mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 09:24:33 +00:00
593 lines
15 KiB
Odin
593 lines
15 KiB
Odin
package math
|
|
|
|
TAU :: 6.28318530717958647692528676655900576;
|
|
PI :: 3.14159265358979323846264338327950288;
|
|
|
|
E :: 2.71828182845904523536;
|
|
SQRT_TWO :: 1.41421356237309504880168872420969808;
|
|
SQRT_THREE :: 1.73205080756887729352744634150587236;
|
|
SQRT_FIVE :: 2.23606797749978969640917366873127623;
|
|
|
|
LOG_TWO :: 0.693147180559945309417232121458176568;
|
|
LOG_TEN :: 2.30258509299404568401799145468436421;
|
|
|
|
EPSILON :: 1.19209290e-7;
|
|
|
|
τ :: TAU;
|
|
π :: PI;
|
|
|
|
Vec2 :: distinct [2]f32;
|
|
Vec3 :: distinct [3]f32;
|
|
Vec4 :: distinct [4]f32;
|
|
|
|
// Column major
|
|
Mat2 :: distinct [2][2]f32;
|
|
Mat3 :: distinct [3][3]f32;
|
|
Mat4 :: distinct [4][4]f32;
|
|
|
|
Quat :: struct {x, y, z, w: f32};
|
|
|
|
QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1};
|
|
|
|
|
|
@(default_calling_convention="c")
|
|
foreign _ {
|
|
@(link_name="llvm.sqrt.f32")
|
|
sqrt_f32 :: proc(x: f32) -> f32 ---;
|
|
@(link_name="llvm.sqrt.f64")
|
|
sqrt_f64 :: proc(x: f64) -> f64 ---;
|
|
|
|
@(link_name="llvm.sin.f32")
|
|
sin_f32 :: proc(θ: f32) -> f32 ---;
|
|
@(link_name="llvm.sin.f64")
|
|
sin_f64 :: proc(θ: f64) -> f64 ---;
|
|
|
|
@(link_name="llvm.cos.f32")
|
|
cos_f32 :: proc(θ: f32) -> f32 ---;
|
|
@(link_name="llvm.cos.f64")
|
|
cos_f64 :: proc(θ: f64) -> f64 ---;
|
|
|
|
@(link_name="llvm.pow.f32")
|
|
pow_f32 :: proc(x, power: f32) -> f32 ---;
|
|
@(link_name="llvm.pow.f64")
|
|
pow_f64 :: proc(x, power: f64) -> f64 ---;
|
|
|
|
@(link_name="llvm.fmuladd.f32")
|
|
fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
|
|
@(link_name="llvm.fmuladd.f64")
|
|
fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
|
|
|
|
@(link_name="llvm.log.f32")
|
|
log_f32 :: proc(x: f32) -> f32 ---;
|
|
@(link_name="llvm.log.f64")
|
|
log_f64 :: proc(x: f64) -> f64 ---;
|
|
}
|
|
|
|
log :: proc{log_f32, log_f64};
|
|
|
|
tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
|
|
tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
|
|
|
|
lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
|
|
|
|
unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
|
|
unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
|
|
|
|
|
|
sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
|
|
sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
|
|
|
|
copy_sign_f32 :: proc(x, y: f32) -> f32 {
|
|
ix := transmute(u32)x;
|
|
iy := transmute(u32)y;
|
|
ix &= 0x7fff_ffff;
|
|
ix |= iy & 0x8000_0000;
|
|
return transmute(f32)ix;
|
|
}
|
|
|
|
copy_sign_f64 :: proc(x, y: f64) -> f64 {
|
|
ix := transmute(u64)x;
|
|
iy := transmute(u64)y;
|
|
ix &= 0x7fff_ffff_ffff_ff;
|
|
ix |= iy & 0x8000_0000_0000_0000;
|
|
return transmute(f64)ix;
|
|
}
|
|
|
|
|
|
sqrt :: proc{sqrt_f32, sqrt_f64};
|
|
sin :: proc{sin_f32, sin_f64};
|
|
cos :: proc{cos_f32, cos_f64};
|
|
tan :: proc{tan_f32, tan_f64};
|
|
pow :: proc{pow_f32, pow_f64};
|
|
fmuladd :: proc{fmuladd_f32, fmuladd_f64};
|
|
sign :: proc{sign_f32, sign_f64};
|
|
copy_sign :: proc{copy_sign_f32, copy_sign_f64};
|
|
|
|
|
|
round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
|
|
round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
|
|
round :: proc{round_f32, round_f64};
|
|
|
|
floor_f32 :: proc(x: f32) -> f32 {
|
|
if x == 0 || is_nan(x) || is_inf(x) {
|
|
return x;
|
|
}
|
|
if x < 0 {
|
|
d, fract := modf(-x);
|
|
if fract != 0.0 {
|
|
d = d + 1;
|
|
}
|
|
return -d;
|
|
}
|
|
d, _ := modf(x);
|
|
return d;
|
|
}
|
|
floor_f64 :: proc(x: f64) -> f64 {
|
|
if x == 0 || is_nan(x) || is_inf(x) {
|
|
return x;
|
|
}
|
|
if x < 0 {
|
|
d, fract := modf(-x);
|
|
if fract != 0.0 {
|
|
d = d + 1;
|
|
}
|
|
return -d;
|
|
}
|
|
d, _ := modf(x);
|
|
return d;
|
|
}
|
|
floor :: proc{floor_f32, floor_f64};
|
|
|
|
ceil_f32 :: proc(x: f32) -> f32 { return -floor_f32(-x); }
|
|
ceil_f64 :: proc(x: f64) -> f64 { return -floor_f64(-x); }
|
|
ceil :: proc{ceil_f32, ceil_f64};
|
|
|
|
remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
|
|
remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
|
|
remainder :: proc{remainder_f32, remainder_f64};
|
|
|
|
mod_f32 :: proc(x, y: f32) -> f32 {
|
|
result: f32;
|
|
y = abs(y);
|
|
result = remainder(abs(x), y);
|
|
if sign(result) < 0 {
|
|
result += y;
|
|
}
|
|
return copy_sign(result, x);
|
|
}
|
|
mod_f64 :: proc(x, y: f64) -> f64 {
|
|
result: f64;
|
|
y = abs(y);
|
|
result = remainder(abs(x), y);
|
|
if sign(result) < 0 {
|
|
result += y;
|
|
}
|
|
return copy_sign(result, x);
|
|
}
|
|
mod :: proc{mod_f32, mod_f64};
|
|
|
|
// TODO(bill): These need to implemented with the actual instructions
|
|
modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
|
|
shift :: 32 - 8 - 1;
|
|
mask :: 0xff;
|
|
bias :: 127;
|
|
|
|
if x < 1 {
|
|
switch {
|
|
case x < 0:
|
|
int, frac = modf(-x);
|
|
return -int, -frac;
|
|
case x == 0:
|
|
return x, x;
|
|
}
|
|
return 0, x;
|
|
}
|
|
|
|
i := transmute(u32)x;
|
|
e := uint(i>>shift)&mask - bias;
|
|
|
|
if e < 32-9 {
|
|
i &~= 1<<(32-9-e) - 1;
|
|
}
|
|
int = transmute(f32)i;
|
|
frac = x - int;
|
|
return;
|
|
}
|
|
modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) {
|
|
shift :: 64 - 11 - 1;
|
|
mask :: 0x7ff;
|
|
bias :: 1023;
|
|
|
|
if x < 1 {
|
|
switch {
|
|
case x < 0:
|
|
int, frac = modf(-x);
|
|
return -int, -frac;
|
|
case x == 0:
|
|
return x, x;
|
|
}
|
|
return 0, x;
|
|
}
|
|
|
|
i := transmute(u64)x;
|
|
e := uint(i>>shift)&mask - bias;
|
|
|
|
if e < 64-12 {
|
|
i &~= 1<<(64-12-e) - 1;
|
|
}
|
|
int = transmute(f64)i;
|
|
frac = x - int;
|
|
return;
|
|
}
|
|
modf :: proc{modf_f32, modf_f64};
|
|
|
|
is_nan_f32 :: inline proc(x: f32) -> bool { return x != x; }
|
|
is_nan_f64 :: inline proc(x: f64) -> bool { return x != x; }
|
|
is_nan :: proc{is_nan_f32, is_nan_f64};
|
|
|
|
is_finite_f32 :: inline proc(x: f32) -> bool { return !is_nan(x-x); }
|
|
is_finite_f64 :: inline proc(x: f64) -> bool { return !is_nan(x-x); }
|
|
is_finite :: proc{is_finite_f32, is_finite_f64};
|
|
|
|
is_inf_f32 :: proc(x: f32, sign := 0) -> bool {
|
|
return sign >= 0 && x > F32_MAX || sign <= 0 && x < -F32_MAX;
|
|
}
|
|
is_inf_f64 :: proc(x: f64, sign := 0) -> bool {
|
|
return sign >= 0 && x > F64_MAX || sign <= 0 && x < -F64_MAX;
|
|
}
|
|
// If sign > 0, is_inf reports whether f is positive infinity
|
|
// If sign < 0, is_inf reports whether f is negative infinity
|
|
// If sign == 0, is_inf reports whether f is either infinity
|
|
is_inf :: proc{is_inf_f32, is_inf_f64};
|
|
|
|
|
|
|
|
to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
|
|
to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
|
|
|
|
|
|
|
|
|
|
mul :: proc{
|
|
mat3_mul,
|
|
mat4_mul, mat4_mul_vec4,
|
|
quat_mul, quat_mulf,
|
|
};
|
|
|
|
div :: proc{quat_div, quat_divf};
|
|
|
|
inverse :: proc{mat4_inverse, quat_inverse};
|
|
dot :: proc{vec_dot, quat_dot};
|
|
cross :: proc{cross2, cross3};
|
|
|
|
vec_dot :: proc(a, b: $T/[$N]$E) -> E {
|
|
res: E;
|
|
for i in 0..N-1 {
|
|
res += a[i] * b[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
cross2 :: proc(a, b: $T/[2]$E) -> E {
|
|
return a[0]*b[1] - a[1]*b[0];
|
|
}
|
|
|
|
cross3 :: proc(a, b: $T/[3]$E) -> T {
|
|
i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
|
|
j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
|
|
return T(i - j);
|
|
}
|
|
|
|
|
|
length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); }
|
|
|
|
norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); }
|
|
|
|
norm0 :: proc(v: $T/[$N]$E) -> T {
|
|
m := length(v);
|
|
return m == 0 ? 0 : v/m;
|
|
}
|
|
|
|
|
|
|
|
identity :: proc($T: typeid/[$N][N]$E) -> T {
|
|
m: T;
|
|
for i in 0..N-1 do m[i][i] = E(1);
|
|
return m;
|
|
}
|
|
|
|
transpose :: proc(m: $M/[$N][N]f32) -> M {
|
|
for j in 0..N-1 {
|
|
for i in 0..N-1 {
|
|
m[i][j], m[j][i] = m[j][i], m[i][j];
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
mat3_mul :: proc(a, b: Mat3) -> Mat3 {
|
|
c: Mat3;
|
|
for j in 0..2 {
|
|
for i in 0..2 {
|
|
c[j][i] = a[0][i]*b[j][0] +
|
|
a[1][i]*b[j][1] +
|
|
a[2][i]*b[j][2];
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
mat4_mul :: proc(a, b: Mat4) -> Mat4 {
|
|
c: Mat4;
|
|
for j in 0..3 {
|
|
for i in 0..3 {
|
|
c[j][i] = a[0][i]*b[j][0] +
|
|
a[1][i]*b[j][1] +
|
|
a[2][i]*b[j][2] +
|
|
a[3][i]*b[j][3];
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
|
|
return Vec4{
|
|
m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
|
|
m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
|
|
m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
|
|
m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
|
|
};
|
|
}
|
|
|
|
mat4_inverse :: proc(m: Mat4) -> Mat4 {
|
|
o: Mat4;
|
|
|
|
sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
|
sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
|
sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
|
sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
|
sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
|
sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
|
sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
|
sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
|
sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
|
sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
|
sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
|
sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
|
sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
|
sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
|
sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
|
sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
|
sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
|
|
|
|
|
o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
|
|
o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
|
|
o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
|
|
o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
|
|
|
|
o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
|
|
o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
|
|
o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
|
|
o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
|
|
|
|
o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
|
|
o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
|
|
o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
|
|
o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
|
|
|
|
o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
|
|
o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
|
|
o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
|
|
o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
|
|
|
|
ood := 1.0 / (m[0][0] * o[0][0] +
|
|
m[0][1] * o[0][1] +
|
|
m[0][2] * o[0][2] +
|
|
m[0][3] * o[0][3]);
|
|
|
|
o[0][0] *= ood;
|
|
o[0][1] *= ood;
|
|
o[0][2] *= ood;
|
|
o[0][3] *= ood;
|
|
o[1][0] *= ood;
|
|
o[1][1] *= ood;
|
|
o[1][2] *= ood;
|
|
o[1][3] *= ood;
|
|
o[2][0] *= ood;
|
|
o[2][1] *= ood;
|
|
o[2][2] *= ood;
|
|
o[2][3] *= ood;
|
|
o[3][0] *= ood;
|
|
o[3][1] *= ood;
|
|
o[3][2] *= ood;
|
|
o[3][3] *= ood;
|
|
|
|
return o;
|
|
}
|
|
|
|
|
|
mat4_translate :: proc(v: Vec3) -> Mat4 {
|
|
m := identity(Mat4);
|
|
m[3][0] = v[0];
|
|
m[3][1] = v[1];
|
|
m[3][2] = v[2];
|
|
m[3][3] = 1;
|
|
return m;
|
|
}
|
|
|
|
mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
|
|
c := cos(angle_radians);
|
|
s := sin(angle_radians);
|
|
|
|
a := norm(v);
|
|
t := a * (1-c);
|
|
|
|
rot := identity(Mat4);
|
|
|
|
rot[0][0] = c + t[0]*a[0];
|
|
rot[0][1] = 0 + t[0]*a[1] + s*a[2];
|
|
rot[0][2] = 0 + t[0]*a[2] - s*a[1];
|
|
rot[0][3] = 0;
|
|
|
|
rot[1][0] = 0 + t[1]*a[0] - s*a[2];
|
|
rot[1][1] = c + t[1]*a[1];
|
|
rot[1][2] = 0 + t[1]*a[2] + s*a[0];
|
|
rot[1][3] = 0;
|
|
|
|
rot[2][0] = 0 + t[2]*a[0] + s*a[1];
|
|
rot[2][1] = 0 + t[2]*a[1] - s*a[0];
|
|
rot[2][2] = c + t[2]*a[2];
|
|
rot[2][3] = 0;
|
|
|
|
return rot;
|
|
}
|
|
|
|
scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 {
|
|
m[0][0] *= v[0];
|
|
m[1][1] *= v[1];
|
|
m[2][2] *= v[2];
|
|
return m;
|
|
}
|
|
|
|
scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 {
|
|
m[0][0] *= s;
|
|
m[1][1] *= s;
|
|
m[2][2] *= s;
|
|
return m;
|
|
}
|
|
|
|
scale :: proc{scale_vec3, scale_f32};
|
|
|
|
|
|
look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
|
|
f := norm(centre - eye);
|
|
s := norm(cross(f, up));
|
|
u := cross(s, f);
|
|
|
|
return Mat4{
|
|
{+s.x, +u.x, -f.x, 0},
|
|
{+s.y, +u.y, -f.y, 0},
|
|
{+s.z, +u.z, -f.z, 0},
|
|
{-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
|
|
};
|
|
}
|
|
|
|
perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
|
|
m: Mat4;
|
|
tan_half_fovy := tan(0.5 * fovy);
|
|
|
|
m[0][0] = 1.0 / (aspect*tan_half_fovy);
|
|
m[1][1] = 1.0 / (tan_half_fovy);
|
|
m[2][2] = -(far + near) / (far - near);
|
|
m[2][3] = -1.0;
|
|
m[3][2] = -2.0*far*near / (far - near);
|
|
return m;
|
|
}
|
|
|
|
|
|
ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
|
|
m := identity(Mat4);
|
|
m[0][0] = +2.0 / (right - left);
|
|
m[1][1] = +2.0 / (top - bottom);
|
|
m[2][2] = -2.0 / (far - near);
|
|
m[3][0] = -(right + left) / (right - left);
|
|
m[3][1] = -(top + bottom) / (top - bottom);
|
|
m[3][2] = -(far + near) / (far - near);
|
|
return m;
|
|
}
|
|
|
|
|
|
// Quaternion operations
|
|
|
|
conj :: proc(q: Quat) -> Quat {
|
|
return Quat{-q.x, -q.y, -q.z, q.w};
|
|
}
|
|
|
|
quat_mul :: proc(q0, q1: Quat) -> Quat {
|
|
d: Quat;
|
|
d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y;
|
|
d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x;
|
|
d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w;
|
|
d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z;
|
|
return d;
|
|
}
|
|
|
|
quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; }
|
|
quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; }
|
|
|
|
quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); }
|
|
quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); }
|
|
quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; }
|
|
|
|
quat_norm :: proc(q: Quat) -> Quat {
|
|
m := sqrt(dot(q, q));
|
|
return div(q, m);
|
|
}
|
|
|
|
axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat {
|
|
v := norm(axis) * sin(0.5*angle_radians);
|
|
w := cos(0.5*angle_radians);
|
|
return Quat{v.x, v.y, v.z, w};
|
|
}
|
|
|
|
euler_angles :: proc(pitch, yaw, roll: f32) -> Quat {
|
|
p := axis_angle(Vec3{1, 0, 0}, pitch);
|
|
y := axis_angle(Vec3{0, 1, 0}, yaw);
|
|
r := axis_angle(Vec3{0, 0, 1}, roll);
|
|
return mul(mul(y, p), r);
|
|
}
|
|
|
|
quat_to_mat4 :: proc(q: Quat) -> Mat4 {
|
|
a := quat_norm(q);
|
|
xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z;
|
|
xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z;
|
|
wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z;
|
|
|
|
m := identity(Mat4);
|
|
|
|
m[0][0] = 1 - 2*(yy + zz);
|
|
m[0][1] = 2*(xy + wz);
|
|
m[0][2] = 2*(xz - wy);
|
|
|
|
m[1][0] = 2*(xy - wz);
|
|
m[1][1] = 1 - 2*(xx + zz);
|
|
m[1][2] = 2*(yz + wx);
|
|
|
|
m[2][0] = 2*(xz + wy);
|
|
m[2][1] = 2*(yz - wx);
|
|
m[2][2] = 1 - 2*(xx + yy);
|
|
return m;
|
|
}
|
|
|
|
|
|
|
|
|
|
F32_DIG :: 6;
|
|
F32_EPSILON :: 1.192092896e-07;
|
|
F32_GUARD :: 0;
|
|
F32_MANT_DIG :: 24;
|
|
F32_MAX :: 3.402823466e+38;
|
|
F32_MAX_10_EXP :: 38;
|
|
F32_MAX_EXP :: 128;
|
|
F32_MIN :: 1.175494351e-38;
|
|
F32_MIN_10_EXP :: -37;
|
|
F32_MIN_EXP :: -125;
|
|
F32_NORMALIZE :: 0;
|
|
F32_RADIX :: 2;
|
|
F32_ROUNDS :: 1;
|
|
|
|
F64_DIG :: 15; // # of decimal digits of precision
|
|
F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
|
|
F64_MANT_DIG :: 53; // # of bits in mantissa
|
|
F64_MAX :: 1.7976931348623158e+308; // max value
|
|
F64_MAX_10_EXP :: 308; // max decimal exponent
|
|
F64_MAX_EXP :: 1024; // max binary exponent
|
|
F64_MIN :: 2.2250738585072014e-308; // min positive value
|
|
F64_MIN_10_EXP :: -307; // min decimal exponent
|
|
F64_MIN_EXP :: -1021; // min binary exponent
|
|
F64_RADIX :: 2; // exponent radix
|
|
F64_ROUNDS :: 1; // addition rounding: near
|