Files
Odin/core/mem/alloc.odin

428 lines
12 KiB
Odin

package mem
import "core:runtime"
DEFAULT_ALIGNMENT :: 2*align_of(rawptr);
Allocator_Mode :: enum byte {
Alloc,
Free,
Free_All,
Resize,
}
Allocator_Proc :: #type proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64 = 0, location := #caller_location) -> rawptr;
Allocator :: struct {
procedure: Allocator_Proc,
data: rawptr,
}
alloc :: inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
if size == 0 do return nil;
if allocator.procedure == nil do return nil;
return allocator.procedure(allocator.data, Allocator_Mode.Alloc, size, alignment, nil, 0, 0, loc);
}
free :: inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) {
if ptr == nil do return;
if allocator.procedure == nil do return;
allocator.procedure(allocator.data, Allocator_Mode.Free, 0, 0, ptr, 0, 0, loc);
}
free_all :: inline proc(allocator := context.allocator, loc := #caller_location) {
if allocator.procedure != nil {
allocator.procedure(allocator.data, Allocator_Mode.Free_All, 0, 0, nil, 0, 0, loc);
}
}
resize :: inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
if allocator.procedure == nil {
return nil;
}
if new_size == 0 {
free(ptr, allocator, loc);
return nil;
} else if ptr == nil {
return allocator.procedure(allocator.data, Allocator_Mode.Alloc, new_size, alignment, nil, 0, 0, loc);
}
return allocator.procedure(allocator.data, Allocator_Mode.Resize, new_size, alignment, ptr, old_size, 0, loc);
}
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) {
free(raw_data(str), allocator, loc);
}
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) {
free((^byte)(str), allocator, loc);
}
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) {
free(raw_data(array), array.allocator, loc);
}
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) {
free(raw_data(array), allocator, loc);
}
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) {
raw := transmute(Raw_Map)m;
delete_slice(raw.hashes);
free(raw.entries.data, raw.entries.allocator, loc);
}
delete :: proc{
delete_string,
delete_cstring,
delete_dynamic_array,
delete_slice,
delete_map,
};
new :: inline proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> ^T {
ptr := (^T)(alloc(size_of(T), align_of(T), allocator, loc));
if ptr != nil do ptr^ = T{};
return ptr;
}
new_clone :: inline proc(data: $T, allocator := context.allocator, loc := #caller_location) -> ^T {
ptr := (^T)(alloc(size_of(T), align_of(T), allocator, loc));
if ptr != nil do ptr^ = data;
return ptr;
}
make_slice :: proc($T: typeid/[]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
runtime.make_slice_error_loc(loc, len);
data := alloc(size_of(E)*len, align_of(E), allocator, loc);
s := Raw_Slice{data, len};
return transmute(T)s;
}
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> T {
return make_dynamic_array_len_cap(T, 0, 16, allocator, loc);
}
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
return make_dynamic_array_len_cap(T, len, len, allocator, loc);
}
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, auto_cast len: int, auto_cast cap: int, allocator := context.allocator, loc := #caller_location) -> T {
runtime.make_dynamic_array_error_loc(loc, len, cap);
data := alloc(size_of(E)*cap, align_of(E), allocator, loc);
s := Raw_Dynamic_Array{data, len, cap, allocator};
return transmute(T)s;
}
make_map :: proc($T: typeid/map[$K]$E, auto_cast cap: int = 16, allocator := context.allocator, loc := #caller_location) -> T {
runtime.make_map_expr_error_loc(loc, cap);
context.allocator = allocator;
m: T;
reserve_map(&m, cap);
return m;
}
make :: proc{
make_slice,
make_dynamic_array,
make_dynamic_array_len,
make_dynamic_array_len_cap,
make_map,
};
default_resize_align :: proc(old_memory: rawptr, old_size, new_size, alignment: int, allocator := context.allocator, loc := #caller_location) -> rawptr {
if old_memory == nil do return alloc(new_size, alignment, allocator, loc);
if new_size == 0 {
free(old_memory, allocator, loc);
return nil;
}
if new_size == old_size do return old_memory;
new_memory := alloc(new_size, alignment, allocator, loc);
if new_memory == nil do return nil;
copy(new_memory, old_memory, min(old_size, new_size));;
free(old_memory, allocator, loc);
return new_memory;
}
nil_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
return nil;
}
nil_allocator :: proc() -> Allocator {
return Allocator{
procedure = nil_allocator_proc,
data = nil,
};
}
Scratch_Allocator :: struct {
data: []byte,
curr_offset: int,
prev_offset: int,
backup_allocator: Allocator,
leaked_allocations: [dynamic]rawptr,
}
scratch_allocator_init :: proc(scratch: ^Scratch_Allocator, data: []byte, backup_allocator := context.allocator) {
scratch.data = data;
scratch.curr_offset = 0;
scratch.prev_offset = 0;
scratch.backup_allocator = backup_allocator;
}
scratch_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
scratch := (^Scratch_Allocator)(allocator_data);
if scratch.data == nil {
DEFAULT_SCRATCH_BACKING_SIZE :: 1<<22;
scratch_allocator_init(scratch, make([]byte, 1<<22));
}
switch mode {
case Allocator_Mode.Alloc:
switch {
case scratch.curr_offset+size <= len(scratch.data):
offset := align_forward_uintptr(uintptr(scratch.curr_offset), uintptr(alignment));
ptr := &scratch.data[offset];
zero(ptr, size);
scratch.prev_offset = int(offset);
scratch.curr_offset = int(offset) + size;
return ptr;
case size <= len(scratch.data):
offset := align_forward_uintptr(uintptr(0), uintptr(alignment));
ptr := &scratch.data[offset];
zero(ptr, size);
scratch.prev_offset = int(offset);
scratch.curr_offset = int(offset) + size;
return ptr;
}
// TODO(bill): Should leaks be notified about? Should probably use a logging system that is built into the context system
a := scratch.backup_allocator;
if a.procedure == nil {
a = context.allocator;
scratch.backup_allocator = a;
}
ptr := alloc(size, alignment, a, loc);
if scratch.leaked_allocations == nil {
scratch.leaked_allocations = make([dynamic]rawptr, a);
}
append(&scratch.leaked_allocations, ptr);
return ptr;
case Allocator_Mode.Free:
last_ptr := rawptr(&scratch.data[scratch.prev_offset]);
if old_memory == last_ptr {
full_size := scratch.curr_offset - scratch.prev_offset;
scratch.curr_offset = scratch.prev_offset;
zero(last_ptr, full_size);
return nil;
}
// NOTE(bill): It's scratch memory, don't worry about freeing
case Allocator_Mode.Free_All:
scratch.curr_offset = 0;
scratch.prev_offset = 0;
for ptr in scratch.leaked_allocations {
free(ptr, scratch.backup_allocator);
}
clear(&scratch.leaked_allocations);
case Allocator_Mode.Resize:
last_ptr := rawptr(&scratch.data[scratch.prev_offset]);
if old_memory == last_ptr && len(scratch.data)-scratch.prev_offset >= size {
scratch.curr_offset = scratch.prev_offset+size;
return old_memory;
}
return scratch_allocator_proc(allocator_data, Allocator_Mode.Alloc, size, alignment, old_memory, old_size, flags, loc);
}
return nil;
}
scratch_allocator :: proc(scratch: ^Scratch_Allocator) -> Allocator {
return Allocator{
procedure = scratch_allocator_proc,
data = scratch,
};
}
Pool :: struct {
block_size: int,
out_band_size: int,
alignment: int,
unused_blocks: [dynamic]rawptr,
used_blocks: [dynamic]rawptr,
out_band_allocations: [dynamic]rawptr,
current_block: rawptr,
current_pos: rawptr,
bytes_left: int,
block_allocator: Allocator,
}
POOL_BLOCK_SIZE_DEFAULT :: 65536;
POOL_OUT_OF_BAND_SIZE_DEFAULT :: 6554;
pool_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
pool := (^Pool)(allocator_data);
switch mode {
case Allocator_Mode.Alloc:
return pool_alloc(pool, size);
case Allocator_Mode.Free:
panic("Allocator_Mode.Free is not supported for a pool");
case Allocator_Mode.Free_All:
pool_free_all(pool);
case Allocator_Mode.Resize:
panic("Allocator_Mode.Resize is not supported for a pool");
if old_size >= size {
return old_memory;
}
ptr := pool_alloc(pool, size);
copy(ptr, old_memory, old_size);
return ptr;
}
return nil;
}
pool_allocator :: proc(pool: ^Pool) -> Allocator {
return Allocator{
procedure = pool_allocator_proc,
data = pool,
};
}
pool_init :: proc(pool: ^Pool,
block_allocator := Allocator{} , array_allocator := Allocator{},
block_size := POOL_BLOCK_SIZE_DEFAULT, out_band_size := POOL_OUT_OF_BAND_SIZE_DEFAULT,
alignment := 8) {
pool.block_size = block_size;
pool.out_band_size = out_band_size;
pool.alignment = alignment;
if block_allocator.procedure == nil {
block_allocator = context.allocator;
}
if array_allocator.procedure == nil {
array_allocator = context.allocator;
}
pool.block_allocator = block_allocator;
pool.out_band_allocations.allocator = array_allocator;
pool. unused_blocks.allocator = array_allocator;
pool. used_blocks.allocator = array_allocator;
}
pool_destroy :: proc(using pool: ^Pool) {
pool_free_all(pool);
delete(unused_blocks);
delete(used_blocks);
zero(pool, size_of(pool^));
}
pool_alloc :: proc(using pool: ^Pool, bytes: int) -> rawptr {
cycle_new_block :: proc(using pool: ^Pool) {
if block_allocator.procedure == nil {
panic("You must call pool_init on a Pool before using it");
}
if current_block != nil {
append(&used_blocks, current_block);
}
new_block: rawptr;
if len(unused_blocks) > 0 {
new_block = pop(&unused_blocks);
} else {
new_block = block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc,
block_size, alignment,
nil, 0);
}
bytes_left = block_size;
current_pos = new_block;
current_block = new_block;
}
extra := alignment - (bytes % alignment);
bytes += extra;
if bytes >= out_band_size {
assert(block_allocator.procedure != nil);
memory := block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc,
block_size, alignment,
nil, 0);
if memory != nil {
append(&out_band_allocations, (^byte)(memory));
}
return memory;
}
if bytes_left < bytes {
cycle_new_block(pool);
if current_block == nil {
return nil;
}
}
memory := current_pos;
current_pos = ptr_offset((^byte)(current_pos), bytes);
bytes_left -= bytes;
return memory;
}
pool_reset :: proc(using pool: ^Pool) {
if current_block != nil {
append(&unused_blocks, current_block);
current_block = nil;
}
for block in used_blocks {
append(&unused_blocks, block);
}
clear(&used_blocks);
for a in out_band_allocations {
free(a, block_allocator);
}
clear(&out_band_allocations);
}
pool_free_all :: proc(using pool: ^Pool) {
pool_reset(pool);
for block in unused_blocks {
free(block, block_allocator);
}
clear(&unused_blocks);
}