Files
Odin/core/runtime/internal.odin

487 lines
13 KiB
Odin

package runtime
import "core:mem"
import "core:os"
import "core:unicode/utf8"
print_u64 :: proc(fd: os.Handle, u: u64) {
digits := "0123456789";
a: [129]byte;
i := len(a);
b := u64(10);
for u >= b {
i -= 1; a[i] = digits[u % b];
u /= b;
}
i -= 1; a[i] = digits[u % b];
os.write(fd, a[i:]);
}
print_i64 :: proc(fd: os.Handle, u: i64) {
digits := "0123456789";
b :: i64(10);
neg := u < 0;
u = abs(u);
a: [129]byte;
i := len(a);
for u >= b {
i -= 1; a[i] = digits[u % b];
u /= b;
}
i -= 1; a[i] = digits[u % b];
if neg {
i -= 1; a[i] = '-';
}
os.write(fd, a[i:]);
}
print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) {
os.write_string(fd, file_path);
os.write_byte(fd, '(');
print_u64(fd, u64(line));
os.write_byte(fd, ':');
print_u64(fd, u64(column));
os.write_byte(fd, ')');
}
print_typeid :: proc(fd: os.Handle, id: typeid) {
ti := type_info_of(id);
print_type(fd, ti);
}
print_type :: proc(fd: os.Handle, ti: ^Type_Info) {
if ti == nil {
os.write_string(fd, "nil");
return;
}
switch info in ti.variant {
case Type_Info_Named:
os.write_string(fd, info.name);
case Type_Info_Integer:
switch ti.id {
case int: os.write_string(fd, "int");
case uint: os.write_string(fd, "uint");
case uintptr: os.write_string(fd, "uintptr");
case:
os.write_byte(fd, info.signed ? 'i' : 'u');
print_u64(fd, u64(8*ti.size));
}
case Type_Info_Rune:
os.write_string(fd, "rune");
case Type_Info_Float:
os.write_byte(fd, 'f');
print_u64(fd, u64(8*ti.size));
case Type_Info_Complex:
os.write_string(fd, "complex");
print_u64(fd, u64(8*ti.size));
case Type_Info_String:
os.write_string(fd, "string");
case Type_Info_Boolean:
switch ti.id {
case bool: os.write_string(fd, "bool");
case:
os.write_byte(fd, 'b');
print_u64(fd, u64(8*ti.size));
}
case Type_Info_Any:
os.write_string(fd, "any");
case Type_Info_Type_Id:
os.write_string(fd, "typeid");
case Type_Info_Pointer:
if info.elem == nil {
os.write_string(fd, "rawptr");
} else {
os.write_string(fd, "^");
print_type(fd, info.elem);
}
case Type_Info_Procedure:
os.write_string(fd, "proc");
if info.params == nil {
os.write_string(fd, "()");
} else {
t := info.params.variant.(Type_Info_Tuple);
os.write_string(fd, "(");
for t, i in t.types {
if i > 0 do os.write_string(fd, ", ");
print_type(fd, t);
}
os.write_string(fd, ")");
}
if info.results != nil {
os.write_string(fd, " -> ");
print_type(fd, info.results);
}
case Type_Info_Tuple:
count := len(info.names);
if count != 1 do os.write_string(fd, "(");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
t := info.types[i];
if len(name) > 0 {
os.write_string(fd, name);
os.write_string(fd, ": ");
}
print_type(fd, t);
}
if count != 1 do os.write_string(fd, ")");
case Type_Info_Array:
os.write_string(fd, "[");
print_u64(fd, u64(info.count));
os.write_string(fd, "]");
print_type(fd, info.elem);
case Type_Info_Dynamic_Array:
os.write_string(fd, "[dynamic]");
print_type(fd, info.elem);
case Type_Info_Slice:
os.write_string(fd, "[]");
print_type(fd, info.elem);
case Type_Info_Map:
os.write_string(fd, "map[");
print_type(fd, info.key);
os.write_byte(fd, ']');
print_type(fd, info.value);
case Type_Info_Struct:
os.write_string(fd, "struct ");
if info.is_packed do os.write_string(fd, "#packed ");
if info.is_raw_union do os.write_string(fd, "#raw_union ");
if info.custom_align {
os.write_string(fd, "#align ");
print_u64(fd, u64(ti.align));
os.write_byte(fd, ' ');
}
os.write_byte(fd, '{');
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
os.write_string(fd, ": ");
print_type(fd, info.types[i]);
}
os.write_byte(fd, '}');
case Type_Info_Union:
os.write_string(fd, "union {");
for variant, i in info.variants {
if i > 0 do os.write_string(fd, ", ");
print_type(fd, variant);
}
os.write_string(fd, "}");
case Type_Info_Enum:
os.write_string(fd, "enum ");
print_type(fd, info.base);
os.write_string(fd, " {");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
}
os.write_string(fd, "}");
case Type_Info_Bit_Field:
os.write_string(fd, "bit_field ");
if ti.align != 1 {
os.write_string(fd, "#align ");
print_u64(fd, u64(ti.align));
os.write_byte(fd, ' ');
}
os.write_string(fd, " {");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
os.write_string(fd, ": ");
print_u64(fd, u64(info.bits[i]));
}
os.write_string(fd, "}");
case Type_Info_Bit_Set:
os.write_string(fd, "bit_set[");
switch elem in type_info_base(info.elem).variant {
case Type_Info_Enum:
print_type(fd, info.elem);
case Type_Info_Rune:
os.write_encoded_rune(fd, rune(info.lower));
os.write_string(fd, "..");
os.write_encoded_rune(fd, rune(info.upper));
case:
print_i64(fd, info.lower);
os.write_string(fd, "..");
print_i64(fd, info.upper);
}
if info.underlying != nil {
os.write_string(fd, "; ");
print_type(fd, info.underlying);
}
os.write_byte(fd, ']');
}
}
string_eq :: proc "contextless" (a, b: string) -> bool {
switch {
case len(a) != len(b): return false;
case len(a) == 0: return true;
case &a[0] == &b[0]: return true;
}
return string_cmp(a, b) == 0;
}
string_cmp :: proc "contextless" (a, b: string) -> int {
return mem.compare_byte_ptrs(&a[0], &b[0], min(len(a), len(b)));
}
string_ne :: inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); }
string_lt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; }
string_gt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; }
string_le :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; }
string_ge :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; }
cstring_len :: proc "contextless" (s: cstring) -> int {
n := 0;
for p := (^byte)(s); p != nil && p^ != 0; p = mem.ptr_offset(p, 1) {
n += 1;
}
return n;
}
cstring_to_string :: proc "contextless" (s: cstring) -> string {
if s == nil do return "";
ptr := (^byte)(s);
n := cstring_len(s);
return transmute(string)mem.Raw_String{ptr, n};
}
complex64_eq :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex64_ne :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
complex128_eq :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex128_ne :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
bounds_check_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
if 0 <= index && index < count do return;
handle_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Index ");
print_i64(fd, i64(index));
os.write_string(fd, " is out of bounds range 0:");
print_i64(fd, i64(count));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, index, count);
}
slice_expr_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
if 0 <= lo && lo <= hi && hi <= len do return;
handle_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid slice indices: ");
print_i64(fd, i64(lo));
os.write_string(fd, ":");
print_i64(fd, i64(hi));
os.write_string(fd, ":");
print_i64(fd, i64(len));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, lo, hi, len);
}
dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
if 0 <= low && low <= high && high <= max do return;
handle_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid dynamic array values: ");
print_i64(fd, i64(low));
os.write_string(fd, ":");
print_i64(fd, i64(high));
os.write_string(fd, ":");
print_i64(fd, i64(max));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, low, high, max);
}
type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column: int, from, to: typeid) {
if ok do return;
handle_error :: proc "contextless" (file: string, line, column: int, from, to: typeid) {
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid type assertion from ");
print_typeid(fd, from);
os.write_string(fd, " to ");
print_typeid(fd, to);
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, from, to);
}
string_decode_rune :: inline proc "contextless" (s: string) -> (rune, int) {
return utf8.decode_rune_in_string(s);
}
bounds_check_error_loc :: inline proc "contextless" (using loc := #caller_location, index, count: int) {
bounds_check_error(file_path, int(line), int(column), index, count);
}
slice_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, lo, hi: int, len: int) {
slice_expr_error(file_path, int(line), int(column), lo, hi, len);
}
dynamic_array_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, low, high, max: int) {
dynamic_array_expr_error(file_path, int(line), int(column), low, high, max);
}
make_slice_error_loc :: inline proc "contextless" (loc := #caller_location, len: int) {
if 0 <= len do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, len: int) {
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " Invalid slice length for make: ");
print_i64(fd, i64(len));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(loc, len);
}
make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_location, len, cap: int) {
if 0 <= len && len <= cap do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, len, cap: int) {
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " Invalid dynamic array parameters for make: ");
print_i64(fd, i64(len));
os.write_byte(fd, ':');
print_i64(fd, i64(cap));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(loc, len, cap);
}
make_map_expr_error_loc :: inline proc "contextless" (loc := #caller_location, cap: int) {
if 0 <= cap do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, cap: int) {
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " Invalid map capacity for make: ");
print_i64(fd, i64(cap));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(loc, cap);
}
@(default_calling_convention = "c")
foreign {
@(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 ---
@(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 ---
}
abs_f32 :: inline proc "contextless" (x: f32) -> f32 {
foreign {
@(link_name="llvm.fabs.f32") _abs :: proc "c" (x: f32) -> f32 ---
}
return _abs(x);
}
abs_f64 :: inline proc "contextless" (x: f64) -> f64 {
foreign {
@(link_name="llvm.fabs.f64") _abs :: proc "c" (x: f64) -> f64 ---
}
return _abs(x);
}
min_f32 :: proc(a, b: f32) -> f32 {
foreign {
@(link_name="llvm.minnum.f32") _min :: proc "c" (a, b: f32) -> f32 ---
}
return _min(a, b);
}
min_f64 :: proc(a, b: f64) -> f64 {
foreign {
@(link_name="llvm.minnum.f64") _min :: proc "c" (a, b: f64) -> f64 ---
}
return _min(a, b);
}
max_f32 :: proc(a, b: f32) -> f32 {
foreign {
@(link_name="llvm.maxnum.f32") _max :: proc "c" (a, b: f32) -> f32 ---
}
return _max(a, b);
}
max_f64 :: proc(a, b: f64) -> f64 {
foreign {
@(link_name="llvm.maxnum.f64") _max :: proc "c" (a, b: f64) -> f64 ---
}
return _max(a, b);
}
abs_complex64 :: inline proc "contextless" (x: complex64) -> f32 {
r, i := real(x), imag(x);
return _sqrt_f32(r*r + i*i);
}
abs_complex128 :: inline proc "contextless" (x: complex128) -> f64 {
r, i := real(x), imag(x);
return _sqrt_f64(r*r + i*i);
}
quo_complex64 :: proc(n, m: complex64) -> complex64 {
e, f: f32;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}
quo_complex128 :: proc(n, m: complex128) -> complex128 {
e, f: f64;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}