mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 01:14:40 +00:00
181 lines
4.7 KiB
Odin
181 lines
4.7 KiB
Odin
TAU :: 6.28318530717958647692528676655900576
|
|
PI :: 3.14159265358979323846264338327950288
|
|
ONE_OVER_TAU :: 0.636619772367581343075535053490057448
|
|
ONE_OVER_PI :: 0.159154943091895335768883763372514362
|
|
|
|
E :: 2.71828182845904523536
|
|
SQRT_TWO :: 1.41421356237309504880168872420969808
|
|
SQRT_THREE :: 1.73205080756887729352744634150587236
|
|
SQRT_FIVE :: 2.23606797749978969640917366873127623
|
|
|
|
LOG_TWO :: 0.693147180559945309417232121458176568
|
|
LOG_TEN :: 2.30258509299404568401799145468436421
|
|
|
|
EPSILON :: 1.19209290e-7
|
|
|
|
τ :: TAU
|
|
π :: PI
|
|
|
|
// Vec2 :: type raw_union {
|
|
// using xy_: struct {x, y: f32}
|
|
// v: {2}f32
|
|
// e: [2]f32
|
|
// }
|
|
// Vec3 :: type raw_union {
|
|
// using xyz_: struct {x, y, z: f32}
|
|
// xy: Vec2
|
|
// v: {3}f32
|
|
// e: [3]f32
|
|
// }
|
|
// Vec4 :: type raw_union {
|
|
// using xyzw_: struct {x, y, z, w: f32}
|
|
// xy: Vec2
|
|
// xyz: Vec3
|
|
// v: {4}f32
|
|
// e: [4]f32
|
|
// }
|
|
Vec2 :: type {2}f32
|
|
Vec3 :: type {3}f32
|
|
Vec4 :: type {4}f32
|
|
|
|
Mat2 :: type {4}f32
|
|
Mat3 :: type {9}f32
|
|
Mat4 :: type {16}f32
|
|
|
|
|
|
sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32"
|
|
sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64"
|
|
|
|
sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32"
|
|
sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64"
|
|
|
|
cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64"
|
|
cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32"
|
|
|
|
lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t }
|
|
lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t }
|
|
|
|
clamp32 :: proc(x, lower, upper: f32) -> f32 { return min(max(x, lower), upper) }
|
|
clamp64 :: proc(x, lower, upper: f64) -> f64 { return min(max(x, lower), upper) }
|
|
|
|
sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1 } return -1 }
|
|
sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1 } return -1 }
|
|
|
|
|
|
|
|
copy_sign :: proc(x, y: f32) -> f32 {
|
|
ix := x transmute u32
|
|
iy := y transmute u32
|
|
ix &= 0x7fffffff
|
|
ix |= iy & 0x80000000
|
|
return ix transmute f32
|
|
}
|
|
round :: proc(x: f32) -> f32 {
|
|
if x >= 0 {
|
|
return floor(x + 0.5)
|
|
}
|
|
return ceil(x - 0.5)
|
|
}
|
|
floor :: proc(x: f32) -> f32 {
|
|
if x >= 0 {
|
|
return x as int as f32
|
|
}
|
|
return (x-0.5) as int as f32
|
|
}
|
|
ceil :: proc(x: f32) -> f32 {
|
|
if x < 0 {
|
|
return x as int as f32
|
|
}
|
|
return ((x as int)+1) as f32
|
|
}
|
|
|
|
remainder :: proc(x, y: f32) -> f32 {
|
|
return x - round(x/y) * y
|
|
}
|
|
|
|
fmod :: proc(x, y: f32) -> f32 {
|
|
y = abs(y)
|
|
result := remainder(abs(x), y)
|
|
if fsign(result) < 0 {
|
|
result += y
|
|
}
|
|
return copy_sign(result, x)
|
|
}
|
|
|
|
|
|
to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360 }
|
|
to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU }
|
|
|
|
|
|
|
|
|
|
dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c[0] + c[1] }
|
|
dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c[0] + c[1] + c[2] }
|
|
dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c[0] + c[1] + c[2] + c[3] }
|
|
|
|
cross :: proc(x, y: Vec3) -> Vec3 {
|
|
a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1)
|
|
b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0)
|
|
return a - b
|
|
}
|
|
|
|
|
|
vec2_mag :: proc(v: Vec2) -> f32 { return fsqrt(dot2(v, v)) }
|
|
vec3_mag :: proc(v: Vec3) -> f32 { return fsqrt(dot3(v, v)) }
|
|
vec4_mag :: proc(v: Vec4) -> f32 { return fsqrt(dot4(v, v)) }
|
|
|
|
vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)} }
|
|
vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)} }
|
|
vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)} }
|
|
|
|
vec2_norm0 :: proc(v: Vec2) -> Vec2 {
|
|
m := vec2_mag(v)
|
|
if m == 0 {
|
|
return Vec2{0}
|
|
}
|
|
return v / Vec2{m}
|
|
}
|
|
|
|
vec3_norm0 :: proc(v: Vec3) -> Vec3 {
|
|
m := vec3_mag(v)
|
|
if m == 0 {
|
|
return Vec3{0}
|
|
}
|
|
return v / Vec3{m}
|
|
}
|
|
|
|
vec4_norm0 :: proc(v: Vec4) -> Vec4 {
|
|
m := vec4_mag(v)
|
|
if m == 0 {
|
|
return Vec4{0}
|
|
}
|
|
return v / Vec4{m}
|
|
}
|
|
|
|
|
|
F32_DIG :: 6
|
|
F32_EPSILON :: 1.192092896e-07
|
|
F32_GUARD :: 0
|
|
F32_MANT_DIG :: 24
|
|
F32_MAX :: 3.402823466e+38
|
|
F32_MAX_10_EXP :: 38
|
|
F32_MAX_EXP :: 128
|
|
F32_MIN :: 1.175494351e-38
|
|
F32_MIN_10_EXP :: -37
|
|
F32_MIN_EXP :: -125
|
|
F32_NORMALIZE :: 0
|
|
F32_RADIX :: 2
|
|
F32_ROUNDS :: 1
|
|
|
|
F64_DIG :: 15 // # of decimal digits of precision
|
|
F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0
|
|
F64_MANT_DIG :: 53 // # of bits in mantissa
|
|
F64_MAX :: 1.7976931348623158e+308 // max value
|
|
F64_MAX_10_EXP :: 308 // max decimal exponent
|
|
F64_MAX_EXP :: 1024 // max binary exponent
|
|
F64_MIN :: 2.2250738585072014e-308 // min positive value
|
|
F64_MIN_10_EXP :: -307 // min decimal exponent
|
|
F64_MIN_EXP :: -1021 // min binary exponent
|
|
F64_RADIX :: 2 // exponent radix
|
|
F64_ROUNDS :: 1 // addition rounding: near
|