Files
Odin/src/check_expr.cpp
2022-02-05 16:11:48 +00:00

10058 lines
283 KiB
C++

enum CallArgumentError {
CallArgumentError_None,
CallArgumentError_NoneProcedureType,
CallArgumentError_WrongTypes,
CallArgumentError_NonVariadicExpand,
CallArgumentError_VariadicTuple,
CallArgumentError_MultipleVariadicExpand,
CallArgumentError_AmbiguousPolymorphicVariadic,
CallArgumentError_ArgumentCount,
CallArgumentError_TooFewArguments,
CallArgumentError_TooManyArguments,
CallArgumentError_InvalidFieldValue,
CallArgumentError_ParameterNotFound,
CallArgumentError_ParameterMissing,
CallArgumentError_DuplicateParameter,
CallArgumentError_NoneConstantParameter,
CallArgumentError_MAX,
};
char const *CallArgumentError_strings[CallArgumentError_MAX] = {
"None",
"NoneProcedureType",
"WrongTypes",
"NonVariadicExpand",
"VariadicTuple",
"MultipleVariadicExpand",
"AmbiguousPolymorphicVariadic",
"ArgumentCount",
"TooFewArguments",
"TooManyArguments",
"InvalidFieldValue",
"ParameterNotFound",
"ParameterMissing",
"DuplicateParameter",
"NoneConstantParameter",
};
enum CallArgumentErrorMode {
CallArgumentMode_NoErrors,
CallArgumentMode_ShowErrors,
};
struct CallArgumentData {
Entity *gen_entity;
i64 score;
Type * result_type;
};
struct PolyProcData {
Entity * gen_entity;
ProcInfo *proc_info;
};
struct ValidIndexAndScore {
isize index;
i64 score;
};
int valid_index_and_score_cmp(void const *a, void const *b) {
i64 si = (cast(ValidIndexAndScore const *)a)->score;
i64 sj = (cast(ValidIndexAndScore const *)b)->score;
return sj < si ? -1 : sj > si;
}
#define CALL_ARGUMENT_CHECKER(name) CallArgumentError name(CheckerContext *c, Ast *call, Type *proc_type, Entity *entity, Array<Operand> operands, CallArgumentErrorMode show_error_mode, CallArgumentData *data)
typedef CALL_ARGUMENT_CHECKER(CallArgumentCheckerType);
void check_expr (CheckerContext *c, Operand *operand, Ast *expression);
void check_multi_expr (CheckerContext *c, Operand *operand, Ast *expression);
void check_multi_expr_or_type (CheckerContext *c, Operand *operand, Ast *expression);
void check_multi_expr_with_type_hint(CheckerContext *c, Operand *o, Ast *e, Type *type_hint);
void check_expr_or_type (CheckerContext *c, Operand *operand, Ast *expression, Type *type_hint);
ExprKind check_expr_base (CheckerContext *c, Operand *operand, Ast *expression, Type *type_hint);
void check_expr_with_type_hint (CheckerContext *c, Operand *o, Ast *e, Type *t);
Type * check_type (CheckerContext *c, Ast *expression);
Type * check_type_expr (CheckerContext *c, Ast *expression, Type *named_type);
Type * make_optional_ok_type (Type *value, bool typed=true);
Entity * check_selector (CheckerContext *c, Operand *operand, Ast *node, Type *type_hint);
Entity * check_ident (CheckerContext *c, Operand *o, Ast *n, Type *named_type, Type *type_hint, bool allow_import_name);
Entity * find_polymorphic_record_entity (CheckerContext *c, Type *original_type, isize param_count, Array<Operand> const &ordered_operands, bool *failure);
void check_not_tuple (CheckerContext *c, Operand *operand);
void convert_to_typed (CheckerContext *c, Operand *operand, Type *target_type);
gbString expr_to_string (Ast *expression);
void check_proc_body (CheckerContext *c, Token token, DeclInfo *decl, Type *type, Ast *body);
void update_untyped_expr_type (CheckerContext *c, Ast *e, Type *type, bool final);
bool check_is_terminating (Ast *node, String const &label);
bool check_has_break (Ast *stmt, String const &label, bool implicit);
void check_stmt (CheckerContext *c, Ast *node, u32 flags);
void check_stmt_list (CheckerContext *c, Slice<Ast *> const &stmts, u32 flags);
void check_init_constant (CheckerContext *c, Entity *e, Operand *operand);
bool check_representable_as_constant(CheckerContext *c, ExactValue in_value, Type *type, ExactValue *out_value);
bool check_procedure_type (CheckerContext *c, Type *type, Ast *proc_type_node, Array<Operand> *operands = nullptr);
void check_struct_type (CheckerContext *c, Type *struct_type, Ast *node, Array<Operand> *poly_operands,
Type *named_type = nullptr, Type *original_type_for_poly = nullptr);
void check_union_type (CheckerContext *c, Type *union_type, Ast *node, Array<Operand> *poly_operands,
Type *named_type = nullptr, Type *original_type_for_poly = nullptr);
CallArgumentData check_call_arguments (CheckerContext *c, Operand *operand, Type *proc_type, Ast *call);
Type * check_init_variable (CheckerContext *c, Entity *e, Operand *operand, String context_name);
void check_assignment_error_suggestion(CheckerContext *c, Operand *o, Type *type);
void add_map_key_type_dependencies(CheckerContext *ctx, Type *key);
Type *make_soa_struct_slice(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem);
Type *make_soa_struct_dynamic_array(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem);
bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 id, Type *type_hint);
void check_promote_optional_ok(CheckerContext *c, Operand *x, Type **val_type_, Type **ok_type_);
void check_or_else_right_type(CheckerContext *c, Ast *expr, String const &name, Type *right_type);
void check_or_else_split_types(CheckerContext *c, Operand *x, String const &name, Type **left_type_, Type **right_type_);
void check_or_else_expr_no_value_error(CheckerContext *c, String const &name, Operand const &x, Type *type_hint);
void check_or_return_split_types(CheckerContext *c, Operand *x, String const &name, Type **left_type_, Type **right_type_);
void check_did_you_mean_print(DidYouMeanAnswers *d, char const *prefix = "") {
auto results = did_you_mean_results(d);
if (results.count != 0) {
error_line("\tSuggestion: Did you mean?\n");
for_array(i, results) {
String const &target = results[i].target;
error_line("\t\t%s%.*s\n", prefix, LIT(target));
// error_line("\t\t%.*s %td\n", LIT(target), results[i].distance);
}
}
}
void check_did_you_mean_type(String const &name, Array<Entity *> const &fields, char const *prefix = "") {
ERROR_BLOCK();
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), fields.count, name);
defer (did_you_mean_destroy(&d));
for_array(i, fields) {
did_you_mean_append(&d, fields[i]->token.string);
}
check_did_you_mean_print(&d, prefix);
}
void check_did_you_mean_type(String const &name, Slice<Entity *> const &fields, char const *prefix = "") {
ERROR_BLOCK();
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), fields.count, name);
defer (did_you_mean_destroy(&d));
for_array(i, fields) {
did_you_mean_append(&d, fields[i]->token.string);
}
check_did_you_mean_print(&d, prefix);
}
void check_did_you_mean_scope(String const &name, Scope *scope, char const *prefix = "") {
ERROR_BLOCK();
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), scope->elements.entries.count, name);
defer (did_you_mean_destroy(&d));
mutex_lock(&scope->mutex);
for_array(i, scope->elements.entries) {
Entity *e = scope->elements.entries[i].value;
did_you_mean_append(&d, e->token.string);
}
mutex_unlock(&scope->mutex);
check_did_you_mean_print(&d, prefix);
}
Entity *entity_from_expr(Ast *expr) {
expr = unparen_expr(expr);
switch (expr->kind) {
case Ast_Ident:
return expr->Ident.entity;
case Ast_SelectorExpr:
return entity_from_expr(expr->SelectorExpr.selector);
}
return nullptr;
}
void error_operand_not_expression(Operand *o) {
if (o->mode == Addressing_Type) {
gbString err = expr_to_string(o->expr);
error(o->expr, "'%s' is not an expression but a type", err);
gb_string_free(err);
o->mode = Addressing_Invalid;
}
}
void error_operand_no_value(Operand *o) {
if (o->mode == Addressing_NoValue) {
gbString err = expr_to_string(o->expr);
Ast *x = unparen_expr(o->expr);
if (x->kind == Ast_CallExpr) {
error(o->expr, "'%s' call does not return a value and cannot be used as a value", err);
} else {
error(o->expr, "'%s' used as a value", err);
}
gb_string_free(err);
o->mode = Addressing_Invalid;
}
}
void check_scope_decls(CheckerContext *c, Slice<Ast *> const &nodes, isize reserve_size) {
Scope *s = c->scope;
check_collect_entities(c, nodes);
for_array(i, s->elements.entries) {
Entity *e = s->elements.entries[i].value;
switch (e->kind) {
case Entity_Constant:
case Entity_TypeName:
case Entity_Procedure:
break;
default:
continue;
}
DeclInfo *d = decl_info_of_entity(e);
if (d != nullptr) {
check_entity_decl(c, e, d, nullptr);
}
}
}
isize check_is_assignable_to_using_subtype(Type *src, Type *dst, isize level = 0, bool src_is_ptr = false) {
Type *prev_src = src;
src = type_deref(src);
if (!src_is_ptr) {
src_is_ptr = src != prev_src;
}
src = base_type(src);
if (!is_type_struct(src)) {
return 0;
}
for_array(i, src->Struct.fields) {
Entity *f = src->Struct.fields[i];
if (f->kind != Entity_Variable || (f->flags&EntityFlag_Using) == 0) {
continue;
}
if (are_types_identical(f->type, dst)) {
return level+1;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(f->type, type_deref(dst))) {
return level+1;
}
}
isize nested_level = check_is_assignable_to_using_subtype(f->type, dst, level+1, src_is_ptr);
if (nested_level > 0) {
return nested_level;
}
}
return 0;
}
bool find_or_generate_polymorphic_procedure(CheckerContext *old_c, Entity *base_entity, Type *type,
Array<Operand> *param_operands, Ast *poly_def_node, PolyProcData *poly_proc_data) {
///////////////////////////////////////////////////////////////////////////////
// //
// TODO CLEANUP(bill): This procedure is very messy and hacky. Clean this!!! //
// //
///////////////////////////////////////////////////////////////////////////////
CheckerInfo *info = old_c->info;
if (base_entity == nullptr) {
return false;
}
if (!is_type_proc(base_entity->type)) {
return false;
}
String name = base_entity->token.string;
Type *src = base_type(base_entity->type);
Type *dst = nullptr;
if (type != nullptr) {
dst = base_type(type);
}
if (param_operands == nullptr) {
GB_ASSERT(dst != nullptr);
}
if (param_operands != nullptr) {
GB_ASSERT(dst == nullptr);
}
mutex_lock(&info->gen_procs_mutex);
defer (mutex_unlock(&info->gen_procs_mutex));
if (!src->Proc.is_polymorphic || src->Proc.is_poly_specialized) {
return false;
}
if (dst != nullptr) {
if (dst->Proc.is_polymorphic) {
return false;
}
if (dst->Proc.param_count != src->Proc.param_count ||
dst->Proc.result_count != src->Proc.result_count) {
return false;
}
}
DeclInfo *old_decl = decl_info_of_entity(base_entity);
if (old_decl == nullptr) {
return false;
}
gbAllocator a = heap_allocator();
Array<Operand> operands = {};
if (param_operands) {
operands = *param_operands;
} else {
operands = array_make<Operand>(a, 0, dst->Proc.param_count);
for (isize i = 0; i < dst->Proc.param_count; i++) {
Entity *param = dst->Proc.params->Tuple.variables[i];
Operand o = {Addressing_Value};
o.type = param->type;
array_add(&operands, o);
}
}
defer (if (param_operands == nullptr) {
array_free(&operands);
});
CheckerContext nctx = *old_c;
nctx.procs_to_check_queue = old_c->procs_to_check_queue;
Scope *scope = create_scope(info, base_entity->scope);
scope->flags |= ScopeFlag_Proc;
nctx.scope = scope;
nctx.allow_polymorphic_types = true;
if (nctx.polymorphic_scope == nullptr) {
nctx.polymorphic_scope = scope;
}
auto *pt = &src->Proc;
// NOTE(bill): This is slightly memory leaking if the type already exists
// Maybe it's better to check with the previous types first?
Type *final_proc_type = alloc_type_proc(scope, nullptr, 0, nullptr, 0, false, pt->calling_convention);
bool success = check_procedure_type(&nctx, final_proc_type, pt->node, &operands);
if (!success) {
return false;
}
auto *found_gen_procs = map_get(&info->gen_procs, base_entity->identifier.load());
if (found_gen_procs) {
auto procs = *found_gen_procs;
for_array(i, procs) {
Entity *other = procs[i];
Type *pt = base_type(other->type);
if (are_types_identical(pt, final_proc_type)) {
if (poly_proc_data) {
poly_proc_data->gen_entity = other;
}
return true;
}
}
}
{
// LEAK TODO(bill): This is technically a memory leak as it has to generate the type twice
bool prev_no_polymorphic_errors = nctx.no_polymorphic_errors;
defer (nctx.no_polymorphic_errors = prev_no_polymorphic_errors);
nctx.no_polymorphic_errors = false;
// NOTE(bill): Reset scope from the failed procedure type
scope_reset(scope);
// LEAK TODO(bill): Cloning this AST may be leaky
Ast *cloned_proc_type_node = clone_ast(pt->node);
success = check_procedure_type(&nctx, final_proc_type, cloned_proc_type_node, &operands);
if (!success) {
return false;
}
if (found_gen_procs) {
auto procs = *found_gen_procs;
for_array(i, procs) {
Entity *other = procs[i];
Type *pt = base_type(other->type);
if (are_types_identical(pt, final_proc_type)) {
if (poly_proc_data) {
poly_proc_data->gen_entity = other;
}
return true;
}
}
}
}
Ast *proc_lit = clone_ast(old_decl->proc_lit);
ast_node(pl, ProcLit, proc_lit);
// NOTE(bill): Associate the scope declared above withinth this procedure declaration's type
add_scope(&nctx, pl->type, final_proc_type->Proc.scope);
final_proc_type->Proc.is_poly_specialized = true;
final_proc_type->Proc.is_polymorphic = true;
for (isize i = 0; i < operands.count; i++) {
Operand o = operands[i];
if (final_proc_type == o.type ||
base_entity->type == o.type) {
// NOTE(bill): Cycle
final_proc_type->Proc.is_poly_specialized = false;
break;
}
}
u64 tags = base_entity->Procedure.tags;
Ast *ident = clone_ast(base_entity->identifier);
Token token = ident->Ident.token;
DeclInfo *d = make_decl_info(scope, old_decl->parent);
d->gen_proc_type = final_proc_type;
d->type_expr = pl->type;
d->proc_lit = proc_lit;
d->proc_checked = false;
Entity *entity = alloc_entity_procedure(nullptr, token, final_proc_type, tags);
entity->identifier = ident;
add_entity_and_decl_info(&nctx, ident, entity, d);
// NOTE(bill): Set the scope afterwards as this is not real overloading
entity->scope = scope->parent;
entity->file = base_entity->file;
entity->pkg = base_entity->pkg;
entity->flags &= ~EntityFlag_ProcBodyChecked;
AstFile *file = nullptr;
{
Scope *s = entity->scope;
while (s != nullptr && s->file == nullptr) {
file = s->file;
s = s->parent;
}
}
ProcInfo *proc_info = gb_alloc_item(permanent_allocator(), ProcInfo);
proc_info->file = file;
proc_info->token = token;
proc_info->decl = d;
proc_info->type = final_proc_type;
proc_info->body = pl->body;
proc_info->tags = tags;
proc_info->generated_from_polymorphic = true;
proc_info->poly_def_node = poly_def_node;
if (found_gen_procs) {
array_add(found_gen_procs, entity);
} else {
auto array = array_make<Entity *>(heap_allocator());
array_add(&array, entity);
map_set(&info->gen_procs, base_entity->identifier.load(), array);
}
if (poly_proc_data) {
poly_proc_data->gen_entity = entity;
poly_proc_data->proc_info = proc_info;
entity->Procedure.generated_from_polymorphic = proc_info->generated_from_polymorphic;
}
// NOTE(bill): Check the newly generated procedure body
check_procedure_later(&nctx, proc_info);
return true;
}
bool check_polymorphic_procedure_assignment(CheckerContext *c, Operand *operand, Type *type, Ast *poly_def_node, PolyProcData *poly_proc_data) {
if (operand->expr == nullptr) return false;
Entity *base_entity = entity_of_node(operand->expr);
if (base_entity == nullptr) return false;
return find_or_generate_polymorphic_procedure(c, base_entity, type, nullptr, poly_def_node, poly_proc_data);
}
bool find_or_generate_polymorphic_procedure_from_parameters(CheckerContext *c, Entity *base_entity, Array<Operand> *operands, Ast *poly_def_node, PolyProcData *poly_proc_data) {
return find_or_generate_polymorphic_procedure(c, base_entity, nullptr, operands, poly_def_node, poly_proc_data);
}
bool check_type_specialization_to(CheckerContext *c, Type *specialization, Type *type, bool compound, bool modify_type);
bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source, bool compound, bool modify_type);
bool check_cast_internal(CheckerContext *c, Operand *x, Type *type);
#define MAXIMUM_TYPE_DISTANCE 10
i64 check_distance_between_types(CheckerContext *c, Operand *operand, Type *type) {
if (c == nullptr) {
GB_ASSERT(operand->mode == Addressing_Value);
GB_ASSERT(is_type_typed(operand->type));
}
if (operand->mode == Addressing_Invalid ||
type == t_invalid) {
return -1;
}
if (operand->mode == Addressing_Builtin) {
return -1;
}
if (operand->mode == Addressing_Type) {
if (is_type_typeid(type)) {
add_type_info_type(c, operand->type);
return 4;
}
return -1;
}
Type *s = operand->type;
if (are_types_identical(s, type)) {
return 0;
}
Type *src = base_type(s);
Type *dst = base_type(type);
if (is_type_untyped_undef(src)) {
if (type_has_undef(dst)) {
return 1;
}
return -1;
}
if (is_type_untyped_nil(src)) {
if (type_has_nil(dst)) {
return 1;
}
return -1;
}
if (is_type_untyped(src)) {
if (is_type_any(dst)) {
// NOTE(bill): Anything can cast to 'Any'
add_type_info_type(c, s);
return MAXIMUM_TYPE_DISTANCE;
}
if (dst->kind == Type_Basic) {
if (operand->mode == Addressing_Constant) {
if (check_representable_as_constant(c, operand->value, dst, nullptr)) {
if (is_type_typed(dst) && src->kind == Type_Basic) {
switch (src->Basic.kind) {
case Basic_UntypedRune:
if (is_type_integer(dst) || is_type_rune(dst)) {
return 1;
}
break;
case Basic_UntypedInteger:
if (is_type_integer(dst) || is_type_rune(dst)) {
return 1;
}
break;
case Basic_UntypedFloat:
if (is_type_float(dst)) {
return 1;
}
break;
case Basic_UntypedComplex:
if (is_type_complex(dst)) {
return 1;
}
if (is_type_quaternion(dst)) {
return 2;
}
break;
case Basic_UntypedQuaternion:
if (is_type_quaternion(dst)) {
return 1;
}
break;
}
}
return 2;
}
return -1;
}
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedRune) {
if (is_type_integer(dst) || is_type_rune(dst)) {
if (is_type_typed(type)) {
return 2;
}
return 1;
}
return -1;
}
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) {
if (is_type_boolean(dst)) {
if (is_type_typed(type)) {
return 2;
}
return 1;
}
return -1;
}
}
}
if (is_type_enum(dst) && are_types_identical(dst->Enum.base_type, operand->type)) {
if (c->in_enum_type) {
return 3;
}
}
{
isize subtype_level = check_is_assignable_to_using_subtype(operand->type, type);
if (subtype_level > 0) {
return 4 + subtype_level;
}
}
// ^T <- rawptr
#if 0
// TODO(bill): Should C-style (not C++) pointer cast be allowed?
if (is_type_pointer(dst) && is_type_rawptr(src)) {
return true;
}
#endif
#if 1
// rawptr <- ^T
if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) {
return 5;
}
// rawptr <- [^]T
if (are_types_identical(type, t_rawptr) && is_type_multi_pointer(src)) {
return 5;
}
// ^T <- [^]T
if (dst->kind == Type_Pointer && src->kind == Type_MultiPointer) {
if (are_types_identical(dst->Pointer.elem, src->MultiPointer.elem)) {
return 4;
}
}
// [^]T <- ^T
if (dst->kind == Type_MultiPointer && src->kind == Type_Pointer) {
if (are_types_identical(dst->MultiPointer.elem, src->Pointer.elem)) {
return 4;
}
}
#endif
if (is_type_polymorphic(dst) && !is_type_polymorphic(src)) {
bool modify_type = !c->no_polymorphic_errors;
if (is_polymorphic_type_assignable(c, type, s, false, modify_type)) {
return 2;
}
}
if (is_type_union(dst)) {
for_array(i, dst->Union.variants) {
Type *vt = dst->Union.variants[i];
if (are_types_identical(vt, s)) {
return 1;
}
}
// TODO(bill): Determine which rule is a better on in practice
#if 1
if (dst->Union.variants.count == 1) {
Type *vt = dst->Union.variants[0];
i64 score = check_distance_between_types(c, operand, vt);
if (score >= 0) {
return score+2;
}
}
#else
// NOTE(bill): check to see you can assign to it with one of the variants?
i64 prev_lowest_score = -1;
i64 lowest_score = -1;
for_array(i, dst->Union.variants) {
Type *vt = dst->Union.variants[i];
i64 score = check_distance_between_types(c, operand, vt);
if (score >= 0) {
if (lowest_score < 0) {
lowest_score = score;
} else {
if (prev_lowest_score < 0) {
prev_lowest_score = lowest_score;
} else {
prev_lowest_score = gb_min(prev_lowest_score, lowest_score);
}
lowest_score = gb_min(lowest_score, score);
}
}
}
if (lowest_score >= 0) {
if (prev_lowest_score != lowest_score) { // remove possible ambiguities
return lowest_score+2;
}
}
#endif
}
if (is_type_relative_pointer(dst)) {
i64 score = check_distance_between_types(c, operand, dst->RelativePointer.pointer_type);
if (score >= 0) {
return score+2;
}
}
if (is_type_relative_slice(dst)) {
i64 score = check_distance_between_types(c, operand, dst->RelativeSlice.slice_type);
if (score >= 0) {
return score+2;
}
}
if (is_type_proc(dst)) {
if (are_types_identical(src, dst)) {
return 3;
}
PolyProcData poly_proc_data = {};
if (check_polymorphic_procedure_assignment(c, operand, type, operand->expr, &poly_proc_data)) {
Entity *e = poly_proc_data.gen_entity;
add_type_and_value(c->info, operand->expr, Addressing_Value, e->type, {});
add_entity_use(c, operand->expr, e);
return 4;
}
}
if (is_type_complex_or_quaternion(dst)) {
Type *elem = base_complex_elem_type(dst);
if (are_types_identical(elem, base_type(src))) {
return 5;
}
}
if (is_type_array(dst)) {
Type *elem = base_array_type(dst);
i64 distance = check_distance_between_types(c, operand, elem);
if (distance >= 0) {
return distance + 6;
}
}
if (is_type_matrix(dst)) {
Type *dst_elem = base_array_type(dst);
i64 distance = check_distance_between_types(c, operand, dst_elem);
if (distance >= 0) {
return distance + 7;
}
}
if (is_type_any(dst)) {
if (!is_type_polymorphic(src)) {
if (operand->mode == Addressing_Context && operand->type == t_context) {
return -1;
} else {
// NOTE(bill): Anything can cast to 'Any'
add_type_info_type(c, s);
return MAXIMUM_TYPE_DISTANCE;
}
}
}
Ast *expr = unparen_expr(operand->expr);
if (expr != nullptr) {
if (expr->kind == Ast_AutoCast) {
Operand x = *operand;
x.expr = expr->AutoCast.expr;
if (check_cast_internal(c, &x, type)) {
return MAXIMUM_TYPE_DISTANCE;
}
}
}
return -1;
}
i64 assign_score_function(i64 distance, bool is_variadic=false) {
// 3*x^2 + 1 > x^2 + x + 1 (for positive x)
i64 const c = 3*MAXIMUM_TYPE_DISTANCE*MAXIMUM_TYPE_DISTANCE + 1;
// TODO(bill): A decent score function
i64 d = distance*distance; // x^2
if (is_variadic && d >= 0) {
d += distance + 1; // x^2 + x + 1
}
return gb_max(c - d, 0);
}
bool check_is_assignable_to_with_score(CheckerContext *c, Operand *operand, Type *type, i64 *score_, bool is_variadic=false) {
i64 score = 0;
i64 distance = check_distance_between_types(c, operand, type);
bool ok = distance >= 0;
if (ok) {
score = assign_score_function(distance, is_variadic);
}
if (score_) *score_ = score;
return ok;
}
bool check_is_assignable_to(CheckerContext *c, Operand *operand, Type *type) {
i64 score = 0;
return check_is_assignable_to_with_score(c, operand, type, &score);
}
bool internal_check_is_assignable_to(Type *src, Type *dst) {
Operand x = {};
x.type = src;
x.mode = Addressing_Value;
return check_is_assignable_to(nullptr, &x, dst);
}
AstPackage *get_package_of_type(Type *type) {
for (;;) {
if (type == nullptr) {
return nullptr;
}
switch (type->kind) {
case Type_Basic:
return builtin_pkg;
case Type_Named:
if (type->Named.type_name != nullptr) {
return type->Named.type_name->pkg;
}
return nullptr;
case Type_Pointer:
type = type->Pointer.elem;
continue;
case Type_Array:
type = type->Array.elem;
continue;
case Type_Slice:
type = type->Slice.elem;
continue;
case Type_DynamicArray:
type = type->DynamicArray.elem;
continue;
case Type_RelativePointer:
type = type->RelativePointer.pointer_type;
continue;
case Type_RelativeSlice:
type = type->RelativeSlice.slice_type;
continue;
}
return nullptr;
}
}
// NOTE(bill): 'content_name' is for debugging and error messages
void check_assignment(CheckerContext *c, Operand *operand, Type *type, String context_name) {
check_not_tuple(c, operand);
if (operand->mode == Addressing_Invalid) {
return;
}
if (is_type_untyped(operand->type)) {
Type *target_type = type;
if (type == nullptr || is_type_any(type)) {
if (type == nullptr && is_type_untyped_nil(operand->type)) {
error(operand->expr, "Use of untyped nil in %.*s", LIT(context_name));
operand->mode = Addressing_Invalid;
return;
}
if (type == nullptr && is_type_untyped_undef(operand->type)) {
error(operand->expr, "Use of --- in %.*s", LIT(context_name));
operand->mode = Addressing_Invalid;
return;
}
target_type = default_type(operand->type);
if (type != nullptr && !is_type_any(type)) {
GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type));
}
add_type_info_type(c, type);
add_type_info_type(c, target_type);
}
convert_to_typed(c, operand, target_type);
if (operand->mode == Addressing_Invalid) {
return;
}
}
if (type == nullptr) {
return;
}
if (operand->mode == Addressing_ProcGroup) {
Array<Entity *> procs = proc_group_entities(c, *operand);
bool good = false;
// NOTE(bill): These should be done
for_array(i, procs) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(c, &x, type)) {
Entity *e = procs[i];
add_entity_use(c, operand->expr, e);
good = true;
break;
}
}
if (!good) {
gbString expr_str = expr_to_string(operand->expr);
gbString op_type_str = type_to_string(operand->type);
gbString type_str = type_to_string(type);
defer (gb_string_free(type_str));
defer (gb_string_free(op_type_str));
defer (gb_string_free(expr_str));
// TODO(bill): is this a good enough error message?
error(operand->expr,
"Cannot assign overloaded procedure '%s' to '%s' in %.*s",
expr_str,
op_type_str,
LIT(context_name));
operand->mode = Addressing_Invalid;
}
convert_to_typed(c, operand, type);
return;
}
if (check_is_assignable_to(c, operand, type)) {
if (operand->mode == Addressing_Type && is_type_typeid(type)) {
add_type_info_type(c, operand->type);
add_type_and_value(c->info, operand->expr, Addressing_Value, type, exact_value_typeid(operand->type));
}
} else {
gbString expr_str = expr_to_string(operand->expr);
gbString op_type_str = type_to_string(operand->type);
gbString type_str = type_to_string(type);
defer (gb_string_free(type_str));
defer (gb_string_free(op_type_str));
defer (gb_string_free(expr_str));
switch (operand->mode) {
case Addressing_Builtin:
// TODO(bill): Actually allow built in procedures to be passed around and thus be created on use
error(operand->expr,
"Cannot assign built-in procedure '%s' in %.*s",
expr_str,
LIT(context_name));
break;
case Addressing_Type:
error(operand->expr,
"Cannot assign '%s' which is a type in %.*s",
op_type_str,
LIT(context_name));
break;
default:
// TODO(bill): is this a good enough error message?
{
gbString op_type_extra = gb_string_make(heap_allocator(), "");
gbString type_extra = gb_string_make(heap_allocator(), "");
defer (gb_string_free(op_type_extra));
defer (gb_string_free(type_extra));
isize on = gb_string_length(op_type_str);
isize tn = gb_string_length(type_str);
if (on == tn && gb_strncmp(op_type_str, type_str, on) == 0) {
AstPackage *op_pkg = get_package_of_type(operand->type);
AstPackage *type_pkg = get_package_of_type(type);
if (op_pkg != nullptr) {
op_type_extra = gb_string_append_fmt(op_type_extra, " (package %.*s)", LIT(op_pkg->name));
}
if (type_pkg != nullptr) {
type_extra = gb_string_append_fmt(type_extra, " (package %.*s)", LIT(type_pkg->name));
}
}
error(operand->expr,
"Cannot assign value '%s' of type '%s%s' to '%s%s' in %.*s",
expr_str,
op_type_str, op_type_extra,
type_str, type_extra,
LIT(context_name));
check_assignment_error_suggestion(c, operand, type);
}
break;
}
operand->mode = Addressing_Invalid;
return;
}
}
bool polymorphic_assign_index(Type **gt_, i64 *dst_count, i64 source_count) {
Type *gt = *gt_;
GB_ASSERT(gt->kind == Type_Generic);
Entity *e = scope_lookup(gt->Generic.scope, gt->Generic.name);
GB_ASSERT(e != nullptr);
if (e->kind == Entity_TypeName) {
*gt_ = nullptr;
*dst_count = source_count;
e->kind = Entity_Constant;
e->Constant.value = exact_value_i64(source_count);
e->type = t_untyped_integer;
return true;
} else if (e->kind == Entity_Constant) {
*gt_ = nullptr;
if (e->Constant.value.kind != ExactValue_Integer) {
return false;
}
i64 count = big_int_to_i64(&e->Constant.value.value_integer);
if (count != source_count) {
return false;
}
*dst_count = source_count;
return true;
}
return false;
}
bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source, bool compound, bool modify_type) {
Operand o = {Addressing_Value};
o.type = source;
switch (poly->kind) {
case Type_Basic:
if (compound) return are_types_identical(poly, source);
return check_is_assignable_to(c, &o, poly);
case Type_Named: {
if (check_type_specialization_to(c, poly, source, compound, modify_type)) {
return true;
}
if (compound || !is_type_generic(poly)) {
return are_types_identical(poly, source);
}
return check_is_assignable_to(c, &o, poly);
}
case Type_Generic: {
if (poly->Generic.specialized != nullptr) {
Type *s = poly->Generic.specialized;
if (!check_type_specialization_to(c, s, source, compound, modify_type)) {
return false;
}
}
if (modify_type) {
Type *ds = default_type(source);
gb_memmove(poly, ds, gb_size_of(Type));
}
return true;
}
case Type_Pointer:
if (source->kind == Type_Pointer) {
isize level = check_is_assignable_to_using_subtype(source->Pointer.elem, poly->Pointer.elem);
if (level > 0) {
return true;
}
return is_polymorphic_type_assignable(c, poly->Pointer.elem, source->Pointer.elem, true, modify_type);
}
return false;
case Type_MultiPointer:
if (source->kind == Type_MultiPointer) {
isize level = check_is_assignable_to_using_subtype(source->MultiPointer.elem, poly->MultiPointer.elem);
if (level > 0) {
return true;
}
return is_polymorphic_type_assignable(c, poly->MultiPointer.elem, source->MultiPointer.elem, true, modify_type);
}
return false;
case Type_Array:
if (source->kind == Type_Array) {
if (poly->Array.generic_count != nullptr) {
if (!polymorphic_assign_index(&poly->Array.generic_count, &poly->Array.count, source->Array.count)) {
return false;
}
}
if (poly->Array.count == source->Array.count) {
return is_polymorphic_type_assignable(c, poly->Array.elem, source->Array.elem, true, modify_type);
}
} else if (source->kind == Type_EnumeratedArray) {
if (poly->Array.generic_count != nullptr) {
Type *gt = poly->Array.generic_count;
GB_ASSERT(gt->kind == Type_Generic);
Entity *e = scope_lookup(gt->Generic.scope, gt->Generic.name);
GB_ASSERT(e != nullptr);
if (e->kind == Entity_TypeName) {
Type *index = source->EnumeratedArray.index;
Type *it = base_type(index);
if (it->kind != Type_Enum) {
return false;
}
poly->kind = Type_EnumeratedArray;
poly->cached_size = -1;
poly->cached_align = -1;
poly->flags.exchange(source->flags);
poly->failure = false;
poly->EnumeratedArray.elem = source->EnumeratedArray.elem;
poly->EnumeratedArray.index = source->EnumeratedArray.index;
poly->EnumeratedArray.min_value = source->EnumeratedArray.min_value;
poly->EnumeratedArray.max_value = source->EnumeratedArray.max_value;
poly->EnumeratedArray.count = source->EnumeratedArray.count;
poly->EnumeratedArray.op = source->EnumeratedArray.op;
e->kind = Entity_TypeName;
e->TypeName.is_type_alias = true;
e->type = index;
if (poly->EnumeratedArray.count == source->EnumeratedArray.count) {
return is_polymorphic_type_assignable(c, poly->EnumeratedArray.elem, source->EnumeratedArray.elem, true, modify_type);
}
}
}
}
return false;
case Type_EnumeratedArray:
if (source->kind == Type_EnumeratedArray) {
if (poly->EnumeratedArray.op != source->EnumeratedArray.op) {
return false;
}
if (poly->EnumeratedArray.op) {
if (poly->EnumeratedArray.count != source->EnumeratedArray.count) {
return false;
}
if (compare_exact_values(Token_NotEq, *poly->EnumeratedArray.min_value, *source->EnumeratedArray.min_value)) {
return false;
}
if (compare_exact_values(Token_NotEq, *poly->EnumeratedArray.max_value, *source->EnumeratedArray.max_value)) {
return false;
}
return is_polymorphic_type_assignable(c, poly->EnumeratedArray.index, source->EnumeratedArray.index, true, modify_type);
}
bool index = is_polymorphic_type_assignable(c, poly->EnumeratedArray.index, source->EnumeratedArray.index, true, modify_type);
bool elem = is_polymorphic_type_assignable(c, poly->EnumeratedArray.elem, source->EnumeratedArray.elem, true, modify_type);
return index || elem;
}
return false;
case Type_DynamicArray:
if (source->kind == Type_DynamicArray) {
return is_polymorphic_type_assignable(c, poly->DynamicArray.elem, source->DynamicArray.elem, true, modify_type);
}
return false;
case Type_Slice:
if (source->kind == Type_Slice) {
return is_polymorphic_type_assignable(c, poly->Slice.elem, source->Slice.elem, true, modify_type);
}
return false;
case Type_Enum:
return false;
case Type_BitSet:
if (source->kind == Type_BitSet) {
if (!is_polymorphic_type_assignable(c, poly->BitSet.elem, source->BitSet.elem, true, modify_type)) {
return false;
}
if (poly->BitSet.underlying == nullptr) {
if (modify_type) {
poly->BitSet.underlying = source->BitSet.underlying;
}
} else if (!is_polymorphic_type_assignable(c, poly->BitSet.underlying, source->BitSet.underlying, true, modify_type)) {
return false;
}
return true;
}
return false;
case Type_Union:
if (source->kind == Type_Union) {
TypeUnion *x = &poly->Union;
TypeUnion *y = &source->Union;
if (x->variants.count != y->variants.count) {
return false;
}
for_array(i, x->variants) {
Type *a = x->variants[i];
Type *b = y->variants[i];
bool ok = is_polymorphic_type_assignable(c, a, b, false, modify_type);
if (!ok) return false;
}
return true;
}
return false;
case Type_Struct:
if (source->kind == Type_Struct) {
if (poly->Struct.soa_kind == source->Struct.soa_kind &&
poly->Struct.soa_kind != StructSoa_None) {
bool ok = is_polymorphic_type_assignable(c, poly->Struct.soa_elem, source->Struct.soa_elem, true, modify_type);
if (ok) switch (source->Struct.soa_kind) {
case StructSoa_Fixed:
default:
GB_PANIC("Unhandled SOA Kind");
break;
case StructSoa_Slice:
if (modify_type) {
Type *type = make_soa_struct_slice(c, nullptr, poly->Struct.node, poly->Struct.soa_elem);
gb_memmove(poly, type, gb_size_of(*type));
}
break;
case StructSoa_Dynamic:
if (modify_type) {
Type *type = make_soa_struct_dynamic_array(c, nullptr, poly->Struct.node, poly->Struct.soa_elem);
gb_memmove(poly, type, gb_size_of(*type));
}
break;
}
return ok;
}
// return check_is_assignable_to(c, &o, poly);
}
return false;
case Type_Tuple:
GB_PANIC("This should never happen");
return false;
case Type_Proc:
if (source->kind == Type_Proc) {
// return check_is_assignable_to(c, &o, poly);
// TODO(bill): Polymorphic type assignment
#if 1
TypeProc *x = &poly->Proc;
TypeProc *y = &source->Proc;
if (x->calling_convention != y->calling_convention) {
return false;
}
if (x->c_vararg != y->c_vararg) {
return false;
}
if (x->variadic != y->variadic) {
return false;
}
if (x->param_count != y->param_count) {
return false;
}
if (x->result_count != y->result_count) {
return false;
}
for (isize i = 0; i < x->param_count; i++) {
Entity *a = x->params->Tuple.variables[i];
Entity *b = y->params->Tuple.variables[i];
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
if (!ok) return false;
}
for (isize i = 0; i < x->result_count; i++) {
Entity *a = x->results->Tuple.variables[i];
Entity *b = y->results->Tuple.variables[i];
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
if (!ok) return false;
}
return true;
#endif
}
return false;
case Type_Map:
if (source->kind == Type_Map) {
bool key = is_polymorphic_type_assignable(c, poly->Map.key, source->Map.key, true, modify_type);
bool value = is_polymorphic_type_assignable(c, poly->Map.value, source->Map.value, true, modify_type);
return key || value;
}
return false;
case Type_Matrix:
if (source->kind == Type_Matrix) {
if (poly->Matrix.generic_row_count != nullptr) {
poly->Matrix.stride_in_bytes = 0;
if (!polymorphic_assign_index(&poly->Matrix.generic_row_count, &poly->Matrix.row_count, source->Matrix.row_count)) {
return false;
}
}
if (poly->Matrix.generic_column_count != nullptr) {
poly->Matrix.stride_in_bytes = 0;
if (!polymorphic_assign_index(&poly->Matrix.generic_column_count, &poly->Matrix.column_count, source->Matrix.column_count)) {
return false;
}
}
if (poly->Matrix.row_count == source->Matrix.row_count &&
poly->Matrix.column_count == source->Matrix.column_count) {
return is_polymorphic_type_assignable(c, poly->Matrix.elem, source->Matrix.elem, true, modify_type);
}
}
return false;
}
return false;
}
bool check_cycle(CheckerContext *c, Entity *curr, bool report) {
if (curr->state != EntityState_InProgress) {
return false;
}
for_array(i, *c->type_path) {
Entity *prev = (*c->type_path)[i];
if (prev == curr) {
if (report) {
error(curr->token, "Illegal declaration cycle of `%.*s`", LIT(curr->token.string));
for (isize j = i; j < c->type_path->count; j++) {
Entity *curr = (*c->type_path)[j];
error(curr->token, "\t%.*s refers to", LIT(curr->token.string));
}
error(curr->token, "\t%.*s", LIT(curr->token.string));
curr->type = t_invalid;
}
return true;
}
}
return false;
}
Entity *check_ident(CheckerContext *c, Operand *o, Ast *n, Type *named_type, Type *type_hint, bool allow_import_name) {
GB_ASSERT(n->kind == Ast_Ident);
o->mode = Addressing_Invalid;
o->expr = n;
String name = n->Ident.token.string;
Entity *e = scope_lookup(c->scope, name);
if (e == nullptr) {
if (is_blank_ident(name)) {
error(n, "'_' cannot be used as a value");
} else {
error(n, "Undeclared name: %.*s", LIT(name));
}
o->type = t_invalid;
o->mode = Addressing_Invalid;
if (named_type != nullptr) {
set_base_type(named_type, t_invalid);
}
return nullptr;
}
GB_ASSERT((e->flags & EntityFlag_Overridden) == 0);
if (e->parent_proc_decl != nullptr &&
e->parent_proc_decl != c->curr_proc_decl) {
if (e->kind == Entity_Variable) {
if ((e->flags & EntityFlag_Static) == 0) {
error(n, "Nested procedures do not capture its parent's variables: %.*s", LIT(name));
return nullptr;
}
} else if (e->kind == Entity_Label) {
error(n, "Nested procedures do not capture its parent's labels: %.*s", LIT(name));
return nullptr;
}
}
if (e->kind == Entity_ProcGroup) {
auto *pge = &e->ProcGroup;
DeclInfo *d = decl_info_of_entity(e);
check_entity_decl(c, e, d, nullptr);
Array<Entity *> procs = pge->entities;
bool skip = false;
if (type_hint != nullptr) {
// NOTE(bill): These should be done
for_array(i, procs) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(c, &x, type_hint)) {
e = procs[i];
add_entity_use(c, n, e);
skip = true;
break;
}
}
}
if (!skip) {
o->mode = Addressing_ProcGroup;
o->type = t_invalid;
o->proc_group = e;
return nullptr;
}
}
add_entity_use(c, n, e);
if (e->state == EntityState_Unresolved) {
check_entity_decl(c, e, nullptr, named_type);
}
if (e->type == nullptr) {
// TODO(bill): Which is correct? return or compiler_error?
// compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name));
return nullptr;
}
e->flags |= EntityFlag_Used;
Type *type = e->type;
o->type = type;
switch (e->kind) {
case Entity_Constant:
if (type == t_invalid) {
o->type = t_invalid;
return e;
}
o->value = e->Constant.value;
if (o->value.kind == ExactValue_Invalid) {
return e;
}
if (o->value.kind == ExactValue_Procedure) {
Entity *proc = strip_entity_wrapping(o->value.value_procedure);
if (proc != nullptr) {
o->mode = Addressing_Value;
o->type = proc->type;
return proc;
}
}
o->mode = Addressing_Constant;
break;
case Entity_Variable:
e->flags |= EntityFlag_Used;
if (type == t_invalid) {
o->type = t_invalid;
return e;
}
o->mode = Addressing_Variable;
if (e->flags & EntityFlag_Value) {
o->mode = Addressing_Value;
}
break;
case Entity_Procedure:
o->mode = Addressing_Value;
o->value = exact_value_procedure(n);
break;
case Entity_Builtin:
o->builtin_id = cast(BuiltinProcId)e->Builtin.id;
o->mode = Addressing_Builtin;
break;
case Entity_TypeName:
o->mode = Addressing_Type;
if (check_cycle(c, e, true)) {
o->type = t_invalid;
}
if (o->type != nullptr && type->kind == Type_Named && o->type->Named.type_name->TypeName.is_type_alias) {
o->type = base_type(o->type);
}
break;
case Entity_ImportName:
if (!allow_import_name) {
error(n, "Use of import '%.*s' not in selector", LIT(name));
}
return e;
case Entity_LibraryName:
error(n, "Use of library '%.*s' not in foreign block", LIT(name));
return e;
case Entity_Label:
o->mode = Addressing_NoValue;
break;
case Entity_Nil:
o->mode = Addressing_Value;
break;
default:
compiler_error("Unknown EntityKind %.*s", LIT(entity_strings[e->kind]));
break;
}
return e;
}
bool check_unary_op(CheckerContext *c, Operand *o, Token op) {
if (o->type == nullptr) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Expression has no value '%s'", str);
gb_string_free(str);
return false;
}
// TODO(bill): Handle errors correctly
Type *type = base_type(core_array_type(o->type));
gbString str = nullptr;
switch (op.kind) {
case Token_Add:
case Token_Sub:
if (!is_type_numeric(type)) {
str = expr_to_string(o->expr);
error(op, "Operator '%.*s' is not allowed with '%s'", LIT(op.string), str);
gb_string_free(str);
}
break;
case Token_Xor:
if (!is_type_integer(type) && !is_type_boolean(type) && !is_type_bit_set(type)) {
error(op, "Operator '%.*s' is only allowed with integers, booleans, or bit sets", LIT(op.string));
}
break;
case Token_Not:
if (!is_type_boolean(type)) {
str = expr_to_string(o->expr);
error(op, "Operator '%.*s' is only allowed on boolean expression", LIT(op.string));
gb_string_free(str);
}
break;
default:
error(op, "Unknown operator '%.*s'", LIT(op.string));
return false;
}
return true;
}
bool check_binary_op(CheckerContext *c, Operand *o, Token op) {
Type *main_type = o->type;
// TODO(bill): Handle errors correctly
Type *type = base_type(core_array_type(main_type));
Type *ct = core_type(type);
switch (op.kind) {
case Token_Sub:
case Token_SubEq:
if (is_type_bit_set(type)) {
return true;
} else if (!is_type_numeric(type)) {
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_Quo:
case Token_QuoEq:
if (is_type_matrix(main_type)) {
error(op, "Operator '%.*s' is only allowed with matrix types", LIT(op.string));
return false;
}
/*fallthrough*/
case Token_Mul:
case Token_MulEq:
case Token_AddEq:
if (is_type_bit_set(type)) {
return true;
} else if (!is_type_numeric(type)) {
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_Add:
if (is_type_string(type)) {
if (o->mode == Addressing_Constant) {
return true;
}
error(op, "String concatenation is only allowed with constant strings");
return false;
} else if (is_type_bit_set(type)) {
return true;
} else if (!is_type_numeric(type)) {
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_And:
case Token_Or:
case Token_AndEq:
case Token_OrEq:
case Token_Xor:
case Token_XorEq:
if (!is_type_integer(ct) && !is_type_boolean(ct) && !is_type_bit_set(ct)) {
error(op, "Operator '%.*s' is only allowed with integers, booleans, or bit sets", LIT(op.string));
return false;
}
break;
case Token_Mod:
case Token_ModMod:
case Token_ModEq:
case Token_ModModEq:
if (is_type_matrix(main_type)) {
error(op, "Operator '%.*s' is only allowed with matrix types", LIT(op.string));
return false;
}
if (!is_type_integer(type)) {
error(op, "Operator '%.*s' is only allowed with integers", LIT(op.string));
return false;
}
if (is_type_simd_vector(o->type)) {
switch (op.kind) {
case Token_ModMod:
case Token_ModModEq:
error(op, "Operator '%.*s' is only allowed with integers", LIT(op.string));
return false;
}
}
break;
case Token_AndNot:
case Token_AndNotEq:
if (!is_type_integer(ct) && !is_type_bit_set(ct)) {
error(op, "Operator '%.*s' is only allowed with integers and bit sets", LIT(op.string));
return false;
}
if (is_type_simd_vector(o->type)) {
switch (op.kind) {
case Token_AndNot:
case Token_AndNotEq:
error(op, "Operator '%.*s' is only allowed with integers", LIT(op.string));
return false;
}
}
break;
case Token_CmpAnd:
case Token_CmpOr:
case Token_CmpAndEq:
case Token_CmpOrEq:
if (!is_type_boolean(type)) {
error(op, "Operator '%.*s' is only allowed with boolean expressions", LIT(op.string));
return false;
}
break;
default:
error(op, "Unknown operator '%.*s'", LIT(op.string));
return false;
}
return true;
}
bool check_representable_as_constant(CheckerContext *c, ExactValue in_value, Type *type, ExactValue *out_value) {
if (in_value.kind == ExactValue_Invalid) {
// NOTE(bill): There's already been an error
return true;
}
type = core_type(type);
if (type == t_invalid) {
return false;
} else if (is_type_boolean(type)) {
return in_value.kind == ExactValue_Bool;
} else if (is_type_string(type)) {
return in_value.kind == ExactValue_String;
} else if (is_type_integer(type) || is_type_rune(type)) {
if (in_value.kind == ExactValue_Bool) {
return false;
}
ExactValue v = exact_value_to_integer(in_value);
if (v.kind != ExactValue_Integer) {
return false;
}
if (out_value) *out_value = v;
if (is_type_untyped(type)) {
return true;
}
BigInt i = v.value_integer;
i64 bit_size = type_size_of(type);
BigInt umax = {};
BigInt imin = {};
BigInt imax = {};
if (bit_size < 16) {
big_int_from_u64(&umax, unsigned_integer_maxs[bit_size]);
big_int_from_i64(&imin, signed_integer_mins[bit_size]);
big_int_from_i64(&imax, signed_integer_maxs[bit_size]);
} else {
big_int_from_u64(&umax, 1);
big_int_from_i64(&imin, 1);
big_int_from_i64(&imax, 1);
BigInt bi128 = {};
BigInt bi127 = {};
big_int_from_i64(&bi128, 128);
big_int_from_i64(&bi127, 127);
big_int_shl_eq(&umax, &bi128);
mp_decr(&umax);
big_int_shl_eq(&imin, &bi127);
big_int_neg(&imin, &imin);
big_int_shl_eq(&imax, &bi127);
mp_decr(&imax);
}
switch (type->Basic.kind) {
case Basic_rune:
case Basic_i8:
case Basic_i16:
case Basic_i32:
case Basic_i64:
case Basic_i128:
case Basic_int:
case Basic_i16le:
case Basic_i32le:
case Basic_i64le:
case Basic_i128le:
case Basic_i16be:
case Basic_i32be:
case Basic_i64be:
case Basic_i128be:
{
// return imin <= i && i <= imax;
int a = big_int_cmp(&imin, &i);
int b = big_int_cmp(&i, &imax);
return (a <= 0) && (b <= 0);
}
case Basic_u8:
case Basic_u16:
case Basic_u32:
case Basic_u64:
case Basic_u128:
case Basic_uint:
case Basic_uintptr:
case Basic_u16le:
case Basic_u32le:
case Basic_u64le:
case Basic_u128le:
case Basic_u16be:
case Basic_u32be:
case Basic_u64be:
case Basic_u128be:
{
// return 0ull <= i && i <= umax;
int b = big_int_cmp(&i, &umax);
return !i.sign && (b <= 0);
}
case Basic_UntypedInteger:
return true;
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
}
} else if (is_type_float(type)) {
ExactValue v = exact_value_to_float(in_value);
if (v.kind != ExactValue_Float) {
return false;
}
if (out_value) *out_value = v;
switch (type->Basic.kind) {
case Basic_f16:
case Basic_f32:
case Basic_f64:
return true;
case Basic_f16le:
case Basic_f16be:
case Basic_f32le:
case Basic_f32be:
case Basic_f64le:
case Basic_f64be:
return true;
case Basic_UntypedFloat:
return true;
default: GB_PANIC("Compiler error: Unknown float type!"); break;
}
} else if (is_type_complex(type)) {
ExactValue v = exact_value_to_complex(in_value);
if (v.kind != ExactValue_Complex) {
return false;
}
switch (type->Basic.kind) {
case Basic_complex32:
case Basic_complex64:
case Basic_complex128: {
ExactValue real = exact_value_real(v);
ExactValue imag = exact_value_imag(v);
if (real.kind != ExactValue_Invalid &&
imag.kind != ExactValue_Invalid) {
if (out_value) *out_value = exact_value_complex(exact_value_to_f64(real), exact_value_to_f64(imag));
return true;
}
break;
}
case Basic_UntypedComplex:
return true;
default: GB_PANIC("Compiler error: Unknown complex type!"); break;
}
return false;
} else if (is_type_quaternion(type)) {
ExactValue v = exact_value_to_quaternion(in_value);
if (v.kind != ExactValue_Quaternion) {
return false;
}
switch (type->Basic.kind) {
case Basic_quaternion64:
case Basic_quaternion128:
case Basic_quaternion256: {
ExactValue real = exact_value_real(v);
ExactValue imag = exact_value_imag(v);
ExactValue jmag = exact_value_jmag(v);
ExactValue kmag = exact_value_kmag(v);
if (real.kind != ExactValue_Invalid &&
imag.kind != ExactValue_Invalid) {
if (out_value) *out_value = exact_value_quaternion(exact_value_to_f64(real), exact_value_to_f64(imag), exact_value_to_f64(jmag), exact_value_to_f64(kmag));
return true;
}
break;
}
case Basic_UntypedComplex:
if (out_value) *out_value = exact_value_to_quaternion(*out_value);
return true;
case Basic_UntypedQuaternion:
return true;
default: GB_PANIC("Compiler error: Unknown complex type!"); break;
}
return false;
} else if (is_type_pointer(type)) {
if (in_value.kind == ExactValue_Pointer) {
return true;
}
if (in_value.kind == ExactValue_Integer) {
return false;
// return true;
}
if (in_value.kind == ExactValue_String) {
return false;
}
if (out_value) *out_value = in_value;
} else if (is_type_bit_set(type)) {
if (in_value.kind == ExactValue_Integer) {
return true;
}
}
return false;
}
void check_assignment_error_suggestion(CheckerContext *c, Operand *o, Type *type) {
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
defer(
gb_string_free(b);
gb_string_free(a);
);
Type *src = base_type(o->type);
Type *dst = base_type(type);
if (is_type_array(src) && is_type_slice(dst)) {
Type *s = src->Array.elem;
Type *d = dst->Slice.elem;
if (are_types_identical(s, d)) {
error_line("\tSuggestion: the array expression may be sliced with %s[:]\n", a);
}
} else if (are_types_identical(src, dst)) {
error_line("\tSuggestion: the expression may be directly casted to type %s\n", b);
} else if (are_types_identical(src, t_string) && is_type_u8_slice(dst)) {
error_line("\tSuggestion: a string may be transmuted to %s\n", b);
} else if (is_type_u8_slice(src) && are_types_identical(dst, t_string)) {
error_line("\tSuggestion: the expression may be casted to %s\n", b);
}
}
void check_cast_error_suggestion(CheckerContext *c, Operand *o, Type *type) {
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
defer(
gb_string_free(b);
gb_string_free(a);
);
Type *src = base_type(o->type);
Type *dst = base_type(type);
if (is_type_array(src) && is_type_slice(dst)) {
Type *s = src->Array.elem;
Type *d = dst->Slice.elem;
if (are_types_identical(s, d)) {
error_line("\tSuggestion: the array expression may be sliced with %s[:]\n", a);
}
} else if (is_type_pointer(o->type) && is_type_integer(type)) {
if (is_type_uintptr(type)) {
error_line("\tSuggestion: a pointer may be directly casted to %s\n", b);
} else {
error_line("\tSuggestion: for a pointer to be casted to an integer, it must be converted to 'uintptr' first\n");
i64 x = type_size_of(o->type);
i64 y = type_size_of(type);
if (x != y) {
error_line("\tNote: the type of expression and the type of the cast have a different size in bytes, %lld vs %lld\n", x, y);
}
}
} else if (is_type_integer(o->type) && is_type_pointer(type)) {
if (is_type_uintptr(o->type)) {
error_line("\tSuggestion: %a may be directly casted to %s\n", a, b);
} else {
error_line("\tSuggestion: for an integer to be casted to a pointer, it must be converted to 'uintptr' first\n");
}
} else if (are_types_identical(src, t_string) && is_type_u8_slice(dst)) {
error_line("\tSuggestion: a string may be transmuted to %s\n", b);
} else if (is_type_u8_slice(src) && are_types_identical(dst, t_string)) {
error_line("\tSuggestion: the expression may be casted to %s\n", b);
}
}
bool check_is_expressible(CheckerContext *ctx, Operand *o, Type *type) {
GB_ASSERT(o->mode == Addressing_Constant);
ExactValue out_value = o->value;
if (is_type_constant_type(type) && check_representable_as_constant(ctx, o->value, type, &out_value)) {
o->value = out_value;
return true;
} else {
o->value = out_value;
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
gbString c = type_to_string(o->type);
defer(
gb_string_free(c);
gb_string_free(b);
gb_string_free(a);
o->mode = Addressing_Invalid;
);
if (is_type_numeric(o->type) && is_type_numeric(type)) {
if (!is_type_integer(o->type) && is_type_integer(type)) {
error(o->expr, "'%s' truncated to '%s'", a, b);
} else {
error(o->expr, "Cannot convert numeric value '%s' to '%s' from '%s", a, b, c);
check_assignment_error_suggestion(ctx, o, type);
}
} else {
error(o->expr, "Cannot convert '%s' to '%s' from '%s", a, b, c);
check_assignment_error_suggestion(ctx, o, type);
}
return false;
}
}
bool check_is_not_addressable(CheckerContext *c, Operand *o) {
if (o->mode == Addressing_OptionalOk) {
Ast *expr = unselector_expr(o->expr);
if (expr->kind != Ast_TypeAssertion) {
return true;
}
ast_node(ta, TypeAssertion, expr);
TypeAndValue tv = ta->expr->tav;
if (is_type_pointer(tv.type)) {
return false;
}
if (is_type_union(tv.type) && tv.mode == Addressing_Variable) {
return false;
}
if (is_type_any(tv.type)) {
return false;
}
return true;
}
if (o->mode == Addressing_MapIndex) {
return false;
}
Ast *expr = unparen_expr(o->expr);
if (expr->kind == Ast_CompoundLit) {
return false;
}
return o->mode != Addressing_Variable;
}
void check_unary_expr(CheckerContext *c, Operand *o, Token op, Ast *node) {
switch (op.kind) {
case Token_And: { // Pointer address
if (check_is_not_addressable(c, o)) {
if (ast_node_expect(node, Ast_UnaryExpr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
defer (gb_string_free(str));
Entity *e = entity_of_node(o->expr);
if (e != nullptr && (e->flags & EntityFlag_Param) != 0) {
error(op, "Cannot take the pointer address of '%s' which is a procedure parameter", str);
} else {
switch (o->mode) {
case Addressing_SoaVariable:
error(op, "Cannot take the pointer address of '%s' as it is an indirect index of an SOA struct", str);
break;
case Addressing_Constant:
error(op, "Cannot take the pointer address of '%s' which is a constant", str);
break;
case Addressing_SwizzleValue:
case Addressing_SwizzleVariable:
error(op, "Cannot take the pointer address of '%s' which is a swizzle intermediate array value", str);
break;
default:
{
begin_error_block();
defer (end_error_block());
error(op, "Cannot take the pointer address of '%s'", str);
if (e != nullptr && (e->flags & EntityFlag_ForValue) != 0) {
error_line("\tSuggestion: Did you want to pass the iterable value to the for statement by pointer to get addressable semantics?\n");
}
if (e != nullptr && (e->flags & EntityFlag_SwitchValue) != 0) {
error_line("\tSuggestion: Did you want to pass the value to the switch statement by pointer to get addressable semantics?\n");
}
}
break;
}
}
}
o->mode = Addressing_Invalid;
return;
}
o->type = alloc_type_pointer(o->type);
switch (o->mode) {
case Addressing_OptionalOk:
case Addressing_MapIndex:
o->mode = Addressing_OptionalOkPtr;
break;
default:
o->mode = Addressing_Value;
break;
}
return;
}
}
if (!check_unary_op(c, o, op)) {
o->mode = Addressing_Invalid;
return;
}
if (o->mode == Addressing_Constant) {
Type *type = base_type(o->type);
if (!is_type_constant_type(o->type)) {
gbString xt = type_to_string(o->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, '%s', for constant unary expression '%s'", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
o->mode = Addressing_Invalid;
return;
}
if (op.kind == Token_Xor && is_type_untyped(type)) {
gbString err_str = expr_to_string(node);
error(op, "Bitwise not cannot be applied to untyped constants '%s'", err_str);
gb_string_free(err_str);
o->mode = Addressing_Invalid;
return;
}
if (op.kind == Token_Sub && is_type_unsigned(type)) {
gbString err_str = expr_to_string(node);
error(op, "A unsigned constant cannot be negated '%s'", err_str);
gb_string_free(err_str);
o->mode = Addressing_Invalid;
return;
}
i32 precision = 0;
if (is_type_typed(type)) {
precision = cast(i32)(8 * type_size_of(type));
}
bool is_unsigned = is_type_unsigned(type);
if (is_type_rune(type)) {
GB_ASSERT(!is_unsigned);
}
o->value = exact_unary_operator_value(op.kind, o->value, precision, is_unsigned);
if (is_type_typed(type)) {
if (node != nullptr) {
o->expr = node;
}
check_is_expressible(c, o, type);
}
return;
}
o->mode = Addressing_Value;
}
void add_comparison_procedures_for_fields(CheckerContext *c, Type *t) {
if (t == nullptr) {
return;
}
t = base_type(t);
if (!is_type_comparable(t)) {
return;
}
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_complex32:
add_package_dependency(c, "runtime", "complex32_eq");
add_package_dependency(c, "runtime", "complex32_ne");
break;
case Basic_complex64:
add_package_dependency(c, "runtime", "complex64_eq");
add_package_dependency(c, "runtime", "complex64_ne");
break;
case Basic_complex128:
add_package_dependency(c, "runtime", "complex128_eq");
add_package_dependency(c, "runtime", "complex128_ne");
break;
case Basic_quaternion64:
add_package_dependency(c, "runtime", "quaternion64_eq");
add_package_dependency(c, "runtime", "quaternion64_ne");
break;
case Basic_quaternion128:
add_package_dependency(c, "runtime", "quaternion128_eq");
add_package_dependency(c, "runtime", "quaternion128_ne");
break;
case Basic_quaternion256:
add_package_dependency(c, "runtime", "quaternion256_eq");
add_package_dependency(c, "runtime", "quaternion256_ne");
break;
case Basic_cstring:
add_package_dependency(c, "runtime", "cstring_to_string");
/*fallthrough*/
case Basic_string:
add_package_dependency(c, "runtime", "string_eq");
add_package_dependency(c, "runtime", "string_ne");
break;
}
break;
case Type_Struct:
for (Entity *field : t->Struct.fields) {
add_comparison_procedures_for_fields(c, field->type);
}
break;
}
}
void check_comparison(CheckerContext *c, Operand *x, Operand *y, TokenKind op) {
if (x->mode == Addressing_Type && y->mode == Addressing_Type) {
bool comp = are_types_identical(x->type, y->type);
switch (op) {
case Token_CmpEq: /* comp = comp; */ break;
case Token_NotEq: comp = !comp; break;
}
x->mode = Addressing_Constant;
x->type = t_untyped_bool;
x->value = exact_value_bool(comp);
return;
}
if (x->mode == Addressing_Type && is_type_typeid(y->type)) {
add_type_info_type(c, x->type);
add_type_info_type(c, y->type);
add_type_and_value(c->info, x->expr, Addressing_Value, y->type, exact_value_typeid(x->type));
x->mode = Addressing_Value;
x->type = t_untyped_bool;
return;
} else if (is_type_typeid(x->type) && y->mode == Addressing_Type) {
add_type_info_type(c, x->type);
add_type_info_type(c, y->type);
add_type_and_value(c->info, y->expr, Addressing_Value, x->type, exact_value_typeid(y->type));
x->mode = Addressing_Value;
x->type = t_untyped_bool;
return;
}
gbString err_str = nullptr;
if (check_is_assignable_to(c, x, y->type) ||
check_is_assignable_to(c, y, x->type)) {
Type *err_type = x->type;
bool defined = false;
switch (op) {
case Token_CmpEq:
case Token_NotEq:
defined = (is_type_comparable(x->type) && is_type_comparable(y->type)) ||
(is_operand_nil(*x) && type_has_nil(y->type)) ||
(is_operand_nil(*y) && type_has_nil(x->type));
break;
case Token_Lt:
case Token_Gt:
case Token_LtEq:
case Token_GtEq:
if (are_types_identical(x->type, y->type) && is_type_bit_set(x->type)) {
defined = true;
} else {
defined = is_type_ordered(x->type) && is_type_ordered(y->type);
}
break;
}
if (!defined) {
if (x->type == err_type && is_operand_nil(*x)) {
err_type = y->type;
}
gbString type_string = type_to_string(err_type);
defer (gb_string_free(type_string));
err_str = gb_string_make(temporary_allocator(),
gb_bprintf("operator '%.*s' not defined for type '%s'", LIT(token_strings[op]), type_string));
} else {
Type *comparison_type = x->type;
if (x->type == err_type && is_operand_nil(*x)) {
comparison_type = y->type;
}
add_comparison_procedures_for_fields(c, comparison_type);
}
} else {
gbString xt, yt;
if (x->mode == Addressing_ProcGroup) {
xt = gb_string_make(heap_allocator(), "procedure group");
} else {
xt = type_to_string(x->type);
}
if (y->mode == Addressing_ProcGroup) {
yt = gb_string_make(heap_allocator(), "procedure group");
} else {
yt = type_to_string(y->type);
}
err_str = gb_string_make(temporary_allocator(), gb_bprintf("mismatched types '%s' and '%s'", xt, yt));
gb_string_free(yt);
gb_string_free(xt);
}
if (err_str != nullptr) {
error(x->expr, "Cannot compare expression, %s", err_str);
x->type = t_untyped_bool;
} else {
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
if (is_type_constant_type(x->type)) {
if (is_type_bit_set(x->type)) {
switch (op) {
case Token_CmpEq:
case Token_NotEq:
x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
break;
case Token_Lt:
case Token_LtEq:
{
ExactValue lhs = x->value;
ExactValue rhs = y->value;
ExactValue res = exact_binary_operator_value(Token_And, lhs, rhs);
res = exact_value_bool(compare_exact_values(op, res, lhs));
if (op == Token_Lt) {
res = exact_binary_operator_value(Token_And, res, exact_value_bool(compare_exact_values(op, lhs, rhs)));
}
x->value = res;
break;
}
case Token_Gt:
case Token_GtEq:
{
ExactValue lhs = x->value;
ExactValue rhs = y->value;
ExactValue res = exact_binary_operator_value(Token_And, lhs, rhs);
res = exact_value_bool(compare_exact_values(op, res, rhs));
if (op == Token_Gt) {
res = exact_binary_operator_value(Token_And, res, exact_value_bool(compare_exact_values(op, lhs, rhs)));
}
x->value = res;
break;
}
}
} else {
x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
}
} else {
x->mode = Addressing_Value;
}
} else {
x->mode = Addressing_Value;
update_untyped_expr_type(c, x->expr, default_type(x->type), true);
update_untyped_expr_type(c, y->expr, default_type(y->type), true);
i64 size = 0;
if (!is_type_untyped(x->type)) size = gb_max(size, type_size_of(x->type));
if (!is_type_untyped(y->type)) size = gb_max(size, type_size_of(y->type));
if (is_type_string(x->type) || is_type_string(y->type)) {
switch (op) {
case Token_CmpEq: add_package_dependency(c, "runtime", "string_eq"); break;
case Token_NotEq: add_package_dependency(c, "runtime", "string_ne"); break;
case Token_Lt: add_package_dependency(c, "runtime", "string_lt"); break;
case Token_Gt: add_package_dependency(c, "runtime", "string_gt"); break;
case Token_LtEq: add_package_dependency(c, "runtime", "string_le"); break;
case Token_GtEq: add_package_dependency(c, "runtime", "string_gt"); break;
}
} else if (is_type_complex(x->type) || is_type_complex(y->type)) {
switch (op) {
case Token_CmpEq:
switch (8*size) {
case 64: add_package_dependency(c, "runtime", "complex64_eq"); break;
case 128: add_package_dependency(c, "runtime", "complex128_eq"); break;
}
break;
case Token_NotEq:
switch (8*size) {
case 64: add_package_dependency(c, "runtime", "complex64_ne"); break;
case 128: add_package_dependency(c, "runtime", "complex128_ne"); break;
}
break;
}
} else if (is_type_quaternion(x->type) || is_type_quaternion(y->type)) {
switch (op) {
case Token_CmpEq:
switch (8*size) {
case 128: add_package_dependency(c, "runtime", "quaternion128_eq"); break;
case 256: add_package_dependency(c, "runtime", "quaternion256_eq"); break;
}
break;
case Token_NotEq:
switch (8*size) {
case 128: add_package_dependency(c, "runtime", "quaternion128_ne"); break;
case 256: add_package_dependency(c, "runtime", "quaternion256_ne"); break;
}
break;
}
}
}
x->type = t_untyped_bool;
}
}
void check_shift(CheckerContext *c, Operand *x, Operand *y, Ast *node, Type *type_hint) {
GB_ASSERT(node->kind == Ast_BinaryExpr);
ast_node(be, BinaryExpr, node);
ExactValue x_val = {};
if (x->mode == Addressing_Constant) {
x_val = exact_value_to_integer(x->value);
}
bool x_is_untyped = is_type_untyped(x->type);
if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
gbString err_str = expr_to_string(x->expr);
error(node, "Shifted operand '%s' must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_unsigned(y->type)) {
} else if (is_type_untyped(y->type)) {
convert_to_typed(c, y, t_untyped_integer);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
} else {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount '%s' must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (x->mode == Addressing_Constant) {
if (y->mode == Addressing_Constant) {
ExactValue y_val = exact_value_to_integer(y->value);
if (y_val.kind != ExactValue_Integer) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount '%s' must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
BigInt max_shift = {};
big_int_from_u64(&max_shift, MAX_BIG_INT_SHIFT);
if (big_int_cmp(&y_val.value_integer, &max_shift) > 0) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount too large: '%s'", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (!is_type_integer(x->type)) {
// NOTE(bill): It could be an untyped float but still representable
// as an integer
x->type = t_untyped_integer;
}
x->value = exact_value_shift(be->op.kind, x_val, y_val);
if (is_type_typed(x->type)) {
check_is_expressible(c, x, base_type(x->type));
}
return;
}
TokenPos pos = ast_token(x->expr).pos;
if (x_is_untyped) {
if (x->expr != nullptr) {
x->expr->tav.is_lhs = true;
}
x->mode = Addressing_Value;
if (type_hint && is_type_integer(type_hint)) {
x->type = type_hint;
}
// x->value = x_val;
return;
}
}
if (y->mode == Addressing_Constant && big_int_is_neg(&y->value.value_integer)) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount cannot be negative: '%s'", err_str);
gb_string_free(err_str);
}
if (!is_type_integer(x->type)) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift operand '%s' must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(y->type)) {
convert_to_typed(c, y, t_uint);
}
x->mode = Addressing_Value;
}
bool check_is_castable_to(CheckerContext *c, Operand *operand, Type *y) {
if (check_is_assignable_to(c, operand, y)) {
return true;
}
bool is_constant = operand->mode == Addressing_Constant;
Type *x = operand->type;
Type *src = core_type(x);
Type *dst = core_type(y);
if (are_types_identical(src, dst)) {
return true;
}
// if (is_type_tuple(src)) {
// Ast *expr = unparen_expr(operand->expr);
// if (expr && expr->kind == Ast_CallExpr) {
// // NOTE(bill, 2021-04-19): Allow casting procedure calls with #optional_ok
// ast_node(ce, CallExpr, expr);
// Type *pt = base_type(type_of_expr(ce->proc));
// if (pt->kind == Type_Proc && pt->Proc.optional_ok) {
// if (pt->Proc.result_count > 0) {
// Operand op = *operand;
// op.type = pt->Proc.results->Tuple.variables[0]->type;
// bool ok = check_is_castable_to(c, &op, y);
// if (ok) {
// ce->optional_ok_one = true;
// }
// return ok;
// }
// }
// }
// }
if (is_constant && is_type_untyped(src) && is_type_string(src)) {
if (is_type_u8_array(dst)) {
String s = operand->value.value_string;
return s.len == dst->Array.count;
}
if (is_type_rune_array(dst)) {
String s = operand->value.value_string;
return gb_utf8_strnlen(s.text, s.len) == dst->Array.count;
}
}
if (dst->kind == Type_Array && src->kind == Type_Array) {
if (are_types_identical(dst->Array.elem, src->Array.elem)) {
return dst->Array.count == src->Array.count;
}
}
if (dst->kind == Type_Slice && src->kind == Type_Slice) {
return are_types_identical(dst->Slice.elem, src->Slice.elem);
}
// Cast between booleans and integers
if (is_type_boolean(src) || is_type_integer(src)) {
if (is_type_boolean(dst) || is_type_integer(dst)) {
return true;
}
}
// Cast between numbers
if (is_type_integer(src) || is_type_float(src)) {
if (is_type_integer(dst) || is_type_float(dst)) {
return true;
}
}
if (is_type_integer(src) && is_type_rune(dst)) {
return true;
}
if (is_type_rune(src) && is_type_integer(dst)) {
return true;
}
if (is_type_complex(src) && is_type_complex(dst)) {
return true;
}
if (is_type_float(src) && is_type_complex(dst)) {
return true;
}
if (is_type_float(src) && is_type_quaternion(dst)) {
return true;
}
if (is_type_complex(src) && is_type_quaternion(dst)) {
return true;
}
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
return true;
}
if (is_type_matrix(src) && is_type_matrix(dst)) {
GB_ASSERT(src->kind == Type_Matrix);
GB_ASSERT(dst->kind == Type_Matrix);
Operand op = *operand;
op.type = src->Matrix.elem;
if (!check_is_castable_to(c, &op, dst->Matrix.elem)) {
return false;
}
if (src->Matrix.row_count != src->Matrix.column_count) {
i64 src_count = src->Matrix.row_count*src->Matrix.column_count;
i64 dst_count = dst->Matrix.row_count*dst->Matrix.column_count;
return src_count == dst_count;
}
return is_matrix_square(dst) && is_matrix_square(src);
}
// Cast between pointers
if (is_type_pointer(src) && is_type_pointer(dst)) {
return true;
}
if (is_type_multi_pointer(src) && is_type_multi_pointer(dst)) {
return true;
}
if (is_type_multi_pointer(src) && is_type_pointer(dst)) {
return true;
}
if (is_type_pointer(src) && is_type_multi_pointer(dst)) {
return true;
}
// uintptr <-> pointer
if (is_type_uintptr(src) && is_type_pointer(dst)) {
return true;
}
if (is_type_pointer(src) && is_type_uintptr(dst)) {
return true;
}
if (is_type_uintptr(src) && is_type_multi_pointer(dst)) {
return true;
}
if (is_type_multi_pointer(src) && is_type_uintptr(dst)) {
return true;
}
// []byte/[]u8 <-> string (not cstring)
if (is_type_u8_slice(src) && (is_type_string(dst) && !is_type_cstring(dst))) {
return true;
}
// cstring -> string
if (are_types_identical(src, t_cstring) && are_types_identical(dst, t_string)) {
if (operand->mode != Addressing_Constant) {
add_package_dependency(c, "runtime", "cstring_to_string");
}
return true;
}
// cstring -> ^u8
if (are_types_identical(src, t_cstring) && is_type_u8_ptr(dst)) {
return !is_constant;
}
// cstring -> [^]u8
if (are_types_identical(src, t_cstring) && is_type_u8_multi_ptr(dst)) {
return !is_constant;
}
// cstring -> rawptr
if (are_types_identical(src, t_cstring) && is_type_rawptr(dst)) {
return !is_constant;
}
// ^u8 -> cstring
if (is_type_u8_ptr(src) && are_types_identical(dst, t_cstring)) {
return !is_constant;
}
// [^]u8 -> cstring
if (is_type_u8_multi_ptr(src) && are_types_identical(dst, t_cstring)) {
return !is_constant;
}
// rawptr -> cstring
if (is_type_rawptr(src) && are_types_identical(dst, t_cstring)) {
return !is_constant;
}
// proc <-> proc
if (is_type_proc(src) && is_type_proc(dst)) {
return true;
}
// proc -> rawptr
if (is_type_proc(src) && is_type_rawptr(dst)) {
return true;
}
// rawptr -> proc
if (is_type_rawptr(src) && is_type_proc(dst)) {
return true;
}
return false;
}
bool check_cast_internal(CheckerContext *c, Operand *x, Type *type) {
bool is_const_expr = x->mode == Addressing_Constant;
Type *bt = base_type(type);
if (is_const_expr && is_type_constant_type(bt)) {
if (core_type(bt)->kind == Type_Basic) {
if (check_representable_as_constant(c, x->value, bt, &x->value)) {
return true;
} else if (check_is_castable_to(c, x, type)) {
if (is_type_pointer(type)) {
return true;
}
}
} else if (check_is_castable_to(c, x, type)) {
x->value = {};
x->mode = Addressing_Value;
return true;
}
} else if (check_is_castable_to(c, x, type)) {
if (x->mode != Addressing_Constant) {
x->mode = Addressing_Value;
} else if (is_type_slice(type) && is_type_string(x->type)) {
x->mode = Addressing_Value;
} else if (is_type_union(type)) {
x->mode = Addressing_Value;
}
if (x->mode == Addressing_Value) {
x->value = {};
}
return true;
}
return false;
}
void check_cast(CheckerContext *c, Operand *x, Type *type) {
if (!is_operand_value(*x)) {
error(x->expr, "Only values can be casted");
x->mode = Addressing_Invalid;
return;
}
bool is_const_expr = x->mode == Addressing_Constant;
bool can_convert = check_cast_internal(c, x, type);
if (!can_convert) {
gbString expr_str = expr_to_string(x->expr);
gbString to_type = type_to_string(type);
gbString from_type = type_to_string(x->type);
error(x->expr, "Cannot cast '%s' as '%s' from '%s'", expr_str, to_type, from_type);
gb_string_free(from_type);
gb_string_free(to_type);
gb_string_free(expr_str);
check_cast_error_suggestion(c, x, type);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
Type *final_type = type;
if (is_const_expr && !is_type_constant_type(type)) {
final_type = default_type(x->type);
}
update_untyped_expr_type(c, x->expr, final_type, true);
}
if (build_context.vet_extra) {
if (are_types_identical(x->type, type)) {
gbString str = type_to_string(type);
warning(x->expr, "Unneeded cast to the same type '%s'", str);
gb_string_free(str);
}
}
x->type = type;
}
bool check_transmute(CheckerContext *c, Ast *node, Operand *o, Type *t) {
if (!is_operand_value(*o)) {
error(o->expr, "'transmute' can only be applied to values");
o->mode = Addressing_Invalid;
return false;
}
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute a constant expression: '%s'", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute untyped expression: '%s'", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
Type *dst_bt = base_type(t);
if (dst_bt == nullptr || dst_bt == t_invalid) {
GB_ASSERT(global_error_collector.count != 0);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
Type *src_bt = base_type(o->type);
if (src_bt == nullptr || src_bt == t_invalid) {
// NOTE(bill): this should be an error
GB_ASSERT(global_error_collector.count != 0);
o->mode = Addressing_Value;
o->expr = node;
o->type = t;
return true;
}
i64 srcz = type_size_of(o->type);
i64 dstz = type_size_of(t);
if (srcz != dstz) {
gbString expr_str = expr_to_string(o->expr);
gbString type_str = type_to_string(t);
error(o->expr, "Cannot transmute '%s' to '%s', %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
gb_string_free(type_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
if (build_context.vet_extra) {
if (are_types_identical(o->type, t)) {
gbString str = type_to_string(t);
warning(o->expr, "Unneeded transmute to the same type '%s'", str);
gb_string_free(str);
}
}
o->mode = Addressing_Value;
o->type = t;
return true;
}
bool check_binary_array_expr(CheckerContext *c, Token op, Operand *x, Operand *y) {
if (is_type_array(x->type) && !is_type_array(y->type)) {
if (check_is_assignable_to(c, y, x->type)) {
if (check_binary_op(c, x, op)) {
return true;
}
}
}
return false;
}
bool is_ise_expr(Ast *node) {
node = unparen_expr(node);
return node->kind == Ast_ImplicitSelectorExpr;
}
bool can_use_other_type_as_type_hint(bool use_lhs_as_type_hint, Type *other_type) {
if (use_lhs_as_type_hint) { // RHS in this case
return other_type != nullptr && other_type != t_invalid && is_type_typed(other_type);
}
return false;
}
Type *check_matrix_type_hint(Type *matrix, Type *type_hint) {
Type *xt = base_type(matrix);
if (type_hint != nullptr) {
Type *th = base_type(type_hint);
if (are_types_identical(th, xt)) {
return type_hint;
} else if (xt->kind == Type_Matrix && th->kind == Type_Array) {
if (!are_types_identical(xt->Matrix.elem, th->Array.elem)) {
// ignore
} else if (xt->Matrix.row_count == 1 && xt->Matrix.column_count == th->Array.count) {
return type_hint;
} else if (xt->Matrix.column_count == 1 && xt->Matrix.row_count == th->Array.count) {
return type_hint;
}
}
}
return matrix;
}
void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand *y, Type *type_hint, bool use_lhs_as_type_hint) {
if (!check_binary_op(c, x, op)) {
x->mode = Addressing_Invalid;
return;
}
Type *xt = base_type(x->type);
Type *yt = base_type(y->type);
if (is_type_matrix(x->type)) {
GB_ASSERT(xt->kind == Type_Matrix);
if (op.kind == Token_Mul) {
if (yt->kind == Type_Matrix) {
if (!are_types_identical(xt->Matrix.elem, yt->Matrix.elem)) {
goto matrix_error;
}
if (xt->Matrix.column_count != yt->Matrix.row_count) {
goto matrix_error;
}
x->mode = Addressing_Value;
x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, yt->Matrix.column_count);
goto matrix_success;
} else if (yt->kind == Type_Array) {
if (!are_types_identical(xt->Matrix.elem, yt->Array.elem)) {
goto matrix_error;
}
if (xt->Matrix.column_count != yt->Array.count) {
goto matrix_error;
}
// Treat arrays as column vectors
x->mode = Addressing_Value;
if (type_hint == nullptr && xt->Matrix.row_count == yt->Array.count) {
x->type = y->type;
} else {
x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, 1);
}
goto matrix_success;
}
}
if (!are_types_identical(xt, yt)) {
goto matrix_error;
}
x->mode = Addressing_Value;
x->type = xt;
goto matrix_success;
} else {
GB_ASSERT(is_type_matrix(yt));
GB_ASSERT(!is_type_matrix(xt));
if (op.kind == Token_Mul) {
// NOTE(bill): no need to handle the matrix case here since it should be handled above
if (xt->kind == Type_Array) {
if (!are_types_identical(yt->Matrix.elem, xt->Array.elem)) {
goto matrix_error;
}
if (xt->Array.count != yt->Matrix.row_count) {
goto matrix_error;
}
// Treat arrays as row vectors
x->mode = Addressing_Value;
if (type_hint == nullptr && yt->Matrix.column_count == xt->Array.count) {
x->type = x->type;
} else {
x->type = alloc_type_matrix(yt->Matrix.elem, 1, yt->Matrix.column_count);
}
goto matrix_success;
}
}
if (!are_types_identical(xt, yt)) {
goto matrix_error;
}
x->mode = Addressing_Value;
x->type = xt;
goto matrix_success;
}
matrix_success:
x->type = check_matrix_type_hint(x->type, type_hint);
return;
matrix_error:
gbString xts = type_to_string(x->type);
gbString yts = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(op, "Mismatched types in binary matrix expression '%s' for operator '%.*s' : '%s' vs '%s'", expr_str, LIT(op.string), xts, yts);
gb_string_free(expr_str);
gb_string_free(yts);
gb_string_free(xts);
x->type = t_invalid;
x->mode = Addressing_Invalid;
return;
}
void check_binary_expr(CheckerContext *c, Operand *x, Ast *node, Type *type_hint, bool use_lhs_as_type_hint=false) {
GB_ASSERT(node->kind == Ast_BinaryExpr);
Operand y_ = {}, *y = &y_;
ast_node(be, BinaryExpr, node);
defer({
node->viral_state_flags |= be->left->viral_state_flags;
node->viral_state_flags |= be->right->viral_state_flags;
});
Token op = be->op;
switch (op.kind) {
case Token_CmpEq:
case Token_NotEq: {
// NOTE(bill): Allow comparisons between types
if (is_ise_expr(be->left)) {
// Evalute the right before the left for an '.X' expression
check_expr_or_type(c, y, be->right, type_hint);
check_expr_or_type(c, x, be->left, y->type);
} else {
check_expr_or_type(c, x, be->left, type_hint);
check_expr_or_type(c, y, be->right, x->type);
}
bool xt = x->mode == Addressing_Type;
bool yt = y->mode == Addressing_Type;
// If only one is a type, this is an error
if (xt ^ yt) {
GB_ASSERT(xt != yt);
if (xt) {
if (!is_type_typeid(y->type)) {
error_operand_not_expression(x);
}
}
if (yt) {
if (!is_type_typeid(x->type)) {
error_operand_not_expression(y);
}
}
}
break;
}
case Token_in:
case Token_not_in:
{
// IMPORTANT NOTE(bill): This uses right-left evaluation in type checking only no in
check_expr(c, y, be->right);
Type *rhs_type = type_deref(y->type);
if (is_type_bit_set(rhs_type)) {
Type *elem = base_type(rhs_type)->BitSet.elem;
check_expr_with_type_hint(c, x, be->left, elem);
} else if (is_type_map(rhs_type)) {
Type *key = base_type(rhs_type)->Map.key;
check_expr_with_type_hint(c, x, be->left, key);
} else {
check_expr(c, x, be->left);
}
if (x->mode == Addressing_Invalid) {
return;
}
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
x->expr = y->expr;
return;
}
if (is_type_map(rhs_type)) {
Type *yt = base_type(rhs_type);
if (op.kind == Token_in) {
check_assignment(c, x, yt->Map.key, str_lit("map 'in'"));
} else {
check_assignment(c, x, yt->Map.key, str_lit("map 'not_in'"));
}
add_package_dependency(c, "runtime", "__dynamic_map_get");
} else if (is_type_bit_set(rhs_type)) {
Type *yt = base_type(rhs_type);
if (op.kind == Token_in) {
check_assignment(c, x, yt->BitSet.elem, str_lit("bit_set 'in'"));
} else {
check_assignment(c, x, yt->BitSet.elem, str_lit("bit_set 'not_in'"));
}
if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) {
ExactValue k = exact_value_to_integer(x->value);
ExactValue v = exact_value_to_integer(y->value);
GB_ASSERT(k.kind == ExactValue_Integer);
GB_ASSERT(v.kind == ExactValue_Integer);
i64 key = big_int_to_i64(&k.value_integer);
i64 lower = yt->BitSet.lower;
i64 upper = yt->BitSet.upper;
if (lower <= key && key <= upper) {
i64 bit = 1ll<<key;
i64 bits = big_int_to_i64(&v.value_integer);
x->mode = Addressing_Constant;
x->type = t_untyped_bool;
if (op.kind == Token_in) {
x->value = exact_value_bool((bit & bits) != 0);
} else {
x->value = exact_value_bool((bit & bits) == 0);
}
x->expr = node;
return;
} else {
error(x->expr, "key '%lld' out of range of bit set, %lld..%lld", key, lower, upper);
x->mode = Addressing_Invalid;
}
}
} else {
gbString t = type_to_string(y->type);
error(x->expr, "expected either a map or bitset for 'in', got %s", t);
gb_string_free(t);
x->expr = node;
x->mode = Addressing_Invalid;
return;
}
if (x->mode != Addressing_Invalid) {
x->mode = Addressing_Value;
x->type = t_untyped_bool;
}
x->expr = node;
return;
}
default:
if (is_ise_expr(be->left)) {
// Evalute the right before the left for an '.X' expression
check_expr_or_type(c, y, be->right, type_hint);
if (can_use_other_type_as_type_hint(use_lhs_as_type_hint, y->type)) { // RHS in this case
check_expr_or_type(c, x, be->left, y->type);
} else {
check_expr_with_type_hint(c, x, be->left, type_hint);
}
} else {
check_expr_with_type_hint(c, x, be->left, type_hint);
if (can_use_other_type_as_type_hint(use_lhs_as_type_hint, x->type)) {
check_expr_with_type_hint(c, y, be->right, x->type);
} else {
check_expr_with_type_hint(c, y, be->right, type_hint);
}
}
break;
}
if (x->mode == Addressing_Invalid) {
return;
}
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
x->expr = y->expr;
return;
}
if (x->mode == Addressing_Builtin) {
x->mode = Addressing_Invalid;
error(x->expr, "built-in expression in binary expression");
return;
}
if (y->mode == Addressing_Builtin) {
x->mode = Addressing_Invalid;
error(y->expr, "built-in expression in binary expression");
return;
}
if (token_is_shift(op.kind)) {
check_shift(c, x, y, node, type_hint);
return;
}
convert_to_typed(c, x, y->type);
if (x->mode == Addressing_Invalid) {
return;
}
convert_to_typed(c, y, x->type);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
if (token_is_comparison(op.kind)) {
check_comparison(c, x, y, op.kind);
return;
}
if (check_binary_array_expr(c, op, x, y)) {
x->mode = Addressing_Value;
x->type = x->type;
return;
}
if (check_binary_array_expr(c, op, y, x)) {
x->mode = Addressing_Value;
x->type = y->type;
return;
}
if (is_type_matrix(x->type) || is_type_matrix(y->type)) {
check_binary_matrix(c, op, x, y, type_hint, use_lhs_as_type_hint);
x->expr = node;
return;
}
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(op, "Mismatched types in binary expression '%s' : '%s' vs '%s'", expr_str, xt, yt);
gb_string_free(expr_str);
gb_string_free(yt);
gb_string_free(xt);
}
x->mode = Addressing_Invalid;
return;
}
if (!check_binary_op(c, x, op)) {
x->mode = Addressing_Invalid;
return;
}
switch (op.kind) {
case Token_Quo:
case Token_Mod:
case Token_ModMod:
case Token_QuoEq:
case Token_ModEq:
case Token_ModModEq:
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
y->mode == Addressing_Constant) {
bool fail = false;
switch (y->value.kind) {
case ExactValue_Integer:
if (big_int_is_zero(&y->value.value_integer)) {
fail = true;
}
break;
case ExactValue_Float:
if (y->value.value_float == 0.0) {
fail = true;
}
break;
}
if (fail) {
error(y->expr, "Division by zero not allowed");
x->mode = Addressing_Invalid;
return;
}
}
break;
case Token_CmpAnd:
case Token_CmpOr:
if (be->left->viral_state_flags & ViralStateFlag_ContainsDeferredProcedure) {
error(be->left, "Procedure calls that have an associated deferred procedure are not allowed within logical binary expressions");
}
if (be->right->viral_state_flags & ViralStateFlag_ContainsDeferredProcedure) {
error(be->right, "Procedure calls that have an associated deferred procedure are not allowed within logical binary expressions");
}
break;
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
ExactValue a = x->value;
ExactValue b = y->value;
if (!is_type_constant_type(x->type)) {
#if 0
gbString xt = type_to_string(x->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, '%s', for constant binary expression '%s'", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
x->mode = Addressing_Invalid;
#else
// NOTE(bill, 2021-04-21): The above is literally a useless error message.
// Why did I add it in the first place?!
x->mode = Addressing_Value;
#endif
return;
}
if (op.kind == Token_Quo && is_type_integer(x->type)) {
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
}
if (is_type_bit_set(x->type)) {
switch (op.kind) {
case Token_Add: op.kind = Token_Or; break;
case Token_Sub: op.kind = Token_AndNot; break;
}
}
x->value = exact_binary_operator_value(op.kind, a, b);
if (is_type_typed(x->type)) {
if (node != nullptr) {
x->expr = node;
}
check_is_expressible(c, x, x->type);
}
return;
} else if (is_type_string(x->type)) {
error(node, "String concatenation is only allowed with constant strings");
x->mode = Addressing_Invalid;
return;
}
if (op.kind == Token_Quo || op.kind == Token_QuoEq) {
Type *bt = base_type(x->type);
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
case Basic_complex32: add_package_dependency(c, "runtime", "quo_complex32"); break;
case Basic_complex64: add_package_dependency(c, "runtime", "quo_complex64"); break;
case Basic_complex128: add_package_dependency(c, "runtime", "quo_complex128"); break;
case Basic_quaternion64: add_package_dependency(c, "runtime", "quo_quaternion64"); break;
case Basic_quaternion128: add_package_dependency(c, "runtime", "quo_quaternion128"); break;
case Basic_quaternion256: add_package_dependency(c, "runtime", "quo_quaternion256"); break;
}
} else if (op.kind == Token_Mul || op.kind == Token_MulEq) {
Type *bt = base_type(x->type);
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
case Basic_quaternion64: add_package_dependency(c, "runtime", "mul_quaternion64"); break;
case Basic_quaternion128: add_package_dependency(c, "runtime", "mul_quaternion128"); break;
case Basic_quaternion256: add_package_dependency(c, "runtime", "mul_quaternion256"); break;
}
}
x->mode = Addressing_Value;
}
Operand make_operand_from_node(Ast *node) {
GB_ASSERT(node != nullptr);
Operand x = {};
x.expr = node;
x.mode = node->tav.mode;
x.type = node->tav.type;
x.value = node->tav.value;
return x;
}
void update_untyped_expr_type(CheckerContext *c, Ast *e, Type *type, bool final) {
GB_ASSERT(e != nullptr);
ExprInfo *old = check_get_expr_info(c, e);
if (old == nullptr) {
if (type != nullptr && type != t_invalid) {
if (e->tav.type == nullptr || e->tav.type == t_invalid) {
add_type_and_value(c->info, e, e->tav.mode, type ? type : e->tav.type, e->tav.value);
if (e->kind == Ast_TernaryIfExpr) {
update_untyped_expr_type(c, e->TernaryIfExpr.x, type, final);
update_untyped_expr_type(c, e->TernaryIfExpr.y, type, final);
}
}
}
return;
}
switch (e->kind) {
case_ast_node(ue, UnaryExpr, e);
if (old->value.kind != ExactValue_Invalid) {
// NOTE(bill): if 'e' is constant, the operands will be constant too.
// They don't need to be updated as they will be updated later and
// checked at the end of general checking stage.
break;
}
update_untyped_expr_type(c, ue->expr, type, final);
case_end;
case_ast_node(be, BinaryExpr, e);
if (old->value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
if (token_is_comparison(be->op.kind)) {
// NOTE(bill): Do nothing as the types are fine
} else if (token_is_shift(be->op.kind)) {
update_untyped_expr_type(c, be->left, type, final);
} else {
update_untyped_expr_type(c, be->left, type, final);
update_untyped_expr_type(c, be->right, type, final);
}
case_end;
case_ast_node(te, TernaryIfExpr, e);
if (old->value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
// NOTE(bill): This is a bit of a hack to get around the edge cases of ternary if expressions
// having an untyped value
Operand x = make_operand_from_node(te->x);
Operand y = make_operand_from_node(te->y);
if (x.mode != Addressing_Constant || check_is_expressible(c, &x, type)) {
update_untyped_expr_type(c, te->x, type, final);
}
if (y.mode != Addressing_Constant || check_is_expressible(c, &y, type)) {
update_untyped_expr_type(c, te->y, type, final);
}
case_end;
case_ast_node(te, TernaryWhenExpr, e);
if (old->value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
update_untyped_expr_type(c, te->x, type, final);
update_untyped_expr_type(c, te->y, type, final);
case_end;
case_ast_node(ore, OrReturnExpr, e);
if (old->value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
update_untyped_expr_type(c, ore->expr, type, final);
case_end;
case_ast_node(oee, OrElseExpr, e);
if (old->value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
update_untyped_expr_type(c, oee->x, type, final);
update_untyped_expr_type(c, oee->y, type, final);
case_end;
case_ast_node(pe, ParenExpr, e);
update_untyped_expr_type(c, pe->expr, type, final);
case_end;
}
if (!final && is_type_untyped(type)) {
old->type = base_type(type);
return;
}
// We need to remove it and then give it a new one
check_remove_expr_info(c, e);
if (old->is_lhs && !is_type_integer(type)) {
gbString expr_str = expr_to_string(e);
gbString type_str = type_to_string(type);
error(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
gb_string_free(type_str);
gb_string_free(expr_str);
return;
}
add_type_and_value(c->info, e, old->mode, type, old->value);
}
void update_untyped_expr_value(CheckerContext *c, Ast *e, ExactValue value) {
GB_ASSERT(e != nullptr);
ExprInfo *found = check_get_expr_info(c, e);
if (found) {
found->value = value;
}
}
void convert_untyped_error(CheckerContext *c, Operand *operand, Type *target_type) {
gbString expr_str = expr_to_string(operand->expr);
gbString type_str = type_to_string(target_type);
gbString from_type_str = type_to_string(operand->type);
char const *extra_text = "";
if (operand->mode == Addressing_Constant) {
if (big_int_is_zero(&operand->value.value_integer)) {
if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
extra_text = " - Did you want 'nil'?";
}
}
}
ERROR_BLOCK();
error(operand->expr, "Cannot convert untyped value '%s' to '%s' from '%s'%s", expr_str, type_str, from_type_str, extra_text);
if (operand->value.kind == ExactValue_String) {
String key = operand->value.value_string;
if (is_type_string(operand->type) && is_type_enum(target_type)) {
Type *et = base_type(target_type);
check_did_you_mean_type(key, et->Enum.fields, ".");
}
}
gb_string_free(from_type_str);
gb_string_free(type_str);
gb_string_free(expr_str);
operand->mode = Addressing_Invalid;
}
ExactValue convert_exact_value_for_type(ExactValue v, Type *type) {
Type *t = core_type(type);
if (is_type_boolean(t)) {
// v = exact_value_to_boolean(v);
} else if (is_type_float(t)) {
v = exact_value_to_float(v);
} else if (is_type_integer(t)) {
v = exact_value_to_integer(v);
} else if (is_type_pointer(t)) {
v = exact_value_to_integer(v);
} else if (is_type_complex(t)) {
v = exact_value_to_complex(v);
} else if (is_type_quaternion(t)) {
v = exact_value_to_quaternion(v);
}
return v;
}
void convert_to_typed(CheckerContext *c, Operand *operand, Type *target_type) {
GB_ASSERT_NOT_NULL(target_type);
if (operand->mode == Addressing_Invalid ||
operand->mode == Addressing_Type ||
is_type_typed(operand->type) ||
target_type == t_invalid) {
return;
}
if (is_type_untyped(target_type)) {
GB_ASSERT(operand->type->kind == Type_Basic);
GB_ASSERT(target_type->kind == Type_Basic);
BasicKind x_kind = operand->type->Basic.kind;
BasicKind y_kind = target_type->Basic.kind;
if (is_type_numeric(operand->type) && is_type_numeric(target_type)) {
if (x_kind < y_kind) {
operand->type = target_type;
update_untyped_expr_type(c, operand->expr, target_type, false);
}
} else if (x_kind != y_kind) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
return;
}
Type *t = base_type(target_type);
if (c->in_enum_type) {
t = core_type(target_type);
}
switch (t->kind) {
case Type_Basic:
if (operand->mode == Addressing_Constant) {
check_is_expressible(c, operand, t);
if (operand->mode == Addressing_Invalid) {
return;
}
update_untyped_expr_value(c, operand->expr, operand->value);
} else {
switch (operand->type->Basic.kind) {
case Basic_UntypedBool:
if (!is_type_boolean(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedInteger:
case Basic_UntypedFloat:
case Basic_UntypedComplex:
case Basic_UntypedQuaternion:
case Basic_UntypedRune:
if (!is_type_numeric(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedNil:
if (is_type_any(target_type)) {
// target_type = t_untyped_nil;
} else if (is_type_cstring(target_type)) {
// target_type = t_untyped_nil;
} else if (!type_has_nil(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
}
break;
case Type_Array: {
Type *elem = base_array_type(t);
if (check_is_assignable_to(c, operand, elem)) {
operand->mode = Addressing_Value;
} else {
if (operand->value.kind == ExactValue_String) {
String s = operand->value.value_string;
if (is_type_u8_array(t)) {
if (s.len == t->Array.count) {
break;
}
} else if (is_type_rune_array(t)) {
isize rune_count = gb_utf8_strnlen(s.text, s.len);
if (rune_count == t->Array.count) {
break;
}
}
}
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
case Type_Matrix: {
Type *elem = base_array_type(t);
if (check_is_assignable_to(c, operand, elem)) {
if (t->Matrix.row_count != t->Matrix.column_count) {
operand->mode = Addressing_Invalid;
begin_error_block();
defer (end_error_block());
convert_untyped_error(c, operand, target_type);
error_line("\tNote: Only a square matrix types can be initialized with a scalar value\n");
return;
} else {
operand->mode = Addressing_Value;
}
} else {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
case Type_Union:
if (!is_operand_nil(*operand) && !is_operand_undef(*operand)) {
isize count = t->Union.variants.count;
ValidIndexAndScore *valids = gb_alloc_array(temporary_allocator(), ValidIndexAndScore, count);
isize valid_count = 0;
isize first_success_index = -1;
for_array(i, t->Union.variants) {
Type *vt = t->Union.variants[i];
i64 score = 0;
if (check_is_assignable_to_with_score(c, operand, vt, &score)) {
valids[valid_count].index = i;
valids[valid_count].score = score;
valid_count += 1;
if (first_success_index < 0) {
first_success_index = i;
}
}
}
if (valid_count > 1) {
gb_sort_array(valids, valid_count, valid_index_and_score_cmp);
i64 best_score = valids[0].score;
for (isize i = 1; i < valid_count; i++) {
auto v = valids[i];
if (best_score > v.score) {
valid_count = i;
break;
}
best_score = v.score;
}
first_success_index = valids[0].index;
}
gbString type_str = type_to_string(target_type);
defer (gb_string_free(type_str));
if (valid_count == 1) {
operand->mode = Addressing_Value;
operand->type = t->Union.variants[first_success_index];
target_type = t->Union.variants[first_success_index];
break;
} else if (valid_count > 1) {
begin_error_block();
defer (end_error_block());
GB_ASSERT(first_success_index >= 0);
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
error_line("Ambiguous type conversion to '%s', which variant did you mean:\n\t", type_str);
i32 j = 0;
for (i32 i = 0; i < valid_count; i++) {
ValidIndexAndScore valid = valids[i];
if (j > 0 && valid_count > 2) error_line(", ");
if (j == valid_count-1) {
if (valid_count == 2) error_line(" ");
error_line("or ");
}
gbString str = type_to_string(t->Union.variants[valid.index]);
error_line("'%s'", str);
gb_string_free(str);
j++;
}
error_line("\n\n");
return;
} else if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) {
target_type = t_untyped_undef;
} else if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
begin_error_block();
defer (end_error_block());
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
if (count > 0) {
error_line("'%s' is a union which only excepts the following types:\n", type_str);
error_line("\t");
for (i32 i = 0; i < count; i++) {
Type *v = t->Union.variants[i];
if (i > 0 && count > 2) error_line(", ");
if (i == count-1) {
if (count == 2) error_line(" ");
if (count > 1) {
error_line("or ");
}
}
gbString str = type_to_string(v);
error_line("'%s'", str);
gb_string_free(str);
}
error_line("\n\n");
}
return;
}
}
/* fallthrough */
default:
if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) {
target_type = t_untyped_undef;
} else if (is_type_untyped_nil(operand->type) && type_has_nil(target_type)) {
target_type = t_untyped_nil;
} else {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
if (is_type_any(target_type) && is_type_untyped(operand->type)) {
if (is_type_untyped_nil(operand->type) && is_type_untyped_undef(operand->type)) {
} else {
target_type = default_type(operand->type);
}
}
update_untyped_expr_type(c, operand->expr, target_type, true);
operand->type = target_type;
}
bool check_index_value(CheckerContext *c, Type *main_type, bool open_range, Ast *index_value, i64 max_count, i64 *value, Type *type_hint=nullptr) {
Operand operand = {Addressing_Invalid};
check_expr_with_type_hint(c, &operand, index_value, type_hint);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
Type *index_type = t_int;
if (type_hint != nullptr) {
index_type = type_hint;
}
convert_to_typed(c, &operand, index_type);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
if (type_hint != nullptr) {
if (!check_is_assignable_to(c, &operand, type_hint)) {
gbString expr_str = expr_to_string(operand.expr);
gbString index_type_str = type_to_string(type_hint);
error(operand.expr, "Index '%s' must be an enum of type '%s'", expr_str, index_type_str);
gb_string_free(index_type_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
} else if (!is_type_integer(operand.type) && !is_type_enum(operand.type)) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr, "Index '%s' must be an integer", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (operand.mode == Addressing_Constant &&
(c->state_flags & StateFlag_no_bounds_check) == 0) {
BigInt i = exact_value_to_integer(operand.value).value_integer;
if (i.sign && !is_type_enum(index_type) && !is_type_multi_pointer(main_type)) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr, "Index '%s' cannot be a negative value", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (max_count >= 0) {
if (is_type_enum(index_type)) {
Type *bt = base_type(index_type);
GB_ASSERT(bt->kind == Type_Enum);
ExactValue const &lo = *bt->Enum.min_value;
ExactValue const &hi = *bt->Enum.max_value;
String lo_str = {};
String hi_str = {};
if (bt->Enum.fields.count > 0) {
isize lo_idx = gb_clamp(bt->Enum.min_value_index, 0, bt->Enum.fields.count - 1);
isize hi_idx = gb_clamp(bt->Enum.max_value_index, 0, bt->Enum.fields.count - 1);
lo_str = bt->Enum.fields[lo_idx]->token.string;
hi_str = bt->Enum.fields[hi_idx]->token.string;
}
bool out_of_bounds = false;
if (compare_exact_values(Token_Lt, operand.value, lo) || compare_exact_values(Token_Gt, operand.value, hi)) {
out_of_bounds = true;
}
if (out_of_bounds) {
gbString expr_str = expr_to_string(operand.expr);
if (lo_str.len > 0) {
error(operand.expr, "Index '%s' is out of bounds range %.*s .. %.*s", expr_str, LIT(lo_str), LIT(hi_str));
} else {
gbString index_type_str = type_to_string(index_type);
error(operand.expr, "Index '%s' is out of bounds range of enum type %s", expr_str, index_type_str);
gb_string_free(index_type_str);
}
gb_string_free(expr_str);
return false;
}
if (value) *value = exact_value_to_i64(exact_value_sub(operand.value, lo));
return true;
} else { // NOTE(bill): Do array bound checking
i64 v = -1;
if (i.used <= 1) {
v = big_int_to_i64(&i);
}
if (value) *value = v;
bool out_of_bounds = false;
if (v < 0) {
out_of_bounds = true;
} else if (open_range) {
out_of_bounds = v > max_count;
} else {
out_of_bounds = v >= max_count;
}
if (out_of_bounds) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr, "Index '%s' is out of bounds range 0..<%lld", expr_str, max_count);
gb_string_free(expr_str);
return false;
}
return true;
}
} else {
if (value) *value = exact_value_to_i64(operand.value);
return true;
}
}
// NOTE(bill): It's alright :D
if (value) *value = -1;
return true;
}
ExactValue get_constant_field_single(CheckerContext *c, ExactValue value, i32 index, bool *success_, bool *finish_) {
if (value.kind == ExactValue_String) {
GB_ASSERT(0 <= index && index < value.value_string.len);
u8 val = value.value_string[index];
if (success_) *success_ = true;
if (finish_) *finish_ = true;
return exact_value_u64(val);
}
if (value.kind != ExactValue_Compound) {
if (success_) *success_ = true;
if (finish_) *finish_ = true;
return value;
}
Ast *node = value.value_compound;
switch (node->kind) {
case_ast_node(cl, CompoundLit, node);
if (cl->elems.count == 0) {
if (success_) *success_ = true;
if (finish_) *finish_ = true;
return empty_exact_value;
}
if (cl->elems[0]->kind == Ast_FieldValue) {
if (is_type_struct(node->tav.type)) {
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
continue;
}
ast_node(fv, FieldValue, elem);
String name = fv->field->Ident.token.string;
Selection sub_sel = lookup_field(node->tav.type, name, false);
defer (array_free(&sub_sel.index));
if (sub_sel.index[0] == index) {
value = fv->value->tav.value;
break;
}
}
} else if (is_type_array(node->tav.type) || is_type_enumerated_array(node->tav.type)) {
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
continue;
}
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
i64 corrected_index = index;
if (is_type_enumerated_array(node->tav.type)) {
Type *bt = base_type(node->tav.type);
GB_ASSERT(bt->kind == Type_EnumeratedArray);
corrected_index = index + exact_value_to_i64(*bt->EnumeratedArray.min_value);
}
if (op != Token_RangeHalf) {
if (lo <= corrected_index && corrected_index <= hi) {
TypeAndValue tav = fv->value->tav;
if (success_) *success_ = true;
if (finish_) *finish_ = false;
return tav.value;
}
} else {
if (lo <= corrected_index && corrected_index < hi) {
TypeAndValue tav = fv->value->tav;
if (success_) *success_ = true;
if (finish_) *finish_ = false;
return tav.value;
}
}
} else {
TypeAndValue index_tav = fv->field->tav;
GB_ASSERT(index_tav.mode == Addressing_Constant);
ExactValue index_value = index_tav.value;
if (is_type_enumerated_array(node->tav.type)) {
Type *bt = base_type(node->tav.type);
GB_ASSERT(bt->kind == Type_EnumeratedArray);
index_value = exact_value_sub(index_value, *bt->EnumeratedArray.min_value);
}
i64 field_index = exact_value_to_i64(index_value);
if (index == field_index) {
TypeAndValue tav = fv->value->tav;
if (success_) *success_ = true;
if (finish_) *finish_ = false;
return tav.value;;
}
}
}
}
} else {
i32 count = (i32)cl->elems.count;
if (count < index) {
if (success_) *success_ = false;
if (finish_) *finish_ = true;
return empty_exact_value;
}
if (cl->elems.count <= index) {
if (success_) *success_ = false;
if (finish_) *finish_ = false;
return value;
}
TypeAndValue tav = cl->elems[index]->tav;
if (tav.mode == Addressing_Constant) {
if (success_) *success_ = true;
if (finish_) *finish_ = false;
return tav.value;
} else {
GB_ASSERT(is_type_untyped_nil(tav.type));
if (success_) *success_ = true;
if (finish_) *finish_ = false;
return tav.value;
}
}
case_end;
default:
// TODO(bill): Should this be a general fallback?
if (success_) *success_ = true;
if (finish_) *finish_ = true;
return empty_exact_value;
}
if (finish_) *finish_ = false;
return value;
}
ExactValue get_constant_field(CheckerContext *c, Operand const *operand, Selection sel, bool *success_) {
if (operand->mode != Addressing_Constant) {
if (success_) *success_ = false;
return empty_exact_value;
}
if (sel.indirect) {
if (success_) *success_ = false;
return empty_exact_value;
}
if (sel.index.count == 0) {
if (success_) *success_ = false;
return empty_exact_value;
}
ExactValue value = operand->value;
if (value.kind == ExactValue_Compound) {
while (sel.index.count > 0) {
i32 index = sel.index[0];
sel = sub_selection(sel, 1);
bool finish = false;
value = get_constant_field_single(c, value, index, success_, &finish);
if (finish) {
return value;
}
}
if (success_) *success_ = true;
return value;
} else if (value.kind == ExactValue_Quaternion) {
// @QuaternionLayout
Quaternion256 q = *value.value_quaternion;
GB_ASSERT(sel.index.count == 1);
switch (sel.index[0]) {
case 3: // w
if (success_) *success_ = true;
return exact_value_float(q.real);
case 0: // x
if (success_) *success_ = true;
return exact_value_float(q.imag);
case 1: // y
if (success_) *success_ = true;
return exact_value_float(q.jmag);
case 2: // z
if (success_) *success_ = true;
return exact_value_float(q.kmag);
}
if (success_) *success_ = false;
return empty_exact_value;
} else if (value.kind == ExactValue_Complex) {
// @QuaternionLayout
Complex128 c = *value.value_complex;
GB_ASSERT(sel.index.count == 1);
switch (sel.index[0]) {
case 0: // real
if (success_) *success_ = true;
return exact_value_float(c.real);
case 1: // imag
if (success_) *success_ = true;
return exact_value_float(c.imag);
}
if (success_) *success_ = false;
return empty_exact_value;
}
if (success_) *success_ = true;
return empty_exact_value;
}
Type *determine_swizzle_array_type(Type *original_type, Type *type_hint, isize new_count) {
Type *array_type = base_type(type_deref(original_type));
GB_ASSERT(array_type->kind == Type_Array);
Type *elem_type = array_type->Array.elem;
Type *swizzle_array_type = nullptr;
Type *bth = base_type(type_deref(type_hint));
if (bth != nullptr && bth->kind == Type_Array &&
bth->Array.count == new_count &&
are_types_identical(bth->Array.elem, elem_type)) {
swizzle_array_type = type_hint;
} else {
i64 max_count = array_type->Array.count;
if (new_count == max_count) {
swizzle_array_type = original_type;
} else {
swizzle_array_type = alloc_type_array(elem_type, new_count);
}
}
return swizzle_array_type;
}
bool is_entity_declared_for_selector(Entity *entity, Scope *import_scope, bool *allow_builtin) {
bool is_declared = entity != nullptr;
if (is_declared) {
if (entity->kind == Entity_Builtin) {
// NOTE(bill): Builtin's are in the universal scope which is part of every scopes hierarchy
// This means that we should just ignore the found result through it
*allow_builtin = entity->scope == import_scope || entity->scope != builtin_pkg->scope;
} else if ((entity->scope->flags&ScopeFlag_Global) == ScopeFlag_Global && (import_scope->flags&ScopeFlag_Global) == 0) {
is_declared = false;
}
}
return is_declared;
}
// NOTE(bill, 2022-02-03): see `check_const_decl` for why it exists reasoning
Entity *check_entity_from_ident_or_selector(CheckerContext *c, Ast *node, bool ident_only) {
if (node->kind == Ast_Ident) {
String name = node->Ident.token.string;
return scope_lookup(c->scope, name);
} else if (!ident_only) if (node->kind == Ast_SelectorExpr) {
ast_node(se, SelectorExpr, node);
if (se->token.kind == Token_ArrowRight) {
return nullptr;
}
Ast *op_expr = se->expr;
Ast *selector = unparen_expr(se->selector);
if (selector == nullptr) {
return nullptr;
}
if (selector->kind != Ast_Ident) {
return nullptr;
}
Entity *entity = nullptr;
Entity *expr_entity = nullptr;
bool check_op_expr = true;
if (op_expr->kind == Ast_Ident) {
String op_name = op_expr->Ident.token.string;
Entity *e = scope_lookup(c->scope, op_name);
if (e == nullptr) {
return nullptr;
}
add_entity_use(c, op_expr, e);
expr_entity = e;
if (e != nullptr && e->kind == Entity_ImportName && selector->kind == Ast_Ident) {
// IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
// It pretty much needs to be in this order and this way
// If you can clean this up, please do but be really careful
String import_name = op_name;
Scope *import_scope = e->ImportName.scope;
String entity_name = selector->Ident.token.string;
check_op_expr = false;
entity = scope_lookup_current(import_scope, entity_name);
bool allow_builtin = false;
if (!is_entity_declared_for_selector(entity, import_scope, &allow_builtin)) {
return nullptr;
}
check_entity_decl(c, entity, nullptr, nullptr);
if (entity->kind == Entity_ProcGroup) {
return entity;
}
GB_ASSERT_MSG(entity->type != nullptr, "%.*s (%.*s)", LIT(entity->token.string), LIT(entity_strings[entity->kind]));
}
}
Operand operand = {};
if (check_op_expr) {
check_expr_base(c, &operand, op_expr, nullptr);
if (operand.mode == Addressing_Invalid) {
return nullptr;
}
}
if (entity == nullptr && selector->kind == Ast_Ident) {
String field_name = selector->Ident.token.string;
if (is_type_dynamic_array(type_deref(operand.type))) {
init_mem_allocator(c->checker);
}
auto sel = lookup_field(operand.type, field_name, operand.mode == Addressing_Type);
entity = sel.entity;
}
if (entity != nullptr) {
return entity;
}
}
return nullptr;
}
Entity *check_selector(CheckerContext *c, Operand *operand, Ast *node, Type *type_hint) {
ast_node(se, SelectorExpr, node);
bool check_op_expr = true;
Entity *expr_entity = nullptr;
Entity *entity = nullptr;
Selection sel = {}; // NOTE(bill): Not used if it's an import name
if (!c->allow_arrow_right_selector_expr && se->token.kind == Token_ArrowRight) {
error(node, "Illegal use of -> selector shorthand outside of a call");
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
operand->expr = node;
Ast *op_expr = se->expr;
Ast *selector = unparen_expr(se->selector);
if (selector == nullptr) {
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (selector->kind != Ast_Ident) {
error(selector, "Illegal selector kind: '%.*s'", LIT(ast_strings[selector->kind]));
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (op_expr->kind == Ast_Ident) {
String op_name = op_expr->Ident.token.string;
Entity *e = scope_lookup(c->scope, op_name);
add_entity_use(c, op_expr, e);
expr_entity = e;
if (e != nullptr && e->kind == Entity_ImportName && selector->kind == Ast_Ident) {
// IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
// It pretty much needs to be in this order and this way
// If you can clean this up, please do but be really careful
String import_name = op_name;
Scope *import_scope = e->ImportName.scope;
String entity_name = selector->Ident.token.string;
check_op_expr = false;
entity = scope_lookup_current(import_scope, entity_name);
bool allow_builtin = false;
if (!is_entity_declared_for_selector(entity, import_scope, &allow_builtin)) {
error(op_expr, "'%.*s' is not declared by '%.*s'", LIT(entity_name), LIT(import_name));
operand->mode = Addressing_Invalid;
operand->expr = node;
check_did_you_mean_scope(entity_name, import_scope);
return nullptr;
}
check_entity_decl(c, entity, nullptr, nullptr);
if (entity->kind == Entity_ProcGroup) {
operand->mode = Addressing_ProcGroup;
operand->proc_group = entity;
add_type_and_value(c->info, operand->expr, operand->mode, operand->type, operand->value);
return entity;
}
GB_ASSERT_MSG(entity->type != nullptr, "%.*s (%.*s)", LIT(entity->token.string), LIT(entity_strings[entity->kind]));
if (!is_entity_exported(entity, allow_builtin)) {
gbString sel_str = expr_to_string(selector);
error(op_expr, "'%s' is not exported by '%.*s'", sel_str, LIT(import_name));
gb_string_free(sel_str);
// NOTE(bill): make the state valid still, even if it's "invalid"
// operand->mode = Addressing_Invalid;
// operand->expr = node;
// return nullptr;
}
if (entity->kind == Entity_ProcGroup) {
Array<Entity *> procs = entity->ProcGroup.entities;
bool skip = false;
for_array(i, procs) {
Entity *p = procs[i];
Type *t = base_type(p->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (type_hint != nullptr) {
if (check_is_assignable_to(c, &x, type_hint)) {
entity = p;
skip = true;
break;
}
}
}
if (!skip) {
GB_ASSERT(entity != nullptr);
operand->mode = Addressing_ProcGroup;
operand->type = t_invalid;
operand->expr = node;
operand->proc_group = entity;
return entity;
}
}
}
}
if (check_op_expr) {
check_expr_base(c, operand, op_expr, nullptr);
if (operand->mode == Addressing_Invalid) {
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
}
if (entity == nullptr && selector->kind == Ast_Ident) {
String field_name = selector->Ident.token.string;
if (is_type_dynamic_array(type_deref(operand->type))) {
init_mem_allocator(c->checker);
}
sel = lookup_field(operand->type, field_name, operand->mode == Addressing_Type);
entity = sel.entity;
// NOTE(bill): Add type info needed for fields like 'names'
if (entity != nullptr && (entity->flags&EntityFlag_TypeField)) {
add_type_info_type(c, operand->type);
}
if (is_type_enum(operand->type)) {
add_type_info_type(c, operand->type);
}
}
if (entity == nullptr && selector->kind == Ast_Ident && is_type_array(type_deref(operand->type))) {
// TODO(bill): Simd_Vector swizzling
String field_name = selector->Ident.token.string;
if (1 < field_name.len && field_name.len <= 4) {
u8 swizzles_xyzw[4] = {'x', 'y', 'z', 'w'};
u8 swizzles_rgba[4] = {'r', 'g', 'b', 'a'};
bool found_xyzw = false;
bool found_rgba = false;
for (isize i = 0; i < field_name.len; i++) {
bool valid = false;
for (isize j = 0; j < 4; j++) {
if (field_name.text[i] == swizzles_xyzw[j]) {
found_xyzw = true;
valid = true;
break;
}
if (field_name.text[i] == swizzles_rgba[j]) {
found_rgba = true;
valid = true;
break;
}
}
if (!valid) {
goto end_of_array_selector_swizzle;
}
}
u8 *swizzles = nullptr;
u8 index_count = cast(u8)field_name.len;
if (found_xyzw && found_rgba) {
gbString op_str = expr_to_string(op_expr);
error(op_expr, "Mixture of swizzle kinds for field index, got %s", op_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
u8 indices = 0;
if (found_xyzw) {
swizzles = swizzles_xyzw;
} else if (found_rgba) {
swizzles = swizzles_rgba;
}
for (isize i = 0; i < field_name.len; i++) {
for (isize j = 0; j < 4; j++) {
if (field_name.text[i] == swizzles[j]) {
indices |= cast(u8)(j)<<(i*2);
break;
}
}
}
Type *original_type = operand->type;
Type *array_type = base_type(type_deref(original_type));
GB_ASSERT(array_type->kind == Type_Array);
i64 array_count = array_type->Array.count;
for (u8 i = 0; i < index_count; i++) {
u8 idx = indices>>(i*2) & 3;
if (idx >= array_count) {
char c = 0;
if (found_xyzw) {
c = swizzles_xyzw[idx];
} else if (found_rgba) {
c = swizzles_rgba[idx];
} else {
GB_PANIC("unknown swizzle kind");
}
error(selector->Ident.token, "Swizzle value is out of bounds, got %c, max count %lld", c, array_count);
break;
}
}
se->swizzle_count = index_count;
se->swizzle_indices = indices;
AddressingMode prev_mode = operand->mode;
operand->mode = Addressing_SwizzleValue;
operand->type = determine_swizzle_array_type(original_type, type_hint, index_count);
operand->expr = node;
switch (prev_mode) {
case Addressing_Variable:
case Addressing_SoaVariable:
case Addressing_SwizzleVariable:
operand->mode = Addressing_SwizzleVariable;
break;
}
Entity *swizzle_entity = alloc_entity_variable(nullptr, make_token_ident(field_name), operand->type, EntityState_Resolved);
add_type_and_value(c->info, operand->expr, operand->mode, operand->type, operand->value);
return swizzle_entity;
}
end_of_array_selector_swizzle:;
}
if (entity == nullptr) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error(op_expr, "'%s' of type '%s' has no field '%s'", op_str, type_str, sel_str);
if (operand->type != nullptr && selector->kind == Ast_Ident) {
String const &name = selector->Ident.token.string;
Type *bt = base_type(operand->type);
if (bt->kind == Type_Struct) {
check_did_you_mean_type(name, bt->Struct.fields);
} else if (bt->kind == Type_Enum) {
check_did_you_mean_type(name, bt->Enum.fields);
}
}
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (expr_entity != nullptr && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
bool success = false;
ExactValue field_value = get_constant_field(c, operand, sel, &success);
if (success) {
operand->mode = Addressing_Constant;
operand->expr = node;
operand->value = field_value;
operand->type = entity->type;
add_entity_use(c, selector, entity);
add_type_and_value(c->info, operand->expr, operand->mode, operand->type, operand->value);
return entity;
}
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error(op_expr, "Cannot access non-constant field '%s' from '%s'", sel_str, op_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (operand->mode == Addressing_Constant && entity->kind != Entity_Constant) {
bool success = false;
ExactValue field_value = get_constant_field(c, operand, sel, &success);
if (success) {
operand->mode = Addressing_Constant;
operand->expr = node;
operand->value = field_value;
operand->type = entity->type;
add_entity_use(c, selector, entity);
add_type_and_value(c->info, operand->expr, operand->mode, operand->type, operand->value);
return entity;
}
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error(op_expr, "Cannot access non-constant field '%s' from '%s'", sel_str, op_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (expr_entity != nullptr && is_type_polymorphic(expr_entity->type)) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error(op_expr, "Cannot access field '%s' from non-specialized polymorphic type '%s'", sel_str, op_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
add_entity_use(c, selector, entity);
operand->type = entity->type;
operand->expr = node;
switch (entity->kind) {
case Entity_Constant:
operand->value = entity->Constant.value;
operand->mode = Addressing_Constant;
if (operand->value.kind == ExactValue_Procedure) {
Entity *proc = strip_entity_wrapping(operand->value.value_procedure);
if (proc != nullptr) {
operand->mode = Addressing_Value;
operand->type = proc->type;
}
}
break;
case Entity_Variable:
if (sel.indirect) {
operand->mode = Addressing_Variable;
} else if (operand->mode == Addressing_Context) {
// Do nothing
} else if (operand->mode == Addressing_MapIndex) {
operand->mode = Addressing_Value;
} else if (entity->flags & EntityFlag_SoaPtrField) {
operand->mode = Addressing_SoaVariable;
} else if (operand->mode == Addressing_OptionalOk || operand->mode == Addressing_OptionalOkPtr) {
operand->mode = Addressing_Value;
} else if (operand->mode == Addressing_SoaVariable) {
operand->mode = Addressing_Variable;
} else if (operand->mode != Addressing_Value) {
operand->mode = Addressing_Variable;
} else {
operand->mode = Addressing_Value;
}
break;
case Entity_TypeName:
operand->mode = Addressing_Type;
break;
case Entity_Procedure:
operand->mode = Addressing_Value;
operand->value = exact_value_procedure(node);
break;
case Entity_Builtin:
operand->mode = Addressing_Builtin;
operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id;
break;
case Entity_ProcGroup:
operand->mode = Addressing_ProcGroup;
operand->proc_group = entity;
break;
// NOTE(bill): These cases should never be hit but are here for sanity reasons
case Entity_Nil:
operand->mode = Addressing_Value;
break;
}
add_type_and_value(c->info, operand->expr, operand->mode, operand->type, operand->value);
return entity;
}
bool is_type_normal_pointer(Type *ptr, Type **elem) {
ptr = base_type(ptr);
if (is_type_pointer(ptr)) {
if (is_type_rawptr(ptr)) {
return false;
}
if (elem) *elem = ptr->Pointer.elem;
return true;
}
return false;
}
bool check_identifier_exists(Scope *s, Ast *node, bool nested = false, Scope **out_scope = nullptr) {
switch (node->kind) {
case_ast_node(i, Ident, node);
String name = i->token.string;
if (nested) {
Entity *e = scope_lookup_current(s, name);
if (e != nullptr) {
if (out_scope) *out_scope = e->scope;
return true;
}
} else {
Entity *e = scope_lookup(s, name);
if (e != nullptr) {
if (out_scope) *out_scope = e->scope;
return true;
}
}
case_end;
case_ast_node(se, SelectorExpr, node);
Ast *lhs = se->expr;
Ast *rhs = se->selector;
Scope *lhs_scope = nullptr;
if (check_identifier_exists(s, lhs, nested, &lhs_scope)) {
return check_identifier_exists(lhs_scope, rhs, true);
}
case_end;
}
return false;
}
isize add_dependencies_from_unpacking(CheckerContext *c, Entity **lhs, isize lhs_count, isize tuple_index, isize tuple_count) {
if (lhs != nullptr && c->decl != nullptr) {
mutex_lock(&c->info->deps_mutex);
for (isize j = 0; (tuple_index + j) < lhs_count && j < tuple_count; j++) {
Entity *e = lhs[tuple_index + j];
if (e != nullptr) {
DeclInfo *decl = decl_info_of_entity(e);
if (decl != nullptr) {
for_array(k, decl->deps.entries) {
Entity *dep = decl->deps.entries[k].ptr;
ptr_set_add(&c->decl->deps, dep);
}
}
}
}
mutex_unlock(&c->info->deps_mutex);
}
return tuple_count;
}
bool check_assignment_arguments(CheckerContext *ctx, Array<Operand> const &lhs, Array<Operand> *operands, Slice<Ast *> const &rhs) {
bool optional_ok = false;
isize tuple_index = 0;
for_array(i, rhs) {
CheckerContext c_ = *ctx;
CheckerContext *c = &c_;
Operand o = {};
Type *type_hint = nullptr;
if (tuple_index < lhs.count) {
type_hint = lhs[tuple_index].type;
}
check_expr_base(c, &o, rhs[i], type_hint);
if (o.mode == Addressing_NoValue) {
error_operand_no_value(&o);
o.mode = Addressing_Invalid;
}
if (o.type == nullptr || o.type->kind != Type_Tuple) {
if (lhs.count == 2 && rhs.count == 1 &&
(o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
Ast *expr = unparen_expr(o.expr);
Operand val0 = o;
Operand val1 = o;
val0.mode = Addressing_Value;
val1.mode = Addressing_Value;
val1.type = t_untyped_bool;
check_promote_optional_ok(c, &o, nullptr, &val1.type);
if (expr->kind == Ast_TypeAssertion &&
(o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
// NOTE(bill): Used only for optimizations in the backend
if (is_blank_ident(lhs[0].expr)) {
expr->TypeAssertion.ignores[0] = true;
}
if (is_blank_ident(lhs[1].expr)) {
expr->TypeAssertion.ignores[1] = true;
}
}
array_add(operands, val0);
array_add(operands, val1);
optional_ok = true;
tuple_index += 2;
} else if (o.mode == Addressing_OptionalOk && is_type_tuple(o.type)) {
Type *tuple = o.type;
GB_ASSERT(tuple->Tuple.variables.count == 2);
Ast *expr = unparen_expr(o.expr);
if (expr->kind == Ast_CallExpr) {
expr->CallExpr.optional_ok_one = true;
}
Operand val = o;
val.type = tuple->Tuple.variables[0]->type;
val.mode = Addressing_Value;
array_add(operands, val);
tuple_index += tuple->Tuple.variables.count;
} else {
array_add(operands, o);
tuple_index += 1;
}
} else {
TypeTuple *tuple = &o.type->Tuple;
for_array(j, tuple->variables) {
o.type = tuple->variables[j]->type;
array_add(operands, o);
}
tuple_index += tuple->variables.count;
}
}
return optional_ok;
}
bool check_unpack_arguments(CheckerContext *ctx, Entity **lhs, isize lhs_count, Array<Operand> *operands, Slice<Ast *> const &rhs, bool allow_ok, bool is_variadic) {
bool optional_ok = false;
isize tuple_index = 0;
for_array(i, rhs) {
CheckerContext c_ = *ctx;
CheckerContext *c = &c_;
Operand o = {};
Type *type_hint = nullptr;
if (lhs != nullptr && tuple_index < lhs_count) {
// NOTE(bill): override DeclInfo for dependency
Entity *e = lhs[tuple_index];
if (e != nullptr) {
// DeclInfo *decl = decl_info_of_entity(e);
// if (decl) c->decl = decl;
type_hint = e->type;
if (e->flags & EntityFlag_Ellipsis) {
GB_ASSERT(is_type_slice(e->type));
GB_ASSERT(e->type->kind == Type_Slice);
type_hint = e->type->Slice.elem;
}
}
} else if (lhs != nullptr && tuple_index >= lhs_count && is_variadic) {
// NOTE(bill): override DeclInfo for dependency
Entity *e = lhs[lhs_count-1];
if (e != nullptr) {
// DeclInfo *decl = decl_info_of_entity(e);
// if (decl) c->decl = decl;
type_hint = e->type;
if (e->flags & EntityFlag_Ellipsis) {
GB_ASSERT(is_type_slice(e->type));
GB_ASSERT(e->type->kind == Type_Slice);
type_hint = e->type->Slice.elem;
}
}
}
check_expr_base(c, &o, rhs[i], type_hint);
if (o.mode == Addressing_NoValue) {
error_operand_no_value(&o);
o.mode = Addressing_Invalid;
}
if (o.type == nullptr || o.type->kind != Type_Tuple) {
if (allow_ok && lhs_count == 2 && rhs.count == 1 &&
(o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
Ast *expr = unparen_expr(o.expr);
Operand val0 = o;
Operand val1 = o;
val0.mode = Addressing_Value;
val1.mode = Addressing_Value;
val1.type = t_untyped_bool;
check_promote_optional_ok(c, &o, nullptr, &val1.type);
if (expr->kind == Ast_TypeAssertion &&
(o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
// NOTE(bill): Used only for optimizations in the backend
if (is_blank_ident(lhs[0]->token)) {
expr->TypeAssertion.ignores[0] = true;
}
if (is_blank_ident(lhs[1]->token)) {
expr->TypeAssertion.ignores[1] = true;
}
}
array_add(operands, val0);
array_add(operands, val1);
optional_ok = true;
tuple_index += add_dependencies_from_unpacking(c, lhs, lhs_count, tuple_index, 2);
} else {
array_add(operands, o);
tuple_index += 1;
}
} else {
TypeTuple *tuple = &o.type->Tuple;
for_array(j, tuple->variables) {
o.type = tuple->variables[j]->type;
array_add(operands, o);
}
isize count = tuple->variables.count;
tuple_index += add_dependencies_from_unpacking(c, lhs, lhs_count, tuple_index, count);
}
}
return optional_ok;
}
bool is_expr_constant_zero(Ast *expr) {
GB_ASSERT(expr != nullptr);
auto v = exact_value_to_integer(expr->tav.value);
if (v.kind == ExactValue_Integer) {
return big_int_cmp_zero(&v.value_integer) == 0;
}
return false;
}
CALL_ARGUMENT_CHECKER(check_call_arguments_internal) {
ast_node(ce, CallExpr, call);
GB_ASSERT(is_type_proc(proc_type));
proc_type = base_type(proc_type);
TypeProc *pt = &proc_type->Proc;
isize param_count = 0;
isize param_count_excluding_defaults = 0;
bool variadic = pt->variadic;
bool vari_expand = (ce->ellipsis.pos.line != 0);
i64 score = 0;
bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
TypeTuple *param_tuple = nullptr;
if (pt->params != nullptr) {
param_tuple = &pt->params->Tuple;
param_count = param_tuple->variables.count;
if (variadic) {
for (isize i = param_count-1; i >= 0; i--) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_TypeName) {
break;
}
if (e->kind == Entity_Variable) {
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
param_count--;
continue;
}
}
break;
}
param_count--;
}
}
param_count_excluding_defaults = param_count;
if (param_tuple != nullptr) {
for (isize i = param_count-1; i >= 0; i--) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_TypeName) {
break;
}
if (e->kind == Entity_Variable) {
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
param_count_excluding_defaults--;
continue;
}
}
break;
}
}
CallArgumentError err = CallArgumentError_None;
Type *final_proc_type = proc_type;
Entity *gen_entity = nullptr;
if (vari_expand && !variadic) {
if (show_error) {
error(ce->ellipsis,
"Cannot use '..' in call to a non-variadic procedure: '%.*s'",
LIT(ce->proc->Ident.token.string));
}
err = CallArgumentError_NonVariadicExpand;
} else if (vari_expand && pt->c_vararg) {
if (show_error) {
error(ce->ellipsis,
"Cannot use '..' in call to a '#c_vararg' variadic procedure: '%.*s'",
LIT(ce->proc->Ident.token.string));
}
err = CallArgumentError_NonVariadicExpand;
} else if (operands.count == 0 && param_count_excluding_defaults == 0) {
err = CallArgumentError_None;
if (variadic) {
GB_ASSERT(param_tuple != nullptr && param_tuple->variables.count > 0);
Type *t = param_tuple->variables[0]->type;
if (is_type_polymorphic(t)) {
error(call, "Ambiguous call to a polymorphic variadic procedure with no variadic input");
err = CallArgumentError_AmbiguousPolymorphicVariadic;
}
}
} else {
i32 error_code = 0;
if (operands.count < param_count_excluding_defaults) {
error_code = -1;
} else if (!variadic && operands.count > param_count) {
error_code = +1;
}
if (error_code != 0) {
err = CallArgumentError_TooManyArguments;
char const *err_fmt = "Too many arguments for '%s', expected %td arguments, got %td";
if (error_code < 0) {
err = CallArgumentError_TooFewArguments;
err_fmt = "Too few arguments for '%s', expected %td arguments, got %td";
}
if (show_error) {
gbString proc_str = expr_to_string(ce->proc);
defer (gb_string_free(proc_str));
error(call, err_fmt, proc_str, param_count_excluding_defaults, operands.count);
#if 0
error_line("\t");
for_array(i, operands) {
if (i > 0) {
error_line(", ");
}
gbString s = expr_to_string(operands[i].expr);
error_line("%s", s);
gb_string_free(s);
}
error_line("\n");
#endif
}
} else {
// NOTE(bill): Generate the procedure type for this generic instance
if (pt->is_polymorphic && !pt->is_poly_specialized) {
PolyProcData poly_proc_data = {};
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &operands, call, &poly_proc_data)) {
gen_entity = poly_proc_data.gen_entity;
GB_ASSERT(is_type_proc(gen_entity->type));
final_proc_type = gen_entity->type;
} else {
err = CallArgumentError_WrongTypes;
}
}
GB_ASSERT(is_type_proc(final_proc_type));
TypeProc *pt = &final_proc_type->Proc;
GB_ASSERT(pt->params != nullptr);
auto sig_params = pt->params->Tuple.variables;
isize operand_index = 0;
isize max_operand_count = gb_min(param_count, operands.count);
for (; operand_index < max_operand_count; operand_index++) {
Entity *e = sig_params[operand_index];
Type *t = e->type;
Operand o = operands[operand_index];
if (o.expr != nullptr) {
call->viral_state_flags |= o.expr->viral_state_flags;
}
if (e->kind == Entity_TypeName) {
// GB_ASSERT(!variadic);
if (o.mode == Addressing_Invalid) {
continue;
} else if (o.mode != Addressing_Type) {
if (show_error) {
error(o.expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
}
err = CallArgumentError_WrongTypes;
}
if (are_types_identical(e->type, o.type)) {
score += assign_score_function(1);
} else {
score += assign_score_function(MAXIMUM_TYPE_DISTANCE);
}
continue;
}
bool param_is_variadic = pt->variadic && pt->variadic_index == operand_index;
i64 s = 0;
if (!check_is_assignable_to_with_score(c, &o, t, &s, param_is_variadic)) {
bool ok = false;
if (e->flags & EntityFlag_AutoCast) {
ok = check_is_castable_to(c, &o, t);
} else if (e->flags & EntityFlag_AnyInt) {
if (is_type_integer(t)) {
ok = check_is_castable_to(c, &o, t);
}
}
if (ok) {
s = assign_score_function(MAXIMUM_TYPE_DISTANCE);
} else {
if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
// TODO(bill, 2021-05-05): Is this incorrect logic to only fail if there is ambiguity for definite?
if (o.mode == Addressing_Invalid) {
err = CallArgumentError_WrongTypes;
}
}
} else if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
score += s;
if (e->flags & EntityFlag_ConstInput) {
if (o.mode != Addressing_Constant) {
if (show_error) {
error(o.expr, "Expected a constant value for the argument '%.*s'", LIT(e->token.string));
}
err = CallArgumentError_NoneConstantParameter;
}
}
if (o.mode == Addressing_Type && is_type_typeid(e->type)) {
add_type_info_type(c, o.type);
add_type_and_value(c->info, o.expr, Addressing_Value, e->type, exact_value_typeid(o.type));
} else if (show_error && is_type_untyped(o.type)) {
update_untyped_expr_type(c, o.expr, t, true);
}
}
if (variadic) {
bool variadic_expand = false;
Type *slice = sig_params[param_count]->type;
GB_ASSERT(is_type_slice(slice));
Type *elem = base_type(slice)->Slice.elem;
Type *t = elem;
if (is_type_polymorphic(t)) {
error(call, "Ambiguous call to a polymorphic variadic procedure with no variadic input");
err = CallArgumentError_AmbiguousPolymorphicVariadic;
}
for (; operand_index < operands.count; operand_index++) {
Operand o = operands[operand_index];
if (vari_expand) {
variadic_expand = true;
t = slice;
if (operand_index != param_count) {
if (show_error) {
error(o.expr, "'..' in a variadic procedure can only have one variadic argument at the end");
}
if (data) {
data->score = score;
data->result_type = final_proc_type->Proc.results;
data->gen_entity = gen_entity;
}
return CallArgumentError_MultipleVariadicExpand;
}
}
i64 s = 0;
if (!check_is_assignable_to_with_score(c, &o, t, &s, true)) {
if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
err = CallArgumentError_WrongTypes;
} else if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
score += s;
if (is_type_any(elem)) {
add_type_info_type(c, o.type);
}
if (o.mode == Addressing_Type && is_type_typeid(t)) {
add_type_info_type(c, o.type);
add_type_and_value(c->info, o.expr, Addressing_Value, t, exact_value_typeid(o.type));
} else if (show_error && is_type_untyped(o.type)) {
update_untyped_expr_type(c, o.expr, t, true);
}
}
}
}
}
if (data) {
data->score = score;
data->result_type = final_proc_type->Proc.results;
data->gen_entity = gen_entity;
add_type_and_value(c->info, ce->proc, Addressing_Value, final_proc_type, {});
}
return err;
}
bool is_call_expr_field_value(AstCallExpr *ce) {
GB_ASSERT(ce != nullptr);
if (ce->args.count == 0) {
return false;
}
return ce->args[0]->kind == Ast_FieldValue;
}
isize lookup_procedure_parameter(TypeProc *pt, String parameter_name) {
isize param_count = pt->param_count;
for (isize i = 0; i < param_count; i++) {
Entity *e = pt->params->Tuple.variables[i];
String name = e->token.string;
if (is_blank_ident(name)) {
continue;
}
if (name == parameter_name) {
return i;
}
}
return -1;
}
isize lookup_procedure_result(TypeProc *pt, String result_name) {
isize result_count = pt->result_count;
for (isize i = 0; i < result_count; i++) {
Entity *e = pt->results->Tuple.variables[i];
String name = e->token.string;
if (is_blank_ident(name)) {
continue;
}
if (name == result_name) {
return i;
}
}
return -1;
}
CALL_ARGUMENT_CHECKER(check_named_call_arguments) {
ast_node(ce, CallExpr, call);
GB_ASSERT(is_type_proc(proc_type));
proc_type = base_type(proc_type);
TypeProc *pt = &proc_type->Proc;
i64 score = 0;
bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
CallArgumentError err = CallArgumentError_None;
isize param_count = pt->param_count;
bool *visited = gb_alloc_array(temporary_allocator(), bool, param_count);
auto ordered_operands = array_make<Operand>(temporary_allocator(), param_count);
defer ({
for_array(i, ordered_operands) {
Operand const &o = ordered_operands[i];
if (o.expr != nullptr) {
call->viral_state_flags |= o.expr->viral_state_flags;
}
}
});
for_array(i, ce->args) {
Ast *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
if (fv->field->kind != Ast_Ident) {
if (show_error) {
gbString expr_str = expr_to_string(fv->field);
error(arg, "Invalid parameter name '%s' in procedure call", expr_str);
gb_string_free(expr_str);
}
err = CallArgumentError_InvalidFieldValue;
continue;
}
String name = fv->field->Ident.token.string;
isize index = lookup_procedure_parameter(pt, name);
if (index < 0) {
if (show_error) {
error(arg, "No parameter named '%.*s' for this procedure type", LIT(name));
}
err = CallArgumentError_ParameterNotFound;
continue;
}
if (visited[index]) {
if (show_error) {
error(arg, "Duplicate parameter '%.*s' in procedure call", LIT(name));
}
err = CallArgumentError_DuplicateParameter;
continue;
}
visited[index] = true;
ordered_operands[index] = operands[i];
}
// NOTE(bill): Check for default values and missing parameters
isize param_count_to_check = param_count;
if (pt->variadic) {
param_count_to_check--;
}
for (isize i = 0; i < param_count_to_check; i++) {
if (!visited[i]) {
Entity *e = pt->params->Tuple.variables[i];
if (is_blank_ident(e->token)) {
continue;
}
if (e->kind == Entity_Variable) {
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
score += assign_score_function(1);
continue;
}
}
if (show_error) {
if (e->kind == Entity_TypeName) {
error(call, "Type parameter '%.*s' is missing in procedure call",
LIT(e->token.string));
} else if (e->kind == Entity_Constant && e->Constant.value.kind != ExactValue_Invalid) {
// Ignore
} else {
gbString str = type_to_string(e->type);
error(call, "Parameter '%.*s' of type '%s' is missing in procedure call",
LIT(e->token.string), str);
gb_string_free(str);
}
}
err = CallArgumentError_ParameterMissing;
}
}
Entity *gen_entity = nullptr;
if (pt->is_polymorphic && !pt->is_poly_specialized && err == CallArgumentError_None) {
PolyProcData poly_proc_data = {};
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &ordered_operands, call, &poly_proc_data)) {
gen_entity = poly_proc_data.gen_entity;
Type *gept = base_type(gen_entity->type);
GB_ASSERT(is_type_proc(gept));
proc_type = gept;
pt = &gept->Proc;
}
}
for (isize i = 0; i < param_count; i++) {
Entity *e = pt->params->Tuple.variables[i];
Operand *o = &ordered_operands[i];
bool param_is_variadic = pt->variadic && pt->variadic_index == i;
if (o->mode == Addressing_Invalid) {
if (param_is_variadic) {
Type *slice = e->type;
GB_ASSERT(is_type_slice(slice));
Type *elem = base_type(slice)->Slice.elem;
if (is_type_polymorphic(elem)) {
error(call, "Ambiguous call to a polymorphic variadic procedure with no variadic input");
err = CallArgumentError_AmbiguousPolymorphicVariadic;
return err;
}
}
continue;
}
if (e->kind == Entity_TypeName) {
GB_ASSERT(pt->is_polymorphic);
if (o->mode != Addressing_Type) {
if (show_error) {
error(o->expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
}
err = CallArgumentError_WrongTypes;
}
if (are_types_identical(e->type, o->type)) {
score += assign_score_function(1);
} else {
score += assign_score_function(MAXIMUM_TYPE_DISTANCE);
}
} else {
i64 s = 0;
if (!check_is_assignable_to_with_score(c, o, e->type, &s, param_is_variadic)) {
bool ok = false;
if (e->flags & EntityFlag_AutoCast) {
ok = check_is_castable_to(c, o, e->type);
}
if (ok) {
s = assign_score_function(MAXIMUM_TYPE_DISTANCE);
} else {
if (show_error) {
check_assignment(c, o, e->type, str_lit("procedure argument"));
}
err = CallArgumentError_WrongTypes;
}
if (e->flags & EntityFlag_ConstInput) {
if (o->mode != Addressing_Constant) {
if (show_error) {
error(o->expr, "Expected a constant value for the argument '%.*s'", LIT(e->token.string));
}
err = CallArgumentError_NoneConstantParameter;
}
}
} else if (show_error) {
check_assignment(c, o, e->type, str_lit("procedure argument"));
}
score += s;
}
if (o->mode == Addressing_Type && is_type_typeid(e->type)) {
add_type_info_type(c, o->type);
add_type_and_value(c->info, o->expr, Addressing_Value, e->type, exact_value_typeid(o->type));
}
}
if (data) {
data->score = score;
data->result_type = pt->results;
data->gen_entity = gen_entity;
add_type_and_value(c->info, ce->proc, Addressing_Value, proc_type, {});
}
return err;
}
Entity **populate_proc_parameter_list(CheckerContext *c, Type *proc_type, isize *lhs_count_, bool *is_variadic) {
Entity **lhs = nullptr;
isize lhs_count = -1;
if (proc_type == nullptr) {
return nullptr;
}
GB_ASSERT(is_type_proc(proc_type));
TypeProc *pt = &base_type(proc_type)->Proc;
*is_variadic = pt->variadic;
if (!pt->is_polymorphic || pt->is_poly_specialized) {
if (pt->params != nullptr) {
lhs = pt->params->Tuple.variables.data;
lhs_count = pt->params->Tuple.variables.count;
}
} else {
// NOTE(bill): Create 'lhs' list in order to ignore parameters which are polymorphic
if (pt->params == nullptr) {
lhs_count = 0;
} else {
lhs_count = pt->params->Tuple.variables.count;
}
lhs = gb_alloc_array(permanent_allocator(), Entity *, lhs_count);
for (isize i = 0; i < lhs_count; i++) {
Entity *e = pt->params->Tuple.variables[i];
if (!is_type_polymorphic(e->type)) {
lhs[i] = e;
}
}
}
if (lhs_count_) *lhs_count_ = lhs_count;
return lhs;
}
bool evaluate_where_clauses(CheckerContext *ctx, Ast *call_expr, Scope *scope, Slice<Ast *> *clauses, bool print_err) {
if (clauses != nullptr) {
for_array(i, *clauses) {
Ast *clause = (*clauses)[i];
Operand o = {};
check_expr(ctx, &o, clause);
if (o.mode != Addressing_Constant) {
if (print_err) error(clause, "'where' clauses expect a constant boolean evaluation");
if (print_err && call_expr) error(call_expr, "at caller location");
return false;
} else if (o.value.kind != ExactValue_Bool) {
if (print_err) error(clause, "'where' clauses expect a constant boolean evaluation");
if (print_err && call_expr) error(call_expr, "at caller location");
return false;
} else if (!o.value.value_bool) {
if (print_err) {
ERROR_BLOCK();
gbString str = expr_to_string(clause);
error(clause, "'where' clause evaluated to false:\n\t%s", str);
gb_string_free(str);
if (scope != nullptr) {
isize print_count = 0;
for_array(j, scope->elements.entries) {
Entity *e = scope->elements.entries[j].value;
switch (e->kind) {
case Entity_TypeName: {
if (print_count == 0) error_line("\n\tWith the following definitions:\n");
gbString str = type_to_string(e->type);
error_line("\t\t%.*s :: %s;\n", LIT(e->token.string), str);
gb_string_free(str);
print_count += 1;
break;
}
case Entity_Constant: {
if (print_count == 0) error_line("\n\tWith the following definitions:\n");
gbString str = exact_value_to_string(e->Constant.value);
if (is_type_untyped(e->type)) {
error_line("\t\t%.*s :: %s;\n", LIT(e->token.string), str);
} else {
gbString t = type_to_string(e->type);
error_line("\t\t%.*s : %s : %s;\n", LIT(e->token.string), t, str);
gb_string_free(t);
}
gb_string_free(str);
print_count += 1;
break;
}
}
}
}
if (call_expr) error(call_expr, "at caller location");
}
return false;
}
}
}
return true;
}
CallArgumentData check_call_arguments(CheckerContext *c, Operand *operand, Type *proc_type, Ast *call, Slice<Ast *> const &args) {
ast_node(ce, CallExpr, call);
CallArgumentCheckerType *call_checker = check_call_arguments_internal;
Array<Operand> operands = {};
defer (array_free(&operands));
Type *result_type = t_invalid;
if (is_call_expr_field_value(ce)) {
call_checker = check_named_call_arguments;
operands = array_make<Operand>(heap_allocator(), args.count);
// NOTE(bill): This is give type hints for the named parameters
// in order to improve the type inference system
StringMap<Type *> type_hint_map = {}; // Key: String
string_map_init(&type_hint_map, heap_allocator(), 2*args.count);
defer (string_map_destroy(&type_hint_map));
Type *ptype = nullptr;
bool single_case = true;
if (operand->mode == Addressing_ProcGroup) {
single_case = false;
Array<Entity *> procs = proc_group_entities(c, *operand);
if (procs.count == 1) {
ptype = procs[0]->type;
single_case = true;
}
} else {
ptype = proc_type;
}
if (single_case) {
Type *bptype = base_type(ptype);
if (is_type_proc(bptype)) {
TypeProc *pt = &bptype->Proc;
TypeTuple *param_tuple = nullptr;
if (pt->params != nullptr) {
param_tuple = &pt->params->Tuple;
}
if (param_tuple != nullptr) {
for_array(i, param_tuple->variables) {
Entity *e = param_tuple->variables[i];
if (is_blank_ident(e->token)) {
continue;
}
string_map_set(&type_hint_map, e->token.string, e->type);
}
}
}
} else {
Array<Entity *> procs = proc_group_entities(c, *operand);
for_array(j, procs) {
Type *proc_type = base_type(procs[j]->type);
if (is_type_proc(proc_type)) {
TypeProc *pt = &proc_type->Proc;
TypeTuple *param_tuple = nullptr;
if (pt->params != nullptr) {
param_tuple = &pt->params->Tuple;
}
if (param_tuple == nullptr) {
continue;
}
for_array(i, param_tuple->variables) {
Entity *e = param_tuple->variables[i];
if (is_blank_ident(e->token)) {
continue;
}
StringHashKey key = string_hash_string(e->token.string);
Type **found = string_map_get(&type_hint_map, key);
if (found) {
Type *t = *found;
if (t == nullptr) {
// NOTE(bill): Ambiguous named parameter across all types
continue;
}
if (are_types_identical(t, e->type)) {
// NOTE(bill): No need to set again
} else {
// NOTE(bill): Ambiguous named parameter across all types so set it to a nullptr
string_map_set(&type_hint_map, key, cast(Type *)nullptr);
}
} else {
string_map_set(&type_hint_map, key, e->type);
}
}
}
}
}
for_array(i, args) {
Ast *arg = args[i];
ast_node(fv, FieldValue, arg);
Ast *field = fv->field;
Type *type_hint = nullptr;
if (field != nullptr && field->kind == Ast_Ident) {
String key = field->Ident.token.string;
Type **found = string_map_get(&type_hint_map, key);
if (found) {
type_hint = *found;
}
}
check_expr_or_type(c, &operands[i], fv->value, type_hint);
}
} else {
operands = array_make<Operand>(heap_allocator(), 0, 2*args.count);
Entity **lhs = nullptr;
isize lhs_count = -1;
bool is_variadic = false;
if (proc_type != nullptr && is_type_proc(proc_type)) {
lhs = populate_proc_parameter_list(c, proc_type, &lhs_count, &is_variadic);
}
if (operand->mode != Addressing_ProcGroup) {
check_unpack_arguments(c, lhs, lhs_count, &operands, args, false, is_variadic);
}
}
if (operand->mode == Addressing_ProcGroup) {
check_entity_decl(c, operand->proc_group, nullptr, nullptr);
Array<Entity *> procs = proc_group_entities(c, *operand);
if (procs.count == 1) {
Ast *ident = operand->expr;
while (ident->kind == Ast_SelectorExpr) {
Ast *s = ident->SelectorExpr.selector;
ident = s;
}
Entity *e = procs[0];
Entity **lhs = nullptr;
isize lhs_count = -1;
bool is_variadic = false;
lhs = populate_proc_parameter_list(c, e->type, &lhs_count, &is_variadic);
check_unpack_arguments(c, lhs, lhs_count, &operands, args, false, is_variadic);
CallArgumentData data = {};
CallArgumentError err = call_checker(c, call, e->type, e, operands, CallArgumentMode_ShowErrors, &data);
if (err != CallArgumentError_None) {
// handle error
}
Entity *entity_to_use = data.gen_entity != nullptr ? data.gen_entity : e;
add_entity_use(c, ident, entity_to_use);
if (entity_to_use != nullptr) {
update_untyped_expr_type(c, operand->expr, entity_to_use->type, true);
}
return data;
}
Entity **lhs = nullptr;
isize lhs_count = -1;
{
// NOTE(bill, 2019-07-13): This code is used to improve the type inference for procedure groups
// where the same positional parameter has the same type value (and ellipsis)
bool proc_arg_count_all_equal = true;
isize proc_arg_count = -1;
for_array(i, procs) {
Entity *p = procs[i];
Type *pt = base_type(p->type);
if (pt != nullptr && is_type_proc(pt)) {
if (proc_arg_count < 0) {
proc_arg_count = pt->Proc.param_count;
} else {
if (proc_arg_count != pt->Proc.param_count) {
proc_arg_count_all_equal = false;
break;
}
}
}
}
if (proc_arg_count >= 0 && proc_arg_count_all_equal) {
lhs_count = proc_arg_count;
if (lhs_count > 0) {
lhs = gb_alloc_array(heap_allocator(), Entity *, lhs_count);
for (isize param_index = 0; param_index < lhs_count; param_index++) {
Entity *e = nullptr;
for_array(j, procs) {
Entity *p = procs[j];
Type *pt = base_type(p->type);
if (pt != nullptr && is_type_proc(pt)) {
if (e == nullptr) {
e = pt->Proc.params->Tuple.variables[param_index];
} else {
Entity *f = pt->Proc.params->Tuple.variables[param_index];
if (e == f) {
continue;
}
if (are_types_identical(e->type, f->type)) {
bool ee = (e->flags & EntityFlag_Ellipsis) != 0;
bool fe = (f->flags & EntityFlag_Ellipsis) != 0;
if (ee == fe) {
continue;
}
}
// NOTE(bill): Entities are not close enough to be used
e = nullptr;
break;
}
}
}
lhs[param_index] = e;
}
}
}
}
check_unpack_arguments(c, lhs, lhs_count, &operands, args, false, false);
if (lhs != nullptr) {
gb_free(heap_allocator(), lhs);
}
auto valids = array_make<ValidIndexAndScore>(heap_allocator(), 0, procs.count);
defer (array_free(&valids));
auto proc_entities = array_make<Entity *>(heap_allocator(), 0, procs.count*2 + 1);
defer (array_free(&proc_entities));
for_array(i, procs) {
array_add(&proc_entities, procs[i]);
}
gbString expr_name = expr_to_string(operand->expr);
defer (gb_string_free(expr_name));
for_array(i, procs) {
Entity *p = procs[i];
Type *pt = base_type(p->type);
if (pt != nullptr && is_type_proc(pt)) {
CallArgumentError err = CallArgumentError_None;
CallArgumentData data = {};
CheckerContext ctx = *c;
ctx.no_polymorphic_errors = true;
ctx.allow_polymorphic_types = is_type_polymorphic(pt);
ctx.hide_polymorphic_errors = true;
err = call_checker(&ctx, call, pt, p, operands, CallArgumentMode_NoErrors, &data);
if (err != CallArgumentError_None) {
continue;
}
isize index = i;
if (data.gen_entity != nullptr) {
Entity *e = data.gen_entity;
DeclInfo *decl = data.gen_entity->decl_info;
ctx.scope = decl->scope;
ctx.decl = decl;
ctx.proc_name = e->token.string;
ctx.curr_proc_decl = decl;
ctx.curr_proc_sig = e->type;
GB_ASSERT(decl->proc_lit->kind == Ast_ProcLit);
if (!evaluate_where_clauses(&ctx, call, decl->scope, &decl->proc_lit->ProcLit.where_clauses, false)) {
continue;
}
array_add(&proc_entities, data.gen_entity);
index = proc_entities.count-1;
}
ValidIndexAndScore item = {};
item.index = index;
item.score = data.score;
array_add(&valids, item);
}
}
if (valids.count > 1) {
gb_sort_array(valids.data, valids.count, valid_index_and_score_cmp);
i64 best_score = valids[0].score;
Entity *best_entity = proc_entities[valids[0].index];
GB_ASSERT(best_entity != nullptr);
for (isize i = 1; i < valids.count; i++) {
if (best_score > valids[i].score) {
valids.count = i;
break;
}
if (best_entity == proc_entities[valids[i].index]) {
valids.count = i;
break;
}
}
}
if (valids.count == 0) {
begin_error_block();
defer (end_error_block());
error(operand->expr, "No procedures or ambiguous call for procedure group '%s' that match with the given arguments", expr_name);
if (operands.count == 0) {
error_line("\tNo given arguments\n");
} else {
error_line("\tGiven argument types: (");
for_array(i, operands) {
Operand o = operands[i];
if (i > 0) error_line(", ");
gbString type = type_to_string(o.type);
defer (gb_string_free(type));
error_line("%s", type);
}
error_line(")\n");
}
if (procs.count > 0) {
error_line("Did you mean to use one of the following:\n");
}
for_array(i, procs) {
Entity *proc = procs[i];
TokenPos pos = proc->token.pos;
Type *t = base_type(proc->type);
if (t == t_invalid) continue;
GB_ASSERT(t->kind == Type_Proc);
gbString pt;
defer (gb_string_free(pt));
if (t->Proc.node != nullptr) {
pt = expr_to_string(t->Proc.node);
} else {
pt = type_to_string(t);
}
String prefix = {};
String prefix_sep = {};
if (proc->pkg) {
prefix = proc->pkg->name;
prefix_sep = str_lit(".");
}
String name = proc->token.string;
char const *sep = "::";
if (proc->kind == Entity_Variable) {
sep = ":=";
}
error_line("\t%.*s%.*s%.*s %s %s at %s\n", LIT(prefix), LIT(prefix_sep), LIT(name), sep, pt, token_pos_to_string(pos));
}
if (procs.count > 0) {
error_line("\n");
}
result_type = t_invalid;
} else if (valids.count > 1) {
begin_error_block();
defer (end_error_block());
error(operand->expr, "Ambiguous procedure group call '%s' that match with the given arguments", expr_name);
error_line("\tGiven argument types: (");
for_array(i, operands) {
Operand o = operands[i];
if (i > 0) error_line(", ");
gbString type = type_to_string(o.type);
defer (gb_string_free(type));
error_line("%s", type);
}
error_line(")\n");
for (isize i = 0; i < valids.count; i++) {
Entity *proc = proc_entities[valids[i].index];
GB_ASSERT(proc != nullptr);
TokenPos pos = proc->token.pos;
Type *t = base_type(proc->type); GB_ASSERT(t->kind == Type_Proc);
gbString pt = nullptr;
defer (gb_string_free(pt));
if (t->Proc.node != nullptr) {
pt = expr_to_string(t->Proc.node);
} else {
pt = type_to_string(t);
}
String name = proc->token.string;
char const *sep = "::";
if (proc->kind == Entity_Variable) {
sep = ":=";
}
error_line("\t%.*s %s %s ", LIT(name), sep, pt);
if (proc->decl_info->proc_lit != nullptr) {
GB_ASSERT(proc->decl_info->proc_lit->kind == Ast_ProcLit);
auto *pl = &proc->decl_info->proc_lit->ProcLit;
if (pl->where_token.kind != Token_Invalid) {
error_line("\n\t\twhere ");
for_array(j, pl->where_clauses) {
Ast *clause = pl->where_clauses[j];
if (j != 0) {
error_line("\t\t ");
}
gbString str = expr_to_string(clause);
error_line("%s", str);
gb_string_free(str);
if (j != pl->where_clauses.count-1) {
error_line(",");
}
}
error_line("\n\t");
}
}
error_line("at %s\n", token_pos_to_string(pos));
}
result_type = t_invalid;
} else {
Ast *ident = operand->expr;
while (ident->kind == Ast_SelectorExpr) {
Ast *s = ident->SelectorExpr.selector;
ident = s;
}
Entity *e = proc_entities[valids[0].index];
GB_ASSERT(e != nullptr);
proc_type = e->type;
CallArgumentData data = {};
CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data);
gb_unused(err);
Entity *entity_to_use = data.gen_entity != nullptr ? data.gen_entity : e;
add_entity_use(c, ident, entity_to_use);
if (entity_to_use != nullptr) {
update_untyped_expr_type(c, operand->expr, entity_to_use->type, true);
}
if (data.gen_entity != nullptr) {
Entity *e = data.gen_entity;
DeclInfo *decl = data.gen_entity->decl_info;
CheckerContext ctx = *c;
ctx.scope = decl->scope;
ctx.decl = decl;
ctx.proc_name = e->token.string;
ctx.curr_proc_decl = decl;
ctx.curr_proc_sig = e->type;
GB_ASSERT(decl->proc_lit->kind == Ast_ProcLit);
bool ok = evaluate_where_clauses(&ctx, call, decl->scope, &decl->proc_lit->ProcLit.where_clauses, true);
decl->where_clauses_evaluated = true;
if (ok && (data.gen_entity->flags & EntityFlag_ProcBodyChecked) == 0) {
check_procedure_later(c, e->file, e->token, decl, e->type, decl->proc_lit->ProcLit.body, decl->proc_lit->ProcLit.tags);
}
}
return data;
}
} else {
Ast *ident = operand->expr;
while (ident->kind == Ast_SelectorExpr) {
Ast *s = ident->SelectorExpr.selector;
ident = s;
}
Entity *e = entity_of_node(ident);
CallArgumentData data = {};
CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data);
gb_unused(err);
Entity *entity_to_use = data.gen_entity != nullptr ? data.gen_entity : e;
add_entity_use(c, ident, entity_to_use);
if (entity_to_use != nullptr) {
update_untyped_expr_type(c, operand->expr, entity_to_use->type, true);
}
if (data.gen_entity != nullptr) {
Entity *e = data.gen_entity;
DeclInfo *decl = data.gen_entity->decl_info;
CheckerContext ctx = *c;
ctx.scope = decl->scope;
ctx.decl = decl;
ctx.proc_name = e->token.string;
ctx.curr_proc_decl = decl;
ctx.curr_proc_sig = e->type;
GB_ASSERT(decl->proc_lit->kind == Ast_ProcLit);
bool ok = evaluate_where_clauses(&ctx, call, decl->scope, &decl->proc_lit->ProcLit.where_clauses, true);
decl->where_clauses_evaluated = true;
if (ok && (data.gen_entity->flags & EntityFlag_ProcBodyChecked) == 0) {
check_procedure_later(c, e->file, e->token, decl, e->type, decl->proc_lit->ProcLit.body, decl->proc_lit->ProcLit.tags);
}
}
return data;
}
CallArgumentData data = {};
data.result_type = t_invalid;
return data;
}
isize lookup_polymorphic_record_parameter(Type *t, String parameter_name) {
if (!is_type_polymorphic_record(t)) {
return -1;
}
TypeTuple *params = get_record_polymorphic_params(t);
if (params == nullptr) {
return -1;
}
for_array(i, params->variables) {
Entity *e = params->variables[i];
String name = e->token.string;
if (is_blank_ident(name)) {
continue;
}
if (name == parameter_name) {
return i;
}
}
return -1;
}
CallArgumentError check_polymorphic_record_type(CheckerContext *c, Operand *operand, Ast *call) {
ast_node(ce, CallExpr, call);
Type *original_type = operand->type;
GB_ASSERT(is_type_polymorphic_record(original_type));
bool show_error = true;
Array<Operand> operands = {};
defer (array_free(&operands));
bool named_fields = false;
{
// NOTE(bill, 2019-10-26): Allow a cycle in the parameters but not in the fields themselves
auto prev_type_path = c->type_path;
c->type_path = new_checker_type_path();
defer ({
destroy_checker_type_path(c->type_path);
c->type_path = prev_type_path;
});
if (is_call_expr_field_value(ce)) {
named_fields = true;
operands = array_make<Operand>(heap_allocator(), ce->args.count);
for_array(i, ce->args) {
Ast *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
if (fv->field->kind == Ast_Ident) {
String name = fv->field->Ident.token.string;
isize index = lookup_polymorphic_record_parameter(original_type, name);
if (index >= 0) {
TypeTuple *params = get_record_polymorphic_params(original_type);
Entity *e = params->variables[i];
if (e->kind == Entity_Constant) {
check_expr_with_type_hint(c, &operands[i], fv->value, e->type);
continue;
}
}
}
check_expr_or_type(c, &operands[i], fv->value);
}
bool vari_expand = (ce->ellipsis.pos.line != 0);
if (vari_expand) {
error(ce->ellipsis, "Invalid use of '..' in a polymorphic type call'");
}
} else {
operands = array_make<Operand>(heap_allocator(), 0, 2*ce->args.count);
Entity **lhs = nullptr;
isize lhs_count = -1;
TypeTuple *params = get_record_polymorphic_params(original_type);
if (params != nullptr) {
lhs = params->variables.data;
lhs_count = params->variables.count;
}
check_unpack_arguments(c, lhs, lhs_count, &operands, ce->args, false, false);
}
}
CallArgumentError err = CallArgumentError_None;
TypeTuple *tuple = get_record_polymorphic_params(original_type);
isize param_count = tuple->variables.count;
isize minimum_param_count = param_count;
for (; minimum_param_count > 0; minimum_param_count--) {
Entity *e = tuple->variables[minimum_param_count-1];
if (e->kind != Entity_Constant) {
break;
}
if (e->Constant.param_value.kind == ParameterValue_Invalid) {
break;
}
}
Array<Operand> ordered_operands = operands;
if (!named_fields) {
ordered_operands = array_make<Operand>(permanent_allocator(), param_count);
array_copy(&ordered_operands, operands, 0);
} else {
bool *visited = gb_alloc_array(temporary_allocator(), bool, param_count);
// LEAK(bill)
ordered_operands = array_make<Operand>(permanent_allocator(), param_count);
for_array(i, ce->args) {
Ast *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
if (fv->field->kind != Ast_Ident) {
if (show_error) {
gbString expr_str = expr_to_string(fv->field);
error(arg, "Invalid parameter name '%s' in polymorphic type call", expr_str);
gb_string_free(expr_str);
}
err = CallArgumentError_InvalidFieldValue;
continue;
}
String name = fv->field->Ident.token.string;
isize index = lookup_polymorphic_record_parameter(original_type, name);
if (index < 0) {
if (show_error) {
error(arg, "No parameter named '%.*s' for this polymorphic type", LIT(name));
}
err = CallArgumentError_ParameterNotFound;
continue;
}
if (visited[index]) {
if (show_error) {
error(arg, "Duplicate parameter '%.*s' in polymorphic type", LIT(name));
}
err = CallArgumentError_DuplicateParameter;
continue;
}
visited[index] = true;
ordered_operands[index] = operands[i];
}
for (isize i = 0; i < param_count; i++) {
if (!visited[i]) {
Entity *e = tuple->variables[i];
if (is_blank_ident(e->token)) {
continue;
}
if (show_error) {
if (e->kind == Entity_TypeName) {
error(call, "Type parameter '%.*s' is missing in polymorphic type call",
LIT(e->token.string));
} else {
gbString str = type_to_string(e->type);
error(call, "Parameter '%.*s' of type '%s' is missing in polymorphic type call",
LIT(e->token.string), str);
gb_string_free(str);
}
}
err = CallArgumentError_ParameterMissing;
}
}
}
if (err != 0) {
operand->mode = Addressing_Invalid;
return err;
}
while (ordered_operands.count > 0) {
if (ordered_operands[ordered_operands.count-1].expr != nullptr) {
break;
}
array_pop(&ordered_operands);
}
if (minimum_param_count != param_count) {
if (param_count < ordered_operands.count) {
error(call, "Too many polymorphic type arguments, expected a maximum of %td, got %td", param_count, ordered_operands.count);
err = CallArgumentError_TooManyArguments;
} else if (minimum_param_count > ordered_operands.count) {
error(call, "Too few polymorphic type arguments, expected a minimum of %td, got %td", minimum_param_count, ordered_operands.count);
err = CallArgumentError_TooFewArguments;
}
} else {
if (param_count < ordered_operands.count) {
error(call, "Too many polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
err = CallArgumentError_TooManyArguments;
} else if (param_count > ordered_operands.count) {
error(call, "Too few polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
err = CallArgumentError_TooFewArguments;
}
}
if (err != 0) {
return err;
}
if (minimum_param_count != param_count) {
array_resize(&ordered_operands, param_count);
isize missing_count = 0;
// NOTE(bill): Replace missing operands with the default values (if possible)
for_array(i, ordered_operands) {
Operand *o = &ordered_operands[i];
if (o->expr == nullptr) {
Entity *e = tuple->variables[i];
if (e->kind == Entity_Constant) {
missing_count += 1;
o->mode = Addressing_Constant;
o->type = default_type(e->type);
o->expr = unparen_expr(e->Constant.param_value.original_ast_expr);
if (e->Constant.param_value.kind == ParameterValue_Constant) {
o->value = e->Constant.param_value.value;
}
} else if (e->kind == Entity_TypeName) {
missing_count += 1;
o->mode = Addressing_Type;
o->type = e->type;
o->expr = e->identifier;
}
}
}
}
isize oo_count = gb_min(param_count, ordered_operands.count);
i64 score = 0;
for (isize i = 0; i < oo_count; i++) {
Entity *e = tuple->variables[i];
Operand *o = &ordered_operands[i];
if (o->mode == Addressing_Invalid) {
continue;
}
if (e->kind == Entity_TypeName) {
if (o->mode != Addressing_Type) {
if (show_error) {
error(o->expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
}
err = CallArgumentError_WrongTypes;
}
if (are_types_identical(e->type, o->type)) {
score += assign_score_function(1);
} else {
score += assign_score_function(MAXIMUM_TYPE_DISTANCE);
}
} else {
i64 s = 0;
if (o->type->kind == Type_Generic) {
// Polymorphic name!
score += assign_score_function(1);
continue;
} else if (!check_is_assignable_to_with_score(c, o, e->type, &s)) {
if (show_error) {
check_assignment(c, o, e->type, str_lit("polymorphic type argument"));
}
err = CallArgumentError_WrongTypes;
}
o->type = e->type;
if (o->mode != Addressing_Constant) {
bool valid = false;
if (is_type_proc(o->type)) {
Entity *proc_entity = entity_from_expr(o->expr);
valid = proc_entity != nullptr;
}
if (!valid) {
if (show_error) {
error(o->expr, "Expected a constant value for this polymorphic type argument");
}
err = CallArgumentError_NoneConstantParameter;
}
}
score += s;
}
// NOTE(bill): Add type info the parameters
// TODO(bill, 2022-01-23): why was this line added in the first place? I'm commenting it out for the time being
// add_type_info_type(c, o->type);
}
{
bool failure = false;
Entity *found_entity = find_polymorphic_record_entity(c, original_type, param_count, ordered_operands, &failure);
if (found_entity) {
operand->mode = Addressing_Type;
operand->type = found_entity->type;
return err;
}
String generated_name = make_string_c(expr_to_string(call));
CheckerContext ctx = *c;
// NOTE(bill): We need to make sure the lookup scope for the record is the same as where it was created
ctx.scope = polymorphic_record_parent_scope(original_type);
GB_ASSERT(ctx.scope != nullptr);
Type *named_type = alloc_type_named(generated_name, nullptr, nullptr);
Type *bt = base_type(original_type);
if (bt->kind == Type_Struct) {
Ast *node = clone_ast(bt->Struct.node);
Type *struct_type = alloc_type_struct();
struct_type->Struct.node = node;
struct_type->Struct.polymorphic_parent = original_type;
set_base_type(named_type, struct_type);
check_open_scope(&ctx, node);
check_struct_type(&ctx, struct_type, node, &ordered_operands, named_type, original_type);
check_close_scope(&ctx);
} else if (bt->kind == Type_Union) {
Ast *node = clone_ast(bt->Union.node);
Type *union_type = alloc_type_union();
union_type->Union.node = node;
union_type->Union.polymorphic_parent = original_type;
set_base_type(named_type, union_type);
check_open_scope(&ctx, node);
check_union_type(&ctx, union_type, node, &ordered_operands, named_type, original_type);
check_close_scope(&ctx);
} else {
GB_PANIC("Unsupported parametric polymorphic record type");
}
operand->mode = Addressing_Type;
operand->type = named_type;
}
return err;
}
ExprKind check_call_expr(CheckerContext *c, Operand *operand, Ast *call, Ast *proc, Slice<Ast *> const &args, ProcInlining inlining, Type *type_hint) {
if (proc != nullptr &&
proc->kind == Ast_BasicDirective) {
ast_node(bd, BasicDirective, proc);
String name = bd->name.string;
if (
name == "location" ||
name == "assert" ||
name == "panic" ||
name == "defined" ||
name == "config" ||
name == "load" ||
name == "load_hash" ||
name == "load_or"
) {
operand->mode = Addressing_Builtin;
operand->builtin_id = BuiltinProc_DIRECTIVE;
operand->expr = proc;
operand->type = t_invalid;
add_type_and_value(c->info, proc, operand->mode, operand->type, operand->value);
} else {
error(proc, "Unknown directive: #%.*s", LIT(name));
operand->expr = proc;
operand->type = t_invalid;
operand->mode = Addressing_Invalid;
return Expr_Expr;
}
if (inlining != ProcInlining_none) {
error(call, "Inlining operators are not allowed on built-in procedures");
}
} else {
if (proc != nullptr) {
check_expr_or_type(c, operand, proc);
} else {
GB_ASSERT(operand->expr != nullptr);
}
}
if (args.count > 0) {
bool fail = false;
bool first_is_field_value = (args[0]->kind == Ast_FieldValue);
for_array(i, args) {
Ast *arg = args[i];
bool mix = false;
if (first_is_field_value) {
mix = arg->kind != Ast_FieldValue;
} else {
mix = arg->kind == Ast_FieldValue;
}
if (mix) {
error(arg, "Mixture of 'field = value' and value elements in a procedure call is not allowed");
fail = true;
}
}
if (fail) {
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
}
if (operand->mode == Addressing_Invalid) {
for_array(i, args) {
Ast *arg = args[i];
if (arg->kind == Ast_FieldValue) {
arg = arg->FieldValue.value;
}
check_expr_base(c, operand, arg, nullptr);
}
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
if (operand->mode == Addressing_Type) {
Type *t = operand->type;
if (is_type_polymorphic_record(t)) {
if (!is_type_named(t)) {
gbString s = expr_to_string(operand->expr);
error(call, "Illegal use of an unnamed polymorphic record, %s", s);
gb_string_free(s);
operand->mode = Addressing_Invalid;
operand->type = t_invalid;;
return Expr_Expr;
}
auto err = check_polymorphic_record_type(c, operand, call);
if (err == 0) {
Ast *ident = operand->expr;
while (ident->kind == Ast_SelectorExpr) {
Ast *s = ident->SelectorExpr.selector;
ident = s;
}
Type *ot = operand->type;
GB_ASSERT(ot->kind == Type_Named);
Entity *e = ot->Named.type_name;
add_entity_use(c, ident, e);
add_type_and_value(c->info, call, Addressing_Type, ot, empty_exact_value);
} else {
operand->mode = Addressing_Invalid;
operand->type = t_invalid;
}
} else {
gbString str = type_to_string(t);
defer (gb_string_free(str));
operand->mode = Addressing_Invalid;
isize arg_count = args.count;
switch (arg_count) {
case 0: error(call, "Missing argument in conversion to '%s'", str); break;
default: error(call, "Too many arguments in conversion to '%s'", str); break;
case 1: {
Ast *arg = args[0];
if (arg->kind == Ast_FieldValue) {
error(call, "'field = value' cannot be used in a type conversion");
arg = arg->FieldValue.value;
// NOTE(bill): Carry on the cast regardless
}
check_expr_with_type_hint(c, operand, arg, t);
if (operand->mode != Addressing_Invalid) {
if (is_type_polymorphic(t)) {
error(call, "A polymorphic type cannot be used in a type conversion");
} else {
// NOTE(bill): Otherwise the compiler can override the polymorphic type
// as it assumes it is determining the type
check_cast(c, operand, t);
}
}
operand->type = t;
operand->expr = call;
if (operand->mode != Addressing_Invalid) {
update_untyped_expr_type(c, arg, t, false);
}
break;
}
}
}
return Expr_Expr;
}
if (operand->mode == Addressing_Builtin) {
i32 id = operand->builtin_id;
if (!check_builtin_procedure(c, operand, call, id, type_hint)) {
operand->mode = Addressing_Invalid;
operand->type = t_invalid;
}
operand->expr = call;
return builtin_procs[id].kind;
}
Entity *e = entity_of_node(operand->expr);
if (e != nullptr && e->kind == Entity_Procedure) {
if (e->Procedure.deferred_procedure.entity != nullptr) {
call->viral_state_flags |= ViralStateFlag_ContainsDeferredProcedure;
}
}
Type *proc_type = base_type(operand->type);
if (operand->mode != Addressing_ProcGroup) {
bool valid_type = (proc_type != nullptr) && is_type_proc(proc_type);
bool valid_mode = is_operand_value(*operand);
if (!valid_type || !valid_mode) {
Ast *e = operand->expr;
gbString str = expr_to_string(e);
gbString type_str = type_to_string(operand->type);
error(e, "Cannot call a non-procedure: '%s' of type '%s'", str, type_str);
gb_string_free(type_str);
gb_string_free(str);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
}
CallArgumentData data = check_call_arguments(c, operand, proc_type, call, args);
Type *result_type = data.result_type;
gb_zero_item(operand);
operand->expr = call;
if (result_type == t_invalid) {
operand->mode = Addressing_Invalid;
operand->type = t_invalid;
return Expr_Stmt;
}
Type *pt = base_type(proc_type);
if (pt == t_invalid) {
if (operand->expr != nullptr && operand->expr->kind == Ast_CallExpr) {
pt = type_of_expr(operand->expr->CallExpr.proc);
}
if (pt == t_invalid && data.gen_entity) {
pt = data.gen_entity->type;
}
}
if (pt->kind == Type_Proc && pt->Proc.calling_convention == ProcCC_Odin) {
if ((c->scope->flags & ScopeFlag_ContextDefined) == 0) {
error(call, "'context' has not been defined within this scope, but is required for this procedure call");
}
}
if (result_type == nullptr) {
operand->mode = Addressing_NoValue;
} else {
GB_ASSERT(is_type_tuple(result_type));
isize count = result_type->Tuple.variables.count;
switch (count) {
case 0:
operand->mode = Addressing_NoValue;
break;
case 1:
operand->mode = Addressing_Value;
operand->type = result_type->Tuple.variables[0]->type;
break;
default:
operand->mode = Addressing_Value;
operand->type = result_type;
break;
}
}
switch (inlining) {
case ProcInlining_inline:
if (proc != nullptr) {
Entity *e = entity_from_expr(proc);
if (e != nullptr && e->kind == Entity_Procedure) {
DeclInfo *decl = e->decl_info;
if (decl->proc_lit) {
ast_node(pl, ProcLit, decl->proc_lit);
if (pl->inlining == ProcInlining_no_inline) {
error(call, "'inline' cannot be applied to a procedure that has be marked as 'no_inline'");
}
}
}
}
break;
case ProcInlining_no_inline:
break;
}
operand->expr = call;
{
if (proc_type == t_invalid) {
// gb_printf_err("%s\n", expr_to_string(operand->expr));
}
Type *type = nullptr;
if (operand->expr != nullptr && operand->expr->kind == Ast_CallExpr) {
type = type_of_expr(operand->expr->CallExpr.proc);
}
if (type == nullptr) {
type = pt;
}
type = base_type(type);
if (type->kind == Type_Proc && type->Proc.optional_ok) {
operand->mode = Addressing_OptionalOk;
operand->type = type->Proc.results->Tuple.variables[0]->type;
if (operand->expr != nullptr && operand->expr->kind == Ast_CallExpr) {
operand->expr->CallExpr.optional_ok_one = true;
}
}
}
// add_type_and_value(c->info, operand->expr, operand->mode, operand->type, operand->value);
return Expr_Expr;
}
void check_expr_with_type_hint(CheckerContext *c, Operand *o, Ast *e, Type *t) {
check_expr_base(c, o, e, t);
check_not_tuple(c, o);
char const *err_str = nullptr;
switch (o->mode) {
case Addressing_NoValue:
err_str = "used as a value";
break;
case Addressing_Type:
if (t == nullptr || !is_type_typeid(t)) {
err_str = "is not an expression but a type, in this context it is ambiguous";
}
break;
case Addressing_Builtin:
err_str = "must be called";
break;
}
if (err_str != nullptr) {
gbString str = expr_to_string(e);
error(e, "'%s' %s", str, err_str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
}
bool check_set_index_data(Operand *o, Type *t, bool indirection, i64 *max_count, Type *original_type) {
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_string) {
if (o->mode == Addressing_Constant) {
*max_count = o->value.value_string.len;
}
if (o->mode != Addressing_Constant) {
o->mode = Addressing_Value;
}
o->type = t_u8;
return true;
} else if (t->Basic.kind == Basic_UntypedString) {
if (o->mode == Addressing_Constant) {
*max_count = o->value.value_string.len;
o->type = t_u8;
return true;
}
return false;
}
break;
case Type_MultiPointer:
o->type = t->MultiPointer.elem;
if (o->mode != Addressing_Constant) {
o->mode = Addressing_Variable;
}
return true;
case Type_Array:
*max_count = t->Array.count;
if (indirection) {
o->mode = Addressing_Variable;
} else if (o->mode != Addressing_Variable &&
o->mode != Addressing_Constant) {
o->mode = Addressing_Value;
}
o->type = t->Array.elem;
return true;
case Type_EnumeratedArray:
*max_count = t->EnumeratedArray.count;
if (indirection) {
o->mode = Addressing_Variable;
} else if (o->mode != Addressing_Variable &&
o->mode != Addressing_Constant) {
o->mode = Addressing_Value;
}
o->type = t->EnumeratedArray.elem;
return true;
case Type_Matrix:
*max_count = t->Matrix.column_count;
if (indirection) {
o->mode = Addressing_Variable;
} else if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = alloc_type_array(t->Matrix.elem, t->Matrix.row_count);
return true;
case Type_Slice:
o->type = t->Slice.elem;
if (o->mode != Addressing_Constant) {
o->mode = Addressing_Variable;
}
return true;
case Type_RelativeSlice:
{
Type *slice_type = base_type(t->RelativeSlice.slice_type);
GB_ASSERT(slice_type->kind == Type_Slice);
o->type = slice_type->Slice.elem;
if (o->mode != Addressing_Constant) {
o->mode = Addressing_Variable;
}
}
return true;
case Type_DynamicArray:
o->type = t->DynamicArray.elem;
if (o->mode != Addressing_Constant) {
o->mode = Addressing_Variable;
}
return true;
case Type_Struct:
if (t->Struct.soa_kind != StructSoa_None) {
if (t->Struct.soa_kind == StructSoa_Fixed) {
*max_count = t->Struct.soa_count;
}
o->type = t->Struct.soa_elem;
if (o->mode == Addressing_SoaVariable || o->mode == Addressing_Variable) {
o->mode = Addressing_SoaVariable;
} else {
o->mode = Addressing_Value;
}
return true;
}
return false;
}
if (is_type_pointer(original_type) && indirection) {
Type *ptr = base_type(original_type);
if (ptr->kind == Type_Pointer && o->mode == Addressing_SoaVariable) {
o->type = ptr->Pointer.elem;
o->mode = Addressing_Value;
return true;
}
}
return false;
}
bool ternary_compare_types(Type *x, Type *y) {
if (is_type_untyped_undef(x) && type_has_undef(y)) {
return true;
} else if (is_type_untyped_nil(x) && type_has_nil(y)) {
return true;
} else if (is_type_untyped_undef(y) && type_has_undef(x)) {
return true;
} else if (is_type_untyped_nil(y) && type_has_nil(x)) {
return true;
}
return are_types_identical(x, y);
}
bool check_range(CheckerContext *c, Ast *node, Operand *x, Operand *y, ExactValue *inline_for_depth_, Type *type_hint=nullptr) {
if (!is_ast_range(node)) {
return false;
}
ast_node(ie, BinaryExpr, node);
check_expr_with_type_hint(c, x, ie->left, type_hint);
if (x->mode == Addressing_Invalid) {
return false;
}
check_expr_with_type_hint(c, y, ie->right, type_hint);
if (y->mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, x, y->type);
if (x->mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, y, x->type);
if (y->mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, x, default_type(y->type));
if (x->mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, y, default_type(x->type));
if (y->mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(ie->op, "Mismatched types in interval expression '%s' : '%s' vs '%s'", expr_str, xt, yt);
gb_string_free(expr_str);
gb_string_free(yt);
gb_string_free(xt);
}
return false;
}
Type *type = x->type;
if (!is_type_integer(type) && !is_type_float(type) && !is_type_pointer(type) && !is_type_enum(type)) {
error(ie->op, "Only numerical and pointer types are allowed within interval expressions");
return false;
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
ExactValue a = x->value;
ExactValue b = y->value;
GB_ASSERT(are_types_identical(x->type, y->type));
TokenKind op = Token_Lt;
switch (ie->op.kind) {
case Token_Ellipsis: op = Token_LtEq; break; // ..
case Token_RangeFull: op = Token_LtEq; break; // ..=
case Token_RangeHalf: op = Token_Lt; break; // ..<
default: error(ie->op, "Invalid range operator"); break;
}
bool ok = compare_exact_values(op, a, b);
if (!ok) {
// TODO(bill): Better error message
error(ie->op, "Invalid interval range");
return false;
}
ExactValue inline_for_depth = exact_value_sub(b, a);
if (ie->op.kind != Token_RangeHalf) {
inline_for_depth = exact_value_increment_one(inline_for_depth);
}
if (inline_for_depth_) *inline_for_depth_ = inline_for_depth;
} else if (inline_for_depth_ != nullptr) {
error(ie->op, "Interval expressions must be constant");
return false;
}
add_type_and_value(c->info, ie->left, x->mode, x->type, x->value);
add_type_and_value(c->info, ie->right, y->mode, y->type, y->value);
return true;
}
bool check_is_operand_compound_lit_constant(CheckerContext *c, Operand *o) {
if (is_operand_nil(*o)) {
return true;
}
Ast *expr = unparen_expr(o->expr);
if (expr != nullptr) {
Entity *e = strip_entity_wrapping(entity_from_expr(expr));
if (e != nullptr && e->kind == Entity_Procedure) {
return true;
}
if (expr->kind == Ast_ProcLit) {
add_type_and_value(c->info, expr, Addressing_Constant, type_of_expr(expr), exact_value_procedure(expr));
return true;
}
}
return o->mode == Addressing_Constant;
}
bool attempt_implicit_selector_expr(CheckerContext *c, Operand *o, AstImplicitSelectorExpr *ise, Type *th) {
if (is_type_enum(th)) {
Type *enum_type = base_type(th);
GB_ASSERT(enum_type->kind == Type_Enum);
String name = ise->selector->Ident.token.string;
Entity *e = scope_lookup_current(enum_type->Enum.scope, name);
if (e == nullptr) {
return false;
}
GB_ASSERT(are_types_identical(base_type(e->type), enum_type));
GB_ASSERT(e->kind == Entity_Constant);
o->value = e->Constant.value;
o->mode = Addressing_Constant;
o->type = e->type;
return true;
}
if (is_type_union(th)) {
Type *union_type = base_type(th);
auto operands = array_make<Operand>(temporary_allocator(), 0, union_type->Union.variants.count);
for_array(i, union_type->Union.variants) {
Type *vt = union_type->Union.variants[i];
Operand x = {};
if (attempt_implicit_selector_expr(c, &x, ise, vt)) {
array_add(&operands, x);
}
}
if (operands.count == 1) {
*o = operands[0];
return true;
}
}
return false;
}
ExprKind check_implicit_selector_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ast_node(ise, ImplicitSelectorExpr, node);
o->type = t_invalid;
o->expr = node;
o->mode = Addressing_Invalid;
Type *th = type_hint;
if (th == nullptr) {
gbString str = expr_to_string(node);
error(node, "Cannot determine type for implicit selector expression '%s'", str);
gb_string_free(str);
return Expr_Expr;
}
o->type = th;
bool ok = attempt_implicit_selector_expr(c, o, ise, th);
if (!ok) {
String name = ise->selector->Ident.token.string;
if (is_type_enum(th)) {
Type *bt = base_type(th);
GB_ASSERT(bt->kind == Type_Enum);
gbString typ = type_to_string(th);
defer (gb_string_free(typ));
error(node, "Undeclared name '%.*s' for type '%s'", LIT(name), typ);
check_did_you_mean_type(name, bt->Enum.fields);
} else {
gbString typ = type_to_string(th);
gbString str = expr_to_string(node);
error(node, "Invalid type '%s' for implicit selector expression '%s'", typ, str);
gb_string_free(str);
gb_string_free(typ);
}
}
o->expr = node;
return Expr_Expr;
}
void check_promote_optional_ok(CheckerContext *c, Operand *x, Type **val_type_, Type **ok_type_) {
switch (x->mode) {
case Addressing_MapIndex:
case Addressing_OptionalOk:
case Addressing_OptionalOkPtr:
if (val_type_) *val_type_ = x->type;
break;
default:
if (ok_type_) *ok_type_ = x->type;
return;
}
Ast *expr = unparen_expr(x->expr);
if (expr->kind == Ast_CallExpr) {
Type *pt = base_type(type_of_expr(expr->CallExpr.proc));
if (is_type_proc(pt)) {
Type *tuple = pt->Proc.results;
add_type_and_value(c->info, x->expr, x->mode, tuple, x->value);
if (pt->Proc.result_count >= 2) {
if (ok_type_) *ok_type_ = tuple->Tuple.variables[1]->type;
}
expr->CallExpr.optional_ok_one = false;
x->type = tuple;
return;
}
}
Type *tuple = make_optional_ok_type(x->type);
if (ok_type_) *ok_type_ = tuple->Tuple.variables[1]->type;
add_type_and_value(c->info, x->expr, x->mode, tuple, x->value);
x->type = tuple;
GB_ASSERT(is_type_tuple(type_of_expr(x->expr)));
}
void check_matrix_index_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ast_node(ie, MatrixIndexExpr, node);
check_expr(c, o, ie->expr);
node->viral_state_flags |= ie->expr->viral_state_flags;
if (o->mode == Addressing_Invalid) {
o->expr = node;
return;
}
Type *t = base_type(type_deref(o->type));
bool is_ptr = is_type_pointer(o->type);
bool is_const = o->mode == Addressing_Constant;
if (t->kind != Type_Matrix) {
gbString str = expr_to_string(o->expr);
gbString type_str = type_to_string(o->type);
defer (gb_string_free(str));
defer (gb_string_free(type_str));
if (is_const) {
error(o->expr, "Cannot use matrix indexing on constant '%s' of type '%s'", str, type_str);
} else {
error(o->expr, "Cannot use matrix indexing on '%s' of type '%s'", str, type_str);
}
o->mode = Addressing_Invalid;
o->expr = node;
return;
}
o->type = t->Matrix.elem;
if (is_ptr) {
o->mode = Addressing_Variable;
} else if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
if (ie->row_index == nullptr) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Missing row index for '%s'", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return;
}
if (ie->column_index == nullptr) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Missing column index for '%s'", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return;
}
i64 row_count = t->Matrix.row_count;
i64 column_count = t->Matrix.column_count;
i64 row_index = 0;
i64 column_index = 0;
bool row_ok = check_index_value(c, t, false, ie->row_index, row_count, &row_index, nullptr);
bool column_ok = check_index_value(c, t, false, ie->column_index, column_count, &column_index, nullptr);
gb_unused(row_ok);
gb_unused(column_ok);
}
struct TypeAndToken {
Type *type;
Token token;
};
typedef PtrMap<uintptr, TypeAndToken> SeenMap;
void add_constant_switch_case(CheckerContext *ctx, SeenMap *seen, Operand operand, bool use_expr = true) {
if (operand.mode != Addressing_Constant) {
return;
}
if (operand.value.kind == ExactValue_Invalid) {
return;
}
uintptr key = hash_exact_value(operand.value);
TypeAndToken *found = map_get(seen, key);
if (found != nullptr) {
isize count = multi_map_count(seen, key);
TypeAndToken *taps = gb_alloc_array(temporary_allocator(), TypeAndToken, count);
multi_map_get_all(seen, key, taps);
for (isize i = 0; i < count; i++) {
TypeAndToken tap = taps[i];
if (!are_types_identical(operand.type, tap.type)) {
continue;
}
TokenPos pos = tap.token.pos;
if (use_expr) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr,
"Duplicate case '%s'\n"
"\tprevious case at %s",
expr_str,
token_pos_to_string(pos));
gb_string_free(expr_str);
} else {
error(operand.expr, "Duplicate case found with previous case at %s", token_pos_to_string(pos));
}
return;
}
}
TypeAndToken tap = {operand.type, ast_token(operand.expr)};
multi_map_insert(seen, key, tap);
}
void add_to_seen_map(CheckerContext *ctx, SeenMap *seen, TokenKind upper_op, Operand const &x, Operand const &lhs, Operand const &rhs) {
if (is_type_enum(x.type)) {
// TODO(bill): Fix this logic so it's fast!!!
i64 v0 = exact_value_to_i64(lhs.value);
i64 v1 = exact_value_to_i64(rhs.value);
Operand v = {};
v.mode = Addressing_Constant;
v.type = x.type;
v.expr = x.expr;
Type *bt = base_type(x.type);
GB_ASSERT(bt->kind == Type_Enum);
for (i64 vi = v0; vi <= v1; vi++) {
if (upper_op != Token_LtEq && vi == v1) {
break;
}
bool found = false;
for_array(j, bt->Enum.fields) {
Entity *f = bt->Enum.fields[j];
GB_ASSERT(f->kind == Entity_Constant);
i64 fv = exact_value_to_i64(f->Constant.value);
if (fv == vi) {
found = true;
break;
}
}
if (found) {
v.value = exact_value_i64(vi);
add_constant_switch_case(ctx, seen, v);
}
}
} else {
add_constant_switch_case(ctx, seen, lhs);
if (upper_op == Token_LtEq) {
add_constant_switch_case(ctx, seen, rhs);
}
}
}
void add_to_seen_map(CheckerContext *ctx, SeenMap *seen, Operand const &x) {
add_constant_switch_case(ctx, seen, x);
}
ExprKind check_basic_directive_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ast_node(bd, BasicDirective, node);
ExprKind kind = Expr_Expr;
o->mode = Addressing_Constant;
String name = bd->name.string;
if (name == "file") {
o->type = t_untyped_string;
o->value = exact_value_string(get_file_path_string(bd->token.pos.file_id));
} else if (name == "line") {
o->type = t_untyped_integer;
o->value = exact_value_i64(bd->token.pos.line);
} else if (name == "procedure") {
if (c->curr_proc_decl == nullptr) {
error(node, "#procedure may only be used within procedures");
o->type = t_untyped_string;
o->value = exact_value_string(str_lit(""));
} else {
o->type = t_untyped_string;
o->value = exact_value_string(c->proc_name);
}
} else if (name == "caller_location") {
init_core_source_code_location(c->checker);
error(node, "#caller_location may only be used as a default argument parameter");
o->type = t_source_code_location;
o->mode = Addressing_Value;
} else {
if (name == "location") {
init_core_source_code_location(c->checker);
error(node, "'#%.*s' must be used in a call expression", LIT(name));
o->type = t_source_code_location;
o->mode = Addressing_Value;
} else if (
name == "assert" ||
name == "defined" ||
name == "config" ||
name == "load" ||
name == "load_hash" ||
name == "load_or"
) {
error(node, "'#%.*s' must be used as a call", LIT(name));
o->type = t_invalid;
o->mode = Addressing_Invalid;
} else {
error(node, "Unknown directive: #%.*s", LIT(name));
o->type = t_invalid;
o->mode = Addressing_Invalid;
}
}
return kind;
}
ExprKind check_ternary_if_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = Expr_Expr;
Operand cond = {Addressing_Invalid};
ast_node(te, TernaryIfExpr, node);
check_expr(c, &cond, te->cond);
node->viral_state_flags |= te->cond->viral_state_flags;
if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) {
error(te->cond, "Non-boolean condition in ternary if expression");
}
Operand x = {Addressing_Invalid};
Operand y = {Addressing_Invalid};
check_expr_or_type(c, &x, te->x, type_hint);
node->viral_state_flags |= te->x->viral_state_flags;
if (te->y != nullptr) {
check_expr_or_type(c, &y, te->y, type_hint);
node->viral_state_flags |= te->y->viral_state_flags;
} else {
error(node, "A ternary expression must have an else clause");
return kind;
}
if (x.type == nullptr || x.type == t_invalid ||
y.type == nullptr || y.type == t_invalid) {
return kind;
}
convert_to_typed(c, &x, y.type);
if (x.mode == Addressing_Invalid) {
return kind;
}
convert_to_typed(c, &y, x.type);
if (y.mode == Addressing_Invalid) {
x.mode = Addressing_Invalid;
return kind;
}
if (!ternary_compare_types(x.type, y.type)) {
gbString its = type_to_string(x.type);
gbString ets = type_to_string(y.type);
error(node, "Mismatched types in ternary if expression, %s vs %s", its, ets);
gb_string_free(ets);
gb_string_free(its);
return kind;
}
o->type = x.type;
if (is_type_untyped_nil(o->type) || is_type_untyped_undef(o->type)) {
o->type = y.type;
}
o->mode = Addressing_Value;
o->expr = node;
if (type_hint != nullptr && is_type_untyped(o->type)) {
if (check_cast_internal(c, &x, type_hint) &&
check_cast_internal(c, &y, type_hint)) {
convert_to_typed(c, o, type_hint);
update_untyped_expr_type(c, node, type_hint, !is_type_untyped(type_hint));
}
}
return kind;
}
ExprKind check_ternary_when_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = Expr_Expr;
Operand cond = {};
ast_node(te, TernaryWhenExpr, node);
check_expr(c, &cond, te->cond);
node->viral_state_flags |= te->cond->viral_state_flags;
if (cond.mode != Addressing_Constant || !is_type_boolean(cond.type)) {
error(te->cond, "Expected a constant boolean condition in ternary when expression");
return kind;
}
if (cond.value.value_bool) {
check_expr_or_type(c, o, te->x, type_hint);
node->viral_state_flags |= te->x->viral_state_flags;
} else {
if (te->y != nullptr) {
check_expr_or_type(c, o, te->y, type_hint);
node->viral_state_flags |= te->y->viral_state_flags;
} else {
error(node, "A ternary when expression must have an else clause");
return kind;
}
}
return kind;
}
ExprKind check_or_else_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ast_node(oe, OrElseExpr, node);
String name = oe->token.string;
Ast *arg = oe->x;
Ast *default_value = oe->y;
Operand x = {};
Operand y = {};
check_multi_expr_with_type_hint(c, &x, arg, type_hint);
if (x.mode == Addressing_Invalid) {
o->mode = Addressing_Value;
o->type = t_invalid;
o->expr = node;
return Expr_Expr;
}
check_multi_expr_with_type_hint(c, &y, default_value, x.type);
error_operand_no_value(&y);
if (y.mode == Addressing_Invalid) {
o->mode = Addressing_Value;
o->type = t_invalid;
o->expr = node;
return Expr_Expr;
}
Type *left_type = nullptr;
Type *right_type = nullptr;
check_or_else_split_types(c, &x, name, &left_type, &right_type);
add_type_and_value(&c->checker->info, arg, x.mode, x.type, x.value);
if (left_type != nullptr) {
check_assignment(c, &y, left_type, name);
} else {
check_or_else_expr_no_value_error(c, name, x, type_hint);
}
if (left_type == nullptr) {
left_type = t_invalid;
}
o->mode = Addressing_Value;
o->type = left_type;
o->expr = node;
return Expr_Expr;
}
ExprKind check_or_return_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ast_node(re, OrReturnExpr, node);
String name = re->token.string;
Operand x = {};
check_multi_expr_with_type_hint(c, &x, re->expr, type_hint);
if (x.mode == Addressing_Invalid) {
o->mode = Addressing_Value;
o->type = t_invalid;
o->expr = node;
return Expr_Expr;
}
Type *left_type = nullptr;
Type *right_type = nullptr;
check_or_return_split_types(c, &x, name, &left_type, &right_type);
add_type_and_value(&c->checker->info, re->expr, x.mode, x.type, x.value);
if (right_type == nullptr) {
check_or_else_expr_no_value_error(c, name, x, type_hint);
} else {
Type *proc_type = base_type(c->curr_proc_sig);
GB_ASSERT(proc_type->kind == Type_Proc);
Type *result_type = proc_type->Proc.results;
if (result_type == nullptr) {
error(node, "'%.*s' requires the current procedure to have at least one return value", LIT(name));
} else {
GB_ASSERT(result_type->kind == Type_Tuple);
auto const &vars = result_type->Tuple.variables;
Type *end_type = vars[vars.count-1]->type;
if (vars.count > 1) {
if (!proc_type->Proc.has_named_results) {
error(node, "'%.*s' within a procedure with more than 1 return value requires that the return values are named, allowing for early return", LIT(name));
}
}
Operand rhs = {};
rhs.type = right_type;
rhs.mode = Addressing_Value;
// TODO(bill): better error message
if (!check_is_assignable_to(c, &rhs, end_type)) {
gbString a = type_to_string(right_type);
gbString b = type_to_string(end_type);
gbString ret_type = type_to_string(result_type);
error(node, "Cannot assign end value of type '%s' to '%s' in '%.*s'", a, b, LIT(name));
if (vars.count == 1) {
error_line("\tProcedure return value type: %s\n", ret_type);
} else {
error_line("\tProcedure return value types: (%s)\n", ret_type);
}
gb_string_free(ret_type);
gb_string_free(b);
gb_string_free(a);
}
}
}
o->expr = node;
o->type = left_type;
if (left_type != nullptr) {
o->mode = Addressing_Value;
} else {
o->mode = Addressing_NoValue;
}
if (c->curr_proc_sig == nullptr) {
error(node, "'%.*s' can only be used within a procedure", LIT(name));
}
if (c->in_defer) {
error(node, "'or_return' cannot be used within a defer statement");
}
return Expr_Expr;
}
ExprKind check_compound_literal(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = Expr_Expr;
ast_node(cl, CompoundLit, node);
Type *type = type_hint;
if (type != nullptr && is_type_untyped(type)) {
type = nullptr;
}
bool is_to_be_determined_array_count = false;
bool is_constant = true;
if (cl->type != nullptr) {
type = nullptr;
// [?]Type
if (cl->type->kind == Ast_ArrayType && cl->type->ArrayType.count != nullptr) {
Ast *count = cl->type->ArrayType.count;
if (count->kind == Ast_UnaryExpr &&
count->UnaryExpr.op.kind == Token_Question) {
type = alloc_type_array(check_type(c, cl->type->ArrayType.elem), -1);
is_to_be_determined_array_count = true;
}
if (cl->elems.count > 0) {
if (cl->type->ArrayType.tag != nullptr) {
Ast *tag = cl->type->ArrayType.tag;
GB_ASSERT(tag->kind == Ast_BasicDirective);
String name = tag->BasicDirective.name.string;
if (name == "soa") {
error(node, "#soa arrays are not supported for compound literals");
return kind;
}
}
}
}
if (cl->type->kind == Ast_DynamicArrayType && cl->type->DynamicArrayType.tag != nullptr) {
if (cl->elems.count > 0) {
Ast *tag = cl->type->DynamicArrayType.tag;
GB_ASSERT(tag->kind == Ast_BasicDirective);
String name = tag->BasicDirective.name.string;
if (name == "soa") {
error(node, "#soa arrays are not supported for compound literals");
return kind;
}
}
}
if (type == nullptr) {
type = check_type(c, cl->type);
}
}
if (type == nullptr) {
error(node, "Missing type in compound literal");
return kind;
}
Type *t = base_type(type);
if (is_type_polymorphic(t)) {
gbString str = type_to_string(type);
error(node, "Cannot use a polymorphic type for a compound literal, got '%s'", str);
o->expr = node;
o->type = type;
gb_string_free(str);
return kind;
}
switch (t->kind) {
case Type_Struct: {
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
if (t->Struct.is_raw_union) {
if (cl->elems.count > 0) {
// NOTE: unions cannot be constant
is_constant = false;
if (cl->elems[0]->kind != Ast_FieldValue) {
gbString type_str = type_to_string(type);
error(node, "%s ('struct #raw_union') compound literals are only allowed to contain 'field = value' elements", type_str);
gb_string_free(type_str);
} else {
if (cl->elems.count != 1) {
gbString type_str = type_to_string(type);
error(node, "%s ('struct #raw_union') compound literals are only allowed to contain up to 1 'field = value' element, got %td", type_str, cl->elems.count);
gb_string_free(type_str);
} else {
Ast *elem = cl->elems[0];
ast_node(fv, FieldValue, elem);
if (fv->field->kind != Ast_Ident) {
gbString expr_str = expr_to_string(fv->field);
error(elem, "Invalid field name '%s' in structure literal", expr_str);
gb_string_free(expr_str);
break;
}
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
bool is_unknown = sel.entity == nullptr;
if (is_unknown) {
error(elem, "Unknown field '%.*s' in structure literal", LIT(name));
break;
}
if (sel.index.count > 1) {
error(elem, "Cannot assign to an anonymous field '%.*s' in a structure literal (at the moment)", LIT(name));
break;
}
Entity *field = t->Struct.fields[sel.index[0]];
add_entity_use(c, fv->field, field);
Operand o = {};
check_expr_or_type(c, &o, fv->value, field->type);
check_assignment(c, &o, field->type, str_lit("structure literal"));
}
}
}
break;
}
isize field_count = t->Struct.fields.count;
isize min_field_count = t->Struct.fields.count;
for (isize i = min_field_count-1; i >= 0; i--) {
Entity *e = t->Struct.fields[i];
GB_ASSERT(e->kind == Entity_Variable);
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
min_field_count--;
} else {
break;
}
}
if (cl->elems[0]->kind == Ast_FieldValue) {
bool *fields_visited = gb_alloc_array(temporary_allocator(), bool, field_count);
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != Ast_Ident) {
gbString expr_str = expr_to_string(fv->field);
error(elem, "Invalid field name '%s' in structure literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
bool is_unknown = sel.entity == nullptr;
if (is_unknown) {
error(elem, "Unknown field '%.*s' in structure literal", LIT(name));
continue;
}
if (sel.index.count > 1) {
error(elem, "Cannot assign to an anonymous field '%.*s' in a structure literal (at the moment)", LIT(name));
continue;
}
Entity *field = t->Struct.fields[sel.index[0]];
add_entity_use(c, fv->field, field);
if (fields_visited[sel.index[0]]) {
error(elem, "Duplicate field '%.*s' in structure literal", LIT(name));
continue;
}
fields_visited[sel.index[0]] = true;
Operand o = {};
check_expr_or_type(c, &o, fv->value, field->type);
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type) || is_type_typeid(field->type)) {
is_constant = false;
}
if (is_constant) {
is_constant = check_is_operand_compound_lit_constant(c, &o);
}
check_assignment(c, &o, field->type, str_lit("structure literal"));
}
} else {
bool seen_field_value = false;
for_array(index, cl->elems) {
Entity *field = nullptr;
Ast *elem = cl->elems[index];
if (elem->kind == Ast_FieldValue) {
seen_field_value = true;
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
continue;
} else if (seen_field_value) {
error(elem, "Value elements cannot be used after a 'field = value'");
continue;
}
if (index >= field_count) {
error(elem, "Too many values in structure literal, expected %td, got %td", field_count, cl->elems.count);
break;
}
if (field == nullptr) {
field = t->Struct.fields[index];
}
Operand o = {};
check_expr_or_type(c, &o, elem, field->type);
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type) || is_type_typeid(field->type)) {
is_constant = false;
}
if (is_constant) {
is_constant = check_is_operand_compound_lit_constant(c, &o);
}
check_assignment(c, &o, field->type, str_lit("structure literal"));
}
if (cl->elems.count < field_count) {
if (min_field_count < field_count) {
if (cl->elems.count < min_field_count) {
error(cl->close, "Too few values in structure literal, expected at least %td, got %td", min_field_count, cl->elems.count);
}
} else {
error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
break;
}
case Type_Slice:
case Type_Array:
case Type_DynamicArray:
case Type_SimdVector:
case Type_Matrix:
{
Type *elem_type = nullptr;
String context_name = {};
i64 max_type_count = -1;
if (t->kind == Type_Slice) {
elem_type = t->Slice.elem;
context_name = str_lit("slice literal");
} else if (t->kind == Type_Array) {
elem_type = t->Array.elem;
context_name = str_lit("array literal");
if (!is_to_be_determined_array_count) {
max_type_count = t->Array.count;
}
} else if (t->kind == Type_DynamicArray) {
elem_type = t->DynamicArray.elem;
context_name = str_lit("dynamic array literal");
is_constant = false;
if (!build_context.no_dynamic_literals) {
add_package_dependency(c, "runtime", "__dynamic_array_reserve");
add_package_dependency(c, "runtime", "__dynamic_array_append");
}
} else if (t->kind == Type_SimdVector) {
elem_type = t->SimdVector.elem;
context_name = str_lit("simd vector literal");
max_type_count = t->SimdVector.count;
} else if (t->kind == Type_Matrix) {
elem_type = t->Matrix.elem;
context_name = str_lit("matrix literal");
max_type_count = t->Matrix.row_count*t->Matrix.column_count;
} else {
GB_PANIC("unreachable");
}
i64 max = 0;
Type *bet = base_type(elem_type);
if (!elem_type_can_be_constant(bet)) {
is_constant = false;
}
if (bet == t_invalid) {
break;
}
if (cl->elems.count > 0 && cl->elems[0]->kind == Ast_FieldValue) {
if (is_type_simd_vector(t)) {
error(cl->elems[0], "'field = value' is not allowed for SIMD vector literals");
} else {
RangeCache rc = range_cache_make(heap_allocator());
defer (range_cache_destroy(&rc));
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
Token op = fv->field->BinaryExpr.op;
Operand x = {};
Operand y = {};
bool ok = check_range(c, fv->field, &x, &y, nullptr);
if (!ok) {
continue;
}
if (x.mode != Addressing_Constant || !is_type_integer(core_type(x.type))) {
error(x.expr, "Expected a constant integer as an array field");
continue;
}
if (y.mode != Addressing_Constant || !is_type_integer(core_type(y.type))) {
error(y.expr, "Expected a constant integer as an array field");
continue;
}
i64 lo = exact_value_to_i64(x.value);
i64 hi = exact_value_to_i64(y.value);
i64 max_index = hi;
if (op.kind == Token_RangeHalf) { // ..< (exclusive)
hi -= 1;
} else { // .. (inclusive)
max_index += 1;
}
bool new_range = range_cache_add_range(&rc, lo, hi);
if (!new_range) {
error(elem, "Overlapping field range index %lld %.*s %lld for %.*s", lo, LIT(op.string), hi, LIT(context_name));
continue;
}
if (max_type_count >= 0 && (lo < 0 || lo >= max_type_count)) {
error(elem, "Index %lld is out of bounds (0..<%lld) for %.*s", lo, max_type_count, LIT(context_name));
continue;
}
if (max_type_count >= 0 && (hi < 0 || hi >= max_type_count)) {
error(elem, "Index %lld is out of bounds (0..<%lld) for %.*s", hi, max_type_count, LIT(context_name));
continue;
}
if (max < hi) {
max = max_index;
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
check_assignment(c, &operand, elem_type, context_name);
is_constant = is_constant && operand.mode == Addressing_Constant;
} else {
Operand op_index = {};
check_expr(c, &op_index, fv->field);
if (op_index.mode != Addressing_Constant || !is_type_integer(core_type(op_index.type))) {
error(elem, "Expected a constant integer as an array field");
continue;
}
// add_type_and_value(c->info, op_index.expr, op_index.mode, op_index.type, op_index.value);
i64 index = exact_value_to_i64(op_index.value);
if (max_type_count >= 0 && (index < 0 || index >= max_type_count)) {
error(elem, "Index %lld is out of bounds (0..<%lld) for %.*s", index, max_type_count, LIT(context_name));
continue;
}
bool new_index = range_cache_add_index(&rc, index);
if (!new_index) {
error(elem, "Duplicate field index %lld for %.*s", index, LIT(context_name));
continue;
}
if (max < index+1) {
max = index+1;
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
check_assignment(c, &operand, elem_type, context_name);
is_constant = is_constant && operand.mode == Addressing_Constant;
}
}
cl->max_count = max;
}
} else {
isize index = 0;
for (; index < cl->elems.count; index++) {
Ast *e = cl->elems[index];
if (e == nullptr) {
error(node, "Invalid literal element");
continue;
}
if (e->kind == Ast_FieldValue) {
error(e, "Mixture of 'field = value' and value elements in a literal is not allowed");
continue;
}
if (0 <= max_type_count && max_type_count <= index) {
error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, e, elem_type);
check_assignment(c, &operand, elem_type, context_name);
is_constant = is_constant && operand.mode == Addressing_Constant;
}
if (max < index) {
max = index;
}
}
if (t->kind == Type_Array) {
if (is_to_be_determined_array_count) {
t->Array.count = max;
} else if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
if (0 < max && max < t->Array.count) {
error(node, "Expected %lld values for this array literal, got %lld", cast(long long)t->Array.count, cast(long long)max);
}
}
}
if (t->kind == Type_SimdVector) {
if (!is_constant) {
error(node, "Expected all constant elements for a simd vector");
}
}
if (t->kind == Type_DynamicArray) {
if (build_context.no_dynamic_literals && cl->elems.count) {
error(node, "Compound literals of dynamic types have been disabled");
}
}
if (t->kind == Type_Matrix) {
if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
if (0 < max && max < max_type_count) {
error(node, "Expected %lld values for this matrix literal, got %lld", cast(long long)max_type_count, cast(long long)max);
}
}
}
break;
}
case Type_EnumeratedArray:
{
Type *elem_type = t->EnumeratedArray.elem;
Type *index_type = t->EnumeratedArray.index;
String context_name = str_lit("enumerated array literal");
i64 max_type_count = t->EnumeratedArray.count;
gbString index_type_str = type_to_string(index_type);
defer (gb_string_free(index_type_str));
i64 total_lo = exact_value_to_i64(*t->EnumeratedArray.min_value);
i64 total_hi = exact_value_to_i64(*t->EnumeratedArray.max_value);
String total_lo_string = {};
String total_hi_string = {};
GB_ASSERT(is_type_enum(index_type));
{
Type *bt = base_type(index_type);
GB_ASSERT(bt->kind == Type_Enum);
for_array(i, bt->Enum.fields) {
Entity *f = bt->Enum.fields[i];
if (f->kind != Entity_Constant) {
continue;
}
if (total_lo_string.len == 0 && compare_exact_values(Token_CmpEq, f->Constant.value, *t->EnumeratedArray.min_value)) {
total_lo_string = f->token.string;
}
if (total_hi_string.len == 0 && compare_exact_values(Token_CmpEq, f->Constant.value, *t->EnumeratedArray.max_value)) {
total_hi_string = f->token.string;
}
if (total_lo_string.len != 0 && total_hi_string.len != 0) {
break;
}
}
}
i64 max = 0;
Type *bet = base_type(elem_type);
if (!elem_type_can_be_constant(bet)) {
is_constant = false;
}
if (bet == t_invalid) {
break;
}
bool is_partial = cl->tag && (cl->tag->BasicDirective.name.string == "partial");
SeenMap seen = {}; // NOTE(bill): Multimap, Key: ExactValue
map_init(&seen, heap_allocator());
defer (map_destroy(&seen));
if (cl->elems.count > 0 && cl->elems[0]->kind == Ast_FieldValue) {
RangeCache rc = range_cache_make(heap_allocator());
defer (range_cache_destroy(&rc));
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
Token op = fv->field->BinaryExpr.op;
Operand x = {};
Operand y = {};
bool ok = check_range(c, fv->field, &x, &y, nullptr, index_type);
if (!ok) {
continue;
}
if (x.mode != Addressing_Constant || !are_types_identical(x.type, index_type)) {
error(x.expr, "Expected a constant enum of type '%s' as an array field", index_type_str);
continue;
}
if (y.mode != Addressing_Constant || !are_types_identical(x.type, index_type)) {
error(y.expr, "Expected a constant enum of type '%s' as an array field", index_type_str);
continue;
}
i64 lo = exact_value_to_i64(x.value);
i64 hi = exact_value_to_i64(y.value);
i64 max_index = hi;
if (op.kind == Token_RangeHalf) {
hi -= 1;
}
bool new_range = range_cache_add_range(&rc, lo, hi);
if (!new_range) {
gbString lo_str = expr_to_string(x.expr);
gbString hi_str = expr_to_string(y.expr);
error(elem, "Overlapping field range index %s %.*s %s for %.*s", lo_str, LIT(op.string), hi_str, LIT(context_name));
gb_string_free(hi_str);
gb_string_free(lo_str);
continue;
}
// NOTE(bill): These are sanity checks for invalid enum values
if (max_type_count >= 0 && (lo < total_lo || lo > total_hi)) {
gbString lo_str = expr_to_string(x.expr);
error(elem, "Index %s is out of bounds (%.*s .. %.*s) for %.*s", lo_str, LIT(total_lo_string), LIT(total_hi_string), LIT(context_name));
gb_string_free(lo_str);
continue;
}
if (max_type_count >= 0 && (hi < 0 || hi > total_hi)) {
gbString hi_str = expr_to_string(y.expr);
error(elem, "Index %s is out of bounds (%.*s .. %.*s) for %.*s", hi_str, LIT(total_lo_string), LIT(total_hi_string), LIT(context_name));
gb_string_free(hi_str);
continue;
}
if (max < hi) {
max = max_index;
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
check_assignment(c, &operand, elem_type, context_name);
is_constant = is_constant && operand.mode == Addressing_Constant;
TokenKind upper_op = Token_LtEq;
if (op.kind == Token_RangeHalf) {
upper_op = Token_Lt;
}
add_to_seen_map(c, &seen, upper_op, x, x, y);
} else {
Operand op_index = {};
check_expr_with_type_hint(c, &op_index, fv->field, index_type);
if (op_index.mode != Addressing_Constant || !are_types_identical(op_index.type, index_type)) {
error(op_index.expr, "Expected a constant enum of type '%s' as an array field", index_type_str);
continue;
}
i64 index = exact_value_to_i64(op_index.value);
if (max_type_count >= 0 && (index < total_lo || index > total_hi)) {
gbString idx_str = expr_to_string(op_index.expr);
error(elem, "Index %s is out of bounds (%.*s .. %.*s) for %.*s", idx_str, LIT(total_lo_string), LIT(total_hi_string), LIT(context_name));
gb_string_free(idx_str);
continue;
}
bool new_index = range_cache_add_index(&rc, index);
if (!new_index) {
gbString idx_str = expr_to_string(op_index.expr);
error(elem, "Duplicate field index %s for %.*s", idx_str, LIT(context_name));
gb_string_free(idx_str);
continue;
}
if (max < index+1) {
max = index+1;
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
check_assignment(c, &operand, elem_type, context_name);
is_constant = is_constant && operand.mode == Addressing_Constant;
add_to_seen_map(c, &seen, op_index);
}
}
cl->max_count = max;
} else {
isize index = 0;
for (; index < cl->elems.count; index++) {
Ast *e = cl->elems[index];
if (e == nullptr) {
error(node, "Invalid literal element");
continue;
}
if (e->kind == Ast_FieldValue) {
error(e, "Mixture of 'field = value' and value elements in a literal is not allowed");
continue;
}
if (0 <= max_type_count && max_type_count <= index) {
error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, e, elem_type);
check_assignment(c, &operand, elem_type, context_name);
is_constant = is_constant && operand.mode == Addressing_Constant;
}
if (max < index) {
max = index;
}
}
bool was_error = false;
if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
if (0 < max && max < t->EnumeratedArray.count) {
error(node, "Expected %lld values for this enumerated array literal, got %lld", cast(long long)t->EnumeratedArray.count, cast(long long)max);
was_error = true;
} else {
error(node, "Enumerated array literals must only have 'field = value' elements, bare elements are not allowed");
was_error = true;
}
}
// NOTE(bill): Check for missing cases when `#partial literal` is not present
if (cl->elems.count > 0 && !was_error && !is_partial) {
Type *et = base_type(index_type);
GB_ASSERT(et->kind == Type_Enum);
auto fields = et->Enum.fields;
auto unhandled = array_make<Entity *>(temporary_allocator(), 0, fields.count);
for_array(i, fields) {
Entity *f = fields[i];
if (f->kind != Entity_Constant) {
continue;
}
ExactValue v = f->Constant.value;
auto found = map_get(&seen, hash_exact_value(v));
if (!found) {
array_add(&unhandled, f);
}
}
if (unhandled.count > 0) {
begin_error_block();
defer (end_error_block());
if (unhandled.count == 1) {
error_no_newline(node, "Unhandled enumerated array case: %.*s", LIT(unhandled[0]->token.string));
} else {
error(node, "Unhandled enumerated array cases:");
for_array(i, unhandled) {
Entity *f = unhandled[i];
error_line("\t%.*s\n", LIT(f->token.string));
}
}
error_line("\n");
error_line("\tSuggestion: Was '#partial %s{...}' wanted?\n", type_to_string(type));
}
}
break;
}
case Type_Basic: {
if (!is_type_any(t)) {
if (cl->elems.count != 0) {
error(node, "Illegal compound literal");
}
break;
}
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
{ // Checker values
Type *field_types[2] = {t_rawptr, t_typeid};
isize field_count = 2;
if (cl->elems[0]->kind == Ast_FieldValue) {
bool fields_visited[2] = {};
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
error(elem, "Mixture of 'field = value' and value elements in a 'any' literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != Ast_Ident) {
gbString expr_str = expr_to_string(fv->field);
error(elem, "Invalid field name '%s' in 'any' literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
if (sel.entity == nullptr) {
error(elem, "Unknown field '%.*s' in 'any' literal", LIT(name));
continue;
}
isize index = sel.index[0];
if (fields_visited[index]) {
error(elem, "Duplicate field '%.*s' in 'any' literal", LIT(name));
continue;
}
fields_visited[index] = true;
check_expr(c, o, fv->value);
// NOTE(bill): 'any' literals can never be constant
is_constant = false;
check_assignment(c, o, field_types[index], str_lit("'any' literal"));
}
} else {
for_array(index, cl->elems) {
Ast *elem = cl->elems[index];
if (elem->kind == Ast_FieldValue) {
error(elem, "Mixture of 'field = value' and value elements in a 'any' literal is not allowed");
continue;
}
check_expr(c, o, elem);
if (index >= field_count) {
error(o->expr, "Too many values in 'any' literal, expected %td", field_count);
break;
}
// NOTE(bill): 'any' literals can never be constant
is_constant = false;
check_assignment(c, o, field_types[index], str_lit("'any' literal"));
}
if (cl->elems.count < field_count) {
error(cl->close, "Too few values in 'any' literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
break;
}
case Type_Map: {
if (cl->elems.count == 0) {
break;
}
is_constant = false;
{ // Checker values
bool key_is_typeid = is_type_typeid(t->Map.key);
bool value_is_typeid = is_type_typeid(t->Map.value);
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind != Ast_FieldValue) {
error(elem, "Only 'field = value' elements are allowed in a map literal");
continue;
}
ast_node(fv, FieldValue, elem);
if (key_is_typeid) {
check_expr_or_type(c, o, fv->field, t->Map.key);
} else {
check_expr_with_type_hint(c, o, fv->field, t->Map.key);
}
check_assignment(c, o, t->Map.key, str_lit("map literal"));
if (o->mode == Addressing_Invalid) {
continue;
}
if (value_is_typeid) {
check_expr_or_type(c, o, fv->value, t->Map.value);
} else {
check_expr_with_type_hint(c, o, fv->value, t->Map.value);
}
check_assignment(c, o, t->Map.value, str_lit("map literal"));
}
}
if (build_context.no_dynamic_literals && cl->elems.count) {
error(node, "Compound literals of dynamic types have been disabled");
} else {
add_package_dependency(c, "runtime", "__dynamic_map_reserve");
add_package_dependency(c, "runtime", "__dynamic_map_set");
}
break;
}
case Type_BitSet: {
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
Type *et = base_type(t->BitSet.elem);
isize field_count = 0;
if (et->kind == Type_Enum) {
field_count = et->Enum.fields.count;
}
if (cl->elems[0]->kind == Ast_FieldValue) {
error(cl->elems[0], "'field = value' in a bit_set a literal is not allowed");
is_constant = false;
} else {
for_array(index, cl->elems) {
Ast *elem = cl->elems[index];
if (elem->kind == Ast_FieldValue) {
error(elem, "'field = value' in a bit_set a literal is not allowed");
continue;
}
check_expr_with_type_hint(c, o, elem, et);
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, t->BitSet.elem, str_lit("bit_set literal"));
if (o->mode == Addressing_Constant) {
i64 lower = t->BitSet.lower;
i64 upper = t->BitSet.upper;
i64 v = exact_value_to_i64(o->value);
if (lower <= v && v <= upper) {
// okay
} else {
error(elem, "Bit field value out of bounds, %lld not in the range %lld .. %lld", v, lower, upper);
continue;
}
}
}
}
break;
}
default: {
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
gbString str = type_to_string(type);
error(node, "Invalid compound literal type '%s'", str);
gb_string_free(str);
return kind;
}
}
if (is_constant) {
o->mode = Addressing_Constant;
if (is_type_bit_set(type)) {
// NOTE(bill): Encode as an integer
i64 lower = base_type(type)->BitSet.lower;
u64 bits = 0;
for_array(index, cl->elems) {
Ast *elem = cl->elems[index];
GB_ASSERT(elem->kind != Ast_FieldValue);
TypeAndValue tav = elem->tav;
ExactValue i = exact_value_to_integer(tav.value);
if (i.kind != ExactValue_Integer) {
continue;
}
i64 val = big_int_to_i64(&i.value_integer);
val -= lower;
u64 bit = u64(1ll<<val);
bits |= bit;
}
o->value = exact_value_u64(bits);
} else if (is_type_constant_type(type) && cl->elems.count == 0) {
ExactValue value = exact_value_compound(node);
Type *bt = core_type(type);
if (bt->kind == Type_Basic) {
if (bt->Basic.flags & BasicFlag_Boolean) {
value = exact_value_bool(false);
} else if (bt->Basic.flags & BasicFlag_Integer) {
value = exact_value_i64(0);
} else if (bt->Basic.flags & BasicFlag_Unsigned) {
value = exact_value_i64(0);
} else if (bt->Basic.flags & BasicFlag_Float) {
value = exact_value_float(0);
} else if (bt->Basic.flags & BasicFlag_Complex) {
value = exact_value_complex(0, 0);
} else if (bt->Basic.flags & BasicFlag_Quaternion) {
value = exact_value_quaternion(0, 0, 0, 0);
} else if (bt->Basic.flags & BasicFlag_Pointer) {
value = exact_value_pointer(0);
} else if (bt->Basic.flags & BasicFlag_String) {
String empty_string = {};
value = exact_value_string(empty_string);
} else if (bt->Basic.flags & BasicFlag_Rune) {
value = exact_value_i64(0);
}
}
o->value = value;
} else {
o->value = exact_value_compound(node);
}
} else {
o->mode = Addressing_Value;
}
o->type = type;
return kind;
}
ExprKind check_type_assertion(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = Expr_Expr;
ast_node(ta, TypeAssertion, node);
check_expr(c, o, ta->expr);
node->viral_state_flags |= ta->expr->viral_state_flags;
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "A type assertion cannot be applied to a constant expression: '%s'", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "A type assertion cannot be applied to an untyped expression: '%s'", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
Type *src = type_deref(o->type);
Type *bsrc = base_type(src);
if (ta->type != nullptr && ta->type->kind == Ast_UnaryExpr && ta->type->UnaryExpr.op.kind == Token_Question) {
if (!is_type_union(src)) {
gbString str = type_to_string(o->type);
error(o->expr, "Type assertions with .? can only operate on unions, got %s", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (bsrc->Union.variants.count != 1 && type_hint != nullptr) {
bool allowed = false;
for_array(i, bsrc->Union.variants) {
Type *vt = bsrc->Union.variants[i];
if (are_types_identical(vt, type_hint)) {
allowed = true;
add_type_info_type(c, vt);
break;
}
}
if (allowed) {
add_type_info_type(c, o->type);
o->type = type_hint;
o->mode = Addressing_OptionalOk;
return kind;
}
}
if (bsrc->Union.variants.count != 1) {
error(o->expr, "Type assertions with .? can only operate on unions with 1 variant, got %lld", cast(long long)bsrc->Union.variants.count);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
add_type_info_type(c, o->type);
add_type_info_type(c, bsrc->Union.variants[0]);
o->type = bsrc->Union.variants[0];
o->mode = Addressing_OptionalOk;
} else {
Type *t = check_type(c, ta->type);
Type *dst = t;
if (is_type_union(src)) {
bool ok = false;
for_array(i, bsrc->Union.variants) {
Type *vt = bsrc->Union.variants[i];
if (are_types_identical(vt, dst)) {
ok = true;
break;
}
}
if (!ok) {
gbString expr_str = expr_to_string(o->expr);
gbString dst_type_str = type_to_string(t);
defer (gb_string_free(expr_str));
defer (gb_string_free(dst_type_str));
if (bsrc->Union.variants.count == 0) {
error(o->expr, "Cannot type assert '%s' to '%s' as this is an empty union", expr_str, dst_type_str);
} else {
error(o->expr, "Cannot type assert '%s' to '%s' as it is not a variant of that union", expr_str, dst_type_str);
}
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
add_type_info_type(c, o->type);
add_type_info_type(c, t);
o->type = t;
o->mode = Addressing_OptionalOk;
} else if (is_type_any(src)) {
o->type = t;
o->mode = Addressing_OptionalOk;
add_type_info_type(c, o->type);
add_type_info_type(c, t);
} else {
gbString str = type_to_string(o->type);
error(o->expr, "Type assertions can only operate on unions and 'any', got %s", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
}
if ((c->state_flags & StateFlag_no_type_assert) == 0) {
add_package_dependency(c, "runtime", "type_assertion_check");
add_package_dependency(c, "runtime", "type_assertion_check2");
}
return kind;
}
ExprKind check_selector_call_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ast_node(se, SelectorCallExpr, node);
// IMPORTANT NOTE(bill, 2020-05-22): This is a complete hack to get a shorthand which is extremely useful for vtables
// COM APIs is a great example of where this kind of thing is extremely useful
// General idea:
//
// x->y(123) == x.y(x, 123)
//
// How this has been implemented at the moment is quite hacky but it's done so to reduce need for huge backend changes
// Just regenerating a new AST aids things
//
// TODO(bill): Is this a good hack or not?
//
// NOTE(bill, 2020-05-22): I'm going to regret this decision, ain't I?
if (se->modified_call) {
// Prevent double evaluation
o->expr = node;
o->type = node->tav.type;
o->value = node->tav.value;
o->mode = node->tav.mode;
return Expr_Expr;
}
bool allow_arrow_right_selector_expr;
allow_arrow_right_selector_expr = c->allow_arrow_right_selector_expr;
c->allow_arrow_right_selector_expr = true;
Operand x = {};
ExprKind kind = check_expr_base(c, &x, se->expr, nullptr);
c->allow_arrow_right_selector_expr = allow_arrow_right_selector_expr;
if (x.mode == Addressing_Invalid || x.type == t_invalid) {
o->mode = Addressing_Invalid;
o->type = t_invalid;
o->expr = node;
return kind;
}
if (!is_type_proc(x.type)) {
gbString type_str = type_to_string(x.type);
error(se->call, "Selector call expressions expect a procedure type for the call, got '%s'", type_str);
gb_string_free(type_str);
o->mode = Addressing_Invalid;
o->type = t_invalid;
o->expr = node;
return Expr_Stmt;
}
ast_node(ce, CallExpr, se->call);
GB_ASSERT(x.expr->kind == Ast_SelectorExpr);
Ast *first_arg = x.expr->SelectorExpr.expr;
GB_ASSERT(first_arg != nullptr);
Type *pt = base_type(x.type);
GB_ASSERT(pt->kind == Type_Proc);
Type *first_type = nullptr;
String first_arg_name = {};
if (pt->Proc.param_count > 0) {
Entity *f = pt->Proc.params->Tuple.variables[0];
first_type = f->type;
first_arg_name = f->token.string;
}
if (first_arg_name.len == 0) {
first_arg_name = str_lit("_");
}
if (first_type == nullptr) {
error(se->call, "Selector call expressions expect a procedure type for the call with at least 1 parameter");
o->mode = Addressing_Invalid;
o->type = t_invalid;
o->expr = node;
return Expr_Stmt;
}
Operand y = {};
y.mode = first_arg->tav.mode;
y.type = first_arg->tav.type;
y.value = first_arg->tav.value;
if (check_is_assignable_to(c, &y, first_type)) {
// Do nothing, it's valid
} else {
Operand z = y;
z.type = type_deref(y.type);
if (check_is_assignable_to(c, &z, first_type)) {
// NOTE(bill): AST GENERATION HACK!
Token op = {Token_Pointer};
first_arg = ast_deref_expr(first_arg->file(), first_arg, op);
} else if (y.mode == Addressing_Variable) {
Operand w = y;
w.type = alloc_type_pointer(y.type);
if (check_is_assignable_to(c, &w, first_type)) {
// NOTE(bill): AST GENERATION HACK!
Token op = {Token_And};
first_arg = ast_unary_expr(first_arg->file(), op, first_arg);
}
}
}
if (ce->args.count > 0) {
bool fail = false;
bool first_is_field_value = (ce->args[0]->kind == Ast_FieldValue);
for_array(i, ce->args) {
Ast *arg = ce->args[i];
bool mix = false;
if (first_is_field_value) {
mix = arg->kind != Ast_FieldValue;
} else {
mix = arg->kind == Ast_FieldValue;
}
if (mix) {
fail = true;
break;
}
}
if (!fail && first_is_field_value) {
Token op = {Token_Eq};
AstFile *f = first_arg->file();
first_arg = ast_field_value(f, ast_ident(f, make_token_ident(first_arg_name)), first_arg, op);
}
}
auto modified_args = slice_make<Ast *>(heap_allocator(), ce->args.count+1);
modified_args[0] = first_arg;
slice_copy(&modified_args, ce->args, 1);
ce->args = modified_args;
se->modified_call = true;
allow_arrow_right_selector_expr = c->allow_arrow_right_selector_expr;
c->allow_arrow_right_selector_expr = true;
check_expr_base(c, o, se->call, type_hint);
c->allow_arrow_right_selector_expr = allow_arrow_right_selector_expr;
o->expr = node;
return Expr_Expr;
}
ExprKind check_index_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = Expr_Expr;
ast_node(ie, IndexExpr, node);
check_expr(c, o, ie->expr);
node->viral_state_flags |= ie->expr->viral_state_flags;
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
Type *t = base_type(type_deref(o->type));
bool is_ptr = is_type_pointer(o->type);
bool is_const = o->mode == Addressing_Constant;
if (is_type_map(t)) {
Operand key = {};
if (is_type_typeid(t->Map.key)) {
check_expr_or_type(c, &key, ie->index, t->Map.key);
} else {
check_expr_with_type_hint(c, &key, ie->index, t->Map.key);
}
check_assignment(c, &key, t->Map.key, str_lit("map index"));
if (key.mode == Addressing_Invalid) {
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
o->mode = Addressing_MapIndex;
o->type = t->Map.value;
o->expr = node;
add_package_dependency(c, "runtime", "__dynamic_map_get");
add_package_dependency(c, "runtime", "__dynamic_map_set");
return Expr_Expr;
}
i64 max_count = -1;
bool valid = check_set_index_data(o, t, is_ptr, &max_count, o->type);
if (is_const) {
if (is_type_array(t)) {
// OKay
} else if (is_type_slice(t)) {
// Okay
} else if (is_type_enumerated_array(t)) {
// Okay
} else if (is_type_string(t)) {
// Okay
} else if (is_type_relative_slice(t)) {
// Okay
} else if (is_type_matrix(t)) {
// Okay
} else {
valid = false;
}
}
if (!valid) {
gbString str = expr_to_string(o->expr);
gbString type_str = type_to_string(o->type);
defer (gb_string_free(str));
defer (gb_string_free(type_str));
if (is_const) {
error(o->expr, "Cannot index constant '%s' of type '%s'", str, type_str);
} else {
error(o->expr, "Cannot index '%s' of type '%s'", str, type_str);
}
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (ie->index == nullptr) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Missing index for '%s'", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
Type *index_type_hint = nullptr;
if (is_type_enumerated_array(t)) {
Type *bt = base_type(t);
GB_ASSERT(bt->kind == Type_EnumeratedArray);
index_type_hint = bt->EnumeratedArray.index;
}
i64 index = 0;
bool ok = check_index_value(c, t, false, ie->index, max_count, &index, index_type_hint);
if (is_const) {
if (index < 0) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Cannot index a constant '%s'", str);
error_line("\tSuggestion: store the constant into a variable in order to index it with a variable index\n");
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
} else if (ok) {
ExactValue value = type_and_value_of_expr(ie->expr).value;
o->mode = Addressing_Constant;
bool success = false;
bool finish = false;
o->value = get_constant_field_single(c, value, cast(i32)index, &success, &finish);
if (!success) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Cannot index a constant '%s' with index %lld", str, cast(long long)index);
error_line("\tSuggestion: store the constant into a variable in order to index it with a variable index\n");
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
}
}
if (type_hint != nullptr && is_type_matrix(t)) {
// TODO(bill): allow matrix columns to be assignable to other types which are the same internally
// if a type hint exists
}
return kind;
}
ExprKind check_slice_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = Expr_Stmt;
ast_node(se, SliceExpr, node);
check_expr(c, o, se->expr);
node->viral_state_flags |= se->expr->viral_state_flags;
if (o->mode == Addressing_Invalid) {
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
bool valid = false;
i64 max_count = -1;
Type *t = base_type(type_deref(o->type));
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_string || t->Basic.kind == Basic_UntypedString) {
valid = true;
if (o->mode == Addressing_Constant) {
max_count = o->value.value_string.len;
}
o->type = type_deref(o->type);
}
break;
case Type_Array:
valid = true;
max_count = t->Array.count;
if (o->mode != Addressing_Variable && !is_type_pointer(o->type)) {
gbString str = expr_to_string(node);
error(node, "Cannot slice array '%s', value is not addressable", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
o->type = alloc_type_slice(t->Array.elem);
break;
case Type_MultiPointer:
valid = true;
o->type = type_deref(o->type);
break;
case Type_Slice:
valid = true;
o->type = type_deref(o->type);
break;
case Type_DynamicArray:
valid = true;
o->type = alloc_type_slice(t->DynamicArray.elem);
break;
case Type_Struct:
if (is_type_soa_struct(t)) {
valid = true;
o->type = make_soa_struct_slice(c, nullptr, nullptr, t->Struct.soa_elem);
}
break;
case Type_RelativeSlice:
valid = true;
o->type = t->RelativeSlice.slice_type;
if (o->mode != Addressing_Variable) {
gbString str = expr_to_string(node);
error(node, "Cannot relative slice '%s', value is not addressable", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
break;
}
if (!valid) {
gbString str = expr_to_string(o->expr);
gbString type_str = type_to_string(o->type);
error(o->expr, "Cannot slice '%s' of type '%s'", str, type_str);
gb_string_free(type_str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (se->low == nullptr && se->high != nullptr) {
// It is okay to continue as it will assume the 1st index is zero
}
i64 indices[2] = {};
Ast *nodes[2] = {se->low, se->high};
for (isize i = 0; i < gb_count_of(nodes); i++) {
i64 index = max_count;
if (nodes[i] != nullptr) {
i64 capacity = -1;
if (max_count >= 0) {
capacity = max_count;
}
i64 j = 0;
if (check_index_value(c, t, true, nodes[i], capacity, &j)) {
index = j;
}
node->viral_state_flags |= nodes[i]->viral_state_flags;
} else if (i == 0) {
index = 0;
}
indices[i] = index;
}
for (isize i = 0; i < gb_count_of(indices); i++) {
i64 a = indices[i];
for (isize j = i+1; j < gb_count_of(indices); j++) {
i64 b = indices[j];
if (a > b && b >= 0) {
error(se->close, "Invalid slice indices: [%td > %td]", a, b);
}
}
}
if (max_count < 0) {
if (o->mode == Addressing_Constant) {
gbString s = expr_to_string(se->expr);
error(se->expr, "Cannot slice constant value '%s'", s);
gb_string_free(s);
}
}
if (t->kind == Type_MultiPointer && se->high != nullptr) {
/*
x[:] -> [^]T
x[i:] -> [^]T
x[:n] -> []T
x[i:n] -> []T
*/
o->type = alloc_type_slice(t->MultiPointer.elem);
}
o->mode = Addressing_Value;
if (is_type_string(t) && max_count >= 0) {
bool all_constant = true;
for (isize i = 0; i < gb_count_of(nodes); i++) {
if (nodes[i] != nullptr) {
TypeAndValue tav = type_and_value_of_expr(nodes[i]);
if (tav.mode != Addressing_Constant) {
all_constant = false;
break;
}
}
}
if (!all_constant) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Cannot slice '%s' with non-constant indices", str);
error_line("\tSuggestion: store the constant into a variable in order to index it with a variable index\n");
gb_string_free(str);
o->mode = Addressing_Value; // NOTE(bill): Keep subsequent values going without erring
o->expr = node;
return kind;
}
String s = {};
if (o->value.kind == ExactValue_String) {
s = o->value.value_string;
}
o->mode = Addressing_Constant;
o->type = t;
o->value = exact_value_string(substring(s, cast(isize)indices[0], cast(isize)indices[1]));
}
return kind;
}
ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
u32 prev_state_flags = c->state_flags;
defer (c->state_flags = prev_state_flags);
if (node->state_flags != 0) {
u32 in = node->state_flags;
u32 out = c->state_flags;
if (in & StateFlag_no_bounds_check) {
out |= StateFlag_no_bounds_check;
out &= ~StateFlag_bounds_check;
} else if (in & StateFlag_bounds_check) {
out |= StateFlag_bounds_check;
out &= ~StateFlag_no_bounds_check;
}
if (in & StateFlag_no_type_assert) {
out |= StateFlag_no_type_assert;
out &= ~StateFlag_type_assert;
} else if (in & StateFlag_type_assert) {
out |= StateFlag_type_assert;
out &= ~StateFlag_no_type_assert;
}
c->state_flags = out;
}
ExprKind kind = Expr_Stmt;
o->mode = Addressing_Invalid;
o->type = t_invalid;
switch (node->kind) {
default:
return kind;
case_ast_node(be, BadExpr, node)
return kind;
case_end;
case_ast_node(i, Implicit, node)
switch (i->kind) {
case Token_context:
{
if (c->proc_name.len == 0 && c->curr_proc_sig == nullptr) {
error(node, "'context' is only allowed within procedures %p", c->curr_proc_decl);
return kind;
}
if (unparen_expr(c->assignment_lhs_hint) == node) {
c->scope->flags |= ScopeFlag_ContextDefined;
}
if ((c->scope->flags & ScopeFlag_ContextDefined) == 0) {
error(node, "'context' has not been defined within this scope");
// Continue with value
}
init_core_context(c->checker);
o->mode = Addressing_Context;
o->type = t_context;
}
break;
default:
error(node, "Illegal implicit name '%.*s'", LIT(i->string));
return kind;
}
case_end;
case_ast_node(i, Ident, node);
check_ident(c, o, node, nullptr, type_hint, false);
case_end;
case_ast_node(u, Undef, node);
o->mode = Addressing_Value;
o->type = t_untyped_undef;
case_end;
case_ast_node(bl, BasicLit, node);
Type *t = t_invalid;
switch (node->tav.value.kind) {
case ExactValue_String: t = t_untyped_string; break;
case ExactValue_Float: t = t_untyped_float; break;
case ExactValue_Complex: t = t_untyped_complex; break;
case ExactValue_Quaternion: t = t_untyped_quaternion; break;
case ExactValue_Integer:
t = t_untyped_integer;
if (bl->token.kind == Token_Rune) {
t = t_untyped_rune;
}
break;
default:
GB_PANIC("Unhandled value type for basic literal");
break;
}
o->mode = Addressing_Constant;
o->type = t;
o->value = node->tav.value;
case_end;
case_ast_node(bd, BasicDirective, node);
kind = check_basic_directive_expr(c, o, node, type_hint);
case_end;
case_ast_node(pg, ProcGroup, node);
error(node, "Illegal use of a procedure group");
o->mode = Addressing_Invalid;
case_end;
case_ast_node(pl, ProcLit, node);
CheckerContext ctx = *c;
DeclInfo *decl = nullptr;
Type *type = alloc_type(Type_Proc);
check_open_scope(&ctx, pl->type);
{
decl = make_decl_info(ctx.scope, ctx.decl);
decl->proc_lit = node;
ctx.decl = decl;
defer (ctx.decl = ctx.decl->parent);
if (pl->tags != 0) {
error(node, "A procedure literal cannot have tags");
pl->tags = 0; // TODO(bill): Should I zero this?!
}
check_procedure_type(&ctx, type, pl->type);
if (!is_type_proc(type)) {
gbString str = expr_to_string(node);
error(node, "Invalid procedure literal '%s'", str);
gb_string_free(str);
check_close_scope(&ctx);
return kind;
}
if (pl->body == nullptr) {
error(node, "A procedure literal must have a body");
return kind;
}
pl->decl = decl;
check_procedure_later(&ctx, ctx.file, empty_token, decl, type, pl->body, pl->tags);
}
check_close_scope(&ctx);
o->mode = Addressing_Value;
o->type = type;
case_end;
case_ast_node(te, TernaryIfExpr, node);
kind = check_ternary_if_expr(c, o, node, type_hint);
case_end;
case_ast_node(te, TernaryWhenExpr, node);
kind = check_ternary_when_expr(c, o, node, type_hint);
case_end;
case_ast_node(oe, OrElseExpr, node);
return check_or_else_expr(c, o, node, type_hint);
case_end;
case_ast_node(re, OrReturnExpr, node);
return check_or_return_expr(c, o, node, type_hint);
case_end;
case_ast_node(cl, CompoundLit, node);
kind = check_compound_literal(c, o, node, type_hint);
case_end;
case_ast_node(pe, ParenExpr, node);
kind = check_expr_base(c, o, pe->expr, type_hint);
node->viral_state_flags |= pe->expr->viral_state_flags;
o->expr = node;
case_end;
case_ast_node(te, TagExpr, node);
String name = te->name.string;
error(node, "Unknown tag expression, #%.*s", LIT(name));
if (te->expr) {
kind = check_expr_base(c, o, te->expr, type_hint);
node->viral_state_flags |= te->expr->viral_state_flags;
}
o->expr = node;
case_end;
case_ast_node(ta, TypeAssertion, node);
kind = check_type_assertion(c, o, node, type_hint);
case_end;
case_ast_node(tc, TypeCast, node);
check_expr_or_type(c, o, tc->type);
if (o->mode != Addressing_Type) {
gbString str = expr_to_string(tc->type);
error(tc->type, "Expected a type, got %s", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
Type *type = o->type;
check_expr_base(c, o, tc->expr, type);
node->viral_state_flags |= tc->expr->viral_state_flags;
if (o->mode != Addressing_Invalid) {
switch (tc->token.kind) {
case Token_transmute:
check_transmute(c, node, o, type);
break;
case Token_cast:
check_cast(c, o, type);
break;
default:
error(node, "Invalid AST: Invalid casting expression");
o->mode = Addressing_Invalid;
break;
}
}
return Expr_Expr;
case_end;
case_ast_node(ac, AutoCast, node);
check_expr_base(c, o, ac->expr, type_hint);
node->viral_state_flags |= ac->expr->viral_state_flags;
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
if (type_hint) {
Type *type = type_of_expr(ac->expr);
check_cast(c, o, type_hint);
if (is_type_typed(type) && are_types_identical(type, type_hint)) {
if (build_context.vet_extra) {
error(node, "Redundant 'auto_cast' applied to expression");
}
}
}
o->expr = node;
return Expr_Expr;
case_end;
case_ast_node(ue, UnaryExpr, node);
Type *th = type_hint;
if (ue->op.kind == Token_And) {
th = type_deref(th);
}
check_expr_base(c, o, ue->expr, th);
node->viral_state_flags |= ue->expr->viral_state_flags;
if (o->mode != Addressing_Invalid) {
check_unary_expr(c, o, ue->op, node);
}
o->expr = node;
return kind;
case_end;
case_ast_node(be, BinaryExpr, node);
check_binary_expr(c, o, node, type_hint, true);
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
case_end;
case_ast_node(se, SelectorExpr, node);
check_selector(c, o, node, type_hint);
node->viral_state_flags |= se->expr->viral_state_flags;
case_end;
case_ast_node(se, SelectorCallExpr, node);
return check_selector_call_expr(c, o, node, type_hint);
case_end;
case_ast_node(ise, ImplicitSelectorExpr, node);
return check_implicit_selector_expr(c, o, node, type_hint);
case_end;
case_ast_node(ie, IndexExpr, node);
kind = check_index_expr(c, o, node, type_hint);
case_end;
case_ast_node(se, SliceExpr, node);
kind = check_slice_expr(c, o, node, type_hint);
case_end;
case_ast_node(mie, MatrixIndexExpr, node);
check_matrix_index_expr(c, o, node, type_hint);
o->expr = node;
return Expr_Expr;
case_end;
case_ast_node(ce, CallExpr, node);
return check_call_expr(c, o, node, ce->proc, ce->args, ce->inlining, type_hint);
case_end;
case_ast_node(de, DerefExpr, node);
check_expr_or_type(c, o, de->expr);
node->viral_state_flags |= de->expr->viral_state_flags;
if (o->mode == Addressing_Invalid) {
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
} else {
Type *t = base_type(o->type);
if (t->kind == Type_Pointer && !is_type_empty_union(t->Pointer.elem)) {
o->mode = Addressing_Variable;
o->type = t->Pointer.elem;
} else if (t->kind == Type_RelativePointer) {
if (o->mode != Addressing_Variable) {
gbString str = expr_to_string(o->expr);
gbString typ = type_to_string(o->type);
error(o->expr, "Cannot dereference relative pointer '%s' of type '%s' as it does not have a variable addressing mode", str, typ);
gb_string_free(typ);
gb_string_free(str);
}
// NOTE(bill): This is required because when dereferencing, the original type has been lost
add_type_info_type(c, o->type);
Type *ptr_type = base_type(t->RelativePointer.pointer_type);
GB_ASSERT(ptr_type->kind == Type_Pointer);
o->mode = Addressing_Variable;
o->type = ptr_type->Pointer.elem;
} else {
gbString str = expr_to_string(o->expr);
gbString typ = type_to_string(o->type);
error(o->expr, "Cannot dereference '%s' of type '%s'", str, typ);
gb_string_free(typ);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
}
case_end;
case_ast_node(ia, InlineAsmExpr, node);
if (c->curr_proc_decl == nullptr) {
error(node, "Inline asm expressions are only allowed within a procedure body");
}
auto param_types = array_make<Type *>(heap_allocator(), ia->param_types.count);
Type *return_type = nullptr;
for_array(i, ia->param_types) {
param_types[i] = check_type(c, ia->param_types[i]);
}
if (ia->return_type != nullptr) {
return_type = check_type(c, ia->return_type);
}
Operand x = {};
check_expr(c, &x, ia->asm_string);
if (x.mode != Addressing_Constant || !is_type_string(x.type)) {
error(x.expr, "Expected a constant string for the inline asm main parameter");
}
check_expr(c, &x, ia->constraints_string);
if (x.mode != Addressing_Constant || !is_type_string(x.type)) {
error(x.expr, "Expected a constant string for the inline asm constraints parameter");
}
Scope *scope = create_scope(c->info, c->scope);
scope->flags |= ScopeFlag_Proc;
Type *params = alloc_type_tuple();
Type *results = alloc_type_tuple();
if (param_types.count != 0) {
slice_init(&params->Tuple.variables, heap_allocator(), param_types.count);
for_array(i, param_types) {
params->Tuple.variables[i] = alloc_entity_param(scope, blank_token, param_types[i], false, true);
}
}
if (return_type != nullptr) {
slice_init(&results->Tuple.variables, heap_allocator(), 1);
results->Tuple.variables[0] = alloc_entity_param(scope, blank_token, return_type, false, true);
}
Type *pt = alloc_type_proc(scope, params, param_types.count, results, return_type != nullptr ? 1 : 0, false, ProcCC_InlineAsm);
o->type = pt;
o->mode = Addressing_Value;
o->expr = node;
return Expr_Expr;
case_end;
case Ast_TypeidType:
case Ast_PolyType:
case Ast_ProcType:
case Ast_PointerType:
case Ast_MultiPointerType:
case Ast_ArrayType:
case Ast_DynamicArrayType:
case Ast_StructType:
case Ast_UnionType:
case Ast_EnumType:
case Ast_MapType:
case Ast_BitSetType:
case Ast_MatrixType:
o->mode = Addressing_Type;
o->type = check_type(c, node);
break;
}
kind = Expr_Expr;
o->expr = node;
return kind;
}
ExprKind check_expr_base(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
ExprKind kind = check_expr_base_internal(c, o, node, type_hint);
if (o->type != nullptr && core_type(o->type) == nullptr) {
o->type = t_invalid;
gbString xs = expr_to_string(o->expr);
if (o->mode == Addressing_Type) {
error(o->expr, "Invalid type usage '%s'", xs);
} else {
error(o->expr, "Invalid expression '%s'", xs);
}
gb_string_free(xs);
}
if (o->type != nullptr && is_type_untyped(o->type)) {
add_untyped(c, node, o->mode, o->type, o->value);
}
add_type_and_value(c->info, node, o->mode, o->type, o->value);
return kind;
}
void check_multi_expr_or_type(CheckerContext *c, Operand *o, Ast *e) {
check_expr_base(c, o, e, nullptr);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
error_operand_no_value(o);
break;
}
o->mode = Addressing_Invalid;
}
void check_multi_expr(CheckerContext *c, Operand *o, Ast *e) {
check_expr_base(c, o, e, nullptr);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
error_operand_no_value(o);
break;
case Addressing_Type:
error_operand_not_expression(o);
break;
}
o->mode = Addressing_Invalid;
}
void check_multi_expr_with_type_hint(CheckerContext *c, Operand *o, Ast *e, Type *type_hint) {
check_expr_base(c, o, e, type_hint);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
error_operand_no_value(o);
break;
case Addressing_Type:
error_operand_not_expression(o);
break;
}
o->mode = Addressing_Invalid;
}
void check_not_tuple(CheckerContext *c, Operand *o) {
if (o->mode == Addressing_Value) {
// NOTE(bill): Tuples are not first class thus never named
if (o->type->kind == Type_Tuple) {
isize count = o->type->Tuple.variables.count;
error(o->expr,
"%td-valued expression found where single value expected", count);
o->mode = Addressing_Invalid;
GB_ASSERT(count != 1);
}
}
}
void check_expr(CheckerContext *c, Operand *o, Ast *e) {
check_multi_expr(c, o, e);
check_not_tuple(c, o);
}
void check_expr_or_type(CheckerContext *c, Operand *o, Ast *e, Type *type_hint) {
check_expr_base(c, o, e, type_hint);
check_not_tuple(c, o);
error_operand_no_value(o);
}
bool is_exact_value_zero(ExactValue const &v) {
switch (v.kind) {
case ExactValue_Invalid:
return true;
case ExactValue_Bool:
return !v.value_bool;
case ExactValue_String:
return v.value_string.len == 0;
case ExactValue_Integer:
return big_int_is_zero(&v.value_integer);
case ExactValue_Float:
return v.value_float == 0.0;
case ExactValue_Complex:
if (v.value_complex) {
return v.value_complex->real == 0.0 && v.value_complex->imag == 0.0;
}
return true;
case ExactValue_Quaternion:
if (v.value_quaternion) {
return v.value_quaternion->real == 0.0 &&
v.value_quaternion->imag == 0.0 &&
v.value_quaternion->jmag == 0.0 &&
v.value_quaternion->kmag == 0.0;
}
return true;
case ExactValue_Pointer:
return v.value_pointer == 0;
case ExactValue_Compound:
if (v.value_compound == nullptr) {
return true;
} else {
ast_node(cl, CompoundLit, v.value_compound);
if (cl->elems.count == 0) {
return true;
} else {
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->tav.mode != Addressing_Constant) {
// if (elem->tav.value.kind != ExactValue_Invalid) {
return false;
// }
}
if (!is_exact_value_zero(elem->tav.value)) {
return false;
}
}
return true;
}
}
case ExactValue_Procedure:
return v.value_procedure == nullptr;
case ExactValue_Typeid:
return v.value_typeid == nullptr;
}
return true;
}
gbString write_expr_to_string(gbString str, Ast *node, bool shorthand);
gbString write_struct_fields_to_string(gbString str, Slice<Ast *> const &params) {
for_array(i, params) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, params[i], false);
}
return str;
}
gbString string_append_string(gbString str, String string) {
if (string.len > 0) {
return gb_string_append_length(str, &string[0], string.len);
}
return str;
}
gbString string_append_token(gbString str, Token token) {
str = string_append_string(str, token.string);
return str;
}
gbString write_expr_to_string(gbString str, Ast *node, bool shorthand) {
if (node == nullptr)
return str;
if (is_ast_stmt(node)) {
GB_ASSERT("stmt passed to write_expr_to_string");
}
switch (node->kind) {
default:
str = gb_string_appendc(str, "(BadExpr)");
break;
case_ast_node(i, Ident, node);
str = string_append_token(str, i->token);
case_end;
case_ast_node(i, Implicit, node);
str = string_append_token(str, *i);
case_end;
case_ast_node(bl, BasicLit, node);
str = string_append_token(str, bl->token);
case_end;
case_ast_node(bd, BasicDirective, node);
str = gb_string_append_rune(str, '#');
str = string_append_string(str, bd->name.string);
case_end;
case_ast_node(ud, Undef, node);
str = gb_string_appendc(str, "---");
case_end;
case_ast_node(pg, ProcGroup, node);
str = gb_string_appendc(str, "proc{");
for_array(i, pg->args) {
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, pg->args[i], shorthand);
}
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(pl, ProcLit, node);
str = write_expr_to_string(str, pl->type, shorthand);
if (pl->body) {
str = gb_string_appendc(str, " {...}");
} else {
str = gb_string_appendc(str, " ---");
}
case_end;
case_ast_node(cl, CompoundLit, node);
str = write_expr_to_string(str, cl->type, shorthand);
str = gb_string_append_rune(str, '{');
if (shorthand) {
str = gb_string_appendc(str, "...");
} else {
for_array(i, cl->elems) {
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, cl->elems[i], shorthand);
}
}
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(te, TagExpr, node);
str = gb_string_append_rune(str, '#');
str = string_append_token(str, te->name);
str = write_expr_to_string(str, te->expr, shorthand);
case_end;
case_ast_node(ue, UnaryExpr, node);
str = string_append_token(str, ue->op);
str = write_expr_to_string(str, ue->expr, shorthand);
case_end;
case_ast_node(de, DerefExpr, node);
str = write_expr_to_string(str, de->expr, shorthand);
str = gb_string_append_rune(str, '^');
case_end;
case_ast_node(be, BinaryExpr, node);
str = write_expr_to_string(str, be->left, shorthand);
str = gb_string_append_rune(str, ' ');
str = string_append_token(str, be->op);
str = gb_string_append_rune(str, ' ');
str = write_expr_to_string(str, be->right, shorthand);
case_end;
case_ast_node(te, TernaryIfExpr, node);
TokenPos x = ast_token(te->x).pos;
TokenPos cond = ast_token(te->cond).pos;
if (x < cond) {
str = write_expr_to_string(str, te->x, shorthand);
str = gb_string_appendc(str, " if ");
str = write_expr_to_string(str, te->cond, shorthand);
str = gb_string_appendc(str, " else ");
str = write_expr_to_string(str, te->y, shorthand);
} else {
str = write_expr_to_string(str, te->cond, shorthand);
str = gb_string_appendc(str, " ? ");
str = write_expr_to_string(str, te->x, shorthand);
str = gb_string_appendc(str, " : ");
str = write_expr_to_string(str, te->y, shorthand);
}
case_end;
case_ast_node(te, TernaryWhenExpr, node);
str = write_expr_to_string(str, te->x, shorthand);
str = gb_string_appendc(str, " when ");
str = write_expr_to_string(str, te->cond, shorthand);
str = gb_string_appendc(str, " else ");
str = write_expr_to_string(str, te->y, shorthand);
case_end;
case_ast_node(oe, OrElseExpr, node);
str = write_expr_to_string(str, oe->x, shorthand);
str = gb_string_appendc(str, " or_else ");
str = write_expr_to_string(str, oe->y, shorthand);
case_end;
case_ast_node(oe, OrReturnExpr, node);
str = write_expr_to_string(str, oe->expr, shorthand);
str = gb_string_appendc(str, " or_return");
case_end;
case_ast_node(pe, ParenExpr, node);
str = gb_string_append_rune(str, '(');
str = write_expr_to_string(str, pe->expr, shorthand);
str = gb_string_append_rune(str, ')');
case_end;
case_ast_node(se, SelectorExpr, node);
str = write_expr_to_string(str, se->expr, shorthand);
str = string_append_token(str, se->token);
str = write_expr_to_string(str, se->selector, shorthand);
case_end;
case_ast_node(se, ImplicitSelectorExpr, node);
str = gb_string_append_rune(str, '.');
str = write_expr_to_string(str, se->selector, shorthand);
case_end;
case_ast_node(se, SelectorCallExpr, node);
str = write_expr_to_string(str, se->expr, shorthand);
str = gb_string_appendc(str, "(");
ast_node(ce, CallExpr, se->call);
isize start = se->modified_call ? 1 : 0;
for (isize i = start; i < ce->args.count; i++) {
Ast *arg = ce->args[i];
if (i > start) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, arg, shorthand);
}
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(ta, TypeAssertion, node);
str = write_expr_to_string(str, ta->expr, shorthand);
if (ta->type != nullptr &&
ta->type->kind == Ast_UnaryExpr &&
ta->type->UnaryExpr.op.kind == Token_Question) {
str = gb_string_appendc(str, ".?");
} else {
str = gb_string_appendc(str, ".(");
str = write_expr_to_string(str, ta->type, shorthand);
str = gb_string_append_rune(str, ')');
}
case_end;
case_ast_node(tc, TypeCast, node);
str = string_append_token(str, tc->token);
str = gb_string_append_rune(str, '(');
str = write_expr_to_string(str, tc->type, shorthand);
str = gb_string_append_rune(str, ')');
str = write_expr_to_string(str, tc->expr, shorthand);
case_end;
case_ast_node(ac, AutoCast, node);
str = string_append_token(str, ac->token);
str = gb_string_append_rune(str, ' ');
str = write_expr_to_string(str, ac->expr, shorthand);
case_end;
case_ast_node(ie, IndexExpr, node);
str = write_expr_to_string(str, ie->expr, shorthand);
str = gb_string_append_rune(str, '[');
str = write_expr_to_string(str, ie->index, shorthand);
str = gb_string_append_rune(str, ']');
case_end;
case_ast_node(se, SliceExpr, node);
str = write_expr_to_string(str, se->expr, shorthand);
str = gb_string_append_rune(str, '[');
str = write_expr_to_string(str, se->low, shorthand);
str = string_append_token(str, se->interval);
str = write_expr_to_string(str, se->high, shorthand);
str = gb_string_append_rune(str, ']');
case_end;
case_ast_node(mie, MatrixIndexExpr, node);
str = write_expr_to_string(str, mie->expr, shorthand);
str = gb_string_append_rune(str, '[');
str = write_expr_to_string(str, mie->row_index, shorthand);
str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, mie->column_index, shorthand);
str = gb_string_append_rune(str, ']');
case_end;
case_ast_node(e, Ellipsis, node);
str = gb_string_appendc(str, "..");
str = write_expr_to_string(str, e->expr, shorthand);
case_end;
case_ast_node(fv, FieldValue, node);
str = write_expr_to_string(str, fv->field, shorthand);
str = gb_string_appendc(str, " = ");
str = write_expr_to_string(str, fv->value, shorthand);
case_end;
case_ast_node(fv, EnumFieldValue, node);
str = write_expr_to_string(str, fv->name, shorthand);
if (fv->value) {
str = gb_string_appendc(str, " = ");
str = write_expr_to_string(str, fv->value, shorthand);
}
case_end;
case_ast_node(ht, HelperType, node);
str = gb_string_appendc(str, "#type ");
str = write_expr_to_string(str, ht->type, shorthand);
case_end;
case_ast_node(ht, DistinctType, node);
str = gb_string_appendc(str, "distinct ");
str = write_expr_to_string(str, ht->type, shorthand);
case_end;
case_ast_node(pt, PolyType, node);
str = gb_string_append_rune(str, '$');
str = write_expr_to_string(str, pt->type, shorthand);
if (pt->specialization != nullptr) {
str = gb_string_append_rune(str, '/');
str = write_expr_to_string(str, pt->specialization, shorthand);
}
case_end;
case_ast_node(pt, PointerType, node);
str = gb_string_append_rune(str, '^');
str = write_expr_to_string(str, pt->type, shorthand);
case_end;
case_ast_node(pt, MultiPointerType, node);
str = gb_string_appendc(str, "[^]");
str = write_expr_to_string(str, pt->type, shorthand);
case_end;
case_ast_node(at, ArrayType, node);
str = gb_string_append_rune(str, '[');
if (at->count != nullptr &&
at->count->kind == Ast_UnaryExpr &&
at->count->UnaryExpr.op.kind == Token_Question) {
str = gb_string_appendc(str, "?");
} else {
str = write_expr_to_string(str, at->count, shorthand);
}
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, at->elem, shorthand);
case_end;
case_ast_node(at, DynamicArrayType, node);
str = gb_string_appendc(str, "[dynamic]");
str = write_expr_to_string(str, at->elem, shorthand);
case_end;
case_ast_node(bs, BitSetType, node);
str = gb_string_appendc(str, "bit_set[");
str = write_expr_to_string(str, bs->elem, shorthand);
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(mt, MapType, node);
str = gb_string_appendc(str, "map[");
str = write_expr_to_string(str, mt->key, shorthand);
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, mt->value, shorthand);
case_end;
case_ast_node(mt, MatrixType, node);
str = gb_string_appendc(str, "matrix[");
str = write_expr_to_string(str, mt->row_count, shorthand);
str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, mt->column_count, shorthand);
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, mt->elem, shorthand);
case_end;
case_ast_node(f, Field, node);
if (f->flags&FieldFlag_using) {
str = gb_string_appendc(str, "using ");
}
if (f->flags&FieldFlag_no_alias) {
str = gb_string_appendc(str, "#no_alias ");
}
if (f->flags&FieldFlag_c_vararg) {
str = gb_string_appendc(str, "#c_vararg ");
}
if (f->flags&FieldFlag_auto_cast) {
str = gb_string_appendc(str, "auto_cast ");
}
if (f->flags&FieldFlag_any_int) {
str = gb_string_appendc(str, "#any_int ");
}
if (f->flags&FieldFlag_const) {
str = gb_string_appendc(str, "#const ");
}
for_array(i, f->names) {
Ast *name = f->names[i];
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, name, shorthand);
}
if (f->names.count > 0) {
if (f->type == nullptr && f->default_value != nullptr) {
str = gb_string_append_rune(str, ' ');
}
str = gb_string_appendc(str, ":");
}
if (f->type != nullptr) {
str = gb_string_append_rune(str, ' ');
str = write_expr_to_string(str, f->type, shorthand);
}
if (f->default_value != nullptr) {
if (f->type != nullptr) {
str = gb_string_append_rune(str, ' ');
}
str = gb_string_appendc(str, "= ");
str = write_expr_to_string(str, f->default_value, shorthand);
}
case_end;
case_ast_node(f, FieldList, node);
bool has_name = false;
for_array(i, f->list) {
ast_node(field, Field, f->list[i]);
if (field->names.count > 1) {
has_name = true;
break;
}
if (field->names.count == 0) {
continue;
}
if (!is_blank_ident(field->names[0])) {
has_name = true;
break;
}
}
for_array(i, f->list) {
if (i > 0) str = gb_string_appendc(str, ", ");
if (has_name) {
str = write_expr_to_string(str, f->list[i], shorthand);
} else {
ast_node(field, Field, f->list[i]);
if (field->flags&FieldFlag_using) {
str = gb_string_appendc(str, "using ");
}
if (field->flags&FieldFlag_no_alias) {
str = gb_string_appendc(str, "#no_alias ");
}
if (field->flags&FieldFlag_c_vararg) {
str = gb_string_appendc(str, "#c_vararg ");
}
str = write_expr_to_string(str, field->type, shorthand);
}
}
case_end;
case_ast_node(ce, CallExpr, node);
switch (ce->inlining) {
case ProcInlining_inline:
str = gb_string_appendc(str, "#force_inline ");
break;
case ProcInlining_no_inline:
str = gb_string_appendc(str, "#force_no_inline ");
break;
}
str = write_expr_to_string(str, ce->proc, shorthand);
str = gb_string_appendc(str, "(");
for_array(i, ce->args) {
Ast *arg = ce->args[i];
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, arg, shorthand);
}
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(tt, TypeidType, node);
str = gb_string_appendc(str, "typeid");
if (tt->specialization) {
str = gb_string_appendc(str, "/");
str = write_expr_to_string(str, tt->specialization, shorthand);
}
case_end;
case_ast_node(pt, ProcType, node);
str = gb_string_appendc(str, "proc(");
str = write_expr_to_string(str, pt->params, shorthand);
str = gb_string_appendc(str, ")");
if (pt->results != nullptr) {
str = gb_string_appendc(str, " -> ");
bool parens_needed = false;
if (pt->results && pt->results->kind == Ast_FieldList) {
for_array(i, pt->results->FieldList.list) {
Ast *field = pt->results->FieldList.list[i];
ast_node(f, Field, field);
if (f->names.count != 0) {
parens_needed = true;
break;
}
}
}
if (parens_needed) {
str = gb_string_append_rune(str, '(');
}
str = write_expr_to_string(str, pt->results, shorthand);
if (parens_needed) {
str = gb_string_append_rune(str, ')');
}
}
case_end;
case_ast_node(st, StructType, node);
str = gb_string_appendc(str, "struct ");
if (st->polymorphic_params) {
str = gb_string_append_rune(str, '(');
str = write_expr_to_string(str, st->polymorphic_params, shorthand);
str = gb_string_appendc(str, ") ");
}
if (st->is_packed) str = gb_string_appendc(str, "#packed ");
if (st->is_raw_union) str = gb_string_appendc(str, "#raw_union ");
if (st->align) {
str = gb_string_appendc(str, "#align ");
str = write_expr_to_string(str, st->align, shorthand);
str = gb_string_append_rune(str, ' ');
}
str = gb_string_append_rune(str, '{');
if (shorthand) {
str = gb_string_appendc(str, "...");
} else {
str = write_struct_fields_to_string(str, st->fields);
}
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(st, UnionType, node);
str = gb_string_appendc(str, "union ");
if (st->polymorphic_params) {
str = gb_string_append_rune(str, '(');
str = write_expr_to_string(str, st->polymorphic_params, shorthand);
str = gb_string_appendc(str, ") ");
}
if (st->no_nil) str = gb_string_appendc(str, "#no_nil ");
if (st->maybe) str = gb_string_appendc(str, "#maybe ");
if (st->align) {
str = gb_string_appendc(str, "#align ");
str = write_expr_to_string(str, st->align, shorthand);
str = gb_string_append_rune(str, ' ');
}
str = gb_string_append_rune(str, '{');
if (shorthand) {
str = gb_string_appendc(str, "...");
} else {
str = write_struct_fields_to_string(str, st->variants);
}
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(et, EnumType, node);
str = gb_string_appendc(str, "enum ");
if (et->base_type != nullptr) {
str = write_expr_to_string(str, et->base_type, shorthand);
str = gb_string_append_rune(str, ' ');
}
str = gb_string_append_rune(str, '{');
if (shorthand) {
str = gb_string_appendc(str, "...");
} else {
for_array(i, et->fields) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, et->fields[i], shorthand);
}
}
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(rt, RelativeType, node);
str = write_expr_to_string(str, rt->tag, shorthand);
str = gb_string_appendc(str, "" );
str = write_expr_to_string(str, rt->type, shorthand);
case_end;
case_ast_node(ia, InlineAsmExpr, node);
str = gb_string_appendc(str, "asm(");
for_array(i, ia->param_types) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, ia->param_types[i], shorthand);
}
str = gb_string_appendc(str, ")");
if (ia->return_type != nullptr) {
str = gb_string_appendc(str, " -> ");
str = write_expr_to_string(str, ia->return_type, shorthand);
}
if (ia->has_side_effects) {
str = gb_string_appendc(str, " #side_effects");
}
if (ia->is_align_stack) {
str = gb_string_appendc(str, " #stack_align");
}
if (ia->dialect) {
str = gb_string_appendc(str, " #");
str = gb_string_appendc(str, inline_asm_dialect_strings[ia->dialect]);
}
str = gb_string_appendc(str, " {");
if (shorthand) {
str = gb_string_appendc(str, "...");
} else {
str = write_expr_to_string(str, ia->asm_string, shorthand);
str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, ia->constraints_string, shorthand);
}
str = gb_string_appendc(str, "}");
case_end;
}
return str;
}
gbString expr_to_string(Ast *expression) {
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression, false);
}
gbString expr_to_string_shorthand(Ast *expression) {
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression, true);
}