Files
Odin/core/math/bits/bits.odin
2021-03-03 14:31:17 +00:00

657 lines
20 KiB
Odin

package math_bits
import "core:runtime"
U8_MIN :: 0;
U16_MIN :: 0;
U32_MIN :: 0;
U64_MIN :: 0;
U8_MAX :: 1 << 8 - 1;
U16_MAX :: 1 << 16 - 1;
U32_MAX :: 1 << 32 - 1;
U64_MAX :: 1 << 64 - 1;
I8_MIN :: - 1 << 7;
I16_MIN :: - 1 << 15;
I32_MIN :: - 1 << 31;
I64_MIN :: - 1 << 63;
I8_MAX :: 1 << 7 - 1;
I16_MAX :: 1 << 15 - 1;
I32_MAX :: 1 << 31 - 1;
I64_MAX :: 1 << 63 - 1;
@(default_calling_convention="none")
foreign {
@(link_name="llvm.ctpop.i8") count_ones8 :: proc(i: u8) -> u8 ---
@(link_name="llvm.ctpop.i16") count_ones16 :: proc(i: u16) -> u16 ---
@(link_name="llvm.ctpop.i32") count_ones32 :: proc(i: u32) -> u32 ---
@(link_name="llvm.ctpop.i64") count_ones64 :: proc(i: u64) -> u64 ---
@(link_name="llvm.cttz.i8") trailing_zeros8 :: proc(i: u8, is_zero_undef := false) -> u8 ---
@(link_name="llvm.cttz.i16") trailing_zeros16 :: proc(i: u16, is_zero_undef := false) -> u16 ---
@(link_name="llvm.cttz.i32") trailing_zeros32 :: proc(i: u32, is_zero_undef := false) -> u32 ---
@(link_name="llvm.cttz.i64") trailing_zeros64 :: proc(i: u64, is_zero_undef := false) -> u64 ---
@(link_name="llvm.bitreverse.i8") reverse_bits8 :: proc(i: u8) -> u8 ---
@(link_name="llvm.bitreverse.i16") reverse_bits16 :: proc(i: u16) -> u16 ---
@(link_name="llvm.bitreverse.i32") reverse_bits32 :: proc(i: u32) -> u32 ---
@(link_name="llvm.bitreverse.i64") reverse_bits64 :: proc(i: u64) -> u64 ---
}
trailing_zeros_uint :: proc(i: uint) -> uint {
when size_of(uint) == size_of(u64) {
return uint(trailing_zeros64(u64(i)));
} else {
return uint(trailing_zeros32(u32(i)));
}
}
leading_zeros_u8 :: proc(i: u8) -> int {
return 8*size_of(i) - len_u8(i);
}
leading_zeros_u16 :: proc(i: u16) -> int {
return 8*size_of(i) - len_u16(i);
}
leading_zeros_u32 :: proc(i: u32) -> int {
return 8*size_of(i) - len_u32(i);
}
leading_zeros_u64 :: proc(i: u64) -> int {
return 8*size_of(i) - len_u64(i);
}
byte_swap_u16 :: proc(x: u16) -> u16 {
return runtime.bswap_16(x);
}
byte_swap_u32 :: proc(x: u32) -> u32 {
return runtime.bswap_32(x);
}
byte_swap_u64 :: proc(x: u64) -> u64 {
return runtime.bswap_64(x);
}
byte_swap_i16 :: proc(x: i16) -> i16 {
return i16(runtime.bswap_16(u16(x)));
}
byte_swap_i32 :: proc(x: i32) -> i32 {
return i32(runtime.bswap_32(u32(x)));
}
byte_swap_i64 :: proc(x: i64) -> i64 {
return i64(runtime.bswap_64(u64(x)));
}
byte_swap_u128 :: proc(x: u128) -> u128 {
return runtime.bswap_128(x);
}
byte_swap_i128 :: proc(x: i128) -> i128 {
return i128(runtime.bswap_128(u128(x)));
}
byte_swap_uint :: proc(i: uint) -> uint {
when size_of(uint) == size_of(u32) {
return uint(byte_swap_u32(u32(i)));
} else {
return uint(byte_swap_u64(u64(i)));
}
}
byte_swap_int :: proc(i: int) -> int {
when size_of(int) == size_of(i32) {
return int(byte_swap_i32(i32(i)));
} else {
return int(byte_swap_i64(i64(i)));
}
}
byte_swap :: proc{
byte_swap_u16,
byte_swap_u32,
byte_swap_u64,
byte_swap_u128,
byte_swap_i16,
byte_swap_i32,
byte_swap_i64,
byte_swap_i128,
byte_swap_uint,
byte_swap_int,
};
count_zeros8 :: proc(i: u8) -> u8 { return 8 - count_ones8(i); }
count_zeros16 :: proc(i: u16) -> u16 { return 16 - count_ones16(i); }
count_zeros32 :: proc(i: u32) -> u32 { return 32 - count_ones32(i); }
count_zeros64 :: proc(i: u64) -> u64 { return 64 - count_ones64(i); }
rotate_left8 :: proc(x: u8, k: int) -> u8 {
n :: 8;
s := uint(k) & (n-1);
return x <<s | x>>(n-s);
}
rotate_left16 :: proc(x: u16, k: int) -> u16 {
n :: 16;
s := uint(k) & (n-1);
return x <<s | x>>(n-s);
}
rotate_left32 :: proc(x: u32, k: int) -> u32 {
n :: 32;
s := uint(k) & (n-1);
return x <<s | x>>(n-s);
}
rotate_left64 :: proc(x: u64, k: int) -> u64 {
n :: 64;
s := uint(k) & (n-1);
return x <<s | x>>(n-s);
}
rotate_left :: proc(x: uint, k: int) -> uint {
n :: 8*size_of(uint);
s := uint(k) & (n-1);
return x <<s | x>>(n-s);
}
from_be_u8 :: proc(i: u8) -> u8 { return i; }
from_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
from_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
from_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
from_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
from_le_u8 :: proc(i: u8) -> u8 { return i; }
from_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
from_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
from_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
from_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
to_be_u8 :: proc(i: u8) -> u8 { return i; }
to_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
to_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
to_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
to_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } }
to_le_u8 :: proc(i: u8) -> u8 { return i; }
to_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
to_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
to_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
to_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } }
@(default_calling_convention="none")
foreign {
@(link_name="llvm.uadd.with.overflow.i8") overflowing_add_u8 :: proc(lhs, rhs: u8) -> (u8, bool) ---
@(link_name="llvm.sadd.with.overflow.i8") overflowing_add_i8 :: proc(lhs, rhs: i8) -> (i8, bool) ---
@(link_name="llvm.uadd.with.overflow.i16") overflowing_add_u16 :: proc(lhs, rhs: u16) -> (u16, bool) ---
@(link_name="llvm.sadd.with.overflow.i16") overflowing_add_i16 :: proc(lhs, rhs: i16) -> (i16, bool) ---
@(link_name="llvm.uadd.with.overflow.i32") overflowing_add_u32 :: proc(lhs, rhs: u32) -> (u32, bool) ---
@(link_name="llvm.sadd.with.overflow.i32") overflowing_add_i32 :: proc(lhs, rhs: i32) -> (i32, bool) ---
@(link_name="llvm.uadd.with.overflow.i64") overflowing_add_u64 :: proc(lhs, rhs: u64) -> (u64, bool) ---
@(link_name="llvm.sadd.with.overflow.i64") overflowing_add_i64 :: proc(lhs, rhs: i64) -> (i64, bool) ---
}
overflowing_add_uint :: proc(lhs, rhs: uint) -> (uint, bool) {
when size_of(uint) == size_of(u32) {
x, ok := overflowing_add_u32(u32(lhs), u32(rhs));
return uint(x), ok;
} else {
x, ok := overflowing_add_u64(u64(lhs), u64(rhs));
return uint(x), ok;
}
}
overflowing_add_int :: proc(lhs, rhs: int) -> (int, bool) {
when size_of(int) == size_of(i32) {
x, ok := overflowing_add_i32(i32(lhs), i32(rhs));
return int(x), ok;
} else {
x, ok := overflowing_add_i64(i64(lhs), i64(rhs));
return int(x), ok;
}
}
overflowing_add :: proc{
overflowing_add_u8, overflowing_add_i8,
overflowing_add_u16, overflowing_add_i16,
overflowing_add_u32, overflowing_add_i32,
overflowing_add_u64, overflowing_add_i64,
overflowing_add_uint, overflowing_add_int,
};
@(default_calling_convention="none")
foreign {
@(link_name="llvm.usub.with.overflow.i8") overflowing_sub_u8 :: proc(lhs, rhs: u8) -> (u8, bool) ---
@(link_name="llvm.ssub.with.overflow.i8") overflowing_sub_i8 :: proc(lhs, rhs: i8) -> (i8, bool) ---
@(link_name="llvm.usub.with.overflow.i16") overflowing_sub_u16 :: proc(lhs, rhs: u16) -> (u16, bool) ---
@(link_name="llvm.ssub.with.overflow.i16") overflowing_sub_i16 :: proc(lhs, rhs: i16) -> (i16, bool) ---
@(link_name="llvm.usub.with.overflow.i32") overflowing_sub_u32 :: proc(lhs, rhs: u32) -> (u32, bool) ---
@(link_name="llvm.ssub.with.overflow.i32") overflowing_sub_i32 :: proc(lhs, rhs: i32) -> (i32, bool) ---
@(link_name="llvm.usub.with.overflow.i64") overflowing_sub_u64 :: proc(lhs, rhs: u64) -> (u64, bool) ---
@(link_name="llvm.ssub.with.overflow.i64") overflowing_sub_i64 :: proc(lhs, rhs: i64) -> (i64, bool) ---
}
overflowing_sub_uint :: proc(lhs, rhs: uint) -> (uint, bool) {
when size_of(uint) == size_of(u32) {
x, ok := overflowing_sub_u32(u32(lhs), u32(rhs));
return uint(x), ok;
} else {
x, ok := overflowing_sub_u64(u64(lhs), u64(rhs));
return uint(x), ok;
}
}
overflowing_sub_int :: proc(lhs, rhs: int) -> (int, bool) {
when size_of(int) == size_of(i32) {
x, ok := overflowing_sub_i32(i32(lhs), i32(rhs));
return int(x), ok;
} else {
x, ok := overflowing_sub_i64(i64(lhs), i64(rhs));
return int(x), ok;
}
}
overflowing_sub :: proc{
overflowing_sub_u8, overflowing_sub_i8,
overflowing_sub_u16, overflowing_sub_i16,
overflowing_sub_u32, overflowing_sub_i32,
overflowing_sub_u64, overflowing_sub_i64,
overflowing_sub_uint, overflowing_sub_int,
};
@(default_calling_convention="none")
foreign {
@(link_name="llvm.umul.with.overflow.i8") overflowing_mul_u8 :: proc(lhs, rhs: u8) -> (u8, bool) ---
@(link_name="llvm.smul.with.overflow.i8") overflowing_mul_i8 :: proc(lhs, rhs: i8) -> (i8, bool) ---
@(link_name="llvm.umul.with.overflow.i16") overflowing_mul_u16 :: proc(lhs, rhs: u16) -> (u16, bool) ---
@(link_name="llvm.smul.with.overflow.i16") overflowing_mul_i16 :: proc(lhs, rhs: i16) -> (i16, bool) ---
@(link_name="llvm.umul.with.overflow.i32") overflowing_mul_u32 :: proc(lhs, rhs: u32) -> (u32, bool) ---
@(link_name="llvm.smul.with.overflow.i32") overflowing_mul_i32 :: proc(lhs, rhs: i32) -> (i32, bool) ---
@(link_name="llvm.umul.with.overflow.i64") overflowing_mul_u64 :: proc(lhs, rhs: u64) -> (u64, bool) ---
@(link_name="llvm.smul.with.overflow.i64") overflowing_mul_i64 :: proc(lhs, rhs: i64) -> (i64, bool) ---
}
overflowing_mul_uint :: proc(lhs, rhs: uint) -> (uint, bool) {
when size_of(uint) == size_of(u32) {
x, ok := overflowing_mul_u32(u32(lhs), u32(rhs));
return uint(x), ok;
} else {
x, ok := overflowing_mul_u64(u64(lhs), u64(rhs));
return uint(x), ok;
}
}
overflowing_mul_int :: proc(lhs, rhs: int) -> (int, bool) {
when size_of(int) == size_of(i32) {
x, ok := overflowing_mul_i32(i32(lhs), i32(rhs));
return int(x), ok;
} else {
x, ok := overflowing_mul_i64(i64(lhs), i64(rhs));
return int(x), ok;
}
}
overflowing_mul :: proc{
overflowing_mul_u8, overflowing_mul_i8,
overflowing_mul_u16, overflowing_mul_i16,
overflowing_mul_u32, overflowing_mul_i32,
overflowing_mul_u64, overflowing_mul_i64,
overflowing_mul_uint, overflowing_mul_int,
};
len_u8 :: proc(x: u8) -> int {
return int(len_u8_table[x]);
}
len_u16 :: proc(x: u16) -> (n: int) {
x := x;
if x >= 1<<8 {
x >>= 8;
n = 8;
}
return n + int(len_u8_table[x]);
}
len_u32 :: proc(x: u32) -> (n: int) {
x := x;
if x >= 1<<16 {
x >>= 16;
n = 16;
}
if x >= 1<<8 {
x >>= 8;
n += 8;
}
return n + int(len_u8_table[x]);
}
len_u64 :: proc(x: u64) -> (n: int) {
x := x;
if x >= 1<<32 {
x >>= 32;
n = 32;
}
if x >= 1<<16 {
x >>= 16;
n += 16;
}
if x >= 1<<8 {
x >>= 8;
n += 8;
}
return n + int(len_u8_table[x]);
}
len_uint :: proc(x: uint) -> (n: int) {
when size_of(uint) == size_of(u64) {
return len_u64(u64(x));
} else {
return len_u32(u32(x));
}
}
// returns the minimum number of bits required to represent x
len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint};
add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) {
yc := y + carry;
sum = x + yc;
if sum < x || yc < y {
carry_out = 1;
}
return;
}
add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) {
yc := y + carry;
sum = x + yc;
if sum < x || yc < y {
carry_out = 1;
}
return;
}
add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) {
yc := y + carry;
sum = x + yc;
if sum < x || yc < y {
carry_out = 1;
}
return;
}
add :: proc{add_u32, add_u64, add_uint};
sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) {
yb := y + borrow;
diff = x - yb;
if diff > x || yb < y {
borrow_out = 1;
}
return;
}
sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) {
yb := y + borrow;
diff = x - yb;
if diff > x || yb < y {
borrow_out = 1;
}
return;
}
sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) {
yb := y + borrow;
diff = x - yb;
if diff > x || yb < y {
borrow_out = 1;
}
return;
}
sub :: proc{sub_u32, sub_u64, sub_uint};
mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) {
z := u64(x) * u64(y);
hi, lo = u32(z>>32), u32(z);
return;
}
mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) {
mask :: 1<<32 - 1;
x0, x1 := x & mask, x >> 32;
y0, y1 := y & mask, y >> 32;
w0 := x0 * y0;
t := x1*y0 + w0>>32;
w1, w2 := t & mask, t >> 32;
w1 += x0 * y1;
hi = x1*y1 + w2 + w1>>32;
lo = x * y;
return;
}
mul_uint :: proc(x, y: uint) -> (hi, lo: uint) {
when size_of(uint) == size_of(u32) {
a, b := mul_u32(u32(x), u32(y));
} else {
#assert(size_of(uint) == size_of(u64));
a, b := mul_u64(u64(x), u64(y));
}
return uint(a), uint(b);
}
mul :: proc{mul_u32, mul_u64, mul_uint};
div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) {
assert(y != 0 && y <= hi);
z := u64(hi)<<32 | u64(lo);
quo, rem = u32(z/u64(y)), u32(z%u64(y));
return;
}
div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) {
y := y;
two32 :: 1 << 32;
mask32 :: two32 - 1;
if y == 0 {
panic("divide error");
}
if y <= hi {
panic("overflow error");
}
s := uint(leading_zeros_u64(y));
y <<= s;
yn1 := y >> 32;
yn0 := y & mask32;
un32 := hi<<s | lo>>(64-s);
un10 := lo << s;
un1 := un10 >> 32;
un0 := un10 & mask32;
q1 := un32 / yn1;
rhat := un32 - q1*yn1;
for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
q1 -= 1;
rhat += yn1;
if rhat >= two32 {
break;
}
}
un21 := un32*two32 + un1 - q1*y;
q0 := un21 / yn1;
rhat = un21 - q0*yn1;
for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
q0 -= 1;
rhat += yn1;
if rhat >= two32 {
break;
}
}
return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s;
}
div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) {
when size_of(uint) == size_of(u32) {
a, b := div_u32(u32(hi), u32(lo), u32(y));
} else {
#assert(size_of(uint) == size_of(u64));
a, b := div_u64(u64(hi), u64(lo), u64(y));
}
return uint(a), uint(b);
}
div :: proc{div_u32, div_u64, div_uint};
is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_i16 :: proc(i: i16) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_u32 :: proc(i: u32) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_i32 :: proc(i: i32) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_u64 :: proc(i: u64) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_i64 :: proc(i: i64) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_uint :: proc(i: uint) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two_int :: proc(i: int) -> bool { return i > 0 && (i & (i-1)) == 0; }
is_power_of_two :: proc{
is_power_of_two_u8, is_power_of_two_i8,
is_power_of_two_u16, is_power_of_two_i16,
is_power_of_two_u32, is_power_of_two_i32,
is_power_of_two_u64, is_power_of_two_i64,
is_power_of_two_uint, is_power_of_two_int,
};
@private
len_u8_table := [256]u8{
0 = 0,
1 = 1,
2..<4 = 2,
4..<8 = 3,
8..<16 = 4,
16..<32 = 5,
32..<64 = 6,
64..<128 = 7,
128..<256 = 8,
};
bitfield_extract_u8 :: proc(value: u8, offset, bits: uint) -> u8 { return (value >> offset) & u8(1<<bits - 1); }
bitfield_extract_u16 :: proc(value: u16, offset, bits: uint) -> u16 { return (value >> offset) & u16(1<<bits - 1); }
bitfield_extract_u32 :: proc(value: u32, offset, bits: uint) -> u32 { return (value >> offset) & u32(1<<bits - 1); }
bitfield_extract_u64 :: proc(value: u64, offset, bits: uint) -> u64 { return (value >> offset) & u64(1<<bits - 1); }
bitfield_extract_u128 :: proc(value: u128, offset, bits: uint) -> u128 { return (value >> offset) & u128(1<<bits - 1); }
bitfield_extract_uint :: proc(value: uint, offset, bits: uint) -> uint { return (value >> offset) & uint(1<<bits - 1); }
bitfield_extract_i8 :: proc(value: i8, offset, bits: uint) -> i8 {
v := (u8(value) >> offset) & u8(1<<bits - 1);
m := u8(1<<(bits-1));
r := (v~m) - m;
return i8(r);
}
bitfield_extract_i16 :: proc(value: i16, offset, bits: uint) -> i16 {
v := (u16(value) >> offset) & u16(1<<bits - 1);
m := u16(1<<(bits-1));
r := (v~m) - m;
return i16(r);
}
bitfield_extract_i32 :: proc(value: i32, offset, bits: uint) -> i32 {
v := (u32(value) >> offset) & u32(1<<bits - 1);
m := u32(1<<(bits-1));
r := (v~m) - m;
return i32(r);
}
bitfield_extract_i64 :: proc(value: i64, offset, bits: uint) -> i64 {
v := (u64(value) >> offset) & u64(1<<bits - 1);
m := u64(1<<(bits-1));
r := (v~m) - m;
return i64(r);
}
bitfield_extract_i128 :: proc(value: i128, offset, bits: uint) -> i128 {
v := (u128(value) >> offset) & u128(1<<bits - 1);
m := u128(1<<(bits-1));
r := (v~m) - m;
return i128(r);
}
bitfield_extract_int :: proc(value: int, offset, bits: uint) -> int {
v := (uint(value) >> offset) & uint(1<<bits - 1);
m := uint(1<<(bits-1));
r := (v~m) - m;
return int(r);
}
bitfield_extract :: proc{
bitfield_extract_u8,
bitfield_extract_u16,
bitfield_extract_u32,
bitfield_extract_u64,
bitfield_extract_u128,
bitfield_extract_uint,
bitfield_extract_i8,
bitfield_extract_i16,
bitfield_extract_i32,
bitfield_extract_i64,
bitfield_extract_i128,
bitfield_extract_int,
};
bitfield_insert_u8 :: proc(base, insert: u8, offset, bits: uint) -> u8 {
mask := u8(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_u16 :: proc(base, insert: u16, offset, bits: uint) -> u16 {
mask := u16(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_u32 :: proc(base, insert: u32, offset, bits: uint) -> u32 {
mask := u32(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_u64 :: proc(base, insert: u64, offset, bits: uint) -> u64 {
mask := u64(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_u128 :: proc(base, insert: u128, offset, bits: uint) -> u128 {
mask := u128(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_uint :: proc(base, insert: uint, offset, bits: uint) -> uint {
mask := uint(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_i8 :: proc(base, insert: i8, offset, bits: uint) -> i8 {
mask := i8(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_i16 :: proc(base, insert: i16, offset, bits: uint) -> i16 {
mask := i16(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_i32 :: proc(base, insert: i32, offset, bits: uint) -> i32 {
mask := i32(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_i64 :: proc(base, insert: i64, offset, bits: uint) -> i64 {
mask := i64(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_i128 :: proc(base, insert: i128, offset, bits: uint) -> i128 {
mask := i128(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert_int :: proc(base, insert: int, offset, bits: uint) -> int {
mask := int(1<<bits - 1);
return (base &~ (mask<<offset)) | ((insert&mask) << offset);
}
bitfield_insert :: proc{
bitfield_insert_u8,
bitfield_insert_u16,
bitfield_insert_u32,
bitfield_insert_u64,
bitfield_insert_u128,
bitfield_insert_uint,
bitfield_insert_i8,
bitfield_insert_i16,
bitfield_insert_i32,
bitfield_insert_i64,
bitfield_insert_i128,
bitfield_insert_int,
};