} else if (is_type_float(t)) {
GB_ASSERT(tv.value.kind == ExactValue_Float);
i64 s = 8*type_size_of(p->allocator, t);
switch (s) {
case 32: return ssa_const_f32(p, tv.type, tv.value.value_float);
case 64: return ssa_const_f64(p, tv.type, tv.value.value_float);
default: GB_PANIC("Unknown float size");
}
}
// IMPORTANT TODO(bill): Do constant record/array literals correctly
return ssa_const_nil(p, tv.type);
}
if (tv.mode == Addressing_Variable) {
return ssa_addr_load(p, ssa_build_addr(p, expr));
}
switch (expr->kind) {
case_ast_node(bl, BasicLit, expr);
GB_PANIC("Non-constant basic literal");
case_end;
case_ast_node(bd, BasicDirective, expr);
TokenPos pos = bd->token.pos;
GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(bd->name));
case_end;
case_ast_node(i, Ident, expr);
Entity *e = *map_get(&p->module->info->uses, hash_pointer(expr));
if (e->kind == Entity_Builtin) {
Token token = ast_node_token(expr);
GB_PANIC("TODO(bill): ssa_build_expr Entity_Builtin `%.*s`\n"
"\t at %.*s(%td:%td)", LIT(builtin_procs[e->Builtin.id].name),
LIT(token.pos.file), token.pos.line, token.pos.column);
return NULL;
} else if (e->kind == Entity_Nil) {
GB_PANIC("TODO(bill): nil");
return NULL;
}
ssaValue **found = map_get(&p->module->values, hash_pointer(e));
if (found) {
ssaValue *v = *found;
if (v->op == ssaOp_Proc) {
return v;
}
ssaAddr addr = ssa_build_addr(p, expr);
return ssa_addr_load(p, addr);
}
case_end;
case_ast_node(ue, UnaryExpr, expr);
if (ue->op.kind == Token_Pointer) {
return ssa_build_addr(p, ue->expr).addr;
}
ssaValue *x = ssa_build_expr(p, ue->expr);
return ssa_emit_unary_arith(p, ue->op.kind, x, tv.type);
case_end;
case_ast_node(be, BinaryExpr, expr);
Type *type = default_type(tv.type);
switch (be->op.kind) {
case Token_Add:
case Token_Sub:
case Token_Mul:
case Token_Quo:
case Token_Mod:
case Token_And:
case Token_Or:
case Token_Xor:
case Token_AndNot: {
ssaValue *x = ssa_build_expr(p, be->left);
ssaValue *y = ssa_build_expr(p, be->right);
return ssa_emit_arith(p, be->op.kind, x, y, type);
}
case Token_Shl:
case Token_Shr: {
GB_PANIC("TODO: shifts");
return NULL;
}
case Token_CmpEq:
case Token_NotEq:
case Token_Lt:
case Token_LtEq:
case Token_Gt:
case Token_GtEq: {
ssaValue *x = ssa_build_expr(p, be->left);
ssaValue *y = ssa_build_expr(p, be->right);
return ssa_emit_comp(p, be->op.kind, x, y);
} break;
case Token_CmpAnd:
case Token_CmpOr:
return ssa_emit_logical_binary_expr(p, expr);
default:
GB_PANIC("Invalid binary expression");
break;
}
case_end;
case_ast_node(de, DerefExpr, expr);
return ssa_addr_load(p, ssa_build_addr(p, expr));
case_end;
case_ast_node(se, SelectorExpr, expr);
return ssa_addr_load(p, ssa_build_addr(p, expr));
case_end;
case_ast_node(te, TernaryExpr, expr);
ssa_emit_comment(p, str_lit("TernaryExpr"));
ssaValue *yes = NULL;
ssaValue *no = NULL;
GB_ASSERT(te->y != NULL);
ssaBlock *then = ssa_new_block(p, ssaBlock_Plain, "if.then");
ssaBlock *done = ssa_new_block(p, ssaBlock_Plain, "if.done"); // NOTE(bill): Append later
ssaBlock *else_ = ssa_new_block(p, ssaBlock_Plain, "if.else");
ssaBlock *v = NULL;
ssa_build_cond(p, te->cond, then, else_);
ssa_start_block(p, then);
// ssa_open_scope(p);
yes = ssa_build_expr(p, te->x);
// ssa_close_scope(p, ssaDeferExit_Default, NULL);
ssa_emit_jump(p, done);
ssa_start_block(p, else_);
// ssa_open_scope(p);
no = ssa_build_expr(p, te->y);
// ssa_close_scope(p, ssaDeferExit_Default, NULL);
ssa_emit_jump(p, done);
ssa_start_block(p, done);
return ssa_new_value2(p, ssaOp_Phi, tv.type, yes, no);
case_end;
case_ast_node(pl, ProcLit, expr);
GB_PANIC("TODO(bill): ssa_build_expr ProcLit");
#if 0
// NOTE(bill): Generate a new name
// parent$count
isize name_len = proc->name.len + 1 + 8 + 1;
u8 *name_text = gb_alloc_array(proc->module->allocator, u8, name_len);
name_len = gb_snprintf(cast(char *)name_text, name_len, "%.*s$%d", LIT(proc->name), cast(i32)proc->children.count);
String name = make_string(name_text, name_len-1);
Type *type = type_of_expr(proc->module->info, expr);
irValue *value = ir_value_procedure(proc->module->allocator,
proc->module, NULL, type, pl->type, pl->body, name);
value->Proc.tags = pl->tags;
value->Proc.parent = proc;
array_add(&proc->children, &value->Proc);
array_add(&proc->module->procs_to_generate, value);
return value;
#endif
case_end;
case_ast_node(cl, CompoundLit, expr);
return ssa_addr_load(p, ssa_build_addr(p, expr));
case_end;
case_ast_node(ce, CallExpr, expr);
if (map_get(&p->module->info->types, hash_pointer(ce->proc))->mode == Addressing_Type) {
GB_ASSERT(ce->args.count == 1);
ssaValue *x = ssa_build_expr(p, ce->args[0]);
return ssa_emit_conv(p, x, tv.type);
}
AstNode *p = unparen_expr(ce->proc);
GB_PANIC("TODO(bill): ssa_build_expr CallExpr");
case_end;
case_ast_node(se, SliceExpr, expr);
return ssa_addr_load(p, ssa_build_addr(p, expr));
case_end;
case_ast_node(ie, IndexExpr, expr);
return ssa_addr_load(p, ssa_build_addr(p, expr));
case_end;
}
GB_PANIC("Unexpected expression: %.*s", LIT(ast_node_strings[expr->kind]));
return NULL;
}
void ssa_build_stmt_list(ssaProc *p, Array<AstNode *> nodes) {
for_array(i, nodes) {
ssa_build_stmt(p, nodes[i]);
}
}
void ssa_build_when_stmt(ssaProc *p, AstNodeWhenStmt *ws) {
ssaValue *cond = ssa_build_expr(p, ws->cond);
GB_ASSERT(is_type_boolean(cond->type));
GB_ASSERT(cond->exact_value.kind == ExactValue_Bool);
if (cond->exact_value.value_bool) {
ssa_build_stmt_list(p, ws->body->BlockStmt.stmts);
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case AstNode_BlockStmt:
ssa_build_stmt_list(p, ws->else_stmt->BlockStmt.stmts);
break;
case AstNode_WhenStmt:
ssa_build_when_stmt(p, &ws->else_stmt->WhenStmt);
break;
default:
GB_PANIC("Invalid `else` statement in `when` statement");
break;
}
}
}
void ssa_build_assign_op(ssaProc *p, ssaAddr lhs, ssaValue *value, TokenKind op) {
ssaValue *old_value = ssa_addr_load(p, lhs);
Type *type = old_value->type;
ssaValue *change = value;
if (is_type_pointer(type) && is_type_integer(value->type)) {
change = ssa_emit_conv(p, value, default_type(value->type));
} else {
change = ssa_emit_conv(p, value, type);
}
ssaValue *new_value = ssa_emit_arith(p, op, old_value, change, type);
ssa_addr_store(p, lhs, new_value);
}
void ssa_build_stmt_internal(ssaProc *p, AstNode *node);
void ssa_build_stmt(ssaProc *p, AstNode *node) {
u32 prev_stmt_state_flags = p->module->stmt_state_flags;
if (node->stmt_state_flags != 0) {
u32 in = node->stmt_state_flags;
u32 out = p->module->stmt_state_flags;
if (in & StmtStateFlag_bounds_check) {
out |= StmtStateFlag_bounds_check;
out &= ~StmtStateFlag_no_bounds_check;
} else if (in & StmtStateFlag_no_bounds_check) {
out |= StmtStateFlag_no_bounds_check;
out &= ~StmtStateFlag_bounds_check;
}
p->module->stmt_state_flags = out;
}
ssa_build_stmt_internal(p, node);
p->module->stmt_state_flags = prev_stmt_state_flags;
}
void ssa_build_stmt_internal(ssaProc *p, AstNode *node) {
if (p->curr_block == NULL) {
ssaBlock *dead_block = ssa_new_block(p, ssaBlock_Plain, "");
ssa_start_block(p, dead_block);
}
switch (node->kind) {
case_ast_node(es, EmptyStmt, node);
case_end;
case_ast_node(bs, BlockStmt, node);
ssa_open_scope(p);
ssa_build_stmt_list(p, bs->stmts);
ssa_close_scope(p, ssaDeferExit_Default, NULL);
case_end;
case_ast_node(us, UsingStmt, node);
for_array(i, us->list) {
AstNode *decl = unparen_expr(us->list[i]);
if (decl->kind == AstNode_GenDecl) {
ssa_build_stmt(p, decl);
}
}
case_end;
case_ast_node(ws, WhenStmt, node);
ssa_build_when_stmt(p, ws);
case_end;
case_ast_node(s, IncDecStmt, node);
TokenKind op = Token_Add;
if (s->op.kind == Token_Dec) {
op = Token_Sub;
}
ssaAddr addr = ssa_build_addr(p, s->expr);
Type *t = ssa_addr_type(addr);
ssa_build_assign_op(p, addr, ssa_const_int(p, t, 1), op);
case_end;
case_ast_node(as, AssignStmt, node);
ssa_emit_comment(p, str_lit("AssignStmt"));
ssaModule *m = p->module;
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&m->tmp_arena);
switch (as->op.kind) {
case Token_Eq: {
Array<ssaAddr> lvals = {0};
array_init(&lvals, m->tmp_allocator);
for_array(i, as->lhs) {
AstNode *lhs = as->lhs[i];
ssaAddr lval = {0};
if (!ssa_is_blank_ident(lhs)) {
lval = ssa_build_addr(p, lhs);
}
array_add(&lvals, lval);
}
if (as->lhs.count == as->rhs.count) {
if (as->lhs.count == 1) {
AstNode *rhs = as->rhs[0];
ssaValue *init = ssa_build_expr(p, rhs);
ssa_addr_store(p, lvals[0], init);
} else {
Array<ssaValue *> inits;
array_init(&inits, m->tmp_allocator, lvals.count);
for_array(i, as->rhs) {
ssaValue *init = ssa_build_expr(p, as->rhs[i]);
array_add(&inits, init);
}
for_array(i, inits) {
ssa_addr_store(p, lvals[i], inits[i]);
}
}
} else {
Array<ssaValue *> inits;
array_init(&inits, m->tmp_allocator, lvals.count);
for_array(i, as->rhs) {
ssaValue *init = ssa_build_expr(p, as->rhs[i]);
Type *t = base_type(init->type);
// TODO(bill): refactor for code reuse as this is repeated a bit
if (t->kind == Type_Tuple) {
for (isize i = 0; i < t->Tuple.variable_count; i++) {
Entity *e = t->Tuple.variables[i];
ssaValue *v = ssa_emit_value_index(p, init, i);
array_add(&inits, v);
}
} else {
array_add(&inits, init);
}
}
for_array(i, inits) {
ssa_addr_store(p, lvals[i], inits[i]);
}
}
} break;
default: {
// GB_PANIC("TODO(bill): assign operations");
// NOTE(bill): Only 1 += 1 is allowed, no tuples
// +=, -=, etc
i32 op = cast(i32)as->op.kind;
op += Token_Add - Token_AddEq; // Convert += to +
ssaAddr lhs = ssa_build_addr(p, as->lhs[0]);
ssaValue *value = ssa_build_expr(p, as->rhs[0]);
ssa_build_assign_op(p, lhs, value, cast(TokenKind)op);
} break;
}
gb_temp_arena_memory_end(tmp);
case_end;
case_ast_node(es, ExprStmt, node);
// NOTE(bill): No need to use return value
ssa_build_expr(p, es->expr);
case_end;
case_ast_node(ds, DeferStmt, node);
// GB_PANIC("TODO: DeferStmt");
ssa_emit_comment(p, str_lit("DeferStmt"));
i32 scope_level = p->scope_level;
if (ds->stmt->kind == AstNode_BlockStmt) {
scope_level--;
}
ssa_add_defer_node(p, scope_level, ds->stmt);
case_end;
case_ast_node(rs, ReturnStmt, node);
GB_PANIC("TODO: ReturnStmt");
case_end;
case_ast_node(is, IfStmt, node);
ssa_emit_comment(p, str_lit("IfStmt"));
if (is->init != NULL) {
ssaBlock *init = ssa_new_block(p, ssaBlock_Plain, "if.init");
ssa_emit_jump(p, init);
ssa_start_block(p, init);
ssa_build_stmt(p, is->init);
}
ssaBlock *then = ssa_new_block(p, ssaBlock_Plain, "if.then");
ssaBlock *done = ssa_new_block(p, ssaBlock_Plain, "if.done");
ssaBlock *else_ = done;
if (is->else_stmt != NULL) {
else_ = ssa_new_block(p, ssaBlock_Plain, "if.else");
}
ssaBlock *b = NULL;
ssa_build_cond(p, is->cond, then, else_);
ssa_start_block(p, then);
ssa_open_scope(p);
ssa_build_stmt(p, is->body);
ssa_close_scope(p, ssaDeferExit_Default, NULL);
ssa_emit_jump(p, done);
if (is->else_stmt != NULL) {
ssa_start_block(p, else_);
ssa_open_scope(p);
ssa_build_stmt(p, is->else_stmt);
ssa_close_scope(p, ssaDeferExit_Default, NULL);
ssa_emit_jump(p, done);
}
ssa_start_block(p, done);
case_end;
case_ast_node(fs, ForStmt, node);
ssa_emit_comment(p, str_lit("ForStmt"));
if (fs->init != NULL) {
ssaBlock *init = ssa_new_block(p, ssaBlock_Plain, "for.init");
ssa_emit_jump(p, init);
ssa_start_block(p, init);
ssa_build_stmt(p, fs->init);
}
ssaBlock *body = ssa_new_block(p, ssaBlock_Plain, "for.body");
ssaBlock *done = ssa_new_block(p, ssaBlock_Plain, "for.done");
ssaBlock *loop = body;
if (fs->cond != NULL) {
loop = ssa_new_block(p, ssaBlock_Plain, "for.loop");
}
ssaBlock *post = loop;
if (fs->post != NULL) {
post = ssa_new_block(p, ssaBlock_Plain, "for.post");
}
ssa_emit_jump(p, loop);
ssa_start_block(p, loop);
if (loop != body) {
ssa_build_cond(p, fs->cond, body, done);
ssa_start_block(p, body);
}
ssa_push_target_list(p, done, post, NULL);
ssa_open_scope(p);
ssa_build_stmt(p, fs->body);
ssa_close_scope(p, ssaDeferExit_Default, NULL);
ssa_pop_target_list(p);
ssa_emit_jump(p, post);
if (fs->post != NULL) {
ssa_start_block(p, post);
ssa_build_stmt(p, fs->post);
ssa_emit_jump(p, post);
}
ssa_start_block(p, done);
case_end;
case_ast_node(rs, RangeStmt, node);
GB_PANIC("TODO: RangeStmt");
case_end;
case_ast_node(rs, MatchStmt, node);
GB_PANIC("TODO: MatchStmt");
case_end;
case_ast_node(rs, TypeMatchStmt, node);
GB_PANIC("TODO: TypeMatchStmt");
case_end;
case_ast_node(bs, BranchStmt, node);
ssaBlock *b = NULL;
switch (bs->token.kind) {
case Token_break:
for (ssaTargetList *t = p->target_list; t != NULL && b == NULL; t = t->prev) {
b = t->break_;
}
break;
case Token_continue:
for (ssaTargetList *t = p->target_list; t != NULL && b == NULL; t = t->prev) {
b = t->continue_;
}
break;
case Token_fallthrough:
for (ssaTargetList *t = p->target_list; t != NULL && b == NULL; t = t->prev) {
b = t->fallthrough_;
}
break;
}
if (b != NULL) {
ssa_emit_defer_stmts(p, ssaDeferExit_Branch, b);
}
switch (bs->token.kind) {
case Token_break: ssa_emit_comment(p, str_lit("break")); break;
case Token_continue: ssa_emit_comment(p, str_lit("continue")); break;
case Token_fallthrough: ssa_emit_comment(p, str_lit("fallthrough")); break;
}
ssa_emit_jump(p, b);
case_end;
case_ast_node(pa, PushAllocator, node);
GB_PANIC("TODO: PushAllocator");
case_end;
case_ast_node(pc, PushContext, node);
GB_PANIC("TODO: PushContext");
case_end;
}
}
void ssa_print_value(gbFile *f, ssaValue *v) {
if (v == NULL) {
gb_fprintf(f, "nil");
}
gb_fprintf(f, "v%d", v->id);
}
void ssa_print_exact_value(gbFile *f, ssaValue *v) {
Type *t = default_type(v->type);
ExactValue ev = v->exact_value;
switch (ev.kind) {
case ExactValue_Bool:
if (ev.value_bool == false) {
gb_fprintf(f, " [false]");
} else {
gb_fprintf(f, " [true]");
}
break;
case ExactValue_Integer:
if (is_type_unsigned(t)) {
gb_fprintf(f, " [%llu]", cast(unsigned long long)i128_to_u64(ev.value_integer));
} else {
gb_fprintf(f, " [%lld]", cast(long long)i128_to_i64(ev.value_integer));
}
break;
case ExactValue_Float:
if (is_type_f32(t)) {
f32 fp = cast(f32)ev.value_float;
u32 x = *cast(u32 *)&fp;
gb_fprintf(f, " [0x%x]", x);
} else if (is_type_f64(t)) {
f64 fp = cast(f64)ev.value_float;
u64 x = *cast(u64 *)&fp;
gb_fprintf(f, " [0x%llx]", cast(unsigned long long)x);
} else {
GB_PANIC("unhandled float");
}
break;
case ExactValue_String:
gb_fprintf(f, " [%.*s]", LIT(ev.value_string));
break;
case ExactValue_Pointer:
gb_fprintf(f, " [0x%llx]", cast(unsigned long long)cast(uintptr)ev.value_pointer);
break;
}
}
void ssa_print_reg_value(gbFile *f, ssaValue *v) {
gb_fprintf(f, " ");
gb_fprintf(f, "v%d = %.*s", v->id, LIT(ssa_op_strings[v->op]));
if (v->type != NULL) {
gbString type_str = type_to_string(default_type(v->type));
gb_fprintf(f, " %s", type_str);
gb_string_free(type_str);
}
ssa_print_exact_value(f, v);
for_array(i, v->args) {
gb_fprintf(f, " ");
ssa_print_value(f, v->args[i]);
}
if (v->comment_string.len > 0) {
gb_fprintf(f, " ; %.*s", LIT(v->comment_string));
}
gb_fprintf(f, "\n");
}
void ssa_print_proc(gbFile *f, ssaProc *p) {
gbString type_str = type_to_string(p->entity->type);
gb_fprintf(f, "%.*s %s\n", LIT(p->name), type_str);
gb_string_free(type_str);
bool *printed = gb_alloc_array(heap_allocator(), bool, p->value_id+1);
for_array(i, p->blocks) {
ssaBlock *b = p->blocks[i];
gb_fprintf(f, " b%d:", b->id);
if (b->preds.count > 0) {
gb_fprintf(f, " <-");
for_array(j, b->preds) {
ssaBlock *pred = b->preds[j].block;
gb_fprintf(f, " b%d", pred->id);
}
}
if (b->name.len > 0) {
gb_fprintf(f, " ; %.*s", LIT(b->name));
}
gb_fprintf(f, "\n");
isize n = 0;
for_array(j, b->values) {
ssaValue *v = b->values[j];
if (v->op != ssaOp_Phi) {
continue;
}
ssa_print_reg_value(f, v);
printed[v->id] = true;
n++;
}
while (n < b->values.count) {
isize m = 0;
for_array(j, b->values) {
ssaValue *v = b->values[j];
if (printed[v->id]) {
continue;
}
bool skip = false;
for_array(k, v->args) {
ssaValue *w = v->args[k];
if (w != NULL && w->block == b && !printed[w->id]) {
skip = true;
break;
}
}
if (skip) {
break;
}
ssa_print_reg_value(f, v);
printed[v->id] = true;
n++;
}
if (m == n) {
gb_fprintf(f, "!!!!DepCycle!!!!\n");
for_array(k, b->values) {
ssaValue *v = b->values[k];
if (printed[v->id]) {
continue;
}
ssa_print_reg_value(f, v);
printed[v->id] = true;
n++;
}
}
}
if (b->kind == ssaBlock_Plain) {
GB_ASSERT(b->succs.count == 1);
ssaBlock *next = b->succs[0].block;
gb_fprintf(f, " ");
gb_fprintf(f, "jump b%d", next->id);
gb_fprintf(f, "\n");
} else if (b->kind == ssaBlock_If) {
GB_ASSERT(b->succs.count == 2);
ssaBlock *yes = b->succs[0].block;
ssaBlock *no = b->succs[1].block;
gb_fprintf(f, " ");
gb_fprintf(f, "branch v%d, b%d, b%d", b->control->id, yes->id, no->id);
gb_fprintf(f, "\n");
} else if (b->kind == ssaBlock_Exit) {
gb_fprintf(f, " ");
gb_fprintf(f, "exit");
gb_fprintf(f, "\n");
} else if (b->kind == ssaBlock_Ret) {
gb_fprintf(f, " ");
gb_fprintf(f, "ret");
gb_fprintf(f, "\n");
}
}
gb_free(heap_allocator(), printed);
}
void ssa_opt_proc(ssaProc *p) {
}
void ssa_build_proc(ssaModule *m, ssaProc *p) {
p->module = m;
m->proc = p;
if (p->decl_info->proc_decl == NULL ||
p->decl_info->proc_decl->kind != AstNode_ProcDecl) {
return;
}
ast_node(pl, ProcLit, p->decl_info->proc_decl);
if (pl->body == NULL) {
return;
}
p->entry = ssa_new_block(p, ssaBlock_Entry, "entry");
ssa_start_block(p, p->entry);
ssa_build_stmt(p, pl->body);
if (p->entity->type->Proc.result_count == 0) {
ssa_emit_defer_stmts(p, ssaDeferExit_Return, NULL);
}
p->exit = ssa_new_block(p, ssaBlock_Exit, "exit");
ssa_emit_jump(p, p->exit);
ssa_opt_proc(p);
ssa_print_proc(gb_file_get_standard(gbFileStandard_Error), p);
}
bool ssa_generate(Parser *parser, CheckerInfo *info) {
if (global_error_collector.count != 0) {
return false;
}
ssaModule m = {0};
{ // Init ssaModule
m.info = info;
isize token_count = parser->total_token_count;
isize arena_size = 4 * token_count * gb_max3(gb_size_of(ssaValue), gb_size_of(ssaBlock), gb_size_of(ssaProc));
gb_arena_init_from_allocator(&m.arena, heap_allocator(), arena_size);
gb_arena_init_from_allocator(&m.tmp_arena, heap_allocator(), arena_size);
m.tmp_allocator = gb_arena_allocator(&m.tmp_arena);
m.allocator = gb_arena_allocator(&m.arena);
map_init(&m.values, heap_allocator());
array_init(&m.registers, heap_allocator());
array_init(&m.procs, heap_allocator());
array_init(&m.procs_to_generate, heap_allocator());
}
isize global_variable_max_count = 0;
Entity *entry_point = NULL;
bool has_dll_main = false;
bool has_win_main = false;
for_array(i, info->entities.entries) {
auto *entry = &info->entities.entries[i];
Entity *e = cast(Entity *)entry->key.ptr;
String name = e->token.string;
if (e->kind == Entity_Variable) {
global_variable_max_count++;
} else if (e->kind == Entity_Procedure && !e->scope->is_global) {
if (e->scope->is_init && name == "main") {
entry_point = e;
}
if ((e->Procedure.tags & ProcTag_export) != 0 ||
(e->Procedure.link_name.len > 0) ||
(e->scope->is_file && e->Procedure.link_name.len > 0)) {
if (!has_dll_main && name == "DllMain") {
has_dll_main = true;
} else if (!has_win_main && name == "WinMain") {
has_win_main = true;
}
}
}
}
m.entry_point_entity = entry_point;
m.min_dep_map = generate_minimum_dependency_map(info, entry_point);
for_array(i, info->entities.entries) {
auto *entry = &info->entities.entries[i];
Entity *e = cast(Entity *)entry->key.ptr;
String name = e->token.string;
DeclInfo *decl = entry->value;
Scope *scope = e->scope;
if (!scope->is_file) {
continue;
}
if (map_get(&m.min_dep_map, hash_pointer(e)) == NULL) {
// NOTE(bill): Nothing depends upon it so doesn't need to be built
continue;
}
if (!scope->is_global) {
if (e->kind == Entity_Procedure && (e->Procedure.tags & ProcTag_export) != 0) {
} else if (e->kind == Entity_Procedure && e->Procedure.link_name.len > 0) {
// Handle later
} else if (scope->is_init && e->kind == Entity_Procedure && name == "main") {
} else {
name = ssa_mangle_name(&m, e->token.pos.file, e);
}
}
switch (e->kind) {
case Entity_TypeName:
break;
case Entity_Variable: {
} break;
case Entity_Procedure: {
ast_node(pd, ProcDecl, decl->proc_decl);
String original_name = name;
AstNode *body = pd->body;
if (e->Procedure.is_foreign) {
name = e->token.string; // NOTE(bill): Don't use the mangled name
}
if (pd->link_name.len > 0) {
name = pd->link_name;
}
if (e == entry_point) {
ssaProc *p = ssa_new_proc(&m, name, e, decl);
ssa_build_proc(&m, p);
}
// ssaValue *p = ssa_make_value_procedure(a, m, e, e->type, decl->type_expr, body, name);
// p->Proc.tags = pd->tags;
// ssa_module_add_value(m, e, p);
// HashKey hash_name = hash_string(name);
// if (map_get(&m.members, hash_name) == NULL) {
// map_set(&m.members, hash_name, p);
// }
} break;
}
}
return true;
}
String ssa_mangle_name(ssaModule *m, String path, Entity *e) {
// NOTE(bill): prefix names not in the init scope
// TODO(bill): make robust and not just rely on the file's name
String name = e->token.string;
CheckerInfo *info = m->info;
gbAllocator a = m->allocator;
AstFile *file = *map_get(&info->files, hash_string(path));
char *str = gb_alloc_array(a, char, path.len+1);
gb_memmove(str, path.text, path.len);
str[path.len] = 0;
for (isize i = 0; i < path.len; i++) {
if (str[i] == '\\') {
str[i] = '/';
}
}
char const *base = gb_path_base_name(str);
char const *ext = gb_path_extension(base);
isize base_len = ext-1-base;
isize max_len = base_len + 1 + 10 + 1 + name.len;
bool is_overloaded = check_is_entity_overloaded(e);
if (is_overloaded) {
max_len += 21;
}
u8 *new_name = gb_alloc_array(a, u8, max_len);
isize new_name_len = gb_snprintf(
cast(char *)new_name, max_len,
"%.*s-%u.%.*s",
cast(int)base_len, base,
file->id,
LIT(name));
if (is_overloaded) {
char *str = cast(char *)new_name + new_name_len-1;
isize len = max_len-new_name_len;
isize extra = gb_snprintf(str, len, "-%tu", cast(usize)cast(uintptr)e);
new_name_len += extra-1;
}
return make_string(new_name, new_name_len-1);
}