Files
Odin/core/runtime/core_builtin.odin

839 lines
20 KiB
Odin

package runtime
@builtin
Maybe :: union(T: typeid) #maybe {T};
@thread_local global_default_temp_allocator_data: Default_Temp_Allocator;
@builtin
init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator);
}
@builtin
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
n := max(0, min(len(dst), len(src)));
if n > 0 {
mem_copy(raw_data(dst), raw_data(src), n*size_of(E));
}
return n;
}
@builtin
copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
n := max(0, min(len(dst), len(src)));
if n > 0 {
mem_copy(raw_data(dst), raw_data(src), n);
}
return n;
}
@builtin
copy :: proc{copy_slice, copy_from_string};
@builtin
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
bounds_check_error_loc(loc, index, len(array));
n := len(array)-1;
if index != n {
array[index] = array[n];
}
pop(array);
}
@builtin
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
bounds_check_error_loc(loc, index, len(array));
if index+1 < len(array) {
copy(array[index:], array[index+1:]);
}
pop(array);
}
@builtin
remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) {
slice_expr_error_lo_hi_loc(loc, lo, hi, len(array));
n := max(hi-lo, 0);
if n > 0 {
if hi != len(array) {
copy(array[lo:], array[hi:]);
}
(^Raw_Dynamic_Array)(array).len -= n;
}
}
@builtin
pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, "", loc);
res = array[len(array)-1];
(^Raw_Dynamic_Array)(array).len -= 1;
return res;
}
@builtin
pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return;
}
res, ok = array[len(array)-1], true;
(^Raw_Dynamic_Array)(array).len -= 1;
return;
}
@builtin
pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, "", loc);
res = array[0];
if len(array) > 1 {
copy(array[0:], array[1:]);
}
(^Raw_Dynamic_Array)(array).len -= 1;
return res;
}
@builtin
pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return;
}
res, ok = array[0], true;
if len(array) > 1 {
copy(array[0:], array[1:]);
}
(^Raw_Dynamic_Array)(array).len -= 1;
return;
}
@builtin
clear :: proc{clear_dynamic_array, clear_map};
@builtin
reserve :: proc{reserve_dynamic_array, reserve_map};
@builtin
resize :: proc{resize_dynamic_array};
@builtin
free :: proc{mem_free};
@builtin
free_all :: proc{mem_free_all};
@builtin
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) {
mem_free(raw_data(str), allocator, loc);
}
@builtin
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) {
mem_free((^byte)(str), allocator, loc);
}
@builtin
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) {
mem_free(raw_data(array), array.allocator, loc);
}
@builtin
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) {
mem_free(raw_data(array), allocator, loc);
}
@builtin
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) {
raw := transmute(Raw_Map)m;
delete_slice(raw.hashes);
mem_free(raw.entries.data, raw.entries.allocator, loc);
}
@builtin
delete :: proc{
delete_string,
delete_cstring,
delete_dynamic_array,
delete_slice,
delete_map,
};
// The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
// return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
@builtin
new :: inline proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> ^T {
ptr := (^T)(mem_alloc(size_of(T), align_of(T), allocator, loc));
if ptr != nil { ptr^ = T{}; }
return ptr;
}
@builtin
new_clone :: inline proc(data: $T, allocator := context.allocator, loc := #caller_location) -> ^T {
ptr := (^T)(mem_alloc(size_of(T), align_of(T), allocator, loc));
if ptr != nil { ptr^ = data; }
return ptr;
}
make_aligned :: proc($T: typeid/[]$E, auto_cast len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> T {
make_slice_error_loc(loc, len);
data := mem_alloc(size_of(E)*len, alignment, allocator, loc);
if data == nil && size_of(E) != 0 {
return nil;
}
// mem_zero(data, size_of(E)*len);
s := Raw_Slice{data, len};
return transmute(T)s;
}
@builtin
make_slice :: inline proc($T: typeid/[]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
return make_aligned(T, len, align_of(E), allocator, loc);
}
@builtin
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> T {
return make_dynamic_array_len_cap(T, 0, 16, allocator, loc);
}
@builtin
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
return make_dynamic_array_len_cap(T, len, len, allocator, loc);
}
@builtin
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, auto_cast len: int, auto_cast cap: int, allocator := context.allocator, loc := #caller_location) -> T {
make_dynamic_array_error_loc(loc, len, cap);
data := mem_alloc(size_of(E)*cap, align_of(E), allocator, loc);
s := Raw_Dynamic_Array{data, len, cap, allocator};
if data == nil && size_of(E) != 0 {
s.len, s.cap = 0, 0;
}
// mem_zero(data, size_of(E)*cap);
return transmute(T)s;
}
@builtin
make_map :: proc($T: typeid/map[$K]$E, auto_cast cap: int = 16, allocator := context.allocator, loc := #caller_location) -> T {
make_map_expr_error_loc(loc, cap);
context.allocator = allocator;
m: T;
reserve_map(&m, cap);
return m;
}
// The make built-in procedure allocates and initializes a value of type slice, dynamic array, or map (only)
// Similar to new, the first argument is a type, not a value. Unlike new, make's return type is the same as the
// type of its argument, not a pointer to it.
// Make uses the specified allocator, default is context.allocator, default is context.allocator
@builtin
make :: proc{
make_slice,
make_dynamic_array,
make_dynamic_array_len,
make_dynamic_array_len_cap,
make_map,
};
@builtin
clear_map :: inline proc "contextless" (m: ^$T/map[$K]$V) {
if m == nil {
return;
}
raw_map := (^Raw_Map)(m);
entries := (^Raw_Dynamic_Array)(&raw_map.entries);
entries.len = 0;
for _, i in raw_map.hashes {
raw_map.hashes[i] = -1;
}
}
@builtin
reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int) {
if m != nil {
__dynamic_map_reserve(__get_map_header(m), capacity);
}
}
// The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
// If m is nil, or there is no such element, this procedure is a no-op
@builtin
delete_key :: proc(m: ^$T/map[$K]$V, key: K) {
if m != nil {
key := key;
__dynamic_map_delete_key(__get_map_header(m), __get_map_hash(&key));
}
}
@builtin
append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := 1;
if cap(array) < len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
a := (^Raw_Dynamic_Array)(array);
if size_of(E) != 0 {
data := (^E)(a.data);
assert(data != nil);
val := arg;
mem_copy(ptr_offset(data, a.len), &val, size_of(E));
}
a.len += arg_len;
}
}
@builtin
append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := len(args);
if arg_len <= 0 {
return;
}
if cap(array) < len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
a := (^Raw_Dynamic_Array)(array);
if size_of(E) != 0 {
data := (^E)(a.data);
assert(data != nil);
mem_copy(ptr_offset(data, a.len), &args[0], size_of(E) * arg_len);
}
a.len += arg_len;
}
}
// The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
@builtin
append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) {
args := transmute([]E)arg;
append_elems(array=array, args=args, loc=loc);
}
@builtin
reserve_soa :: proc(array: ^$T/#soa[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
if array == nil {
return false;
}
old_cap := cap(array);
if capacity <= old_cap {
return true;
}
if array.allocator.procedure == nil {
array.allocator = context.allocator;
}
assert(array.allocator.procedure != nil);
ti := type_info_of(typeid_of(T));
ti = type_info_base(ti);
si := &ti.variant.(Type_Info_Struct);
field_count := uintptr(len(si.offsets) - 3);
if field_count == 0 {
return true;
}
cap_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 1)*size_of(rawptr));
assert(cap_ptr^ == old_cap);
old_size := 0;
new_size := 0;
max_align := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
old_size = align_forward_int(old_size, type.align);
new_size = align_forward_int(new_size, type.align);
old_size += type.size * old_cap;
new_size += type.size * capacity;
}
old_size = align_forward_int(old_size, max_align);
new_size = align_forward_int(new_size, max_align);
old_data := (^rawptr)(array)^;
new_data := array.allocator.procedure(
array.allocator.data, .Alloc, new_size, max_align,
nil, old_size, 0, loc,
);
if new_data == nil {
return false;
}
cap_ptr^ = capacity;
old_offset := 0;
new_offset := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
old_offset = align_forward_int(old_offset, type.align);
new_offset = align_forward_int(new_offset, type.align);
new_data_elem := rawptr(uintptr(new_data) + uintptr(new_offset));
old_data_elem := rawptr(uintptr(old_data) + uintptr(old_offset));
mem_copy(new_data_elem, old_data_elem, type.size * old_cap);
(^rawptr)(uintptr(array) + i*size_of(rawptr))^ = new_data_elem;
old_offset += type.size * old_cap;
new_offset += type.size * capacity;
}
array.allocator.procedure(
array.allocator.data, .Free, 0, max_align,
old_data, old_size, 0, loc,
);
return true;
}
@builtin
append_soa_elem :: proc(array: ^$T/#soa[dynamic]$E, arg: E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := 1;
if cap(array) <= len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve_soa(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
ti := type_info_of(typeid_of(T));
ti = type_info_base(ti);
si := &ti.variant.(Type_Info_Struct);
field_count := uintptr(len(si.offsets) - 3);
if field_count == 0 {
return;
}
data := (^rawptr)(array)^;
len_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 0)*size_of(rawptr));
soa_offset := 0;
item_offset := 0;
arg_copy := arg;
arg_ptr := &arg_copy;
max_align := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
soa_offset = align_forward_int(soa_offset, type.align);
item_offset = align_forward_int(item_offset, type.align);
dst := rawptr(uintptr(data) + uintptr(soa_offset) + uintptr(type.size * len_ptr^));
src := rawptr(uintptr(arg_ptr) + uintptr(item_offset));
mem_copy(dst, src, type.size);
soa_offset += type.size * cap(array);
item_offset += type.size;
}
len_ptr^ += arg_len;
}
}
@builtin
append_soa_elems :: proc(array: ^$T/#soa[dynamic]$E, args: ..E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := len(args);
if arg_len == 0 {
return;
}
if cap(array) <= len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve_soa(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
ti := type_info_of(typeid_of(T));
ti = type_info_base(ti);
si := &ti.variant.(Type_Info_Struct);
field_count := uintptr(len(si.offsets) - 3);
if field_count == 0 {
return;
}
data := (^rawptr)(array)^;
len_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 0)*size_of(rawptr));
soa_offset := 0;
item_offset := 0;
args_ptr := &args[0];
max_align := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
soa_offset = align_forward_int(soa_offset, type.align);
item_offset = align_forward_int(item_offset, type.align);
dst := uintptr(data) + uintptr(soa_offset) + uintptr(type.size * len_ptr^);
src := uintptr(args_ptr) + uintptr(item_offset);
for j in 0..<arg_len {
d := rawptr(dst + uintptr(j*type.size));
s := rawptr(src + uintptr(j*size_of(E)));
mem_copy(d, s, type.size);
}
soa_offset += type.size * cap(array);
item_offset += type.size;
}
len_ptr^ += arg_len;
}
}
// The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
@builtin
append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) {
for arg in args {
append(array = array, args = transmute([]E)(arg), loc = loc);
}
}
// The append built-in procedure appends elements to the end of a dynamic array
@builtin append :: proc{append_elem, append_elems, append_elem_string};
// The append_soa built-in procedure appends elements to the end of an #soa dynamic array
@builtin append_soa :: proc{append_soa_elem, append_soa_elems};
@builtin
append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) {
if array == nil {
return;
}
resize(array, len(array)+1);
}
@builtin
insert_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return;
}
n := len(array);
m :: 1;
resize(array, n+m, loc);
if n+m <= len(array) {
when size_of(E) != 0 {
copy(array[index+m:], array[index:]);
array[index] = arg;
}
ok = true;
}
return;
}
@builtin
insert_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return;
}
if len(args) == 0 {
ok = true;
return;
}
n := len(array);
m := len(args);
resize(array, n+m, loc);
if n+m <= len(array) {
when size_of(E) != 0 {
copy(array[index+m:], array[index:]);
copy(array[index:], args);
}
ok = true;
}
return;
}
@builtin
insert_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return;
}
if len(args) == 0 {
ok = true;
return;
}
n := len(array);
m := len(args);
resize(array, n+m, loc);
if n+m <= len(array) {
copy(array[index+m:], array[index:]);
copy(array[index:], args);
ok = true;
}
return;
}
@builtin insert_at :: proc{insert_at_elem, insert_at_elems, insert_at_elem_string};
@builtin
clear_dynamic_array :: inline proc "contextless" (array: ^$T/[dynamic]$E) {
if array != nil {
(^Raw_Dynamic_Array)(array).len = 0;
}
}
@builtin
reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
if array == nil {
return false;
}
a := (^Raw_Dynamic_Array)(array);
if capacity <= a.cap {
return true;
}
if a.allocator.procedure == nil {
a.allocator = context.allocator;
}
assert(a.allocator.procedure != nil);
old_size := a.cap * size_of(E);
new_size := capacity * size_of(E);
allocator := a.allocator;
new_data := allocator.procedure(
allocator.data, .Resize, new_size, align_of(E),
a.data, old_size, 0, loc,
);
if new_data == nil {
return false;
}
a.data = new_data;
a.cap = capacity;
return true;
}
@builtin
resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> bool {
if array == nil {
return false;
}
a := (^Raw_Dynamic_Array)(array);
if length <= a.cap {
a.len = max(length, 0);
return true;
}
if a.allocator.procedure == nil {
a.allocator = context.allocator;
}
assert(a.allocator.procedure != nil);
old_size := a.cap * size_of(E);
new_size := length * size_of(E);
allocator := a.allocator;
new_data := allocator.procedure(
allocator.data, .Resize, new_size, align_of(E),
a.data, old_size, 0, loc,
);
if new_data == nil {
return false;
}
a.data = new_data;
a.len = length;
a.cap = length;
return true;
}
@builtin
incl_elem :: inline proc(s: ^$S/bit_set[$E; $U], elem: E) -> S {
s^ |= {elem};
return s^;
}
@builtin
incl_elems :: inline proc(s: ^$S/bit_set[$E; $U], elems: ..E) -> S {
for elem in elems {
s^ |= {elem};
}
return s^;
}
@builtin
incl_bit_set :: inline proc(s: ^$S/bit_set[$E; $U], other: S) -> S {
s^ |= other;
return s^;
}
@builtin
excl_elem :: inline proc(s: ^$S/bit_set[$E; $U], elem: E) -> S {
s^ &~= {elem};
return s^;
}
@builtin
excl_elems :: inline proc(s: ^$S/bit_set[$E; $U], elems: ..E) -> S {
for elem in elems {
s^ &~= {elem};
}
return s^;
}
@builtin
excl_bit_set :: inline proc(s: ^$S/bit_set[$E; $U], other: S) -> S {
s^ &~= other;
return s^;
}
@builtin incl :: proc{incl_elem, incl_elems, incl_bit_set};
@builtin excl :: proc{excl_elem, excl_elems, excl_bit_set};
@builtin
card :: proc(s: $S/bit_set[$E; $U]) -> int {
when size_of(S) == 1 {
foreign { @(link_name="llvm.ctpop.i8") count_ones :: proc(i: u8) -> u8 --- }
return int(count_ones(transmute(u8)s));
} else when size_of(S) == 2 {
foreign { @(link_name="llvm.ctpop.i16") count_ones :: proc(i: u16) -> u16 --- }
return int(count_ones(transmute(u16)s));
} else when size_of(S) == 4 {
foreign { @(link_name="llvm.ctpop.i32") count_ones :: proc(i: u32) -> u32 --- }
return int(count_ones(transmute(u32)s));
} else when size_of(S) == 8 {
foreign { @(link_name="llvm.ctpop.i64") count_ones :: proc(i: u64) -> u64 --- }
return int(count_ones(transmute(u64)s));
} else when size_of(S) == 16 {
foreign { @(link_name="llvm.ctpop.i128") count_ones :: proc(i: u128) -> u128 --- }
return int(count_ones(transmute(u128)s));
} else {
#panic("Unhandled card bit_set size");
}
}
@builtin
raw_array_data :: proc "contextless" (a: $P/^($T/[$N]$E)) -> ^E {
return (^E)(a);
}
@builtin
raw_slice_data :: proc "contextless" (s: $S/[]$E) -> ^E {
ptr := (transmute(Raw_Slice)s).data;
return (^E)(ptr);
}
@builtin
raw_dynamic_array_data :: proc "contextless" (s: $S/[dynamic]$E) -> ^E {
ptr := (transmute(Raw_Dynamic_Array)s).data;
return (^E)(ptr);
}
@builtin
raw_string_data :: proc "contextless" (s: $S/string) -> ^u8 {
return (transmute(Raw_String)s).data;
}
@builtin
raw_data :: proc{raw_array_data, raw_slice_data, raw_dynamic_array_data, raw_string_data};
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
assert :: proc(condition: bool, message := "", loc := #caller_location) {
if !condition {
proc(message: string, loc: Source_Code_Location) {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
p("runtime assertion", message, loc);
}(message, loc);
}
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
panic :: proc(message: string, loc := #caller_location) -> ! {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
p("panic", message, loc);
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
unimplemented :: proc(message := "", loc := #caller_location) -> ! {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
p("not yet implemented", message, loc);
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
unreachable :: proc(message := "", loc := #caller_location) -> ! {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
if message != "" {
p("internal error", message, loc);
} else {
p("internal error", "entered unreachable code", loc);
}
}