Files
Odin/src/llvm_backend.cpp

12540 lines
389 KiB
C++

#include "llvm_backend.hpp"
gb_global lbAddr lb_global_type_info_data = {};
gb_global lbAddr lb_global_type_info_member_types = {};
gb_global lbAddr lb_global_type_info_member_names = {};
gb_global lbAddr lb_global_type_info_member_offsets = {};
gb_global lbAddr lb_global_type_info_member_usings = {};
gb_global lbAddr lb_global_type_info_member_tags = {};
gb_global isize lb_global_type_info_data_index = 0;
gb_global isize lb_global_type_info_member_types_index = 0;
gb_global isize lb_global_type_info_member_names_index = 0;
gb_global isize lb_global_type_info_member_offsets_index = 0;
gb_global isize lb_global_type_info_member_usings_index = 0;
gb_global isize lb_global_type_info_member_tags_index = 0;
struct lbLoopData {
lbAddr idx_addr;
lbValue idx;
lbBlock *body;
lbBlock *done;
lbBlock *loop;
};
struct lbCompoundLitElemTempData {
Ast * expr;
lbValue value;
i32 elem_index;
lbValue gep;
};
lbLoopData lb_loop_start(lbProcedure *p, isize count, Type *index_type=t_i32);
void lb_loop_end(lbProcedure *p, lbLoopData const &data);
LLVMValueRef llvm_zero(lbModule *m) {
return LLVMConstInt(lb_type(m, t_int), 0, false);
}
LLVMValueRef llvm_one(lbModule *m) {
return LLVMConstInt(lb_type(m, t_i32), 1, false);
}
lbValue lb_zero(lbModule *m, Type *t) {
lbValue v = {};
v.value = LLVMConstInt(lb_type(m, t), 0, false);
v.type = t;
return v;
}
LLVMValueRef llvm_cstring(lbModule *m, String const &str) {
lbValue v = lb_find_or_add_entity_string(m, str);
unsigned indices[1] = {0};
return LLVMConstExtractValue(v.value, indices, gb_count_of(indices));
}
bool lb_is_instr_terminating(LLVMValueRef instr) {
if (instr != nullptr) {
LLVMOpcode op = LLVMGetInstructionOpcode(instr);
switch (op) {
case LLVMRet:
case LLVMBr:
case LLVMSwitch:
case LLVMIndirectBr:
case LLVMInvoke:
case LLVMUnreachable:
case LLVMCallBr:
return true;
}
}
return false;
}
lbAddr lb_addr(lbValue addr) {
lbAddr v = {lbAddr_Default, addr};
if (addr.type != nullptr && is_type_relative_pointer(type_deref(addr.type))) {
GB_ASSERT(is_type_pointer(addr.type));
v.kind = lbAddr_RelativePointer;
} else if (addr.type != nullptr && is_type_relative_slice(type_deref(addr.type))) {
GB_ASSERT(is_type_pointer(addr.type));
v.kind = lbAddr_RelativeSlice;
}
return v;
}
lbAddr lb_addr_map(lbValue addr, lbValue map_key, Type *map_type, Type *map_result) {
lbAddr v = {lbAddr_Map, addr};
v.map.key = map_key;
v.map.type = map_type;
v.map.result = map_result;
return v;
}
lbAddr lb_addr_soa_variable(lbValue addr, lbValue index, Ast *index_expr) {
lbAddr v = {lbAddr_SoaVariable, addr};
v.soa.index = index;
v.soa.index_expr = index_expr;
return v;
}
lbAddr lb_addr_bit_field(lbValue value, i32 index) {
lbAddr addr = {};
addr.kind = lbAddr_BitField;
addr.addr = value;
addr.bit_field.value_index = index;
return addr;
}
Type *lb_addr_type(lbAddr const &addr) {
if (addr.addr.value == nullptr) {
return nullptr;
}
if (addr.kind == lbAddr_Map) {
Type *t = base_type(addr.map.type);
GB_ASSERT(is_type_map(t));
return t->Map.value;
}
return type_deref(addr.addr.type);
}
LLVMTypeRef lb_addr_lb_type(lbAddr const &addr) {
return LLVMGetElementType(LLVMTypeOf(addr.addr.value));
}
lbValue lb_addr_get_ptr(lbProcedure *p, lbAddr const &addr) {
if (addr.addr.value == nullptr) {
GB_PANIC("Illegal addr -> nullptr");
return {};
}
switch (addr.kind) {
case lbAddr_Map: {
Type *map_type = base_type(addr.map.type);
lbValue h = lb_gen_map_header(p, addr.addr, map_type);
lbValue key = lb_gen_map_key(p, addr.map.key, map_type->Map.key);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = h;
args[1] = key;
lbValue ptr = lb_emit_runtime_call(p, "__dynamic_map_get", args);
return lb_emit_conv(p, ptr, alloc_type_pointer(map_type->Map.value));
}
case lbAddr_RelativePointer: {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativePointer);
lbValue ptr = lb_emit_conv(p, addr.addr, t_uintptr);
lbValue offset = lb_emit_conv(p, ptr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_load(p, offset);
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, t_uintptr);
lbValue absolute_ptr = lb_emit_arith(p, Token_Add, ptr, offset, t_uintptr);
absolute_ptr = lb_emit_conv(p, absolute_ptr, rel_ptr->RelativePointer.pointer_type);
lbValue cond = lb_emit_comp(p, Token_CmpEq, offset, lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer));
// NOTE(bill): nil check
lbValue nil_ptr = lb_const_nil(p->module, rel_ptr->RelativePointer.pointer_type);
lbValue final_ptr = lb_emit_select(p, cond, nil_ptr, absolute_ptr);
return final_ptr;
}
case lbAddr_BitField: {
lbValue v = lb_addr_load(p, addr);
return lb_address_from_load_or_generate_local(p, v);
}
case lbAddr_Context:
GB_PANIC("lbAddr_Context should be handled elsewhere");
}
return addr.addr;
}
lbValue lb_build_addr_ptr(lbProcedure *p, Ast *expr) {
lbAddr addr = lb_build_addr(p, expr);
return lb_addr_get_ptr(p, addr);
}
void lb_emit_bounds_check(lbProcedure *p, Token token, lbValue index, lbValue len) {
if (build_context.no_bounds_check) {
return;
}
if ((p->module->state_flags & StateFlag_no_bounds_check) != 0) {
return;
}
index = lb_emit_conv(p, index, t_int);
len = lb_emit_conv(p, len, t_int);
lbValue file = lb_find_or_add_entity_string(p->module, token.pos.file);
lbValue line = lb_const_int(p->module, t_int, token.pos.line);
lbValue column = lb_const_int(p->module, t_int, token.pos.column);
auto args = array_make<lbValue>(heap_allocator(), 5);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = index;
args[4] = len;
lb_emit_runtime_call(p, "bounds_check_error", args);
}
void lb_emit_slice_bounds_check(lbProcedure *p, Token token, lbValue low, lbValue high, lbValue len, bool lower_value_used) {
if (build_context.no_bounds_check) {
return;
}
if ((p->module->state_flags & StateFlag_no_bounds_check) != 0) {
return;
}
lbValue file = lb_find_or_add_entity_string(p->module, token.pos.file);
lbValue line = lb_const_int(p->module, t_int, token.pos.line);
lbValue column = lb_const_int(p->module, t_int, token.pos.column);
high = lb_emit_conv(p, high, t_int);
if (!lower_value_used) {
auto args = array_make<lbValue>(heap_allocator(), 5);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = high;
args[4] = len;
lb_emit_runtime_call(p, "slice_expr_error_hi", args);
} else {
// No need to convert unless used
low = lb_emit_conv(p, low, t_int);
auto args = array_make<lbValue>(heap_allocator(), 6);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = low;
args[4] = high;
args[5] = len;
lb_emit_runtime_call(p, "slice_expr_error_lo_hi", args);
}
}
void lb_addr_store(lbProcedure *p, lbAddr addr, lbValue value) {
if (addr.addr.value == nullptr) {
return;
}
GB_ASSERT(value.type != nullptr);
if (is_type_untyped_undef(value.type)) {
Type *t = lb_addr_type(addr);
value.type = t;
value.value = LLVMGetUndef(lb_type(p->module, t));
} else if (is_type_untyped_nil(value.type)) {
Type *t = lb_addr_type(addr);
value.type = t;
value.value = LLVMConstNull(lb_type(p->module, t));
}
if (addr.kind == lbAddr_RelativePointer && addr.relative.deref) {
addr = lb_addr(lb_address_from_load(p, lb_addr_load(p, addr)));
}
if (addr.kind == lbAddr_RelativePointer) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativePointer);
value = lb_emit_conv(p, value, rel_ptr->RelativePointer.pointer_type);
GB_ASSERT(is_type_pointer(addr.addr.type));
lbValue ptr = lb_emit_conv(p, addr.addr, t_uintptr);
lbValue val_ptr = lb_emit_conv(p, value, t_uintptr);
lbValue offset = {};
offset.value = LLVMBuildSub(p->builder, val_ptr.value, ptr.value, "");
offset.type = t_uintptr;
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, rel_ptr->RelativePointer.base_integer);
lbValue offset_ptr = lb_emit_conv(p, addr.addr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_select(p,
lb_emit_comp(p, Token_CmpEq, val_ptr, lb_const_nil(p->module, t_uintptr)),
lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer),
offset
);
LLVMBuildStore(p->builder, offset.value, offset_ptr.value);
return;
} else if (addr.kind == lbAddr_RelativeSlice) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativeSlice);
value = lb_emit_conv(p, value, rel_ptr->RelativeSlice.slice_type);
GB_ASSERT(is_type_pointer(addr.addr.type));
lbValue ptr = lb_emit_conv(p, lb_emit_struct_ep(p, addr.addr, 0), t_uintptr);
lbValue val_ptr = lb_emit_conv(p, lb_slice_elem(p, value), t_uintptr);
lbValue offset = {};
offset.value = LLVMBuildSub(p->builder, val_ptr.value, ptr.value, "");
offset.type = t_uintptr;
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, rel_ptr->RelativePointer.base_integer);
lbValue offset_ptr = lb_emit_conv(p, addr.addr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_select(p,
lb_emit_comp(p, Token_CmpEq, val_ptr, lb_const_nil(p->module, t_uintptr)),
lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer),
offset
);
LLVMBuildStore(p->builder, offset.value, offset_ptr.value);
lbValue len = lb_slice_len(p, value);
len = lb_emit_conv(p, len, rel_ptr->RelativePointer.base_integer);
lbValue len_ptr = lb_emit_struct_ep(p, addr.addr, 1);
LLVMBuildStore(p->builder, len.value, len_ptr.value);
return;
} else if (addr.kind == lbAddr_AtomOp_index_set) {
lbValue ptr = addr.addr;
lbValue index = addr.index_set.index;
Ast *node = addr.index_set.node;
ast_node(ce, CallExpr, node);
Type *proc_type = type_and_value_of_expr(ce->proc).type;
proc_type = base_type(proc_type);
GB_ASSERT(is_type_proc(proc_type));
TypeProc *pt = &proc_type->Proc;
isize arg_count = 3;
isize param_count = 0;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_count = pt->params->Tuple.variables.count;
}
auto args = array_make<lbValue>(heap_allocator(), gb_max(arg_count, param_count));
args[0] = ptr;
args[1] = index;
args[2] = value;
isize arg_index = arg_count;
if (arg_count < param_count) {
lbModule *m = p->module;
String proc_name = {};
if (p->entity != nullptr) {
proc_name = p->entity->token.string;
}
TokenPos pos = ast_token(ce->proc).pos;
TypeTuple *param_tuple = &pt->params->Tuple;
isize end = cast(isize)param_count;
while (arg_index < end) {
Entity *e = param_tuple->variables[arg_index];
GB_ASSERT(e->kind == Entity_Variable);
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[arg_index++] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[arg_index++] = lb_const_nil(m, e->type);
break;
case ParameterValue_Location:
args[arg_index++] = lb_emit_source_code_location(p, proc_name, pos);
break;
case ParameterValue_Value:
args[arg_index++] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
}
}
Entity *e = entity_from_expr(ce->proc);
GB_ASSERT(e != nullptr);
GB_ASSERT(is_type_polymorphic(e->type));
{
lbValue *found = nullptr;
if (p->module != e->code_gen_module) {
gb_mutex_lock(&p->module->mutex);
}
found = map_get(&e->code_gen_module->values, hash_entity(e));
if (p->module != e->code_gen_module) {
gb_mutex_unlock(&p->module->mutex);
}
GB_ASSERT_MSG(found != nullptr, "%.*s", LIT(e->token.string));
lb_emit_call(p, *found, args);
}
return;
} else if (addr.kind == lbAddr_Map) {
lb_insert_dynamic_map_key_and_value(p, addr, addr.map.type, addr.map.key, value, p->curr_stmt);
return;
} else if (addr.kind == lbAddr_BitField) {
Type *bft = base_type(type_deref(addr.addr.type));
GB_ASSERT(is_type_bit_field(bft));
unsigned value_index = cast(unsigned)addr.bit_field.value_index;
i32 size_in_bits = bft->BitField.fields[value_index]->type->BitFieldValue.bits;
if (size_in_bits == 0) {
return;
}
i32 size_in_bytes = next_pow2((size_in_bits+7)/8);
LLVMTypeRef dst_type = LLVMIntTypeInContext(p->module->ctx, size_in_bits);
LLVMValueRef src = LLVMBuildIntCast2(p->builder, value.value, dst_type, false, "");
LLVMValueRef internal_data = LLVMBuildStructGEP(p->builder, addr.addr.value, 1, "");
LLVMValueRef field_ptr = LLVMBuildStructGEP(p->builder, internal_data, value_index, "");
LLVMBuildStore(p->builder, src, field_ptr);
return;
} else if (addr.kind == lbAddr_Context) {
lbValue old = lb_addr_load(p, lb_find_or_generate_context_ptr(p));
lbAddr next_addr = lb_add_local_generated(p, t_context, true);
lb_addr_store(p, next_addr, old);
lb_push_context_onto_stack(p, next_addr);
lbValue next = lb_addr_get_ptr(p, next_addr);
if (addr.ctx.sel.index.count > 0) {
lbValue lhs = lb_emit_deep_field_gep(p, next, addr.ctx.sel);
lbValue rhs = lb_emit_conv(p, value, type_deref(lhs.type));
lb_emit_store(p, lhs, rhs);
} else {
lbValue lhs = next;
lbValue rhs = lb_emit_conv(p, value, lb_addr_type(addr));
lb_emit_store(p, lhs, rhs);
}
return;
} else if (addr.kind == lbAddr_SoaVariable) {
Type *t = type_deref(addr.addr.type);
t = base_type(t);
GB_ASSERT(t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None);
value = lb_emit_conv(p, value, t->Struct.soa_elem);
lbValue index = addr.soa.index;
if (!lb_is_const(index) || t->Struct.soa_kind != StructSoa_Fixed) {
Type *t = base_type(type_deref(addr.addr.type));
GB_ASSERT(t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None);
i64 count = t->Struct.soa_count;
lbValue len = lb_const_int(p->module, t_int, count);
lb_emit_bounds_check(p, ast_token(addr.soa.index_expr), index, len);
}
for_array(i, t->Struct.fields) {
lbValue dst = lb_emit_struct_ep(p, addr.addr, cast(i32)i);
dst = lb_emit_array_ep(p, dst, index);
lbValue src = lb_emit_struct_ev(p, value, cast(i32)i);
lb_emit_store(p, dst, src);
}
return;
}
GB_ASSERT(value.value != nullptr);
value = lb_emit_conv(p, value, lb_addr_type(addr));
LLVMBuildStore(p->builder, value.value, addr.addr.value);
}
void lb_const_store(lbValue ptr, lbValue value) {
GB_ASSERT(lb_is_const(ptr));
GB_ASSERT(lb_is_const(value));
GB_ASSERT(is_type_pointer(ptr.type));
LLVMSetInitializer(ptr.value, value.value);
}
void lb_emit_store(lbProcedure *p, lbValue ptr, lbValue value) {
GB_ASSERT(value.value != nullptr);
Type *a = type_deref(ptr.type);
if (is_type_boolean(a)) {
// NOTE(bill): There are multiple sized booleans, thus force a conversion (if necessarily)
value = lb_emit_conv(p, value, a);
}
Type *ca = core_type(a);
if (ca->kind == Type_Basic) {
GB_ASSERT_MSG(are_types_identical(ca, core_type(value.type)), "%s != %s", type_to_string(a), type_to_string(value.type));
} else {
GB_ASSERT_MSG(are_types_identical(a, value.type), "%s != %s", type_to_string(a), type_to_string(value.type));
}
LLVMBuildStore(p->builder, value.value, ptr.value);
}
lbValue lb_emit_load(lbProcedure *p, lbValue value) {
lbModule *m = p->module;
GB_ASSERT(value.value != nullptr);
Type *t = type_deref(value.type);
LLVMValueRef v = LLVMBuildLoad2(p->builder, lb_type(m, t), value.value, "");
return lbValue{v, t};
}
lbValue lb_addr_load(lbProcedure *p, lbAddr const &addr) {
GB_ASSERT(addr.addr.value != nullptr);
if (addr.kind == lbAddr_RelativePointer) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativePointer);
lbValue ptr = lb_emit_conv(p, addr.addr, t_uintptr);
lbValue offset = lb_emit_conv(p, ptr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_load(p, offset);
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, t_uintptr);
lbValue absolute_ptr = lb_emit_arith(p, Token_Add, ptr, offset, t_uintptr);
absolute_ptr = lb_emit_conv(p, absolute_ptr, rel_ptr->RelativePointer.pointer_type);
lbValue cond = lb_emit_comp(p, Token_CmpEq, offset, lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer));
// NOTE(bill): nil check
lbValue nil_ptr = lb_const_nil(p->module, rel_ptr->RelativePointer.pointer_type);
lbValue final_ptr = {};
final_ptr.type = absolute_ptr.type;
final_ptr.value = LLVMBuildSelect(p->builder, cond.value, nil_ptr.value, absolute_ptr.value, "");
return lb_emit_load(p, final_ptr);
} else if (addr.kind == lbAddr_RelativeSlice) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativeSlice);
lbValue offset_ptr = lb_emit_struct_ep(p, addr.addr, 0);
lbValue ptr = lb_emit_conv(p, offset_ptr, t_uintptr);
lbValue offset = lb_emit_load(p, offset_ptr);
if (!is_type_unsigned(rel_ptr->RelativeSlice.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, t_uintptr);
lbValue absolute_ptr = lb_emit_arith(p, Token_Add, ptr, offset, t_uintptr);
Type *slice_type = base_type(rel_ptr->RelativeSlice.slice_type);
GB_ASSERT(rel_ptr->RelativeSlice.slice_type->kind == Type_Slice);
Type *slice_elem = slice_type->Slice.elem;
Type *slice_elem_ptr = alloc_type_pointer(slice_elem);
absolute_ptr = lb_emit_conv(p, absolute_ptr, slice_elem_ptr);
lbValue cond = lb_emit_comp(p, Token_CmpEq, offset, lb_const_nil(p->module, rel_ptr->RelativeSlice.base_integer));
// NOTE(bill): nil check
lbValue nil_ptr = lb_const_nil(p->module, slice_elem_ptr);
lbValue data = {};
data.type = absolute_ptr.type;
data.value = LLVMBuildSelect(p->builder, cond.value, nil_ptr.value, absolute_ptr.value, "");
lbValue len = lb_emit_load(p, lb_emit_struct_ep(p, addr.addr, 1));
len = lb_emit_conv(p, len, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, data, len);
return lb_addr_load(p, slice);
} else if (addr.kind == lbAddr_Map) {
Type *map_type = base_type(addr.map.type);
lbAddr v = lb_add_local_generated(p, map_type->Map.lookup_result_type, true);
lbValue h = lb_gen_map_header(p, addr.addr, map_type);
lbValue key = lb_gen_map_key(p, addr.map.key, map_type->Map.key);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = h;
args[1] = key;
lbValue ptr = lb_emit_runtime_call(p, "__dynamic_map_get", args);
lbValue ok = lb_emit_conv(p, lb_emit_comp_against_nil(p, Token_NotEq, ptr), t_bool);
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 1), ok);
lbBlock *then = lb_create_block(p, "map.get.then");
lbBlock *done = lb_create_block(p, "map.get.done");
lb_emit_if(p, ok, then, done);
lb_start_block(p, then);
{
// TODO(bill): mem copy it instead?
lbValue gep0 = lb_emit_struct_ep(p, v.addr, 0);
lbValue value = lb_emit_conv(p, ptr, gep0.type);
lb_emit_store(p, gep0, lb_emit_load(p, value));
}
lb_emit_jump(p, done);
lb_start_block(p, done);
if (is_type_tuple(addr.map.result)) {
return lb_addr_load(p, v);
} else {
lbValue single = lb_emit_struct_ep(p, v.addr, 0);
return lb_emit_load(p, single);
}
} else if (addr.kind == lbAddr_BitField) {
Type *bft = base_type(type_deref(addr.addr.type));
GB_ASSERT(is_type_bit_field(bft));
unsigned value_index = cast(unsigned)addr.bit_field.value_index;
i32 size_in_bits = bft->BitField.fields[value_index]->type->BitFieldValue.bits;
i32 size_in_bytes = next_pow2((size_in_bits+7)/8);
if (size_in_bytes == 0) {
GB_ASSERT(size_in_bits == 0);
lbValue res = {};
res.type = t_i32;
res.value = LLVMConstInt(lb_type(p->module, res.type), 0, false);
return res;
}
Type *int_type = nullptr;
switch (size_in_bytes) {
case 1: int_type = t_u8; break;
case 2: int_type = t_u16; break;
case 4: int_type = t_u32; break;
case 8: int_type = t_u64; break;
case 16: int_type = t_u128; break;
}
GB_ASSERT(int_type != nullptr);
LLVMValueRef internal_data = LLVMBuildStructGEP(p->builder, addr.addr.value, 1, "");
LLVMValueRef field_ptr = LLVMBuildStructGEP(p->builder, internal_data, value_index, "");
LLVMValueRef field = LLVMBuildLoad(p->builder, field_ptr, "");
lbValue res = {};
res.type = int_type;
res.value = LLVMBuildZExtOrBitCast(p->builder, field, lb_type(p->module, int_type), "");
return res;
} else if (addr.kind == lbAddr_Context) {
if (addr.ctx.sel.index.count > 0) {
lbValue a = addr.addr;
lbValue b = lb_emit_deep_field_gep(p, a, addr.ctx.sel);
return lb_emit_load(p, b);
} else {
return lb_emit_load(p, addr.addr);
}
} else if (addr.kind == lbAddr_SoaVariable) {
Type *t = type_deref(addr.addr.type);
t = base_type(t);
GB_ASSERT(t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None);
Type *elem = t->Struct.soa_elem;
lbValue len = {};
if (t->Struct.soa_kind == StructSoa_Fixed) {
len = lb_const_int(p->module, t_int, t->Struct.soa_count);
} else {
lbValue v = lb_emit_load(p, addr.addr);
len = lb_soa_struct_len(p, v);
}
lbAddr res = lb_add_local_generated(p, elem, true);
if (!lb_is_const(addr.soa.index) || t->Struct.soa_kind != StructSoa_Fixed) {
lb_emit_bounds_check(p, ast_token(addr.soa.index_expr), addr.soa.index, len);
}
if (t->Struct.soa_kind == StructSoa_Fixed) {
for_array(i, t->Struct.fields) {
Entity *field = t->Struct.fields[i];
Type *base_type = field->type;
GB_ASSERT(base_type->kind == Type_Array);
lbValue dst = lb_emit_struct_ep(p, res.addr, cast(i32)i);
lbValue src_ptr = lb_emit_struct_ep(p, addr.addr, cast(i32)i);
src_ptr = lb_emit_array_ep(p, src_ptr, addr.soa.index);
lbValue src = lb_emit_load(p, src_ptr);
lb_emit_store(p, dst, src);
}
} else {
isize field_count = t->Struct.fields.count;
if (t->Struct.soa_kind == StructSoa_Slice) {
field_count -= 1;
} else if (t->Struct.soa_kind == StructSoa_Dynamic) {
field_count -= 3;
}
for (isize i = 0; i < field_count; i++) {
Entity *field = t->Struct.fields[i];
Type *base_type = field->type;
GB_ASSERT(base_type->kind == Type_Pointer);
Type *elem = base_type->Pointer.elem;
lbValue dst = lb_emit_struct_ep(p, res.addr, cast(i32)i);
lbValue src_ptr = lb_emit_struct_ep(p, addr.addr, cast(i32)i);
src_ptr = lb_emit_ptr_offset(p, src_ptr, addr.soa.index);
lbValue src = lb_emit_load(p, src_ptr);
src = lb_emit_load(p, src);
lb_emit_store(p, dst, src);
}
}
return lb_addr_load(p, res);
}
if (is_type_proc(addr.addr.type)) {
return addr.addr;
}
return lb_emit_load(p, addr.addr);
}
lbValue lb_const_union_tag(lbModule *m, Type *u, Type *v) {
return lb_const_value(m, union_tag_type(u), exact_value_i64(union_variant_index(u, v)));
}
lbValue lb_emit_union_tag_ptr(lbProcedure *p, lbValue u) {
Type *t = u.type;
GB_ASSERT_MSG(is_type_pointer(t) &&
is_type_union(type_deref(t)), "%s", type_to_string(t));
Type *ut = type_deref(t);
GB_ASSERT(!is_type_union_maybe_pointer_original_alignment(ut));
GB_ASSERT(!is_type_union_maybe_pointer(ut));
GB_ASSERT(type_size_of(ut) > 0);
Type *tag_type = union_tag_type(ut);
LLVMTypeRef uvt = LLVMGetElementType(LLVMTypeOf(u.value));
unsigned element_count = LLVMCountStructElementTypes(uvt);
GB_ASSERT_MSG(element_count == 3, "(%s) != (%s)", type_to_string(ut), LLVMPrintTypeToString(uvt));
lbValue tag_ptr = {};
tag_ptr.value = LLVMBuildStructGEP(p->builder, u.value, 2, "");
tag_ptr.type = alloc_type_pointer(tag_type);
return tag_ptr;
}
lbValue lb_emit_union_tag_value(lbProcedure *p, lbValue u) {
lbValue ptr = lb_address_from_load_or_generate_local(p, u);
lbValue tag_ptr = lb_emit_union_tag_ptr(p, ptr);
return lb_emit_load(p, tag_ptr);
}
void lb_emit_store_union_variant_tag(lbProcedure *p, lbValue parent, Type *variant_type) {
Type *t = type_deref(parent.type);
if (is_type_union_maybe_pointer(t) || type_size_of(t) == 0) {
// No tag needed!
} else {
lbValue tag_ptr = lb_emit_union_tag_ptr(p, parent);
lb_emit_store(p, tag_ptr, lb_const_union_tag(p->module, t, variant_type));
}
}
void lb_emit_store_union_variant(lbProcedure *p, lbValue parent, lbValue variant, Type *variant_type) {
gbAllocator a = heap_allocator();
lbValue underlying = lb_emit_conv(p, parent, alloc_type_pointer(variant_type));
lb_emit_store(p, underlying, variant);
lb_emit_store_union_variant_tag(p, parent, variant_type);
}
void lb_clone_struct_type(LLVMTypeRef dst, LLVMTypeRef src) {
unsigned field_count = LLVMCountStructElementTypes(src);
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
LLVMGetStructElementTypes(src, fields);
LLVMStructSetBody(dst, fields, field_count, LLVMIsPackedStruct(src));
gb_free(heap_allocator(), fields);
}
LLVMTypeRef lb_alignment_prefix_type_hack(lbModule *m, i64 alignment) {
switch (alignment) {
case 1:
return LLVMArrayType(lb_type(m, t_u8), 0);
case 2:
return LLVMArrayType(lb_type(m, t_u16), 0);
case 4:
return LLVMArrayType(lb_type(m, t_u32), 0);
case 8:
return LLVMArrayType(lb_type(m, t_u64), 0);
case 16:
return LLVMArrayType(LLVMVectorType(lb_type(m, t_u32), 4), 0);
default:
GB_PANIC("Invalid alignment %d", cast(i32)alignment);
break;
}
return nullptr;
}
bool lb_is_elem_const(Ast *elem, Type *elem_type) {
if (!elem_type_can_be_constant(elem_type)) {
return false;
}
if (elem->kind == Ast_FieldValue) {
elem = elem->FieldValue.value;
}
TypeAndValue tav = type_and_value_of_expr(elem);
GB_ASSERT_MSG(tav.mode != Addressing_Invalid, "%s %s", expr_to_string(elem), type_to_string(tav.type));
return tav.value.kind != ExactValue_Invalid;
}
String lb_mangle_name(lbModule *m, Entity *e) {
gbAllocator a = heap_allocator();
String name = e->token.string;
AstPackage *pkg = e->pkg;
GB_ASSERT_MSG(pkg != nullptr, "Missing package for '%.*s'", LIT(name));
String pkgn = pkg->name;
GB_ASSERT(!rune_is_digit(pkgn[0]));
if (pkgn == "llvm") {
pkgn = str_lit("llvm$");
}
isize max_len = pkgn.len + 1 + name.len + 1;
bool require_suffix_id = is_type_polymorphic(e->type, true);
if ((e->scope->flags & (ScopeFlag_File | ScopeFlag_Pkg)) == 0) {
require_suffix_id = true;
} else if (is_blank_ident(e->token)) {
require_suffix_id = true;
}if (e->flags & EntityFlag_NotExported) {
require_suffix_id = true;
}
if (require_suffix_id) {
max_len += 21;
}
char *new_name = gb_alloc_array(a, char, max_len);
isize new_name_len = gb_snprintf(
new_name, max_len,
"%.*s.%.*s", LIT(pkgn), LIT(name)
);
if (require_suffix_id) {
char *str = new_name + new_name_len-1;
isize len = max_len-new_name_len;
isize extra = gb_snprintf(str, len, "-%llu", cast(unsigned long long)e->id);
new_name_len += extra-1;
}
String mangled_name = make_string((u8 const *)new_name, new_name_len-1);
return mangled_name;
}
String lb_set_nested_type_name_ir_mangled_name(Entity *e, lbProcedure *p) {
// NOTE(bill, 2020-03-08): A polymorphic procedure may take a nested type declaration
// and as a result, the declaration does not have time to determine what it should be
GB_ASSERT(e != nullptr && e->kind == Entity_TypeName);
if (e->TypeName.ir_mangled_name.len != 0) {
return e->TypeName.ir_mangled_name;
}
GB_ASSERT((e->scope->flags & ScopeFlag_File) == 0);
if (p == nullptr) {
Entity *proc = nullptr;
if (e->parent_proc_decl != nullptr) {
proc = e->parent_proc_decl->entity;
} else {
Scope *scope = e->scope;
while (scope != nullptr && (scope->flags & ScopeFlag_Proc) == 0) {
scope = scope->parent;
}
GB_ASSERT(scope != nullptr);
GB_ASSERT(scope->flags & ScopeFlag_Proc);
proc = scope->procedure_entity;
}
GB_ASSERT(proc->kind == Entity_Procedure);
if (proc->code_gen_procedure != nullptr) {
p = proc->code_gen_procedure;
}
}
// NOTE(bill): Generate a new name
// parent_proc.name-guid
String ts_name = e->token.string;
if (p != nullptr) {
isize name_len = p->name.len + 1 + ts_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(heap_allocator(), char, name_len);
u32 guid = ++p->module->nested_type_name_guid;
name_len = gb_snprintf(name_text, name_len, "%.*s.%.*s-%u", LIT(p->name), LIT(ts_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
e->TypeName.ir_mangled_name = name;
return name;
} else {
// NOTE(bill): a nested type be required before its parameter procedure exists. Just give it a temp name for now
isize name_len = 9 + 1 + ts_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(heap_allocator(), char, name_len);
static u32 guid = 0;
guid += 1;
name_len = gb_snprintf(name_text, name_len, "_internal.%.*s-%u", LIT(ts_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
e->TypeName.ir_mangled_name = name;
return name;
}
}
String lb_get_entity_name(lbModule *m, Entity *e, String default_name) {
if (e != nullptr && e->kind == Entity_TypeName && e->TypeName.ir_mangled_name.len != 0) {
return e->TypeName.ir_mangled_name;
}
GB_ASSERT(e != nullptr);
if (e->pkg == nullptr) {
return e->token.string;
}
if (e->kind == Entity_TypeName && (e->scope->flags & ScopeFlag_File) == 0) {
return lb_set_nested_type_name_ir_mangled_name(e, nullptr);
}
String name = {};
bool no_name_mangle = false;
if (e->kind == Entity_Variable) {
bool is_foreign = e->Variable.is_foreign;
bool is_export = e->Variable.is_export;
no_name_mangle = e->Variable.link_name.len > 0 || is_foreign || is_export;
if (e->Variable.link_name.len > 0) {
return e->Variable.link_name;
}
} else if (e->kind == Entity_Procedure && e->Procedure.link_name.len > 0) {
return e->Procedure.link_name;
} else if (e->kind == Entity_Procedure && e->Procedure.is_export) {
no_name_mangle = true;
}
if (!no_name_mangle) {
name = lb_mangle_name(m, e);
}
if (name.len == 0) {
name = e->token.string;
}
if (e->kind == Entity_TypeName) {
if ((e->scope->flags & ScopeFlag_File) == 0) {
gb_printf_err("<<< %.*s %.*s %p\n", LIT(e->token.string), LIT(name), e);
}
e->TypeName.ir_mangled_name = name;
} else if (e->kind == Entity_Procedure) {
e->Procedure.link_name = name;
}
return name;
}
LLVMTypeRef lb_type_internal(lbModule *m, Type *type) {
Type *original_type = type;
LLVMContextRef ctx = m->ctx;
i64 size = type_size_of(type); // Check size
GB_ASSERT(type != t_invalid);
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_llvm_bool: return LLVMInt1TypeInContext(ctx);
case Basic_bool: return LLVMInt8TypeInContext(ctx);
case Basic_b8: return LLVMInt8TypeInContext(ctx);
case Basic_b16: return LLVMInt16TypeInContext(ctx);
case Basic_b32: return LLVMInt32TypeInContext(ctx);
case Basic_b64: return LLVMInt64TypeInContext(ctx);
case Basic_i8: return LLVMInt8TypeInContext(ctx);
case Basic_u8: return LLVMInt8TypeInContext(ctx);
case Basic_i16: return LLVMInt16TypeInContext(ctx);
case Basic_u16: return LLVMInt16TypeInContext(ctx);
case Basic_i32: return LLVMInt32TypeInContext(ctx);
case Basic_u32: return LLVMInt32TypeInContext(ctx);
case Basic_i64: return LLVMInt64TypeInContext(ctx);
case Basic_u64: return LLVMInt64TypeInContext(ctx);
case Basic_i128: return LLVMInt128TypeInContext(ctx);
case Basic_u128: return LLVMInt128TypeInContext(ctx);
case Basic_rune: return LLVMInt32TypeInContext(ctx);
// Basic_f16,
case Basic_f32: return LLVMFloatTypeInContext(ctx);
case Basic_f64: return LLVMDoubleTypeInContext(ctx);
case Basic_f32le: return LLVMFloatTypeInContext(ctx);
case Basic_f64le: return LLVMDoubleTypeInContext(ctx);
case Basic_f32be: return LLVMFloatTypeInContext(ctx);
case Basic_f64be: return LLVMDoubleTypeInContext(ctx);
// Basic_complex32,
case Basic_complex64:
{
char const *name = "..complex64";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_f32),
lb_type(m, t_f32),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_complex128:
{
char const *name = "..complex128";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_f64),
lb_type(m, t_f64),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_quaternion128:
{
char const *name = "..quaternion128";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[4] = {
lb_type(m, t_f32),
lb_type(m, t_f32),
lb_type(m, t_f32),
lb_type(m, t_f32),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_quaternion256:
{
char const *name = "..quaternion256";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[4] = {
lb_type(m, t_f64),
lb_type(m, t_f64),
lb_type(m, t_f64),
lb_type(m, t_f64),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_int: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
case Basic_uint: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
case Basic_uintptr: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
case Basic_rawptr: return LLVMPointerType(LLVMInt8Type(), 0);
case Basic_string:
{
char const *name = "..string";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(m, t_u8), 0),
lb_type(m, t_int),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_cstring: return LLVMPointerType(LLVMInt8Type(), 0);
case Basic_any:
{
char const *name = "..any";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_rawptr),
lb_type(m, t_typeid),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_typeid: return LLVMIntType(8*cast(unsigned)build_context.word_size);
// Endian Specific Types
case Basic_i16le: return LLVMInt16TypeInContext(ctx);
case Basic_u16le: return LLVMInt16TypeInContext(ctx);
case Basic_i32le: return LLVMInt32TypeInContext(ctx);
case Basic_u32le: return LLVMInt32TypeInContext(ctx);
case Basic_i64le: return LLVMInt64TypeInContext(ctx);
case Basic_u64le: return LLVMInt64TypeInContext(ctx);
case Basic_i128le: return LLVMInt128TypeInContext(ctx);
case Basic_u128le: return LLVMInt128TypeInContext(ctx);
case Basic_i16be: return LLVMInt16TypeInContext(ctx);
case Basic_u16be: return LLVMInt16TypeInContext(ctx);
case Basic_i32be: return LLVMInt32TypeInContext(ctx);
case Basic_u32be: return LLVMInt32TypeInContext(ctx);
case Basic_i64be: return LLVMInt64TypeInContext(ctx);
case Basic_u64be: return LLVMInt64TypeInContext(ctx);
case Basic_i128be: return LLVMInt128TypeInContext(ctx);
case Basic_u128be: return LLVMInt128TypeInContext(ctx);
// Untyped types
case Basic_UntypedBool: GB_PANIC("Basic_UntypedBool"); break;
case Basic_UntypedInteger: GB_PANIC("Basic_UntypedInteger"); break;
case Basic_UntypedFloat: GB_PANIC("Basic_UntypedFloat"); break;
case Basic_UntypedComplex: GB_PANIC("Basic_UntypedComplex"); break;
case Basic_UntypedQuaternion: GB_PANIC("Basic_UntypedQuaternion"); break;
case Basic_UntypedString: GB_PANIC("Basic_UntypedString"); break;
case Basic_UntypedRune: GB_PANIC("Basic_UntypedRune"); break;
case Basic_UntypedNil: GB_PANIC("Basic_UntypedNil"); break;
case Basic_UntypedUndef: GB_PANIC("Basic_UntypedUndef"); break;
}
break;
case Type_Named:
{
Type *base = base_type(type->Named.base);
switch (base->kind) {
case Type_Basic:
return lb_type(m, base);
case Type_Named:
case Type_Generic:
case Type_BitFieldValue:
GB_PANIC("INVALID TYPE");
break;
case Type_Opaque:
return lb_type(m, base->Opaque.elem);
case Type_Pointer:
case Type_Array:
case Type_EnumeratedArray:
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
case Type_Enum:
case Type_BitSet:
case Type_SimdVector:
return lb_type(m, base);
// TODO(bill): Deal with this correctly. Can this be named?
case Type_Proc:
return lb_type(m, base);
case Type_Tuple:
return lb_type(m, base);
}
LLVMTypeRef *found = map_get(&m->types, hash_type(base));
if (found) {
LLVMTypeKind kind = LLVMGetTypeKind(*found);
if (kind == LLVMStructTypeKind) {
char const *name = alloc_cstring(heap_allocator(), lb_get_entity_name(m, type->Named.type_name));
LLVMTypeRef llvm_type = LLVMGetTypeByName(m->mod, name);
if (llvm_type != nullptr) {
return llvm_type;
}
llvm_type = LLVMStructCreateNamed(ctx, name);
map_set(&m->types, hash_type(type), llvm_type);
lb_clone_struct_type(llvm_type, *found);
return llvm_type;
}
}
switch (base->kind) {
case Type_Struct:
case Type_Union:
case Type_BitField:
{
char const *name = alloc_cstring(heap_allocator(), lb_get_entity_name(m, type->Named.type_name));
LLVMTypeRef llvm_type = LLVMGetTypeByName(m->mod, name);
if (llvm_type != nullptr) {
return llvm_type;
}
llvm_type = LLVMStructCreateNamed(ctx, name);
map_set(&m->types, hash_type(type), llvm_type);
lb_clone_struct_type(llvm_type, lb_type(m, base));
return llvm_type;
}
}
return lb_type(m, base);
}
case Type_Pointer:
return LLVMPointerType(lb_type(m, type_deref(type)), 0);
case Type_Opaque:
return lb_type(m, base_type(type));
case Type_Array:
return LLVMArrayType(lb_type(m, type->Array.elem), cast(unsigned)type->Array.count);
case Type_EnumeratedArray:
return LLVMArrayType(lb_type(m, type->EnumeratedArray.elem), cast(unsigned)type->EnumeratedArray.count);
case Type_Slice:
{
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(m, type->Slice.elem), 0), // data
lb_type(m, t_int), // len
};
return LLVMStructTypeInContext(ctx, fields, 2, false);
}
break;
case Type_DynamicArray:
{
LLVMTypeRef fields[4] = {
LLVMPointerType(lb_type(m, type->DynamicArray.elem), 0), // data
lb_type(m, t_int), // len
lb_type(m, t_int), // cap
lb_type(m, t_allocator), // allocator
};
return LLVMStructTypeInContext(ctx, fields, 4, false);
}
break;
case Type_Map:
return lb_type(m, type->Map.internal_type);
case Type_Struct:
{
if (type->Struct.is_raw_union) {
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
i64 alignment = type_align_of(type);
unsigned size_of_union = cast(unsigned)type_size_of(type);
fields[0] = lb_alignment_prefix_type_hack(m, alignment);
fields[1] = LLVMArrayType(lb_type(m, t_u8), size_of_union);
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
isize offset = 0;
if (type->Struct.custom_align > 0) {
offset = 1;
}
unsigned field_count = cast(unsigned)(type->Struct.fields.count + offset);
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
GB_ASSERT(fields != nullptr);
defer (gb_free(heap_allocator(), fields));
for_array(i, type->Struct.fields) {
Entity *field = type->Struct.fields[i];
fields[i+offset] = lb_type(m, field->type);
}
if (type->Struct.custom_align > 0) {
fields[0] = lb_alignment_prefix_type_hack(m, type->Struct.custom_align);
}
return LLVMStructTypeInContext(ctx, fields, field_count, type->Struct.is_packed);
}
break;
case Type_Union:
if (type->Union.variants.count == 0) {
return LLVMStructTypeInContext(ctx, nullptr, 0, false);
} else {
// NOTE(bill): The zero size array is used to fix the alignment used in a structure as
// LLVM takes the first element's alignment as the entire alignment (like C)
i64 align = type_align_of(type);
i64 size = type_size_of(type);
if (is_type_union_maybe_pointer_original_alignment(type)) {
LLVMTypeRef fields[1] = {lb_type(m, type->Union.variants[0])};
return LLVMStructTypeInContext(ctx, fields, 1, false);
}
unsigned block_size = cast(unsigned)type->Union.variant_block_size;
LLVMTypeRef fields[3] = {};
unsigned field_count = 1;
fields[0] = lb_alignment_prefix_type_hack(m, align);
if (is_type_union_maybe_pointer(type)) {
field_count += 1;
fields[1] = lb_type(m, type->Union.variants[0]);
} else {
field_count += 2;
if (block_size == align) {
fields[1] = LLVMIntTypeInContext(m->ctx, 8*block_size);
} else {
fields[1] = LLVMArrayType(lb_type(m, t_u8), block_size);
}
fields[2] = lb_type(m, union_tag_type(type));
}
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
break;
case Type_Enum:
return lb_type(m, base_enum_type(type));
case Type_Tuple:
if (type->Tuple.variables.count == 1) {
return lb_type(m, type->Tuple.variables[0]->type);
} else {
unsigned field_count = cast(unsigned)(type->Tuple.variables.count);
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
defer (gb_free(heap_allocator(), fields));
for_array(i, type->Tuple.variables) {
Entity *field = type->Tuple.variables[i];
fields[i] = lb_type(m, field->type);
}
return LLVMStructTypeInContext(ctx, fields, field_count, type->Tuple.is_packed);
}
case Type_Proc:
{
set_procedure_abi_types(heap_allocator(), type);
LLVMTypeRef return_type = LLVMVoidTypeInContext(ctx);
if (type->Proc.return_by_pointer) {
// Void
} else if (type->Proc.abi_compat_result_type != nullptr) {
return_type = lb_type(m, type->Proc.abi_compat_result_type);
}
isize extra_param_count = 0;
if (type->Proc.return_by_pointer) {
extra_param_count += 1;
}
if (type->Proc.calling_convention == ProcCC_Odin) {
extra_param_count += 1;
}
isize param_count = type->Proc.abi_compat_params.count + extra_param_count;
auto param_types = array_make<LLVMTypeRef>(heap_allocator(), 0, param_count);
defer (array_free(&param_types));
if (type->Proc.return_by_pointer) {
array_add(&param_types, LLVMPointerType(lb_type(m, type->Proc.abi_compat_result_type), 0));
}
for_array(i, type->Proc.abi_compat_params) {
Type *param = type->Proc.abi_compat_params[i];
if (param == nullptr) {
continue;
}
if (type->Proc.params->Tuple.variables[i]->flags & EntityFlag_CVarArg) {
GB_ASSERT(i+1 == type->Proc.abi_compat_params.count);
break;
}
if (is_type_tuple(param)) {
param = base_type(param);
for_array(j, param->Tuple.variables) {
Entity *v = param->Tuple.variables[j];
if (v->kind != Entity_Variable) {
// Sanity check
continue;
}
array_add(&param_types, lb_type(m, v->type));
}
} else {
array_add(&param_types, lb_type(m, param));
}
}
if (type->Proc.calling_convention == ProcCC_Odin) {
array_add(&param_types, lb_type(m, t_context_ptr));
}
LLVMTypeRef t = LLVMFunctionType(return_type, param_types.data, cast(unsigned)param_types.count, type->Proc.c_vararg);
return LLVMPointerType(t, 0);
}
break;
case Type_BitFieldValue:
return LLVMIntType(type->BitFieldValue.bits);
case Type_BitField:
{
LLVMTypeRef internal_type = nullptr;
{
GB_ASSERT(type->BitField.fields.count == type->BitField.sizes.count);
unsigned field_count = cast(unsigned)type->BitField.fields.count;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
defer (gb_free(heap_allocator(), fields));
for_array(i, type->BitField.sizes) {
u32 size = type->BitField.sizes[i];
fields[i] = LLVMIntType(size);
}
internal_type = LLVMStructTypeInContext(ctx, fields, field_count, true);
}
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
i64 alignment = 1;
if (type->BitField.custom_align > 0) {
alignment = type->BitField.custom_align;
}
fields[0] = lb_alignment_prefix_type_hack(m, alignment);
fields[1] = internal_type;
return LLVMStructTypeInContext(ctx, fields, field_count, true);
}
break;
case Type_BitSet:
return LLVMIntType(8*cast(unsigned)type_size_of(type));
case Type_SimdVector:
if (type->SimdVector.is_x86_mmx) {
return LLVMX86MMXTypeInContext(ctx);
}
return LLVMVectorType(lb_type(m, type->SimdVector.elem), cast(unsigned)type->SimdVector.count);
case Type_RelativePointer:
return lb_type_internal(m, type->RelativePointer.base_integer);
case Type_RelativeSlice:
{
LLVMTypeRef base_integer = lb_type_internal(m, type->RelativeSlice.base_integer);
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
fields[0] = base_integer;
fields[1] = base_integer;
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
}
GB_PANIC("Invalid type %s", type_to_string(type));
return LLVMInt32TypeInContext(ctx);
}
LLVMTypeRef lb_type(lbModule *m, Type *type) {
type = default_type(type);
LLVMTypeRef *found = map_get(&m->types, hash_type(type));
if (found) {
return *found;
}
LLVMTypeRef llvm_type = lb_type_internal(m, type);
map_set(&m->types, hash_type(type), llvm_type);
return llvm_type;
}
LLVMMetadataRef lb_debug_type_internal(lbModule *m, Type *type) {
Type *original_type = type;
LLVMContextRef ctx = m->ctx;
i64 size = type_size_of(type); // Check size
GB_ASSERT(type != t_invalid);
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_llvm_bool: return LLVMDIBuilderCreateBasicType(m->debug_builder, "llvm bool", 9, 1, 0, LLVMDIFlagZero);
case Basic_bool: return LLVMDIBuilderCreateBasicType(m->debug_builder, "bool", 4, 8, 0, LLVMDIFlagZero);
case Basic_b8: return LLVMDIBuilderCreateBasicType(m->debug_builder, "b8", 2, 8, 0, LLVMDIFlagZero);
case Basic_b16: return LLVMDIBuilderCreateBasicType(m->debug_builder, "b16", 3, 16, 0, LLVMDIFlagZero);
case Basic_b32: return LLVMDIBuilderCreateBasicType(m->debug_builder, "b32", 3, 32, 0, LLVMDIFlagZero);
case Basic_b64: return LLVMDIBuilderCreateBasicType(m->debug_builder, "b64", 3, 64, 0, LLVMDIFlagZero);
case Basic_i8: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i8", 2, 8, 0, LLVMDIFlagZero);
case Basic_u8: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u8", 2, 8, 0, LLVMDIFlagZero);
case Basic_i16: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i16", 3, 16, 0, LLVMDIFlagZero);
case Basic_u16: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u16", 3, 16, 0, LLVMDIFlagZero);
case Basic_i32: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i32", 3, 32, 0, LLVMDIFlagZero);
case Basic_u32: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u32", 3, 32, 0, LLVMDIFlagZero);
case Basic_i64: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i64", 3, 64, 0, LLVMDIFlagZero);
case Basic_u64: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u64", 3, 64, 0, LLVMDIFlagZero);
case Basic_i128: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i128", 4, 128, 0, LLVMDIFlagZero);
case Basic_u128: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u128", 4, 128, 0, LLVMDIFlagZero);
case Basic_rune: return LLVMDIBuilderCreateBasicType(m->debug_builder, "rune", 4, 32, 0, LLVMDIFlagZero);
// Basic_f16,
case Basic_f32: return LLVMDIBuilderCreateBasicType(m->debug_builder, "f32", 3, 32, 0, LLVMDIFlagZero);
case Basic_f64: return LLVMDIBuilderCreateBasicType(m->debug_builder, "f64", 3, 64, 0, LLVMDIFlagZero);
// Basic_complex32,
case Basic_complex64:
{
return nullptr;
// char const *name = "..complex64";
// LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
// if (type != nullptr) {
// return type;
// }
// type = LLVMStructCreateNamed(ctx, name);
// LLVMTypeRef fields[2] = {
// lb_type(m, t_f32),
// lb_type(m, t_f32),
// };
// LLVMStructSetBody(type, fields, 2, false);
// return type;
}
case Basic_complex128:
{
return nullptr;
// char const *name = "..complex128";
// LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
// if (type != nullptr) {
// return type;
// }
// type = LLVMStructCreateNamed(ctx, name);
// LLVMTypeRef fields[2] = {
// lb_type(m, t_f64),
// lb_type(m, t_f64),
// };
// LLVMStructSetBody(type, fields, 2, false);
// return type;
}
case Basic_quaternion128:
{
return nullptr;
// char const *name = "..quaternion128";
// LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
// if (type != nullptr) {
// return type;
// }
// type = LLVMStructCreateNamed(ctx, name);
// LLVMTypeRef fields[4] = {
// lb_type(m, t_f32),
// lb_type(m, t_f32),
// lb_type(m, t_f32),
// lb_type(m, t_f32),
// };
// LLVMStructSetBody(type, fields, 4, false);
// return type;
}
case Basic_quaternion256:
{
return nullptr;
// char const *name = "..quaternion256";
// LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
// if (type != nullptr) {
// return type;
// }
// type = LLVMStructCreateNamed(ctx, name);
// LLVMTypeRef fields[4] = {
// lb_type(m, t_f64),
// lb_type(m, t_f64),
// lb_type(m, t_f64),
// lb_type(m, t_f64),
// };
// LLVMStructSetBody(type, fields, 4, false);
// return type;
}
case Basic_int: return LLVMDIBuilderCreateBasicType(m->debug_builder, "int", 3, 8*cast(unsigned)build_context.word_size, 0, LLVMDIFlagZero);
case Basic_uint: return LLVMDIBuilderCreateBasicType(m->debug_builder, "uint", 4, 8*cast(unsigned)build_context.word_size, 0, LLVMDIFlagZero);
case Basic_uintptr: return LLVMDIBuilderCreateBasicType(m->debug_builder, "uintptr", 7, 8*cast(unsigned)build_context.word_size, 0, LLVMDIFlagZero);
case Basic_rawptr:
return nullptr;
// return LLVMPointerType(LLVMInt8Type(), 0);
case Basic_string:
{
return nullptr;
// char const *name = "..string";
// LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
// if (type != nullptr) {
// return type;
// }
// type = LLVMStructCreateNamed(ctx, name);
// LLVMTypeRef fields[2] = {
// LLVMPointerType(lb_type(m, t_u8), 0),
// lb_type(m, t_int),
// };
// LLVMStructSetBody(type, fields, 2, false);
// return type;
}
case Basic_cstring:
return nullptr;
// return LLVMPointerType(LLVMInt8Type(), 0);
case Basic_any:
{
return nullptr;
// char const *name = "..any";
// LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
// if (type != nullptr) {
// return type;
// }
// type = LLVMStructCreateNamed(ctx, name);
// LLVMTypeRef fields[2] = {
// lb_type(m, t_rawptr),
// lb_type(m, t_typeid),
// };
// LLVMStructSetBody(type, fields, 2, false);
// return type;
}
case Basic_typeid: return LLVMDIBuilderCreateBasicType(m->debug_builder, "typeid", 6, 8*cast(unsigned)build_context.word_size, 0, LLVMDIFlagZero);
// Endian Specific Types
case Basic_i16le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i16le", 5, 16, 0, LLVMDIFlagLittleEndian);
case Basic_u16le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u16le", 5, 16, 0, LLVMDIFlagLittleEndian);
case Basic_i32le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i32le", 5, 32, 0, LLVMDIFlagLittleEndian);
case Basic_u32le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u32le", 5, 32, 0, LLVMDIFlagLittleEndian);
case Basic_i64le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i64le", 5, 64, 0, LLVMDIFlagLittleEndian);
case Basic_u64le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u64le", 5, 64, 0, LLVMDIFlagLittleEndian);
case Basic_i128le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i128le", 6, 128, 0, LLVMDIFlagLittleEndian);
case Basic_u128le: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u128le", 6, 128, 0, LLVMDIFlagLittleEndian);
case Basic_i16be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i16be", 5, 16, 0, LLVMDIFlagBigEndian);
case Basic_u16be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u16be", 5, 16, 0, LLVMDIFlagBigEndian);
case Basic_i32be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i32be", 5, 32, 0, LLVMDIFlagBigEndian);
case Basic_u32be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u32be", 5, 32, 0, LLVMDIFlagBigEndian);
case Basic_i64be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i64be", 5, 64, 0, LLVMDIFlagBigEndian);
case Basic_u64be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u64be", 5, 64, 0, LLVMDIFlagBigEndian);
case Basic_i128be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "i128be", 6, 128, 0, LLVMDIFlagBigEndian);
case Basic_u128be: return LLVMDIBuilderCreateBasicType(m->debug_builder, "u128be", 6, 128, 0, LLVMDIFlagBigEndian);
// Untyped types
case Basic_UntypedBool: GB_PANIC("Basic_UntypedBool"); break;
case Basic_UntypedInteger: GB_PANIC("Basic_UntypedInteger"); break;
case Basic_UntypedFloat: GB_PANIC("Basic_UntypedFloat"); break;
case Basic_UntypedComplex: GB_PANIC("Basic_UntypedComplex"); break;
case Basic_UntypedQuaternion: GB_PANIC("Basic_UntypedQuaternion"); break;
case Basic_UntypedString: GB_PANIC("Basic_UntypedString"); break;
case Basic_UntypedRune: GB_PANIC("Basic_UntypedRune"); break;
case Basic_UntypedNil: GB_PANIC("Basic_UntypedNil"); break;
case Basic_UntypedUndef: GB_PANIC("Basic_UntypedUndef"); break;
}
break;
case Type_Named:
{
return nullptr;
// Type *base = base_type(type->Named.base);
// switch (base->kind) {
// case Type_Basic:
// return lb_type(m, base);
// case Type_Named:
// case Type_Generic:
// case Type_BitFieldValue:
// GB_PANIC("INVALID TYPE");
// break;
// case Type_Opaque:
// return lb_type(m, base->Opaque.elem);
// case Type_Pointer:
// case Type_Array:
// case Type_EnumeratedArray:
// case Type_Slice:
// case Type_DynamicArray:
// case Type_Map:
// case Type_Enum:
// case Type_BitSet:
// case Type_SimdVector:
// return lb_type(m, base);
// // TODO(bill): Deal with this correctly. Can this be named?
// case Type_Proc:
// return lb_type(m, base);
// case Type_Tuple:
// return lb_type(m, base);
// }
// LLVMTypeRef *found = map_get(&m->types, hash_type(base));
// if (found) {
// LLVMTypeKind kind = LLVMGetTypeKind(*found);
// if (kind == LLVMStructTypeKind) {
// char const *name = alloc_cstring(heap_allocator(), lb_get_entity_name(m, type->Named.type_name));
// LLVMTypeRef llvm_type = LLVMGetTypeByName(m->mod, name);
// if (llvm_type != nullptr) {
// return llvm_type;
// }
// llvm_type = LLVMStructCreateNamed(ctx, name);
// map_set(&m->types, hash_type(type), llvm_type);
// lb_clone_struct_type(llvm_type, *found);
// return llvm_type;
// }
// }
// switch (base->kind) {
// case Type_Struct:
// case Type_Union:
// case Type_BitField:
// {
// char const *name = alloc_cstring(heap_allocator(), lb_get_entity_name(m, type->Named.type_name));
// LLVMTypeRef llvm_type = LLVMGetTypeByName(m->mod, name);
// if (llvm_type != nullptr) {
// return llvm_type;
// }
// llvm_type = LLVMStructCreateNamed(ctx, name);
// map_set(&m->types, hash_type(type), llvm_type);
// lb_clone_struct_type(llvm_type, lb_type(m, base));
// return llvm_type;
// }
// }
// return lb_type(m, base);
}
case Type_Pointer:
return nullptr;
// return LLVMPointerType(lb_type(m, type_deref(type)), 0);
case Type_Opaque:
return nullptr;
// return lb_type(m, base_type(type));
case Type_Array:
return nullptr;
// return LLVMArrayType(lb_type(m, type->Array.elem), cast(unsigned)type->Array.count);
case Type_EnumeratedArray:
return nullptr;
// return LLVMArrayType(lb_type(m, type->EnumeratedArray.elem), cast(unsigned)type->EnumeratedArray.count);
case Type_Slice:
{
return nullptr;
// LLVMTypeRef fields[2] = {
// LLVMPointerType(lb_type(m, type->Slice.elem), 0), // data
// lb_type(m, t_int), // len
// };
// return LLVMStructTypeInContext(ctx, fields, 2, false);
}
break;
case Type_DynamicArray:
{
return nullptr;
// LLVMTypeRef fields[4] = {
// LLVMPointerType(lb_type(m, type->DynamicArray.elem), 0), // data
// lb_type(m, t_int), // len
// lb_type(m, t_int), // cap
// lb_type(m, t_allocator), // allocator
// };
// return LLVMStructTypeInContext(ctx, fields, 4, false);
}
break;
case Type_Map:
return nullptr;
// return lb_type(m, type->Map.internal_type);
case Type_Struct:
{
return nullptr;
// if (type->Struct.is_raw_union) {
// unsigned field_count = 2;
// LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
// i64 alignment = type_align_of(type);
// unsigned size_of_union = cast(unsigned)type_size_of(type);
// fields[0] = lb_alignment_prefix_type_hack(m, alignment);
// fields[1] = LLVMArrayType(lb_type(m, t_u8), size_of_union);
// return LLVMStructTypeInContext(ctx, fields, field_count, false);
// }
// isize offset = 0;
// if (type->Struct.custom_align > 0) {
// offset = 1;
// }
// unsigned field_count = cast(unsigned)(type->Struct.fields.count + offset);
// LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
// GB_ASSERT(fields != nullptr);
// defer (gb_free(heap_allocator(), fields));
// for_array(i, type->Struct.fields) {
// Entity *field = type->Struct.fields[i];
// fields[i+offset] = lb_type(m, field->type);
// }
// if (type->Struct.custom_align > 0) {
// fields[0] = lb_alignment_prefix_type_hack(m, type->Struct.custom_align);
// }
// return LLVMStructTypeInContext(ctx, fields, field_count, type->Struct.is_packed);
}
break;
case Type_Union:
return nullptr;
// if (type->Union.variants.count == 0) {
// return LLVMStructTypeInContext(ctx, nullptr, 0, false);
// } else {
// // NOTE(bill): The zero size array is used to fix the alignment used in a structure as
// // LLVM takes the first element's alignment as the entire alignment (like C)
// i64 align = type_align_of(type);
// i64 size = type_size_of(type);
// if (is_type_union_maybe_pointer_original_alignment(type)) {
// LLVMTypeRef fields[1] = {lb_type(m, type->Union.variants[0])};
// return LLVMStructTypeInContext(ctx, fields, 1, false);
// }
// unsigned block_size = cast(unsigned)type->Union.variant_block_size;
// LLVMTypeRef fields[3] = {};
// unsigned field_count = 1;
// fields[0] = lb_alignment_prefix_type_hack(m, align);
// if (is_type_union_maybe_pointer(type)) {
// field_count += 1;
// fields[1] = lb_type(m, type->Union.variants[0]);
// } else {
// field_count += 2;
// if (block_size == align) {
// fields[1] = LLVMIntTypeInContext(m->ctx, 8*block_size);
// } else {
// fields[1] = LLVMArrayType(lb_type(m, t_u8), block_size);
// }
// fields[2] = lb_type(m, union_tag_type(type));
// }
// return LLVMStructTypeInContext(ctx, fields, field_count, false);
// }
// break;
case Type_Enum:
return nullptr;
// return lb_type(m, base_enum_type(type));
case Type_Tuple:
return nullptr;
// if (type->Tuple.variables.count == 1) {
// return lb_type(m, type->Tuple.variables[0]->type);
// } else {
// unsigned field_count = cast(unsigned)(type->Tuple.variables.count);
// LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
// defer (gb_free(heap_allocator(), fields));
// for_array(i, type->Tuple.variables) {
// Entity *field = type->Tuple.variables[i];
// fields[i] = lb_type(m, field->type);
// }
// return LLVMStructTypeInContext(ctx, fields, field_count, type->Tuple.is_packed);
// }
case Type_Proc:
{
return nullptr;
// set_procedure_abi_types(heap_allocator(), type);
// LLVMTypeRef return_type = LLVMVoidTypeInContext(ctx);
// isize offset = 0;
// if (type->Proc.return_by_pointer) {
// offset = 1;
// } else if (type->Proc.abi_compat_result_type != nullptr) {
// return_type = lb_type(m, type->Proc.abi_compat_result_type);
// }
// isize extra_param_count = offset;
// if (type->Proc.calling_convention == ProcCC_Odin) {
// extra_param_count += 1;
// }
// isize param_count = type->Proc.abi_compat_params.count + extra_param_count;
// LLVMTypeRef *param_types = gb_alloc_array(heap_allocator(), LLVMTypeRef, param_count);
// defer (gb_free(heap_allocator(), param_types));
// isize param_index = offset;
// for_array(i, type->Proc.abi_compat_params) {
// Type *param = type->Proc.abi_compat_params[i];
// if (param == nullptr) {
// continue;
// }
// param_types[param_index++] = lb_type(m, param);
// }
// if (type->Proc.return_by_pointer) {
// param_types[0] = LLVMPointerType(lb_type(m, type->Proc.abi_compat_result_type), 0);
// }
// if (type->Proc.calling_convention == ProcCC_Odin) {
// param_types[param_index++] = lb_type(m, t_context_ptr);
// }
// LLVMTypeRef t = LLVMFunctionType(return_type, param_types, cast(unsigned)param_index, type->Proc.c_vararg);
// return LLVMPointerType(t, 0);
}
break;
case Type_BitFieldValue:
return nullptr;
// return LLVMIntType(type->BitFieldValue.bits);
case Type_BitField:
{
return nullptr;
// LLVMTypeRef internal_type = nullptr;
// {
// GB_ASSERT(type->BitField.fields.count == type->BitField.sizes.count);
// unsigned field_count = cast(unsigned)type->BitField.fields.count;
// LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
// defer (gb_free(heap_allocator(), fields));
// for_array(i, type->BitField.sizes) {
// u32 size = type->BitField.sizes[i];
// fields[i] = LLVMIntType(size);
// }
// internal_type = LLVMStructTypeInContext(ctx, fields, field_count, true);
// }
// unsigned field_count = 2;
// LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count);
// i64 alignment = 1;
// if (type->BitField.custom_align > 0) {
// alignment = type->BitField.custom_align;
// }
// fields[0] = lb_alignment_prefix_type_hack(m, alignment);
// fields[1] = internal_type;
// return LLVMStructTypeInContext(ctx, fields, field_count, true);
}
break;
case Type_BitSet:
return nullptr;
// return LLVMIntType(8*cast(unsigned)type_size_of(type));
case Type_SimdVector:
return nullptr;
// if (type->SimdVector.is_x86_mmx) {
// return LLVMX86MMXTypeInContext(ctx);
// }
// return LLVMVectorType(lb_type(m, type->SimdVector.elem), cast(unsigned)type->SimdVector.count);
}
GB_PANIC("Invalid type %s", type_to_string(type));
return nullptr;
}
LLVMMetadataRef lb_debug_type(lbModule *m, Type *type) {
LLVMTypeRef t = lb_type(m, type);
LLVMMetadataRef *found = map_get(&m->debug_values, hash_pointer(t));
if (found != nullptr) {
return *found;
}
LLVMMetadataRef dt = lb_debug_type_internal(m, type);
map_set(&m->debug_values, hash_pointer(t), dt);
return dt;
}
void lb_add_entity(lbModule *m, Entity *e, lbValue val) {
if (e != nullptr) {
map_set(&m->values, hash_entity(e), val);
}
}
void lb_add_member(lbModule *m, String const &name, lbValue val) {
if (name.len > 0) {
string_map_set(&m->members, name, val);
}
}
void lb_add_member(lbModule *m, StringHashKey const &key, lbValue val) {
string_map_set(&m->members, key, val);
}
void lb_add_procedure_value(lbModule *m, lbProcedure *p) {
if (p->entity != nullptr) {
map_set(&m->procedure_values, hash_pointer(p->value), p->entity);
}
string_map_set(&m->procedures, p->name, p);
}
lbValue lb_emit_string(lbProcedure *p, lbValue str_elem, lbValue str_len) {
if (false && lb_is_const(str_elem) && lb_is_const(str_len)) {
LLVMValueRef values[2] = {
str_elem.value,
str_len.value,
};
lbValue res = {};
res.type = t_string;
res.value = LLVMConstNamedStruct(lb_type(p->module, t_string), values, gb_count_of(values));
return res;
} else {
lbAddr res = lb_add_local_generated(p, t_string, false);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 0), str_elem);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 1), str_len);
return lb_addr_load(p, res);
}
}
LLVMAttributeRef lb_create_enum_attribute(LLVMContextRef ctx, char const *name, u64 value) {
unsigned kind = LLVMGetEnumAttributeKindForName(name, gb_strlen(name));
GB_ASSERT(kind != 0);
return LLVMCreateEnumAttribute(ctx, kind, value);
}
void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name, u64 value) {
LLVMAttributeRef attr = lb_create_enum_attribute(p->module->ctx, name, value);
GB_ASSERT(attr != nullptr);
LLVMAddAttributeAtIndex(p->value, cast(unsigned)index, attr);
}
void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name) {
lb_add_proc_attribute_at_index(p, index, name, cast(u64)true);
}
lbProcedure *lb_create_procedure(lbModule *m, Entity *entity) {
GB_ASSERT(entity != nullptr);
String link_name = lb_get_entity_name(m, entity);
{
StringHashKey key = string_hash_string(link_name);
lbValue *found = string_map_get(&m->members, key);
if (found) {
lb_add_entity(m, entity, *found);
lbProcedure **p_found = string_map_get(&m->procedures, key);
GB_ASSERT(p_found != nullptr);
return *p_found;
}
}
lbProcedure *p = gb_alloc_item(heap_allocator(), lbProcedure);
p->module = m;
entity->code_gen_module = m;
entity->code_gen_procedure = p;
p->entity = entity;
p->name = link_name;
DeclInfo *decl = entity->decl_info;
ast_node(pl, ProcLit, decl->proc_lit);
Type *pt = base_type(entity->type);
GB_ASSERT(pt->kind == Type_Proc);
set_procedure_abi_types(heap_allocator(), entity->type);
p->type = entity->type;
p->type_expr = decl->type_expr;
p->body = pl->body;
p->tags = pt->Proc.tags;
p->inlining = ProcInlining_none;
p->is_foreign = entity->Procedure.is_foreign;
p->is_export = entity->Procedure.is_export;
p->is_entry_point = false;
gbAllocator a = heap_allocator();
p->children.allocator = a;
p->params.allocator = a;
p->defer_stmts.allocator = a;
p->blocks.allocator = a;
p->branch_blocks.allocator = a;
p->context_stack.allocator = a;
if (p->is_foreign) {
lb_add_foreign_library_path(p->module, entity->Procedure.foreign_library);
}
char *c_link_name = alloc_cstring(heap_allocator(), p->name);
LLVMTypeRef func_ptr_type = lb_type(m, p->type);
LLVMTypeRef func_type = LLVMGetElementType(func_ptr_type);
p->value = LLVMAddFunction(m->mod, c_link_name, func_type);
lbCallingConventionKind cc_kind = lbCallingConvention_C;
// TODO(bill): Clean up this logic
if (build_context.metrics.os != TargetOs_js) {
cc_kind = lb_calling_convention_map[pt->Proc.calling_convention];
}
LLVMSetFunctionCallConv(p->value, cc_kind);
lbValue proc_value = {p->value, p->type};
lb_add_entity(m, entity, proc_value);
lb_add_member(m, p->name, proc_value);
lb_add_procedure_value(m, p);
if (p->is_export) {
LLVMSetLinkage(p->value, LLVMDLLExportLinkage);
LLVMSetDLLStorageClass(p->value, LLVMDLLExportStorageClass);
LLVMSetVisibility(p->value, LLVMDefaultVisibility);
if (build_context.metrics.os == TargetOs_js) {
char const *export_name = alloc_cstring(heap_allocator(), p->name);
LLVMAddTargetDependentFunctionAttr(p->value, "wasm-export-name", export_name);
}
}
if (p->is_foreign) {
if (build_context.metrics.os == TargetOs_js) {
char const *import_name = alloc_cstring(heap_allocator(), p->name);
char const *module_name = "env";
if (entity->Procedure.foreign_library != nullptr) {
Entity *foreign_library = entity->Procedure.foreign_library;
GB_ASSERT(foreign_library->kind == Entity_LibraryName);
if (foreign_library->LibraryName.paths.count > 0) {
module_name = alloc_cstring(heap_allocator(), foreign_library->LibraryName.paths[0]);
}
}
LLVMAddTargetDependentFunctionAttr(p->value, "wasm-import-name", import_name);
LLVMAddTargetDependentFunctionAttr(p->value, "wasm-import-module", module_name);
}
}
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
lb_add_proc_attribute_at_index(p, 1, "sret");
lb_add_proc_attribute_at_index(p, 1, "noalias");
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.param_count) {
TypeTuple *params = &pt->Proc.params->Tuple;
for (isize i = 0; i < pt->Proc.param_count; i++) {
Entity *e = params->variables[i];
Type *original_type = e->type;
Type *abi_type = pt->Proc.abi_compat_params[i];
if (e->kind != Entity_Variable) continue;
if (i+1 == params->variables.count && pt->Proc.c_vararg) {
continue;
}
if (is_type_tuple(abi_type)) {
for_array(j, abi_type->Tuple.variables) {
Type *tft = abi_type->Tuple.variables[j]->type;
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index+j, "noalias");
}
}
parameter_index += abi_type->Tuple.variables.count;
} else {
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
}
parameter_index += 1;
}
}
}
if (pt->Proc.calling_convention == ProcCC_Odin) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nonnull");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture");
}
{ // Debug Information
unsigned line = cast(unsigned)entity->token.pos.line;
LLVMMetadataRef file = nullptr;
if (entity->file != nullptr) {
cast(LLVMMetadataRef)entity->file->llvm_metadata;
}
LLVMMetadataRef scope = nullptr;
LLVMMetadataRef type = nullptr;
// type = LLVMDIBuilderCreateSubroutineType(m->debug_builder, file, nullptr, 0, LLVMDIFlagZero);
LLVMMetadataRef res = LLVMDIBuilderCreateFunction(m->debug_builder, scope,
cast(char const *)entity->token.string.text, entity->token.string.len,
cast(char const *)p->name.text, p->name.len,
file, line, type,
true, p->body == nullptr,
line, LLVMDIFlagZero, false
);
GB_ASSERT(res != nullptr);
map_set(&m->debug_values, hash_pointer(p), res);
}
return p;
}
lbProcedure *lb_create_dummy_procedure(lbModule *m, String link_name, Type *type) {
{
lbValue *found = string_map_get(&m->members, link_name);
GB_ASSERT(found == nullptr);
}
lbProcedure *p = gb_alloc_item(heap_allocator(), lbProcedure);
p->module = m;
p->name = link_name;
p->type = type;
p->type_expr = nullptr;
p->body = nullptr;
p->tags = 0;
p->inlining = ProcInlining_none;
p->is_foreign = false;
p->is_export = false;
p->is_entry_point = false;
gbAllocator a = heap_allocator();
p->children.allocator = a;
p->params.allocator = a;
p->defer_stmts.allocator = a;
p->blocks.allocator = a;
p->branch_blocks.allocator = a;
p->context_stack.allocator = a;
char *c_link_name = alloc_cstring(heap_allocator(), p->name);
LLVMTypeRef func_ptr_type = lb_type(m, p->type);
LLVMTypeRef func_type = LLVMGetElementType(func_ptr_type);
p->value = LLVMAddFunction(m->mod, c_link_name, func_type);
Type *pt = p->type;
lbCallingConventionKind cc_kind = lbCallingConvention_C;
// TODO(bill): Clean up this logic
if (build_context.metrics.os != TargetOs_js) {
cc_kind = lb_calling_convention_map[pt->Proc.calling_convention];
}
LLVMSetFunctionCallConv(p->value, cc_kind);
lbValue proc_value = {p->value, p->type};
lb_add_member(m, p->name, proc_value);
lb_add_procedure_value(m, p);
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
lb_add_proc_attribute_at_index(p, 1, "sret");
lb_add_proc_attribute_at_index(p, 1, "noalias");
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.param_count) {
TypeTuple *params = &pt->Proc.params->Tuple;
for (isize i = 0; i < pt->Proc.param_count; i++) {
Entity *e = params->variables[i];
Type *original_type = e->type;
Type *abi_type = pt->Proc.abi_compat_params[i];
if (e->kind != Entity_Variable) continue;
if (i+1 == params->variables.count && pt->Proc.c_vararg) {
continue;
}
if (is_type_tuple(abi_type)) {
for_array(j, abi_type->Tuple.variables) {
Type *tft = abi_type->Tuple.variables[j]->type;
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index+j, "noalias");
}
}
parameter_index += abi_type->Tuple.variables.count;
} else {
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
}
parameter_index += 1;
}
}
}
if (pt->Proc.calling_convention == ProcCC_Odin) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nonnull");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture");
}
return p;
}
lbValue lb_value_param(lbProcedure *p, Entity *e, Type *abi_type, i32 index, lbParamPasskind *kind_) {
lbParamPasskind kind = lbParamPass_Value;
if (e != nullptr && !are_types_identical(abi_type, e->type)) {
if (is_type_pointer(abi_type)) {
GB_ASSERT(e->kind == Entity_Variable);
Type *av = core_type(type_deref(abi_type));
if (are_types_identical(av, core_type(e->type))) {
kind = lbParamPass_Pointer;
if (e->flags&EntityFlag_Value) {
kind = lbParamPass_ConstRef;
}
} else {
kind = lbParamPass_BitCast;
}
} else if (is_type_integer(abi_type)) {
kind = lbParamPass_Integer;
} else if (abi_type == t_llvm_bool) {
kind = lbParamPass_Value;
} else if (is_type_boolean(abi_type)) {
kind = lbParamPass_Integer;
} else if (is_type_simd_vector(abi_type)) {
kind = lbParamPass_BitCast;
} else if (is_type_float(abi_type)) {
kind = lbParamPass_BitCast;
} else if (is_type_tuple(abi_type)) {
kind = lbParamPass_Tuple;
} else if (is_type_proc(abi_type)) {
kind = lbParamPass_Value;
} else {
GB_PANIC("Invalid abi type pass kind %s", type_to_string(abi_type));
}
}
if (kind_) *kind_ = kind;
lbValue res = {};
res.value = LLVMGetParam(p->value, cast(unsigned)index);
res.type = abi_type;
return res;
}
lbValue lb_add_param(lbProcedure *p, Entity *e, Ast *expr, Type *abi_type, i32 index) {
lbParamPasskind kind = lbParamPass_Value;
lbValue v = lb_value_param(p, e, abi_type, index, &kind);
array_add(&p->params, v);
lbValue res = {};
switch (kind) {
case lbParamPass_Value: {
lbAddr l = lb_add_local(p, e->type, e, false, index);
lbValue x = v;
if (abi_type == t_llvm_bool) {
x = lb_emit_conv(p, x, t_bool);
}
lb_addr_store(p, l, x);
return x;
}
case lbParamPass_Pointer:
lb_add_entity(p->module, e, v);
return lb_emit_load(p, v);
case lbParamPass_Integer: {
lbAddr l = lb_add_local(p, e->type, e, false, index);
lbValue iptr = lb_emit_conv(p, l.addr, alloc_type_pointer(abi_type));
lb_emit_store(p, iptr, v);
return lb_addr_load(p, l);
}
case lbParamPass_ConstRef:
lb_add_entity(p->module, e, v);
return lb_emit_load(p, v);
case lbParamPass_BitCast: {
lbAddr l = lb_add_local(p, e->type, e, false, index);
lbValue x = lb_emit_transmute(p, v, e->type);
lb_addr_store(p, l, x);
return x;
}
case lbParamPass_Tuple: {
lbAddr l = lb_add_local(p, e->type, e, true, index);
Type *st = struct_type_from_systemv_distribute_struct_fields(abi_type);
lbValue ptr = lb_emit_transmute(p, l.addr, alloc_type_pointer(st));
if (abi_type->Tuple.variables.count > 0) {
array_pop(&p->params);
}
for_array(i, abi_type->Tuple.variables) {
Type *t = abi_type->Tuple.variables[i]->type;
GB_ASSERT(!is_type_tuple(t));
lbParamPasskind elem_kind = lbParamPass_Value;
lbValue elem = lb_value_param(p, nullptr, t, index+cast(i32)i, &elem_kind);
array_add(&p->params, elem);
lbValue dst = lb_emit_struct_ep(p, ptr, cast(i32)i);
lb_emit_store(p, dst, elem);
}
return lb_addr_load(p, l);
}
}
GB_PANIC("Unreachable");
return {};
}
void lb_start_block(lbProcedure *p, lbBlock *b) {
GB_ASSERT(b != nullptr);
if (!b->appended) {
b->appended = true;
LLVMAppendExistingBasicBlock(p->value, b->block);
}
LLVMPositionBuilderAtEnd(p->builder, b->block);
p->curr_block = b;
}
void lb_begin_procedure_body(lbProcedure *p) {
DeclInfo *decl = decl_info_of_entity(p->entity);
if (decl != nullptr) {
for_array(i, decl->labels) {
BlockLabel bl = decl->labels[i];
lbBranchBlocks bb = {bl.label, nullptr, nullptr};
array_add(&p->branch_blocks, bb);
}
}
if (p->tags != 0) {
u64 in = p->tags;
u64 out = p->module->state_flags;
if (in & ProcTag_bounds_check) {
out |= StateFlag_bounds_check;
out &= ~StateFlag_no_bounds_check;
} else if (in & ProcTag_no_bounds_check) {
out |= StateFlag_no_bounds_check;
out &= ~StateFlag_bounds_check;
}
p->module->state_flags = out;
}
p->builder = LLVMCreateBuilder();
p->decl_block = lb_create_block(p, "decls", true);
p->entry_block = lb_create_block(p, "entry", true);
lb_start_block(p, p->entry_block);
GB_ASSERT(p->type != nullptr);
i32 parameter_index = 0;
if (p->type->Proc.return_by_pointer) {
// NOTE(bill): this must be parameter 0
Type *ptr_type = alloc_type_pointer(reduce_tuple_to_single_type(p->type->Proc.results));
Entity *e = alloc_entity_param(nullptr, make_token_ident(str_lit("agg.result")), ptr_type, false, false);
e->flags |= EntityFlag_Sret | EntityFlag_NoAlias;
lbValue return_ptr_value = {};
return_ptr_value.value = LLVMGetParam(p->value, 0);
return_ptr_value.type = alloc_type_pointer(p->type->Proc.abi_compat_result_type);
p->return_ptr = lb_addr(return_ptr_value);
lb_add_entity(p->module, e, return_ptr_value);
parameter_index += 1;
}
if (p->type->Proc.params != nullptr) {
TypeTuple *params = &p->type->Proc.params->Tuple;
auto abi_types = p->type->Proc.abi_compat_params;
for_array(i, params->variables) {
Entity *e = params->variables[i];
if (e->kind != Entity_Variable) {
continue;
}
Type *abi_type = e->type;
if (abi_types.count > 0) {
abi_type = abi_types[i];
}
if (e->token.string != "") {
lb_add_param(p, e, nullptr, abi_type, parameter_index);
}
if (is_type_tuple(abi_type)) {
parameter_index += cast(i32)abi_type->Tuple.variables.count;
} else {
parameter_index += 1;
}
}
}
if (p->type->Proc.has_named_results) {
GB_ASSERT(p->type->Proc.result_count > 0);
TypeTuple *results = &p->type->Proc.results->Tuple;
isize result_index = 0;
for_array(i, results->variables) {
Entity *e = results->variables[i];
if (e->kind != Entity_Variable) {
continue;
}
if (e->token.string != "") {
GB_ASSERT(!is_blank_ident(e->token));
lbAddr res = lb_add_local(p, e->type, e);
lbValue c = {};
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
c = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
c = lb_const_nil(p->module, e->type);
break;
case ParameterValue_Location:
GB_PANIC("ParameterValue_Location");
break;
}
if (c.value != nullptr) {
lb_addr_store(p, res, c);
}
}
result_index += 1;
}
}
if (p->type->Proc.calling_convention == ProcCC_Odin) {
Entity *e = alloc_entity_param(nullptr, make_token_ident(str_lit("__.context_ptr")), t_context_ptr, false, false);
e->flags |= EntityFlag_NoAlias;
lbValue param = {};
param.value = LLVMGetParam(p->value, LLVMCountParams(p->value)-1);
param.type = e->type;
lb_add_entity(p->module, e, param);
lbAddr ctx_addr = {};
ctx_addr.kind = lbAddr_Context;
ctx_addr.addr = param;
lbContextData ctx = {ctx_addr, p->scope_index};
array_add(&p->context_stack, ctx);
}
lb_start_block(p, p->entry_block);
}
void lb_end_procedure_body(lbProcedure *p) {
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMBuildBr(p->builder, p->entry_block->block);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
if (p->type->Proc.result_count == 0) {
LLVMValueRef instr = LLVMGetLastInstruction(p->curr_block->block);
if (!lb_is_instr_terminating(instr)) {
lb_emit_defer_stmts(p, lbDeferExit_Return, nullptr);
LLVMBuildRetVoid(p->builder);
}
} else {
if (p->curr_block->preds.count == 0) {
LLVMValueRef instr = LLVMGetLastInstruction(p->curr_block->block);
if (instr == nullptr) {
// NOTE(bill): Remove dead trailing block
LLVMDeleteBasicBlock(p->curr_block->block);
}
}
}
p->curr_block = nullptr;
p->module->state_flags = 0;
}
void lb_end_procedure(lbProcedure *p) {
LLVMDisposeBuilder(p->builder);
}
void lb_add_edge(lbBlock *from, lbBlock *to) {
LLVMValueRef instr = LLVMGetLastInstruction(from->block);
if (instr == nullptr || !LLVMIsATerminatorInst(instr)) {
array_add(&from->succs, to);
array_add(&to->preds, from);
}
}
lbBlock *lb_create_block(lbProcedure *p, char const *name, bool append) {
lbBlock *b = gb_alloc_item(heap_allocator(), lbBlock);
b->block = LLVMCreateBasicBlockInContext(p->module->ctx, name);
b->appended = false;
if (append) {
b->appended = true;
LLVMAppendExistingBasicBlock(p->value, b->block);
}
b->scope = p->curr_scope;
b->scope_index = p->scope_index;
b->preds.allocator = heap_allocator();
b->succs.allocator = heap_allocator();
array_add(&p->blocks, b);
return b;
}
void lb_emit_jump(lbProcedure *p, lbBlock *target_block) {
if (p->curr_block == nullptr) {
return;
}
LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block);
if (last_instr != nullptr && LLVMIsATerminatorInst(last_instr)) {
return;
}
lb_add_edge(p->curr_block, target_block);
LLVMBuildBr(p->builder, target_block->block);
p->curr_block = nullptr;
}
void lb_emit_if(lbProcedure *p, lbValue cond, lbBlock *true_block, lbBlock *false_block) {
lbBlock *b = p->curr_block;
if (b == nullptr) {
return;
}
LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block);
if (last_instr != nullptr && LLVMIsATerminatorInst(last_instr)) {
return;
}
lb_add_edge(b, true_block);
lb_add_edge(b, false_block);
LLVMValueRef cv = cond.value;
cv = LLVMBuildTruncOrBitCast(p->builder, cv, lb_type(p->module, t_llvm_bool), "");
LLVMBuildCondBr(p->builder, cv, true_block->block, false_block->block);
}
lbValue lb_build_cond(lbProcedure *p, Ast *cond, lbBlock *true_block, lbBlock *false_block) {
GB_ASSERT(cond != nullptr);
GB_ASSERT(true_block != nullptr);
GB_ASSERT(false_block != nullptr);
switch (cond->kind) {
case_ast_node(pe, ParenExpr, cond);
return lb_build_cond(p, pe->expr, true_block, false_block);
case_end;
case_ast_node(ue, UnaryExpr, cond);
if (ue->op.kind == Token_Not) {
return lb_build_cond(p, ue->expr, false_block, true_block);
}
case_end;
case_ast_node(be, BinaryExpr, cond);
if (be->op.kind == Token_CmpAnd) {
lbBlock *block = lb_create_block(p, "cmp.and");
lb_build_cond(p, be->left, block, false_block);
lb_start_block(p, block);
return lb_build_cond(p, be->right, true_block, false_block);
} else if (be->op.kind == Token_CmpOr) {
lbBlock *block = lb_create_block(p, "cmp.or");
lb_build_cond(p, be->left, true_block, block);
lb_start_block(p, block);
return lb_build_cond(p, be->right, true_block, false_block);
}
case_end;
}
lbValue v = lb_build_expr(p, cond);
// v = lb_emit_conv(p, v, t_bool);
v = lb_emit_conv(p, v, t_llvm_bool);
lb_emit_if(p, v, true_block, false_block);
return v;
}
lbAddr lb_add_local(lbProcedure *p, Type *type, Entity *e, bool zero_init, i32 param_index) {
GB_ASSERT(p->decl_block != p->curr_block);
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
char const *name = "";
if (e != nullptr) {
// name = alloc_cstring(heap_allocator(), e->token.string);
}
LLVMTypeRef llvm_type = lb_type(p->module, type);
LLVMValueRef ptr = LLVMBuildAlloca(p->builder, llvm_type, name);
LLVMSetAlignment(ptr, 16); // TODO(bill): Make this configurable
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
if (zero_init) {
LLVMBuildStore(p->builder, LLVMConstNull(lb_type(p->module, type)), ptr);
}
lbValue val = {};
val.value = ptr;
val.type = alloc_type_pointer(type);
if (e != nullptr) {
lb_add_entity(p->module, e, val);
}
return lb_addr(val);
}
lbAddr lb_add_local_generated(lbProcedure *p, Type *type, bool zero_init) {
return lb_add_local(p, type, nullptr, zero_init);
}
void lb_build_nested_proc(lbProcedure *p, AstProcLit *pd, Entity *e) {
GB_ASSERT(pd->body != nullptr);
lbModule *m = p->module;
auto *min_dep_set = &m->info->minimum_dependency_set;
if (ptr_set_exists(min_dep_set, e) == false) {
// NOTE(bill): Nothing depends upon it so doesn't need to be built
return;
}
// NOTE(bill): Generate a new name
// parent.name-guid
String original_name = e->token.string;
String pd_name = original_name;
if (e->Procedure.link_name.len > 0) {
pd_name = e->Procedure.link_name;
}
isize name_len = p->name.len + 1 + pd_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(heap_allocator(), char, name_len);
i32 guid = cast(i32)p->children.count;
name_len = gb_snprintf(name_text, name_len, "%.*s.%.*s-%d", LIT(p->name), LIT(pd_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
set_procedure_abi_types(heap_allocator(), e->type);
e->Procedure.link_name = name;
lbProcedure *nested_proc = lb_create_procedure(p->module, e);
e->code_gen_procedure = nested_proc;
lbValue value = {};
value.value = nested_proc->value;
value.type = nested_proc->type;
lb_add_entity(m, e, value);
array_add(&p->children, nested_proc);
array_add(&m->procedures_to_generate, nested_proc);
}
void lb_add_foreign_library_path(lbModule *m, Entity *e) {
if (e == nullptr) {
return;
}
GB_ASSERT(e->kind == Entity_LibraryName);
GB_ASSERT(e->flags & EntityFlag_Used);
for_array(i, e->LibraryName.paths) {
String library_path = e->LibraryName.paths[i];
if (library_path.len == 0) {
continue;
}
bool ok = true;
for_array(path_index, m->foreign_library_paths) {
String path = m->foreign_library_paths[path_index];
#if defined(GB_SYSTEM_WINDOWS)
if (str_eq_ignore_case(path, library_path)) {
#else
if (str_eq(path, library_path)) {
#endif
ok = false;
break;
}
}
if (ok) {
array_add(&m->foreign_library_paths, library_path);
}
}
}
void lb_build_constant_value_decl(lbProcedure *p, AstValueDecl *vd) {
if (vd == nullptr || vd->is_mutable) {
return;
}
auto *min_dep_set = &p->module->info->minimum_dependency_set;
static i32 global_guid = 0;
for_array(i, vd->names) {
Ast *ident = vd->names[i];
GB_ASSERT(ident->kind == Ast_Ident);
Entity *e = entity_of_node(ident);
GB_ASSERT(e != nullptr);
if (e->kind != Entity_TypeName) {
continue;
}
bool polymorphic_struct = false;
if (e->type != nullptr && e->kind == Entity_TypeName) {
Type *bt = base_type(e->type);
if (bt->kind == Type_Struct) {
polymorphic_struct = bt->Struct.is_polymorphic;
}
}
if (!polymorphic_struct && !ptr_set_exists(min_dep_set, e)) {
continue;
}
if (e->TypeName.ir_mangled_name.len != 0) {
// NOTE(bill): Already set
continue;
}
lb_set_nested_type_name_ir_mangled_name(e, p);
}
for_array(i, vd->names) {
Ast *ident = vd->names[i];
GB_ASSERT(ident->kind == Ast_Ident);
Entity *e = entity_of_node(ident);
GB_ASSERT(e != nullptr);
if (e->kind != Entity_Procedure) {
continue;
}
CheckerInfo *info = p->module->info;
DeclInfo *decl = decl_info_of_entity(e);
ast_node(pl, ProcLit, decl->proc_lit);
if (pl->body != nullptr) {
auto *found = map_get(&info->gen_procs, hash_pointer(ident));
if (found) {
auto procs = *found;
for_array(i, procs) {
Entity *e = procs[i];
if (!ptr_set_exists(min_dep_set, e)) {
continue;
}
DeclInfo *d = decl_info_of_entity(e);
lb_build_nested_proc(p, &d->proc_lit->ProcLit, e);
}
} else {
lb_build_nested_proc(p, pl, e);
}
} else {
// FFI - Foreign function interace
String original_name = e->token.string;
String name = original_name;
if (e->Procedure.is_foreign) {
lb_add_foreign_library_path(p->module, e->Procedure.foreign_library);
}
if (e->Procedure.link_name.len > 0) {
name = e->Procedure.link_name;
}
lbValue *prev_value = string_map_get(&p->module->members, name);
if (prev_value != nullptr) {
// NOTE(bill): Don't do mutliple declarations in the IR
return;
}
set_procedure_abi_types(heap_allocator(), e->type);
e->Procedure.link_name = name;
lbProcedure *nested_proc = lb_create_procedure(p->module, e);
lbValue value = {};
value.value = nested_proc->value;
value.type = nested_proc->type;
array_add(&p->module->procedures_to_generate, nested_proc);
if (p != nullptr) {
array_add(&p->children, nested_proc);
} else {
string_map_set(&p->module->members, name, value);
}
}
}
}
void lb_build_stmt_list(lbProcedure *p, Array<Ast *> const &stmts) {
for_array(i, stmts) {
Ast *stmt = stmts[i];
switch (stmt->kind) {
case_ast_node(vd, ValueDecl, stmt);
lb_build_constant_value_decl(p, vd);
case_end;
case_ast_node(fb, ForeignBlockDecl, stmt);
ast_node(block, BlockStmt, fb->body);
lb_build_stmt_list(p, block->stmts);
case_end;
}
}
for_array(i, stmts) {
lb_build_stmt(p, stmts[i]);
}
}
lbBranchBlocks lb_lookup_branch_blocks(lbProcedure *p, Ast *ident) {
GB_ASSERT(ident->kind == Ast_Ident);
Entity *e = entity_of_node(ident);
GB_ASSERT(e->kind == Entity_Label);
for_array(i, p->branch_blocks) {
lbBranchBlocks *b = &p->branch_blocks[i];
if (b->label == e->Label.node) {
return *b;
}
}
GB_PANIC("Unreachable");
lbBranchBlocks empty = {};
return empty;
}
lbTargetList *lb_push_target_list(lbProcedure *p, Ast *label, lbBlock *break_, lbBlock *continue_, lbBlock *fallthrough_) {
lbTargetList *tl = gb_alloc_item(heap_allocator(), lbTargetList);
tl->prev = p->target_list;
tl->break_ = break_;
tl->continue_ = continue_;
tl->fallthrough_ = fallthrough_;
p->target_list = tl;
if (label != nullptr) { // Set label blocks
GB_ASSERT(label->kind == Ast_Label);
for_array(i, p->branch_blocks) {
lbBranchBlocks *b = &p->branch_blocks[i];
GB_ASSERT(b->label != nullptr && label != nullptr);
GB_ASSERT(b->label->kind == Ast_Label);
if (b->label == label) {
b->break_ = break_;
b->continue_ = continue_;
return tl;
}
}
GB_PANIC("Unreachable");
}
return tl;
}
void lb_pop_target_list(lbProcedure *p) {
p->target_list = p->target_list->prev;
}
void lb_open_scope(lbProcedure *p) {
p->scope_index += 1;
}
void lb_close_scope(lbProcedure *p, lbDeferExitKind kind, lbBlock *block, bool pop_stack=true) {
lb_emit_defer_stmts(p, kind, block);
GB_ASSERT(p->scope_index > 0);
// NOTE(bill): Remove `context`s made in that scope
while (p->context_stack.count > 0) {
lbContextData *ctx = &p->context_stack[p->context_stack.count-1];
if (ctx->scope_index >= p->scope_index) {
array_pop(&p->context_stack);
} else {
break;
}
}
p->scope_index -= 1;
}
void lb_build_when_stmt(lbProcedure *p, AstWhenStmt *ws) {
TypeAndValue tv = type_and_value_of_expr(ws->cond);
GB_ASSERT(is_type_boolean(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Bool);
if (tv.value.value_bool) {
lb_build_stmt_list(p, ws->body->BlockStmt.stmts);
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case Ast_BlockStmt:
lb_build_stmt_list(p, ws->else_stmt->BlockStmt.stmts);
break;
case Ast_WhenStmt:
lb_build_when_stmt(p, &ws->else_stmt->WhenStmt);
break;
default:
GB_PANIC("Invalid 'else' statement in 'when' statement");
break;
}
}
}
void lb_build_range_indexed(lbProcedure *p, lbValue expr, Type *val_type, lbValue count_ptr,
lbValue *val_, lbValue *idx_, lbBlock **loop_, lbBlock **done_) {
lbModule *m = p->module;
lbValue count = {};
Type *expr_type = base_type(type_deref(expr.type));
switch (expr_type->kind) {
case Type_Array:
count = lb_const_int(m, t_int, expr_type->Array.count);
break;
}
lbValue val = {};
lbValue idx = {};
lbBlock *loop = nullptr;
lbBlock *done = nullptr;
lbBlock *body = nullptr;
lbAddr index = lb_add_local_generated(p, t_int, false);
lb_addr_store(p, index, lb_const_int(m, t_int, cast(u64)-1));
loop = lb_create_block(p, "for.index.loop");
lb_emit_jump(p, loop);
lb_start_block(p, loop);
lbValue incr = lb_emit_arith(p, Token_Add, lb_addr_load(p, index), lb_const_int(m, t_int, 1), t_int);
lb_addr_store(p, index, incr);
body = lb_create_block(p, "for.index.body");
done = lb_create_block(p, "for.index.done");
if (count.value == nullptr) {
GB_ASSERT(count_ptr.value != nullptr);
count = lb_emit_load(p, count_ptr);
}
lbValue cond = lb_emit_comp(p, Token_Lt, incr, count);
lb_emit_if(p, cond, body, done);
lb_start_block(p, body);
idx = lb_addr_load(p, index);
switch (expr_type->kind) {
case Type_Array: {
if (val_type != nullptr) {
val = lb_emit_load(p, lb_emit_array_ep(p, expr, idx));
}
break;
}
case Type_EnumeratedArray: {
if (val_type != nullptr) {
val = lb_emit_load(p, lb_emit_array_ep(p, expr, idx));
// NOTE(bill): Override the idx value for the enumeration
Type *index_type = expr_type->EnumeratedArray.index;
if (compare_exact_values(Token_NotEq, expr_type->EnumeratedArray.min_value, exact_value_u64(0))) {
idx = lb_emit_arith(p, Token_Add, idx, lb_const_value(m, index_type, expr_type->EnumeratedArray.min_value), index_type);
}
}
break;
}
case Type_Slice: {
if (val_type != nullptr) {
lbValue elem = lb_slice_elem(p, expr);
val = lb_emit_load(p, lb_emit_ptr_offset(p, elem, idx));
}
break;
}
case Type_DynamicArray: {
if (val_type != nullptr) {
lbValue elem = lb_emit_struct_ep(p, expr, 0);
elem = lb_emit_load(p, elem);
val = lb_emit_load(p, lb_emit_ptr_offset(p, elem, idx));
}
break;
}
case Type_Map: {
lbAddr key = lb_add_local_generated(p, expr_type->Map.key, true);
lbValue entries = lb_map_entries_ptr(p, expr);
lbValue elem = lb_emit_struct_ep(p, entries, 0);
elem = lb_emit_load(p, elem);
lbValue entry = lb_emit_ptr_offset(p, elem, idx);
val = lb_emit_load(p, lb_emit_struct_ep(p, entry, 2));
lbValue hash = lb_emit_struct_ep(p, entry, 0);
if (is_type_string(expr_type->Map.key)) {
lbValue str = lb_emit_struct_ep(p, hash, 1);
lb_addr_store(p, key, lb_emit_load(p, str));
} else {
lbValue hash_ptr = lb_emit_struct_ep(p, hash, 0);
hash_ptr = lb_emit_conv(p, hash_ptr, key.addr.type);
lb_addr_store(p, key, lb_emit_load(p, hash_ptr));
}
idx = lb_addr_load(p, key);
break;
}
default:
GB_PANIC("Cannot do range_indexed of %s", type_to_string(expr_type));
break;
}
if (val_) *val_ = val;
if (idx_) *idx_ = idx;
if (loop_) *loop_ = loop;
if (done_) *done_ = done;
}
void lb_build_range_string(lbProcedure *p, lbValue expr, Type *val_type,
lbValue *val_, lbValue *idx_, lbBlock **loop_, lbBlock **done_) {
lbModule *m = p->module;
lbValue count = lb_const_int(m, t_int, 0);
Type *expr_type = base_type(expr.type);
switch (expr_type->kind) {
case Type_Basic:
count = lb_string_len(p, expr);
break;
default:
GB_PANIC("Cannot do range_string of %s", type_to_string(expr_type));
break;
}
lbValue val = {};
lbValue idx = {};
lbBlock *loop = nullptr;
lbBlock *done = nullptr;
lbBlock *body = nullptr;
lbAddr offset_ = lb_add_local_generated(p, t_int, false);
lb_addr_store(p, offset_, lb_const_int(m, t_int, 0));
loop = lb_create_block(p, "for.string.loop");
lb_emit_jump(p, loop);
lb_start_block(p, loop);
body = lb_create_block(p, "for.string.body");
done = lb_create_block(p, "for.string.done");
lbValue offset = lb_addr_load(p, offset_);
lbValue cond = lb_emit_comp(p, Token_Lt, offset, count);
lb_emit_if(p, cond, body, done);
lb_start_block(p, body);
lbValue str_elem = lb_emit_ptr_offset(p, lb_string_elem(p, expr), offset);
lbValue str_len = lb_emit_arith(p, Token_Sub, count, offset, t_int);
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = lb_emit_string(p, str_elem, str_len);
lbValue rune_and_len = lb_emit_runtime_call(p, "string_decode_rune", args);
lbValue len = lb_emit_struct_ev(p, rune_and_len, 1);
lb_addr_store(p, offset_, lb_emit_arith(p, Token_Add, offset, len, t_int));
idx = offset;
if (val_type != nullptr) {
val = lb_emit_struct_ev(p, rune_and_len, 0);
}
if (val_) *val_ = val;
if (idx_) *idx_ = idx;
if (loop_) *loop_ = loop;
if (done_) *done_ = done;
}
void lb_build_range_interval(lbProcedure *p, AstBinaryExpr *node, Type *val_type,
lbValue *val_, lbValue *idx_, lbBlock **loop_, lbBlock **done_) {
lbModule *m = p->module;
// TODO(bill): How should the behaviour work for lower and upper bounds checking for iteration?
// If 'lower' is changed, should 'val' do so or is that not typical behaviour?
lbValue lower = lb_build_expr(p, node->left);
lbValue upper = {};
lbValue val = {};
lbValue idx = {};
lbBlock *loop = nullptr;
lbBlock *done = nullptr;
lbBlock *body = nullptr;
if (val_type == nullptr) {
val_type = lower.type;
}
lbAddr value = lb_add_local_generated(p, val_type, false);
lb_addr_store(p, value, lower);
lbAddr index = lb_add_local_generated(p, t_int, false);
lb_addr_store(p, index, lb_const_int(m, t_int, 0));
loop = lb_create_block(p, "for.interval.loop");
lb_emit_jump(p, loop);
lb_start_block(p, loop);
body = lb_create_block(p, "for.interval.body");
done = lb_create_block(p, "for.interval.done");
TokenKind op = Token_Lt;
switch (node->op.kind) {
case Token_Ellipsis: op = Token_LtEq; break;
case Token_RangeHalf: op = Token_Lt; break;
default: GB_PANIC("Invalid interval operator"); break;
}
upper = lb_build_expr(p, node->right);
lbValue curr_value = lb_addr_load(p, value);
lbValue cond = lb_emit_comp(p, op, curr_value, upper);
lb_emit_if(p, cond, body, done);
lb_start_block(p, body);
val = lb_addr_load(p, value);
idx = lb_addr_load(p, index);
lb_emit_increment(p, value.addr);
lb_emit_increment(p, index.addr);
if (val_) *val_ = val;
if (idx_) *idx_ = idx;
if (loop_) *loop_ = loop;
if (done_) *done_ = done;
}
void lb_build_range_enum(lbProcedure *p, Type *enum_type, Type *val_type, lbValue *val_, lbValue *idx_, lbBlock **loop_, lbBlock **done_) {
lbModule *m = p->module;
Type *t = enum_type;
GB_ASSERT(is_type_enum(t));
Type *enum_ptr = alloc_type_pointer(t);
t = base_type(t);
Type *core_elem = core_type(t);
GB_ASSERT(t->kind == Type_Enum);
i64 enum_count = t->Enum.fields.count;
lbValue max_count = lb_const_int(m, t_int, enum_count);
lbValue ti = lb_type_info(m, t);
lbValue variant = lb_emit_struct_ep(p, ti, 3);
lbValue eti_ptr = lb_emit_conv(p, variant, t_type_info_enum_ptr);
lbValue values = lb_emit_load(p, lb_emit_struct_ep(p, eti_ptr, 2));
lbValue values_data = lb_slice_elem(p, values);
lbAddr offset_ = lb_add_local_generated(p, t_int, false);
lb_addr_store(p, offset_, lb_const_int(m, t_int, 0));
lbBlock *loop = lb_create_block(p, "for.enum.loop");
lb_emit_jump(p, loop);
lb_start_block(p, loop);
lbBlock *body = lb_create_block(p, "for.enum.body");
lbBlock *done = lb_create_block(p, "for.enum.done");
lbValue offset = lb_addr_load(p, offset_);
lbValue cond = lb_emit_comp(p, Token_Lt, offset, max_count);
lb_emit_if(p, cond, body, done);
lb_start_block(p, body);
lbValue val_ptr = lb_emit_ptr_offset(p, values_data, offset);
lb_emit_increment(p, offset_.addr);
lbValue val = {};
if (val_type != nullptr) {
GB_ASSERT(are_types_identical(enum_type, val_type));
if (is_type_integer(core_elem)) {
lbValue i = lb_emit_load(p, lb_emit_conv(p, val_ptr, t_i64_ptr));
val = lb_emit_conv(p, i, t);
} else {
GB_PANIC("TODO(bill): enum core type %s", type_to_string(core_elem));
}
}
if (val_) *val_ = val;
if (idx_) *idx_ = offset;
if (loop_) *loop_ = loop;
if (done_) *done_ = done;
}
void lb_build_range_tuple(lbProcedure *p, Ast *expr, Type *val0_type, Type *val1_type,
lbValue *val0_, lbValue *val1_, lbBlock **loop_, lbBlock **done_) {
lbBlock *loop = lb_create_block(p, "for.tuple.loop");
lb_emit_jump(p, loop);
lb_start_block(p, loop);
lbBlock *body = lb_create_block(p, "for.tuple.body");
lbBlock *done = lb_create_block(p, "for.tuple.done");
lbValue tuple_value = lb_build_expr(p, expr);
Type *tuple = tuple_value.type;
GB_ASSERT(tuple->kind == Type_Tuple);
i32 tuple_count = cast(i32)tuple->Tuple.variables.count;
i32 cond_index = tuple_count-1;
lbValue cond = lb_emit_struct_ev(p, tuple_value, cond_index);
lb_emit_if(p, cond, body, done);
lb_start_block(p, body);
if (val0_) *val0_ = lb_emit_struct_ev(p, tuple_value, 0);
if (val1_) *val1_ = lb_emit_struct_ev(p, tuple_value, 1);
if (loop_) *loop_ = loop;
if (done_) *done_ = done;
}
void lb_build_range_stmt(lbProcedure *p, AstRangeStmt *rs) {
lb_open_scope(p);
Type *val0_type = nullptr;
Type *val1_type = nullptr;
if (rs->val0 != nullptr && !is_blank_ident(rs->val0)) {
val0_type = type_of_expr(rs->val0);
}
if (rs->val1 != nullptr && !is_blank_ident(rs->val1)) {
val1_type = type_of_expr(rs->val1);
}
if (val0_type != nullptr) {
Entity *e = entity_of_node(rs->val0);
lb_add_local(p, e->type, e, true);
}
if (val1_type != nullptr) {
Entity *e = entity_of_node(rs->val1);
lb_add_local(p, e->type, e, true);
}
lbValue val = {};
lbValue key = {};
lbBlock *loop = nullptr;
lbBlock *done = nullptr;
Ast *expr = unparen_expr(rs->expr);
bool is_map = false;
TypeAndValue tav = type_and_value_of_expr(expr);
if (is_ast_range(expr)) {
lb_build_range_interval(p, &expr->BinaryExpr, val0_type, &val, &key, &loop, &done);
} else if (tav.mode == Addressing_Type) {
lb_build_range_enum(p, type_deref(tav.type), val0_type, &val, &key, &loop, &done);
} else {
Type *expr_type = type_of_expr(expr);
Type *et = base_type(type_deref(expr_type));
switch (et->kind) {
case Type_Map: {
is_map = true;
lbValue map = lb_build_addr_ptr(p, expr);
if (is_type_pointer(type_deref(map.type))) {
map = lb_emit_load(p, map);
}
lbValue entries_ptr = lb_map_entries_ptr(p, map);
lbValue count_ptr = lb_emit_struct_ep(p, entries_ptr, 1);
lb_build_range_indexed(p, map, val1_type, count_ptr, &val, &key, &loop, &done);
break;
}
case Type_Array: {
lbValue array = lb_build_addr_ptr(p, expr);
if (is_type_pointer(type_deref(array.type))) {
array = lb_emit_load(p, array);
}
lbAddr count_ptr = lb_add_local_generated(p, t_int, false);
lb_addr_store(p, count_ptr, lb_const_int(p->module, t_int, et->Array.count));
lb_build_range_indexed(p, array, val0_type, count_ptr.addr, &val, &key, &loop, &done);
break;
}
case Type_EnumeratedArray: {
lbValue array = lb_build_addr_ptr(p, expr);
if (is_type_pointer(type_deref(array.type))) {
array = lb_emit_load(p, array);
}
lbAddr count_ptr = lb_add_local_generated(p, t_int, false);
lb_addr_store(p, count_ptr, lb_const_int(p->module, t_int, et->EnumeratedArray.count));
lb_build_range_indexed(p, array, val0_type, count_ptr.addr, &val, &key, &loop, &done);
break;
}
case Type_DynamicArray: {
lbValue count_ptr = {};
lbValue array = lb_build_addr_ptr(p, expr);
if (is_type_pointer(type_deref(array.type))) {
array = lb_emit_load(p, array);
}
count_ptr = lb_emit_struct_ep(p, array, 1);
lb_build_range_indexed(p, array, val0_type, count_ptr, &val, &key, &loop, &done);
break;
}
case Type_Slice: {
lbValue count_ptr = {};
lbValue slice = lb_build_expr(p, expr);
if (is_type_pointer(slice.type)) {
count_ptr = lb_emit_struct_ep(p, slice, 1);
slice = lb_emit_load(p, slice);
} else {
count_ptr = lb_add_local_generated(p, t_int, false).addr;
lb_emit_store(p, count_ptr, lb_slice_len(p, slice));
}
lb_build_range_indexed(p, slice, val0_type, count_ptr, &val, &key, &loop, &done);
break;
}
case Type_Basic: {
lbValue string = lb_build_expr(p, expr);
if (is_type_pointer(string.type)) {
string = lb_emit_load(p, string);
}
if (is_type_untyped(expr_type)) {
lbAddr s = lb_add_local_generated(p, default_type(string.type), false);
lb_addr_store(p, s, string);
string = lb_addr_load(p, s);
}
Type *t = base_type(string.type);
GB_ASSERT(!is_type_cstring(t));
lb_build_range_string(p, string, val0_type, &val, &key, &loop, &done);
break;
}
case Type_Tuple:
lb_build_range_tuple(p, expr, val0_type, val1_type, &val, &key, &loop, &done);
break;
default:
GB_PANIC("Cannot range over %s", type_to_string(expr_type));
break;
}
}
if (is_map) {
if (val0_type) lb_store_range_stmt_val(p, rs->val0, key);
if (val1_type) lb_store_range_stmt_val(p, rs->val1, val);
} else {
if (val0_type) lb_store_range_stmt_val(p, rs->val0, val);
if (val1_type) lb_store_range_stmt_val(p, rs->val1, key);
}
lb_push_target_list(p, rs->label, done, loop, nullptr);
lb_build_stmt(p, rs->body);
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_pop_target_list(p);
lb_emit_jump(p, loop);
lb_start_block(p, done);
}
void lb_build_inline_range_stmt(lbProcedure *p, AstInlineRangeStmt *rs) {
lbModule *m = p->module;
lb_open_scope(p); // Open scope here
Type *val0_type = nullptr;
Type *val1_type = nullptr;
if (rs->val0 != nullptr && !is_blank_ident(rs->val0)) {
val0_type = type_of_expr(rs->val0);
}
if (rs->val1 != nullptr && !is_blank_ident(rs->val1)) {
val1_type = type_of_expr(rs->val1);
}
if (val0_type != nullptr) {
Entity *e = entity_of_node(rs->val0);
lb_add_local(p, e->type, e, true);
}
if (val1_type != nullptr) {
Entity *e = entity_of_node(rs->val1);
lb_add_local(p, e->type, e, true);
}
lbValue val = {};
lbValue key = {};
lbBlock *loop = nullptr;
lbBlock *done = nullptr;
Ast *expr = unparen_expr(rs->expr);
TypeAndValue tav = type_and_value_of_expr(expr);
if (is_ast_range(expr)) {
lbAddr val0_addr = {};
lbAddr val1_addr = {};
if (val0_type) val0_addr = lb_build_addr(p, rs->val0);
if (val1_type) val1_addr = lb_build_addr(p, rs->val1);
TokenKind op = expr->BinaryExpr.op.kind;
Ast *start_expr = expr->BinaryExpr.left;
Ast *end_expr = expr->BinaryExpr.right;
GB_ASSERT(start_expr->tav.mode == Addressing_Constant);
GB_ASSERT(end_expr->tav.mode == Addressing_Constant);
ExactValue start = start_expr->tav.value;
ExactValue end = end_expr->tav.value;
if (op == Token_Ellipsis) { // .. [start, end]
ExactValue index = exact_value_i64(0);
for (ExactValue val = start;
compare_exact_values(Token_LtEq, val, end);
val = exact_value_increment_one(val), index = exact_value_increment_one(index)) {
if (val0_type) lb_addr_store(p, val0_addr, lb_const_value(m, val0_type, val));
if (val1_type) lb_addr_store(p, val1_addr, lb_const_value(m, val1_type, index));
lb_build_stmt(p, rs->body);
}
} else if (op == Token_RangeHalf) { // ..< [start, end)
ExactValue index = exact_value_i64(0);
for (ExactValue val = start;
compare_exact_values(Token_Lt, val, end);
val = exact_value_increment_one(val), index = exact_value_increment_one(index)) {
if (val0_type) lb_addr_store(p, val0_addr, lb_const_value(m, val0_type, val));
if (val1_type) lb_addr_store(p, val1_addr, lb_const_value(m, val1_type, index));
lb_build_stmt(p, rs->body);
}
}
} else if (tav.mode == Addressing_Type) {
GB_ASSERT(is_type_enum(type_deref(tav.type)));
Type *et = type_deref(tav.type);
Type *bet = base_type(et);
lbAddr val0_addr = {};
lbAddr val1_addr = {};
if (val0_type) val0_addr = lb_build_addr(p, rs->val0);
if (val1_type) val1_addr = lb_build_addr(p, rs->val1);
for_array(i, bet->Enum.fields) {
Entity *field = bet->Enum.fields[i];
GB_ASSERT(field->kind == Entity_Constant);
if (val0_type) lb_addr_store(p, val0_addr, lb_const_value(m, val0_type, field->Constant.value));
if (val1_type) lb_addr_store(p, val1_addr, lb_const_value(m, val1_type, exact_value_i64(i)));
lb_build_stmt(p, rs->body);
}
} else {
lbAddr val0_addr = {};
lbAddr val1_addr = {};
if (val0_type) val0_addr = lb_build_addr(p, rs->val0);
if (val1_type) val1_addr = lb_build_addr(p, rs->val1);
GB_ASSERT(expr->tav.mode == Addressing_Constant);
Type *t = base_type(expr->tav.type);
switch (t->kind) {
case Type_Basic:
GB_ASSERT(is_type_string(t));
{
ExactValue value = expr->tav.value;
GB_ASSERT(value.kind == ExactValue_String);
String str = value.value_string;
Rune codepoint = 0;
isize offset = 0;
do {
isize width = gb_utf8_decode(str.text+offset, str.len-offset, &codepoint);
if (val0_type) lb_addr_store(p, val0_addr, lb_const_value(m, val0_type, exact_value_i64(codepoint)));
if (val1_type) lb_addr_store(p, val1_addr, lb_const_value(m, val1_type, exact_value_i64(offset)));
lb_build_stmt(p, rs->body);
offset += width;
} while (offset < str.len);
}
break;
case Type_Array:
if (t->Array.count > 0) {
lbValue val = lb_build_expr(p, expr);
lbValue val_addr = lb_address_from_load_or_generate_local(p, val);
for (i64 i = 0; i < t->Array.count; i++) {
if (val0_type) {
// NOTE(bill): Due to weird legacy issues in LLVM, this needs to be an i32
lbValue elem = lb_emit_array_epi(p, val_addr, cast(i32)i);
lb_addr_store(p, val0_addr, lb_emit_load(p, elem));
}
if (val1_type) lb_addr_store(p, val1_addr, lb_const_value(m, val1_type, exact_value_i64(i)));
lb_build_stmt(p, rs->body);
}
}
break;
case Type_EnumeratedArray:
if (t->EnumeratedArray.count > 0) {
lbValue val = lb_build_expr(p, expr);
lbValue val_addr = lb_address_from_load_or_generate_local(p, val);
for (i64 i = 0; i < t->EnumeratedArray.count; i++) {
if (val0_type) {
// NOTE(bill): Due to weird legacy issues in LLVM, this needs to be an i32
lbValue elem = lb_emit_array_epi(p, val_addr, cast(i32)i);
lb_addr_store(p, val0_addr, lb_emit_load(p, elem));
}
if (val1_type) {
ExactValue idx = exact_value_add(exact_value_i64(i), t->EnumeratedArray.min_value);
lb_addr_store(p, val1_addr, lb_const_value(m, val1_type, idx));
}
lb_build_stmt(p, rs->body);
}
}
break;
default:
GB_PANIC("Invalid inline for type");
break;
}
}
lb_close_scope(p, lbDeferExit_Default, nullptr);
}
void lb_build_switch_stmt(lbProcedure *p, AstSwitchStmt *ss) {
if (ss->init != nullptr) {
lb_build_stmt(p, ss->init);
}
lbValue tag = lb_const_bool(p->module, t_llvm_bool, true);
if (ss->tag != nullptr) {
tag = lb_build_expr(p, ss->tag);
}
lbBlock *done = lb_create_block(p, "switch.done"); // NOTE(bill): Append later
ast_node(body, BlockStmt, ss->body);
Array<Ast *> default_stmts = {};
lbBlock *default_fall = nullptr;
lbBlock *default_block = nullptr;
lbBlock *fall = nullptr;
isize case_count = body->stmts.count;
for_array(i, body->stmts) {
Ast *clause = body->stmts[i];
ast_node(cc, CaseClause, clause);
lbBlock *body = fall;
if (body == nullptr) {
body = lb_create_block(p, "switch.case.body");
}
fall = done;
if (i+1 < case_count) {
fall = lb_create_block(p, "switch.fall.body");
}
if (cc->list.count == 0) {
// default case
default_stmts = cc->stmts;
default_fall = fall;
default_block = body;
continue;
}
lbBlock *next_cond = nullptr;
for_array(j, cc->list) {
Ast *expr = unparen_expr(cc->list[j]);
next_cond = lb_create_block(p, "switch.case.next");
lbValue cond = lb_const_bool(p->module, t_llvm_bool, false);
if (is_ast_range(expr)) {
ast_node(ie, BinaryExpr, expr);
TokenKind op = Token_Invalid;
switch (ie->op.kind) {
case Token_Ellipsis: op = Token_LtEq; break;
case Token_RangeHalf: op = Token_Lt; break;
default: GB_PANIC("Invalid interval operator"); break;
}
lbValue lhs = lb_build_expr(p, ie->left);
lbValue rhs = lb_build_expr(p, ie->right);
// TODO(bill): do short circuit here
lbValue cond_lhs = lb_emit_comp(p, Token_LtEq, lhs, tag);
lbValue cond_rhs = lb_emit_comp(p, op, tag, rhs);
cond = lb_emit_arith(p, Token_And, cond_lhs, cond_rhs, t_bool);
} else {
if (expr->tav.mode == Addressing_Type) {
GB_ASSERT(is_type_typeid(tag.type));
lbValue e = lb_typeid(p->module, expr->tav.type);
e = lb_emit_conv(p, e, tag.type);
cond = lb_emit_comp(p, Token_CmpEq, tag, e);
} else {
cond = lb_emit_comp(p, Token_CmpEq, tag, lb_build_expr(p, expr));
}
}
lb_emit_if(p, cond, body, next_cond);
lb_start_block(p, next_cond);
}
lb_start_block(p, body);
lb_push_target_list(p, ss->label, done, nullptr, fall);
lb_open_scope(p);
lb_build_stmt_list(p, cc->stmts);
lb_close_scope(p, lbDeferExit_Default, body);
lb_pop_target_list(p);
lb_emit_jump(p, done);
lb_start_block(p, next_cond);
}
if (default_block != nullptr) {
lb_emit_jump(p, default_block);
lb_start_block(p, default_block);
lb_push_target_list(p, ss->label, done, nullptr, default_fall);
lb_open_scope(p);
lb_build_stmt_list(p, default_stmts);
lb_close_scope(p, lbDeferExit_Default, default_block);
lb_pop_target_list(p);
}
lb_emit_jump(p, done);
lb_start_block(p, done);
}
void lb_store_type_case_implicit(lbProcedure *p, Ast *clause, lbValue value) {
Entity *e = implicit_entity_of_node(clause);
GB_ASSERT(e != nullptr);
if (e->flags & EntityFlag_Value) {
// by value
GB_ASSERT(are_types_identical(e->type, value.type));
lbAddr x = lb_add_local(p, e->type, e, false);
lb_addr_store(p, x, value);
} else {
// by reference
GB_ASSERT(are_types_identical(e->type, type_deref(value.type)));
lb_add_entity(p->module, e, value);
}
}
lbAddr lb_store_range_stmt_val(lbProcedure *p, Ast *stmt_val, lbValue value) {
Entity *e = entity_of_node(stmt_val);
if (e == nullptr) {
return {};
}
if ((e->flags & EntityFlag_Value) == 0) {
if (LLVMIsALoadInst(value.value)) {
lbValue ptr = lb_address_from_load_or_generate_local(p, value);
lb_add_entity(p->module, e, ptr);
return lb_addr(ptr);
}
}
// by value
lbAddr addr = lb_add_local(p, e->type, e, false);
lb_addr_store(p, addr, value);
return addr;
}
void lb_type_case_body(lbProcedure *p, Ast *label, Ast *clause, lbBlock *body, lbBlock *done) {
ast_node(cc, CaseClause, clause);
lb_push_target_list(p, label, done, nullptr, nullptr);
lb_open_scope(p);
lb_build_stmt_list(p, cc->stmts);
lb_close_scope(p, lbDeferExit_Default, body);
lb_pop_target_list(p);
lb_emit_jump(p, done);
}
void lb_build_type_switch_stmt(lbProcedure *p, AstTypeSwitchStmt *ss) {
lbModule *m = p->module;
ast_node(as, AssignStmt, ss->tag);
GB_ASSERT(as->lhs.count == 1);
GB_ASSERT(as->rhs.count == 1);
lbValue parent = lb_build_expr(p, as->rhs[0]);
bool is_parent_ptr = is_type_pointer(parent.type);
TypeSwitchKind switch_kind = check_valid_type_switch_type(parent.type);
GB_ASSERT(switch_kind != TypeSwitch_Invalid);
lbValue parent_value = parent;
lbValue parent_ptr = parent;
if (!is_parent_ptr) {
parent_ptr = lb_address_from_load_or_generate_local(p, parent);
}
lbValue tag_index = {};
lbValue union_data = {};
if (switch_kind == TypeSwitch_Union) {
lbValue tag_ptr = lb_emit_union_tag_ptr(p, parent_ptr);
tag_index = lb_emit_load(p, tag_ptr);
union_data = lb_emit_conv(p, parent_ptr, t_rawptr);
}
lbBlock *start_block = lb_create_block(p, "typeswitch.case.first");
lb_emit_jump(p, start_block);
lb_start_block(p, start_block);
// NOTE(bill): Append this later
lbBlock *done = lb_create_block(p, "typeswitch.done");
Ast *default_ = nullptr;
ast_node(body, BlockStmt, ss->body);
gb_local_persist i32 weird_count = 0;
for_array(i, body->stmts) {
Ast *clause = body->stmts[i];
ast_node(cc, CaseClause, clause);
if (cc->list.count == 0) {
default_ = clause;
continue;
}
lbBlock *body = lb_create_block(p, "typeswitch.body");
lbBlock *next = nullptr;
Type *case_type = nullptr;
for_array(type_index, cc->list) {
next = lb_create_block(p, "typeswitch.next");
case_type = type_of_expr(cc->list[type_index]);
lbValue cond = {};
if (switch_kind == TypeSwitch_Union) {
Type *ut = base_type(type_deref(parent.type));
lbValue variant_tag = lb_const_union_tag(m, ut, case_type);
cond = lb_emit_comp(p, Token_CmpEq, tag_index, variant_tag);
} else if (switch_kind == TypeSwitch_Any) {
lbValue any_typeid = lb_emit_load(p, lb_emit_struct_ep(p, parent_ptr, 1));
lbValue case_typeid = lb_typeid(m, case_type);
cond = lb_emit_comp(p, Token_CmpEq, any_typeid, case_typeid);
}
GB_ASSERT(cond.value != nullptr);
lb_emit_if(p, cond, body, next);
lb_start_block(p, next);
}
Entity *case_entity = implicit_entity_of_node(clause);
lbValue value = parent_value;
lb_start_block(p, body);
bool by_reference = (case_entity->flags & EntityFlag_Value) == 0;
if (cc->list.count == 1) {
lbValue data = {};
if (switch_kind == TypeSwitch_Union) {
data = union_data;
} else if (switch_kind == TypeSwitch_Any) {
lbValue any_data = lb_emit_load(p, lb_emit_struct_ep(p, parent_ptr, 0));
data = any_data;
}
Type *ct = case_entity->type;
Type *ct_ptr = alloc_type_pointer(ct);
value = lb_emit_conv(p, data, ct_ptr);
if (!by_reference) {
value = lb_emit_load(p, value);
}
}
lb_store_type_case_implicit(p, clause, value);
lb_type_case_body(p, ss->label, clause, body, done);
lb_start_block(p, next);
}
if (default_ != nullptr) {
lb_store_type_case_implicit(p, default_, parent_value);
lb_type_case_body(p, ss->label, default_, p->curr_block, done);
} else {
lb_emit_jump(p, done);
}
lb_start_block(p, done);
}
lbValue lb_emit_logical_binary_expr(lbProcedure *p, TokenKind op, Ast *left, Ast *right, Type *type) {
lbModule *m = p->module;
lbBlock *rhs = lb_create_block(p, "logical.cmp.rhs");
lbBlock *done = lb_create_block(p, "logical.cmp.done");
type = default_type(type);
lbValue short_circuit = {};
if (op == Token_CmpAnd) {
lb_build_cond(p, left, rhs, done);
short_circuit = lb_const_bool(m, type, false);
} else if (op == Token_CmpOr) {
lb_build_cond(p, left, done, rhs);
short_circuit = lb_const_bool(m, type, true);
}
if (rhs->preds.count == 0) {
lb_start_block(p, done);
return short_circuit;
}
if (done->preds.count == 0) {
lb_start_block(p, rhs);
return lb_build_expr(p, right);
}
Array<LLVMValueRef> incoming_values = {};
Array<LLVMBasicBlockRef> incoming_blocks = {};
array_init(&incoming_values, heap_allocator(), done->preds.count+1);
array_init(&incoming_blocks, heap_allocator(), done->preds.count+1);
for_array(i, done->preds) {
incoming_values[i] = short_circuit.value;
incoming_blocks[i] = done->preds[i]->block;
}
lb_start_block(p, rhs);
lbValue edge = lb_build_expr(p, right);
incoming_values[done->preds.count] = edge.value;
incoming_blocks[done->preds.count] = p->curr_block->block;
lb_emit_jump(p, done);
lb_start_block(p, done);
lbValue res = {};
res.type = type;
res.value = LLVMBuildPhi(p->builder, lb_type(m, type), "");
GB_ASSERT(incoming_values.count == incoming_blocks.count);
LLVMAddIncoming(res.value, incoming_values.data, incoming_blocks.data, cast(unsigned)incoming_values.count);
return res;
}
void lb_build_stmt(lbProcedure *p, Ast *node) {
Ast *prev_stmt = p->curr_stmt;
defer (p->curr_stmt = prev_stmt);
p->curr_stmt = node;
if (p->curr_block != nullptr) {
LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block);
if (lb_is_instr_terminating(last_instr)) {
return;
}
}
u64 prev_state_flags = p->module->state_flags;
defer (p->module->state_flags = prev_state_flags);
if (node->state_flags != 0) {
u64 in = node->state_flags;
u64 out = p->module->state_flags;
if (in & StateFlag_bounds_check) {
out |= StateFlag_bounds_check;
out &= ~StateFlag_no_bounds_check;
} else if (in & StateFlag_no_bounds_check) {
out |= StateFlag_no_bounds_check;
out &= ~StateFlag_bounds_check;
}
p->module->state_flags = out;
}
switch (node->kind) {
case_ast_node(bs, EmptyStmt, node);
case_end;
case_ast_node(us, UsingStmt, node);
case_end;
case_ast_node(ws, WhenStmt, node);
lb_build_when_stmt(p, ws);
case_end;
case_ast_node(bs, BlockStmt, node);
if (bs->label != nullptr) {
lbBlock *done = lb_create_block(p, "block.done");
lbTargetList *tl = lb_push_target_list(p, bs->label, done, nullptr, nullptr);
tl->is_block = true;
lb_open_scope(p);
lb_build_stmt_list(p, bs->stmts);
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_emit_jump(p, done);
lb_start_block(p, done);
} else {
lb_open_scope(p);
lb_build_stmt_list(p, bs->stmts);
lb_close_scope(p, lbDeferExit_Default, nullptr);
}
case_end;
case_ast_node(vd, ValueDecl, node);
if (!vd->is_mutable) {
return;
}
bool is_static = false;
if (vd->names.count > 0) {
Entity *e = entity_of_node(vd->names[0]);
if (e->flags & EntityFlag_Static) {
// NOTE(bill): If one of the entities is static, they all are
is_static = true;
}
}
if (is_static) {
for_array(i, vd->names) {
lbValue value = {};
if (vd->values.count > 0) {
GB_ASSERT(vd->names.count == vd->values.count);
Ast *ast_value = vd->values[i];
GB_ASSERT(ast_value->tav.mode == Addressing_Constant ||
ast_value->tav.mode == Addressing_Invalid);
bool allow_local = false;
value = lb_const_value(p->module, ast_value->tav.type, ast_value->tav.value, allow_local);
}
Ast *ident = vd->names[i];
GB_ASSERT(!is_blank_ident(ident));
Entity *e = entity_of_node(ident);
GB_ASSERT(e->flags & EntityFlag_Static);
String name = e->token.string;
String mangled_name = {};
{
gbString str = gb_string_make_length(heap_allocator(), p->name.text, p->name.len);
str = gb_string_appendc(str, "-");
str = gb_string_append_fmt(str, ".%.*s-%llu", LIT(name), cast(long long)e->id);
mangled_name.text = cast(u8 *)str;
mangled_name.len = gb_string_length(str);
}
char *c_name = alloc_cstring(heap_allocator(), mangled_name);
LLVMValueRef global = LLVMAddGlobal(p->module->mod, lb_type(p->module, e->type), c_name);
LLVMSetInitializer(global, LLVMConstNull(lb_type(p->module, e->type)));
if (value.value != nullptr) {
LLVMSetInitializer(global, value.value);
} else {
}
if (e->Variable.thread_local_model != "") {
LLVMSetThreadLocal(global, true);
String m = e->Variable.thread_local_model;
LLVMThreadLocalMode mode = LLVMGeneralDynamicTLSModel;
if (m == "default") {
mode = LLVMGeneralDynamicTLSModel;
} else if (m == "localdynamic") {
mode = LLVMLocalDynamicTLSModel;
} else if (m == "initialexec") {
mode = LLVMInitialExecTLSModel;
} else if (m == "localexec") {
mode = LLVMLocalExecTLSModel;
} else {
GB_PANIC("Unhandled thread local mode %.*s", LIT(m));
}
LLVMSetThreadLocalMode(global, mode);
} else {
LLVMSetLinkage(global, LLVMInternalLinkage);
}
lbValue global_val = {global, alloc_type_pointer(e->type)};
lb_add_entity(p->module, e, global_val);
lb_add_member(p->module, mangled_name, global_val);
}
return;
}
if (vd->values.count == 0) { // declared and zero-initialized
for_array(i, vd->names) {
Ast *name = vd->names[i];
if (!is_blank_ident(name)) {
Entity *e = entity_of_node(name);
lb_add_local(p, e->type, e, true);
}
}
} else { // Tuple(s)
auto lvals = array_make<lbAddr>(heap_allocator(), 0, vd->names.count);
auto inits = array_make<lbValue>(heap_allocator(), 0, vd->names.count);
for_array(i, vd->names) {
Ast *name = vd->names[i];
lbAddr lval = {};
if (!is_blank_ident(name)) {
Entity *e = entity_of_node(name);
lval = lb_add_local(p, e->type, e, false);
}
array_add(&lvals, lval);
}
for_array(i, vd->values) {
lbValue init = lb_build_expr(p, vd->values[i]);
Type *t = init.type;
if (t->kind == Type_Tuple) {
for_array(i, t->Tuple.variables) {
Entity *e = t->Tuple.variables[i];
lbValue v = lb_emit_struct_ev(p, init, cast(i32)i);
array_add(&inits, v);
}
} else {
array_add(&inits, init);
}
}
for_array(i, inits) {
lbAddr lval = lvals[i];
lbValue init = inits[i];
lb_addr_store(p, lval, init);
}
}
case_end;
case_ast_node(as, AssignStmt, node);
if (as->op.kind == Token_Eq) {
auto lvals = array_make<lbAddr>(heap_allocator(), 0, as->lhs.count);
for_array(i, as->lhs) {
Ast *lhs = as->lhs[i];
lbAddr lval = {};
if (!is_blank_ident(lhs)) {
lval = lb_build_addr(p, lhs);
}
array_add(&lvals, lval);
}
if (as->lhs.count == as->rhs.count) {
if (as->lhs.count == 1) {
lbAddr lval = lvals[0];
Ast *rhs = as->rhs[0];
lbValue init = lb_build_expr(p, rhs);
lb_addr_store(p, lvals[0], init);
} else {
auto inits = array_make<lbValue>(heap_allocator(), 0, lvals.count);
for_array(i, as->rhs) {
lbValue init = lb_build_expr(p, as->rhs[i]);
array_add(&inits, init);
}
for_array(i, inits) {
lbAddr lval = lvals[i];
lbValue init = inits[i];
lb_addr_store(p, lval, init);
}
}
} else {
auto inits = array_make<lbValue>(heap_allocator(), 0, lvals.count);
for_array(i, as->rhs) {
lbValue init = lb_build_expr(p, as->rhs[i]);
Type *t = init.type;
// TODO(bill): refactor for code reuse as this is repeated a bit
if (t->kind == Type_Tuple) {
for_array(i, t->Tuple.variables) {
Entity *e = t->Tuple.variables[i];
lbValue v = lb_emit_struct_ev(p, init, cast(i32)i);
array_add(&inits, v);
}
} else {
array_add(&inits, init);
}
}
for_array(i, inits) {
lbAddr lval = lvals[i];
lbValue init = inits[i];
lb_addr_store(p, lval, init);
}
}
} else {
// NOTE(bill): Only 1 += 1 is allowed, no tuples
// +=, -=, etc
i32 op = cast(i32)as->op.kind;
op += Token_Add - Token_AddEq; // Convert += to +
if (op == Token_CmpAnd || op == Token_CmpOr) {
Type *type = as->lhs[0]->tav.type;
lbValue new_value = lb_emit_logical_binary_expr(p, cast(TokenKind)op, as->lhs[0], as->rhs[0], type);
lbAddr lhs = lb_build_addr(p, as->lhs[0]);
lb_addr_store(p, lhs, new_value);
} else {
lbAddr lhs = lb_build_addr(p, as->lhs[0]);
lbValue value = lb_build_expr(p, as->rhs[0]);
lbValue old_value = lb_addr_load(p, lhs);
Type *type = old_value.type;
lbValue change = lb_emit_conv(p, value, type);
lbValue new_value = lb_emit_arith(p, cast(TokenKind)op, old_value, change, type);
lb_addr_store(p, lhs, new_value);
}
return;
}
case_end;
case_ast_node(es, ExprStmt, node);
lb_build_expr(p, es->expr);
case_end;
case_ast_node(ds, DeferStmt, node);
isize scope_index = p->scope_index;
lb_add_defer_node(p, scope_index, ds->stmt);
case_end;
case_ast_node(rs, ReturnStmt, node);
lbValue res = {};
TypeTuple *tuple = &p->type->Proc.results->Tuple;
isize return_count = p->type->Proc.result_count;
isize res_count = rs->results.count;
if (return_count == 0) {
// No return values
lb_emit_defer_stmts(p, lbDeferExit_Return, nullptr);
LLVMBuildRetVoid(p->builder);
return;
} else if (return_count == 1) {
Entity *e = tuple->variables[0];
if (res_count == 0) {
lbValue *found = map_get(&p->module->values, hash_entity(e));
GB_ASSERT(found);
res = lb_emit_load(p, *found);
} else {
res = lb_build_expr(p, rs->results[0]);
res = lb_emit_conv(p, res, e->type);
}
if (p->type->Proc.has_named_results) {
// NOTE(bill): store the named values before returning
if (e->token.string != "") {
lbValue *found = map_get(&p->module->values, hash_entity(e));
GB_ASSERT(found != nullptr);
lb_emit_store(p, *found, lb_emit_conv(p, res, e->type));
}
}
} else {
auto results = array_make<lbValue>(heap_allocator(), 0, return_count);
if (res_count != 0) {
for (isize res_index = 0; res_index < res_count; res_index++) {
lbValue res = lb_build_expr(p, rs->results[res_index]);
Type *t = res.type;
if (t->kind == Type_Tuple) {
for_array(i, t->Tuple.variables) {
Entity *e = t->Tuple.variables[i];
lbValue v = lb_emit_struct_ev(p, res, cast(i32)i);
array_add(&results, v);
}
} else {
array_add(&results, res);
}
}
} else {
for (isize res_index = 0; res_index < return_count; res_index++) {
Entity *e = tuple->variables[res_index];
lbValue *found = map_get(&p->module->values, hash_entity(e));
GB_ASSERT(found);
lbValue res = lb_emit_load(p, *found);
array_add(&results, res);
}
}
GB_ASSERT(results.count == return_count);
if (p->type->Proc.has_named_results) {
// NOTE(bill): store the named values before returning
for_array(i, p->type->Proc.results->Tuple.variables) {
Entity *e = p->type->Proc.results->Tuple.variables[i];
if (e->kind != Entity_Variable) {
continue;
}
if (e->token.string == "") {
continue;
}
lbValue *found = map_get(&p->module->values, hash_entity(e));
GB_ASSERT(found != nullptr);
lb_emit_store(p, *found, lb_emit_conv(p, results[i], e->type));
}
}
Type *ret_type = p->type->Proc.results;
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
res = lb_add_local_generated(p, ret_type, false).addr;
for_array(i, results) {
Entity *e = tuple->variables[i];
lbValue field = lb_emit_struct_ep(p, res, cast(i32)i);
lbValue val = lb_emit_conv(p, results[i], e->type);
lb_emit_store(p, field, val);
}
res = lb_emit_load(p, res);
}
if (p->type->Proc.return_by_pointer) {
if (res.value != nullptr) {
lb_addr_store(p, p->return_ptr, res);
} else {
lb_addr_store(p, p->return_ptr, lb_const_nil(p->module, p->type->Proc.abi_compat_result_type));
}
lb_emit_defer_stmts(p, lbDeferExit_Return, nullptr);
LLVMBuildRetVoid(p->builder);
} else {
GB_ASSERT_MSG(res.value != nullptr, "%.*s", LIT(p->name));
Type *abi_rt = p->type->Proc.abi_compat_result_type;
if (!are_types_identical(res.type, abi_rt)) {
res = lb_emit_transmute(p, res, abi_rt);
}
lb_emit_defer_stmts(p, lbDeferExit_Return, nullptr);
LLVMBuildRet(p->builder, res.value);
}
case_end;
case_ast_node(is, IfStmt, node);
lb_open_scope(p); // Scope #1
if (is->init != nullptr) {
// TODO(bill): Should this have a separate block to begin with?
#if 1
lbBlock *init = lb_create_block(p, "if.init");
lb_emit_jump(p, init);
lb_start_block(p, init);
#endif
lb_build_stmt(p, is->init);
}
lbBlock *then = lb_create_block(p, "if.then");
lbBlock *done = lb_create_block(p, "if.done");
lbBlock *else_ = done;
if (is->else_stmt != nullptr) {
else_ = lb_create_block(p, "if.else");
}
lb_build_cond(p, is->cond, then, else_);
lb_start_block(p, then);
if (is->label != nullptr) {
lbTargetList *tl = lb_push_target_list(p, is->label, done, nullptr, nullptr);
tl->is_block = true;
}
lb_build_stmt(p, is->body);
lb_emit_jump(p, done);
if (is->else_stmt != nullptr) {
lb_start_block(p, else_);
lb_open_scope(p);
lb_build_stmt(p, is->else_stmt);
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_emit_jump(p, done);
}
lb_start_block(p, done);
lb_close_scope(p, lbDeferExit_Default, nullptr);
case_end;
case_ast_node(fs, ForStmt, node);
lb_open_scope(p); // Open Scope here
if (fs->init != nullptr) {
#if 1
lbBlock *init = lb_create_block(p, "for.init");
lb_emit_jump(p, init);
lb_start_block(p, init);
#endif
lb_build_stmt(p, fs->init);
}
lbBlock *body = lb_create_block(p, "for.body");
lbBlock *done = lb_create_block(p, "for.done"); // NOTE(bill): Append later
lbBlock *loop = body;
if (fs->cond != nullptr) {
loop = lb_create_block(p, "for.loop");
}
lbBlock *post = loop;
if (fs->post != nullptr) {
post = lb_create_block(p, "for.post");
}
lb_emit_jump(p, loop);
lb_start_block(p, loop);
if (loop != body) {
lb_build_cond(p, fs->cond, body, done);
lb_start_block(p, body);
}
lb_push_target_list(p, fs->label, done, post, nullptr);
lb_build_stmt(p, fs->body);
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_pop_target_list(p);
lb_emit_jump(p, post);
if (fs->post != nullptr) {
lb_start_block(p, post);
lb_build_stmt(p, fs->post);
lb_emit_jump(p, loop);
}
lb_start_block(p, done);
case_end;
case_ast_node(rs, RangeStmt, node);
lb_build_range_stmt(p, rs);
case_end;
case_ast_node(rs, InlineRangeStmt, node);
lb_build_inline_range_stmt(p, rs);
case_end;
case_ast_node(ss, SwitchStmt, node);
lb_build_switch_stmt(p, ss);
case_end;
case_ast_node(ss, TypeSwitchStmt, node);
lb_build_type_switch_stmt(p, ss);
case_end;
case_ast_node(bs, BranchStmt, node);
lbBlock *block = nullptr;
if (bs->label != nullptr) {
lbBranchBlocks bb = lb_lookup_branch_blocks(p, bs->label);
switch (bs->token.kind) {
case Token_break: block = bb.break_; break;
case Token_continue: block = bb.continue_; break;
case Token_fallthrough:
GB_PANIC("fallthrough cannot have a label");
break;
}
} else {
for (lbTargetList *t = p->target_list; t != nullptr && block == nullptr; t = t->prev) {
if (t->is_block) {
continue;
}
switch (bs->token.kind) {
case Token_break: block = t->break_; break;
case Token_continue: block = t->continue_; break;
case Token_fallthrough: block = t->fallthrough_; break;
}
}
}
if (block != nullptr) {
lb_emit_defer_stmts(p, lbDeferExit_Branch, block);
}
lb_emit_jump(p, block);
case_end;
}
}
lbValue lb_emit_select(lbProcedure *p, lbValue cond, lbValue x, lbValue y) {
cond = lb_emit_conv(p, cond, t_llvm_bool);
lbValue res = {};
res.value = LLVMBuildSelect(p->builder, cond.value, x.value, y.value, "");
res.type = x.type;
return res;
}
lbValue lb_const_nil(lbModule *m, Type *type) {
LLVMValueRef v = LLVMConstNull(lb_type(m, type));
return lbValue{v, type};
}
lbValue lb_const_undef(lbModule *m, Type *type) {
LLVMValueRef v = LLVMGetUndef(lb_type(m, type));
return lbValue{v, type};
}
lbValue lb_const_int(lbModule *m, Type *type, u64 value) {
lbValue res = {};
res.value = LLVMConstInt(lb_type(m, type), cast(unsigned long long)value, !is_type_unsigned(type));
res.type = type;
return res;
}
lbValue lb_const_string(lbModule *m, String const &value) {
return lb_const_value(m, t_string, exact_value_string(value));
}
lbValue lb_const_bool(lbModule *m, Type *type, bool value) {
lbValue res = {};
res.value = LLVMConstInt(lb_type(m, type), value, false);
res.type = type;
return res;
}
LLVMValueRef lb_const_f32(lbModule *m, f32 f, Type *type=t_f32) {
GB_ASSERT(type_size_of(type) == 4);
u32 u = bit_cast<u32>(f);
if (is_type_different_to_arch_endianness(type)) {
u = gb_endian_swap32(u);
}
LLVMValueRef i = LLVMConstInt(LLVMInt32TypeInContext(m->ctx), u, false);
return LLVMConstBitCast(i, lb_type(m, type));
}
lbValue lb_emit_min(lbProcedure *p, Type *t, lbValue x, lbValue y) {
x = lb_emit_conv(p, x, t);
y = lb_emit_conv(p, y, t);
if (is_type_float(t)) {
gbAllocator a = heap_allocator();
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = x;
args[1] = y;
switch (sz) {
case 32: return lb_emit_runtime_call(p, "min_f32", args);
case 64: return lb_emit_runtime_call(p, "min_f64", args);
}
GB_PANIC("Unknown float type");
}
return lb_emit_select(p, lb_emit_comp(p, Token_Lt, x, y), x, y);
}
lbValue lb_emit_max(lbProcedure *p, Type *t, lbValue x, lbValue y) {
x = lb_emit_conv(p, x, t);
y = lb_emit_conv(p, y, t);
if (is_type_float(t)) {
gbAllocator a = heap_allocator();
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = x;
args[1] = y;
switch (sz) {
case 32: return lb_emit_runtime_call(p, "max_f32", args);
case 64: return lb_emit_runtime_call(p, "max_f64", args);
}
GB_PANIC("Unknown float type");
}
return lb_emit_select(p, lb_emit_comp(p, Token_Gt, x, y), x, y);
}
lbValue lb_emit_clamp(lbProcedure *p, Type *t, lbValue x, lbValue min, lbValue max) {
lbValue z = {};
z = lb_emit_max(p, t, x, min);
z = lb_emit_min(p, t, z, max);
return z;
}
LLVMValueRef lb_find_or_add_entity_string_ptr(lbModule *m, String const &str) {
StringHashKey key = string_hash_string(str);
LLVMValueRef *found = string_map_get(&m->const_strings, key);
if (found != nullptr) {
return *found;
} else {
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef data = LLVMConstStringInContext(m->ctx,
cast(char const *)str.text,
cast(unsigned)str.len,
false);
isize max_len = 7+8+1;
char *name = gb_alloc_array(heap_allocator(), char, max_len);
isize len = gb_snprintf(name, max_len, "csbs$%x", m->global_array_index);
len -= 1;
m->global_array_index++;
LLVMValueRef global_data = LLVMAddGlobal(m->mod, LLVMTypeOf(data), name);
LLVMSetInitializer(global_data, data);
LLVMSetLinkage(global_data, LLVMInternalLinkage);
LLVMValueRef ptr = LLVMConstInBoundsGEP(global_data, indices, 2);
string_map_set(&m->const_strings, key, ptr);
return ptr;
}
}
lbValue lb_find_or_add_entity_string(lbModule *m, String const &str) {
LLVMValueRef ptr = lb_find_or_add_entity_string_ptr(m, str);
LLVMValueRef str_len = LLVMConstInt(lb_type(m, t_int), str.len, true);
LLVMValueRef values[2] = {ptr, str_len};
lbValue res = {};
res.value = LLVMConstNamedStruct(lb_type(m, t_string), values, 2);
res.type = t_string;
return res;
}
lbValue lb_find_or_add_entity_string_byte_slice(lbModule *m, String const &str) {
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef data = LLVMConstStringInContext(m->ctx,
cast(char const *)str.text,
cast(unsigned)str.len,
false);
char *name = nullptr;
{
isize max_len = 7+8+1;
name = gb_alloc_array(heap_allocator(), char, max_len);
isize len = gb_snprintf(name, max_len, "csbs$%x", m->global_array_index);
len -= 1;
m->global_array_index++;
}
LLVMValueRef global_data = LLVMAddGlobal(m->mod, LLVMTypeOf(data), name);
LLVMSetInitializer(global_data, data);
LLVMSetLinkage(global_data, LLVMInternalLinkage);
LLVMValueRef ptr = LLVMConstInBoundsGEP(global_data, indices, 2);
LLVMValueRef len = LLVMConstInt(lb_type(m, t_int), str.len, true);
LLVMValueRef values[2] = {ptr, len};
lbValue res = {};
res.value = LLVMConstNamedStruct(lb_type(m, t_u8_slice), values, 2);
res.type = t_u8_slice;
return res;
}
isize lb_type_info_index(CheckerInfo *info, Type *type, bool err_on_not_found=true) {
isize index = type_info_index(info, type, false);
if (index >= 0) {
auto *set = &info->minimum_dependency_type_info_set;
for_array(i, set->entries) {
if (set->entries[i].ptr == index) {
return i+1;
}
}
}
if (err_on_not_found) {
GB_PANIC("NOT FOUND lb_type_info_index %s @ index %td", type_to_string(type), index);
}
return -1;
}
lbValue lb_typeid(lbModule *m, Type *type, Type *typeid_type) {
type = default_type(type);
u64 id = cast(u64)lb_type_info_index(m->info, type);
GB_ASSERT(id >= 0);
u64 kind = Typeid_Invalid;
u64 named = is_type_named(type) && type->kind != Type_Basic;
u64 special = 0;
u64 reserved = 0;
Type *bt = base_type(type);
TypeKind tk = bt->kind;
switch (tk) {
case Type_Basic: {
u32 flags = bt->Basic.flags;
if (flags & BasicFlag_Boolean) kind = Typeid_Boolean;
if (flags & BasicFlag_Integer) kind = Typeid_Integer;
if (flags & BasicFlag_Unsigned) kind = Typeid_Integer;
if (flags & BasicFlag_Float) kind = Typeid_Float;
if (flags & BasicFlag_Complex) kind = Typeid_Complex;
if (flags & BasicFlag_Pointer) kind = Typeid_Pointer;
if (flags & BasicFlag_String) kind = Typeid_String;
if (flags & BasicFlag_Rune) kind = Typeid_Rune;
} break;
case Type_Pointer: kind = Typeid_Pointer; break;
case Type_Array: kind = Typeid_Array; break;
case Type_EnumeratedArray: kind = Typeid_Enumerated_Array; break;
case Type_Slice: kind = Typeid_Slice; break;
case Type_DynamicArray: kind = Typeid_Dynamic_Array; break;
case Type_Map: kind = Typeid_Map; break;
case Type_Struct: kind = Typeid_Struct; break;
case Type_Enum: kind = Typeid_Enum; break;
case Type_Union: kind = Typeid_Union; break;
case Type_Tuple: kind = Typeid_Tuple; break;
case Type_Proc: kind = Typeid_Procedure; break;
case Type_BitField: kind = Typeid_Bit_Field; break;
case Type_BitSet: kind = Typeid_Bit_Set; break;
case Type_Opaque: kind = Typeid_Opaque; break;
case Type_SimdVector: kind = Typeid_Simd_Vector; break;
case Type_RelativePointer: kind = Typeid_Relative_Pointer; break;
case Type_RelativeSlice: kind = Typeid_Relative_Slice; break;
}
if (is_type_cstring(type)) {
special = 1;
} else if (is_type_integer(type) && !is_type_unsigned(type)) {
special = 1;
}
u64 data = 0;
if (build_context.word_size == 4) {
data |= (id &~ (1u<<24)) << 0u; // index
data |= (kind &~ (1u<<5)) << 24u; // kind
data |= (named &~ (1u<<1)) << 29u; // kind
data |= (special &~ (1u<<1)) << 30u; // kind
data |= (reserved &~ (1u<<1)) << 31u; // kind
} else {
GB_ASSERT(build_context.word_size == 8);
data |= (id &~ (1ull<<56)) << 0ul; // index
data |= (kind &~ (1ull<<5)) << 56ull; // kind
data |= (named &~ (1ull<<1)) << 61ull; // kind
data |= (special &~ (1ull<<1)) << 62ull; // kind
data |= (reserved &~ (1ull<<1)) << 63ull; // kind
}
lbValue res = {};
res.value = LLVMConstInt(lb_type(m, typeid_type), data, false);
res.type = typeid_type;
return res;
}
lbValue lb_type_info(lbModule *m, Type *type) {
type = default_type(type);
isize index = lb_type_info_index(m->info, type);
GB_ASSERT(index >= 0);
LLVMTypeRef it = lb_type(m, t_int);
LLVMValueRef indices[2] = {
LLVMConstInt(it, 0, false),
LLVMConstInt(it, index, true),
};
lbValue value = {};
value.value = LLVMConstGEP(lb_global_type_info_data.addr.value, indices, gb_count_of(indices));
value.type = t_type_info_ptr;
return value;
}
lbValue lb_const_value(lbModule *m, Type *type, ExactValue value, bool allow_local) {
LLVMContextRef ctx = m->ctx;
type = default_type(type);
Type *original_type = type;
lbValue res = {};
res.type = original_type;
type = core_type(type);
value = convert_exact_value_for_type(value, type);
if (value.kind == ExactValue_Typeid) {
return lb_typeid(m, value.value_typeid, original_type);
}
if (value.kind == ExactValue_Invalid) {
return lb_const_nil(m, type);
}
if (value.kind == ExactValue_Procedure) {
Ast *expr = unparen_expr(value.value_procedure);
if (expr->kind == Ast_ProcLit) {
return lb_generate_anonymous_proc_lit(m, str_lit("_proclit"), expr);
}
Entity *e = entity_from_expr(expr);
e = strip_entity_wrapping(e);
GB_ASSERT(e != nullptr);
auto *found = map_get(&m->values, hash_entity(e));
if (found) {
return *found;
}
GB_PANIC("Error in: %.*s(%td:%td), missing procedure %.*s\n", LIT(e->token.pos.file), e->token.pos.line, e->token.pos.column, LIT(e->token.string));
}
// GB_ASSERT_MSG(is_type_typed(type), "%s", type_to_string(type));
if (is_type_slice(type)) {
if (value.kind == ExactValue_String) {
GB_ASSERT(is_type_u8_slice(type));
res.value = lb_find_or_add_entity_string_byte_slice(m, value.value_string).value;
return res;
} else {
ast_node(cl, CompoundLit, value.value_compound);
isize count = cl->elems.count;
if (count == 0) {
return lb_const_nil(m, type);
}
count = gb_max(cl->max_count, count);
Type *elem = base_type(type)->Slice.elem;
Type *t = alloc_type_array(elem, count);
lbValue backing_array = lb_const_value(m, t, value, allow_local);
LLVMValueRef array_data = nullptr;
if (allow_local && m->curr_procedure != nullptr) {
// NOTE(bill, 2020-06-08): This is a bit of a hack but a "constant" slice needs
// its backing data on the stack
lbProcedure *p = m->curr_procedure;
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMTypeRef llvm_type = lb_type(m, t);
array_data = LLVMBuildAlloca(p->builder, llvm_type, "");
LLVMSetAlignment(array_data, 16); // TODO(bill): Make this configurable
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
LLVMBuildStore(p->builder, backing_array.value, array_data);
{
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef ptr = LLVMBuildInBoundsGEP(p->builder, array_data, indices, 2, "");
LLVMValueRef len = LLVMConstInt(lb_type(m, t_int), count, true);
lbAddr slice = lb_add_local_generated(p, type, false);
lb_fill_slice(p, slice, {ptr, alloc_type_pointer(elem)}, {len, t_int});
return lb_addr_load(p, slice);
}
} else {
isize max_len = 7+8+1;
char *str = gb_alloc_array(heap_allocator(), char, max_len);
isize len = gb_snprintf(str, max_len, "csba$%x", m->global_array_index);
m->global_array_index++;
String name = make_string(cast(u8 *)str, len-1);
Entity *e = alloc_entity_constant(nullptr, make_token_ident(name), t, value);
array_data = LLVMAddGlobal(m->mod, lb_type(m, t), str);
LLVMSetInitializer(array_data, backing_array.value);
lbValue g = {};
g.value = array_data;
g.type = t;
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
{
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef ptr = LLVMConstInBoundsGEP(array_data, indices, 2);
LLVMValueRef len = LLVMConstInt(lb_type(m, t_int), count, true);
LLVMValueRef values[2] = {ptr, len};
res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 2);
return res;
}
}
}
} else if (is_type_array(type) && value.kind == ExactValue_String && !is_type_u8(core_array_type(type))) {
LLVMValueRef data = LLVMConstStringInContext(ctx,
cast(char const *)value.value_string.text,
cast(unsigned)value.value_string.len,
false);
res.value = data;
return res;
} else if (is_type_array(type) &&
value.kind != ExactValue_Invalid &&
value.kind != ExactValue_String &&
value.kind != ExactValue_Compound) {
i64 count = type->Array.count;
Type *elem = type->Array.elem;
lbValue single_elem = lb_const_value(m, elem, value, allow_local);
LLVMValueRef *elems = gb_alloc_array(heap_allocator(), LLVMValueRef, count);
for (i64 i = 0; i < count; i++) {
elems[i] = single_elem.value;
}
res.value = LLVMConstArray(lb_type(m, elem), elems, cast(unsigned)count);
return res;
}
switch (value.kind) {
case ExactValue_Invalid:
res.value = LLVMConstNull(lb_type(m, original_type));
return res;
case ExactValue_Bool:
res.value = LLVMConstInt(lb_type(m, original_type), value.value_bool, false);
return res;
case ExactValue_String:
{
LLVMValueRef ptr = lb_find_or_add_entity_string_ptr(m, value.value_string);
lbValue res = {};
res.type = default_type(original_type);
if (is_type_cstring(res.type)) {
res.value = ptr;
} else {
LLVMValueRef str_len = LLVMConstInt(lb_type(m, t_int), value.value_string.len, true);
LLVMValueRef values[2] = {ptr, str_len};
res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 2);
}
return res;
}
case ExactValue_Integer:
if (is_type_pointer(type)) {
LLVMValueRef i = LLVMConstIntOfArbitraryPrecision(lb_type(m, t_uintptr), cast(unsigned)value.value_integer.len, big_int_ptr(&value.value_integer));
res.value = LLVMConstIntToPtr(i, lb_type(m, original_type));
} else {
unsigned len = cast(unsigned)value.value_integer.len;
if (len == 0) {
u64 word = 0;
res.value = LLVMConstNull(lb_type(m, original_type));
} else {
u64 *words = big_int_ptr(&value.value_integer);
if (is_type_different_to_arch_endianness(type)) {
// NOTE(bill): Swap byte order for different endianness
i64 sz = type_size_of(type);
isize byte_len = gb_size_of(u64)*len;
u8 *old_bytes = cast(u8 *)words;
// TODO(bill): Use a different allocator here for a temporary allocation
u8 *new_bytes = cast(u8 *)gb_alloc_align(heap_allocator(), byte_len, gb_align_of(u64));
for (i64 i = 0; i < sz; i++) {
new_bytes[i] = old_bytes[sz-1-i];
}
words = cast(u64 *)new_bytes;
}
res.value = LLVMConstIntOfArbitraryPrecision(lb_type(m, original_type), len, words);
if (value.value_integer.neg) {
res.value = LLVMConstNeg(res.value);
}
}
}
return res;
case ExactValue_Float:
if (type_size_of(type) == 4) {
f32 f = cast(f32)value.value_float;
res.value = lb_const_f32(m, f, type);
return res;
}
if (is_type_different_to_arch_endianness(type)) {
u64 u = bit_cast<u64>(value.value_float);
u = gb_endian_swap64(u);
res.value = LLVMConstReal(lb_type(m, original_type), bit_cast<f64>(u));
} else {
res.value = LLVMConstReal(lb_type(m, original_type), value.value_float);
}
return res;
case ExactValue_Complex:
{
LLVMValueRef values[2] = {};
switch (8*type_size_of(type)) {
case 64:
values[0] = lb_const_f32(m, cast(f32)value.value_complex.real);
values[1] = lb_const_f32(m, cast(f32)value.value_complex.imag);
break;
case 128:
values[0] = LLVMConstReal(lb_type(m, t_f64), value.value_complex.real);
values[1] = LLVMConstReal(lb_type(m, t_f64), value.value_complex.imag);
break;
}
res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 2);
return res;
}
break;
case ExactValue_Quaternion:
{
LLVMValueRef values[4] = {};
switch (8*type_size_of(type)) {
case 128:
// @QuaternionLayout
values[3] = lb_const_f32(m, cast(f32)value.value_quaternion.real);
values[0] = lb_const_f32(m, cast(f32)value.value_quaternion.imag);
values[1] = lb_const_f32(m, cast(f32)value.value_quaternion.jmag);
values[2] = lb_const_f32(m, cast(f32)value.value_quaternion.kmag);
break;
case 256:
// @QuaternionLayout
values[3] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.real);
values[0] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.imag);
values[1] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.jmag);
values[2] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.kmag);
break;
}
res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 4);
return res;
}
break;
case ExactValue_Pointer:
res.value = LLVMConstIntToPtr(LLVMConstInt(lb_type(m, t_uintptr), value.value_pointer, false), lb_type(m, original_type));
return res;
case ExactValue_Compound:
if (is_type_slice(type)) {
return lb_const_value(m, type, value, allow_local);
} else if (is_type_array(type)) {
ast_node(cl, CompoundLit, value.value_compound);
Type *elem_type = type->Array.elem;
isize elem_count = cl->elems.count;
if (elem_count == 0 || !elem_type_can_be_constant(elem_type)) {
return lb_const_nil(m, original_type);
}
if (cl->elems[0]->kind == Ast_FieldValue) {
// TODO(bill): This is O(N*M) and will be quite slow; it should probably be sorted before hand
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->Array.count);
defer (gb_free(heap_allocator(), values));
isize value_index = 0;
for (i64 i = 0; i < type->Array.count; i++) {
bool found = false;
for (isize j = 0; j < elem_count; j++) {
Ast *elem = cl->elems[j];
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
if (lo == i) {
TypeAndValue tav = fv->value->tav;
LLVMValueRef val = lb_const_value(m, elem_type, tav.value, allow_local).value;
for (i64 k = lo; k < hi; k++) {
values[value_index++] = val;
}
found = true;
i += (hi-lo-1);
break;
}
} else {
TypeAndValue index_tav = fv->field->tav;
GB_ASSERT(index_tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(index_tav.value);
if (index == i) {
TypeAndValue tav = fv->value->tav;
LLVMValueRef val = lb_const_value(m, elem_type, tav.value, allow_local).value;
values[value_index++] = val;
found = true;
break;
}
}
}
if (!found) {
values[value_index++] = LLVMConstNull(lb_type(m, elem_type));
}
}
res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->Array.count);
return res;
} else {
GB_ASSERT_MSG(elem_count == type->Array.count, "%td != %td", elem_count, type->Array.count);
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->Array.count);
defer (gb_free(heap_allocator(), values));
for (isize i = 0; i < elem_count; i++) {
TypeAndValue tav = cl->elems[i]->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
values[i] = lb_const_value(m, elem_type, tav.value, allow_local).value;
}
for (isize i = elem_count; i < type->Array.count; i++) {
values[i] = LLVMConstNull(lb_type(m, elem_type));
}
res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->Array.count);
return res;
}
} else if (is_type_enumerated_array(type)) {
ast_node(cl, CompoundLit, value.value_compound);
Type *elem_type = type->EnumeratedArray.elem;
isize elem_count = cl->elems.count;
if (elem_count == 0 || !elem_type_can_be_constant(elem_type)) {
return lb_const_nil(m, original_type);
}
if (cl->elems[0]->kind == Ast_FieldValue) {
// TODO(bill): This is O(N*M) and will be quite slow; it should probably be sorted before hand
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->EnumeratedArray.count);
defer (gb_free(heap_allocator(), values));
isize value_index = 0;
i64 total_lo = exact_value_to_i64(type->EnumeratedArray.min_value);
i64 total_hi = exact_value_to_i64(type->EnumeratedArray.max_value);
for (i64 i = total_lo; i <= total_hi; i++) {
bool found = false;
for (isize j = 0; j < elem_count; j++) {
Ast *elem = cl->elems[j];
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
if (lo == i) {
TypeAndValue tav = fv->value->tav;
LLVMValueRef val = lb_const_value(m, elem_type, tav.value, allow_local).value;
for (i64 k = lo; k < hi; k++) {
values[value_index++] = val;
}
found = true;
i += (hi-lo-1);
break;
}
} else {
TypeAndValue index_tav = fv->field->tav;
GB_ASSERT(index_tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(index_tav.value);
if (index == i) {
TypeAndValue tav = fv->value->tav;
LLVMValueRef val = lb_const_value(m, elem_type, tav.value, allow_local).value;
values[value_index++] = val;
found = true;
break;
}
}
}
if (!found) {
values[value_index++] = LLVMConstNull(lb_type(m, elem_type));
}
}
res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->EnumeratedArray.count);
return res;
} else {
GB_ASSERT_MSG(elem_count == type->EnumeratedArray.count, "%td != %td", elem_count, type->EnumeratedArray.count);
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->EnumeratedArray.count);
defer (gb_free(heap_allocator(), values));
for (isize i = 0; i < elem_count; i++) {
TypeAndValue tav = cl->elems[i]->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
values[i] = lb_const_value(m, elem_type, tav.value, allow_local).value;
}
for (isize i = elem_count; i < type->EnumeratedArray.count; i++) {
values[i] = LLVMConstNull(lb_type(m, elem_type));
}
res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->EnumeratedArray.count);
return res;
}
} else if (is_type_simd_vector(type)) {
ast_node(cl, CompoundLit, value.value_compound);
Type *elem_type = type->SimdVector.elem;
isize elem_count = cl->elems.count;
if (elem_count == 0) {
return lb_const_nil(m, original_type);
}
GB_ASSERT(elem_type_can_be_constant(elem_type));
isize total_elem_count = type->SimdVector.count;
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, total_elem_count);
defer (gb_free(heap_allocator(), values));
for (isize i = 0; i < elem_count; i++) {
TypeAndValue tav = cl->elems[i]->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
values[i] = lb_const_value(m, elem_type, tav.value, allow_local).value;
}
for (isize i = elem_count; i < type->SimdVector.count; i++) {
values[i] = LLVMConstNull(lb_type(m, elem_type));
}
res.value = LLVMConstVector(values, cast(unsigned)total_elem_count);
return res;
} else if (is_type_struct(type)) {
ast_node(cl, CompoundLit, value.value_compound);
if (cl->elems.count == 0) {
return lb_const_nil(m, original_type);
}
isize offset = 0;
if (type->Struct.custom_align > 0) {
offset = 1;
}
isize value_count = type->Struct.fields.count + offset;
LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, value_count);
bool *visited = gb_alloc_array(heap_allocator(), bool, value_count);
defer (gb_free(heap_allocator(), values));
defer (gb_free(heap_allocator(), visited));
if (cl->elems.count > 0) {
if (cl->elems[0]->kind == Ast_FieldValue) {
isize elem_count = cl->elems.count;
for (isize i = 0; i < elem_count; i++) {
ast_node(fv, FieldValue, cl->elems[i]);
String name = fv->field->Ident.token.string;
TypeAndValue tav = fv->value->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
Selection sel = lookup_field(type, name, false);
Entity *f = type->Struct.fields[sel.index[0]];
if (elem_type_can_be_constant(f->type)) {
values[offset+f->Variable.field_index] = lb_const_value(m, f->type, tav.value, allow_local).value;
visited[offset+f->Variable.field_index] = true;
}
}
} else {
for_array(i, cl->elems) {
Entity *f = type->Struct.fields[i];
TypeAndValue tav = cl->elems[i]->tav;
ExactValue val = {};
if (tav.mode != Addressing_Invalid) {
val = tav.value;
}
if (elem_type_can_be_constant(f->type)) {
values[offset+f->Variable.field_index] = lb_const_value(m, f->type, val, allow_local).value;
visited[offset+f->Variable.field_index] = true;
}
}
}
}
for (isize i = 0; i < type->Struct.fields.count; i++) {
if (!visited[offset+i]) {
GB_ASSERT(values[offset+i] == nullptr);
values[offset+i] = lb_const_nil(m, get_struct_field_type(type, i)).value;
}
}
if (type->Struct.custom_align > 0) {
values[0] = LLVMConstNull(lb_alignment_prefix_type_hack(m, type->Struct.custom_align));
}
res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, cast(unsigned)value_count);
return res;
} else if (is_type_bit_set(type)) {
ast_node(cl, CompoundLit, value.value_compound);
if (cl->elems.count == 0) {
return lb_const_nil(m, original_type);
}
i64 sz = type_size_of(type);
if (sz == 0) {
return lb_const_nil(m, original_type);
}
u64 bits = 0;
for_array(i, cl->elems) {
Ast *e = cl->elems[i];
GB_ASSERT(e->kind != Ast_FieldValue);
TypeAndValue tav = e->tav;
if (tav.mode != Addressing_Constant) {
continue;
}
GB_ASSERT(tav.value.kind == ExactValue_Integer);
i64 v = big_int_to_i64(&tav.value.value_integer);
i64 lower = type->BitSet.lower;
bits |= 1ull<<cast(u64)(v-lower);
}
if (is_type_different_to_arch_endianness(type)) {
i64 size = type_size_of(type);
switch (size) {
case 2: bits = cast(u64)gb_endian_swap16(cast(u16)bits); break;
case 4: bits = cast(u64)gb_endian_swap32(cast(u32)bits); break;
case 8: bits = cast(u64)gb_endian_swap64(cast(u64)bits); break;
}
}
res.value = LLVMConstInt(lb_type(m, original_type), bits, false);
return res;
} else {
return lb_const_nil(m, original_type);
}
break;
case ExactValue_Procedure:
{
Ast *expr = value.value_procedure;
GB_ASSERT(expr != nullptr);
if (expr->kind == Ast_ProcLit) {
return lb_generate_anonymous_proc_lit(m, str_lit("_proclit"), expr);
}
}
break;
case ExactValue_Typeid:
return lb_typeid(m, value.value_typeid, original_type);
}
return lb_const_nil(m, original_type);
}
u64 lb_generate_source_code_location_hash(TokenPos const &pos) {
u64 h = 0xcbf29ce484222325;
for (isize i = 0; i < pos.file.len; i++) {
h = (h ^ u64(pos.file[i])) * 0x100000001b3;
}
h = h ^ (u64(pos.line) * 0x100000001b3);
h = h ^ (u64(pos.column) * 0x100000001b3);
return h;
}
lbValue lb_emit_source_code_location(lbProcedure *p, String const &procedure, TokenPos const &pos) {
lbModule *m = p->module;
LLVMValueRef fields[5] = {};
fields[0]/*file*/ = lb_find_or_add_entity_string(p->module, pos.file).value;
fields[1]/*line*/ = lb_const_int(m, t_int, pos.line).value;
fields[2]/*column*/ = lb_const_int(m, t_int, pos.column).value;
fields[3]/*procedure*/ = lb_find_or_add_entity_string(p->module, procedure).value;
fields[4]/*hash*/ = lb_const_int(m, t_u64, lb_generate_source_code_location_hash(pos)).value;
lbValue res = {};
res.value = LLVMConstNamedStruct(lb_type(m, t_source_code_location), fields, 5);
res.type = t_source_code_location;
return res;
}
lbValue lb_emit_source_code_location(lbProcedure *p, Ast *node) {
String proc_name = {};
if (p->entity) {
proc_name = p->entity->token.string;
}
TokenPos pos = {};
if (node) {
pos = ast_token(node).pos;
}
return lb_emit_source_code_location(p, proc_name, pos);
}
lbValue lb_emit_unary_arith(lbProcedure *p, TokenKind op, lbValue x, Type *type) {
switch (op) {
case Token_Add:
return x;
case Token_Not: // Boolean not
case Token_Xor: // Bitwise not
case Token_Sub: // Number negation
break;
case Token_Pointer:
GB_PANIC("This should be handled elsewhere");
break;
}
if (is_type_array(x.type)) {
// IMPORTANT TODO(bill): This is very wasteful with regards to stack memory
Type *tl = base_type(x.type);
lbValue val = lb_address_from_load_or_generate_local(p, x);
GB_ASSERT(is_type_array(type));
Type *elem_type = base_array_type(type);
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbAddr res_addr = lb_add_local_generated(p, type, false);
lbValue res = lb_addr_get_ptr(p, res_addr);
bool inline_array_arith = type_size_of(type) <= build_context.max_align;
i32 count = cast(i32)tl->Array.count;
if (inline_array_arith) {
// inline
for (i32 i = 0; i < count; i++) {
lbValue e = lb_emit_load(p, lb_emit_array_epi(p, val, i));
lbValue z = lb_emit_unary_arith(p, op, e, elem_type);
lb_emit_store(p, lb_emit_array_epi(p, res, i), z);
}
} else {
auto loop_data = lb_loop_start(p, count, t_i32);
lbValue e = lb_emit_load(p, lb_emit_array_ep(p, val, loop_data.idx));
lbValue z = lb_emit_unary_arith(p, op, e, elem_type);
lb_emit_store(p, lb_emit_array_ep(p, res, loop_data.idx), z);
lb_loop_end(p, loop_data);
}
return lb_emit_load(p, res);
}
if (op == Token_Xor) {
lbValue cmp = {};
cmp.value = LLVMBuildNot(p->builder, x.value, "");
cmp.type = x.type;
return lb_emit_conv(p, cmp, type);
}
if (op == Token_Not) {
lbValue cmp = {};
LLVMValueRef zero = LLVMConstInt(lb_type(p->module, x.type), 0, false);
cmp.value = LLVMBuildICmp(p->builder, LLVMIntEQ, x.value, zero, "");
cmp.type = t_llvm_bool;
return lb_emit_conv(p, cmp, type);
}
if (op == Token_Sub && is_type_integer(type) && is_type_different_to_arch_endianness(type)) {
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue v = lb_emit_byte_swap(p, x, platform_type);
lbValue res = {};
res.value = LLVMBuildNeg(p->builder, v.value, "");
res.type = platform_type;
return lb_emit_byte_swap(p, res, type);
}
if (op == Token_Sub && is_type_float(type) && is_type_different_to_arch_endianness(type)) {
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue v = lb_emit_byte_swap(p, x, platform_type);
lbValue res = {};
res.value = LLVMBuildFNeg(p->builder, v.value, "");
res.type = platform_type;
return lb_emit_byte_swap(p, res, type);
}
lbValue res = {};
switch (op) {
case Token_Not: // Boolean not
case Token_Xor: // Bitwise not
res.value = LLVMBuildNot(p->builder, x.value, "");
res.type = x.type;
return res;
case Token_Sub: // Number negation
if (is_type_integer(x.type)) {
res.value = LLVMBuildNeg(p->builder, x.value, "");
} else if (is_type_float(x.type)) {
res.value = LLVMBuildFNeg(p->builder, x.value, "");
} else if (is_type_complex(x.type)) {
LLVMValueRef v0 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 0, ""), "");
LLVMValueRef v1 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 1, ""), "");
lbAddr addr = lb_add_local_generated(p, x.type, false);
LLVMBuildStore(p->builder, v0, LLVMBuildStructGEP(p->builder, addr.addr.value, 0, ""));
LLVMBuildStore(p->builder, v1, LLVMBuildStructGEP(p->builder, addr.addr.value, 1, ""));
return lb_addr_load(p, addr);
} else if (is_type_quaternion(x.type)) {
LLVMValueRef v0 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 0, ""), "");
LLVMValueRef v1 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 1, ""), "");
LLVMValueRef v2 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 2, ""), "");
LLVMValueRef v3 = LLVMBuildFNeg(p->builder, LLVMBuildExtractValue(p->builder, x.value, 3, ""), "");
lbAddr addr = lb_add_local_generated(p, x.type, false);
LLVMBuildStore(p->builder, v0, LLVMBuildStructGEP(p->builder, addr.addr.value, 0, ""));
LLVMBuildStore(p->builder, v1, LLVMBuildStructGEP(p->builder, addr.addr.value, 1, ""));
LLVMBuildStore(p->builder, v2, LLVMBuildStructGEP(p->builder, addr.addr.value, 2, ""));
LLVMBuildStore(p->builder, v3, LLVMBuildStructGEP(p->builder, addr.addr.value, 3, ""));
return lb_addr_load(p, addr);
} else {
GB_PANIC("Unhandled type %s", type_to_string(x.type));
}
res.type = x.type;
return res;
}
return res;
}
lbValue lb_emit_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) {
lbModule *m = p->module;
if (is_type_array(lhs.type) || is_type_array(rhs.type)) {
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
lbValue x = lb_address_from_load_or_generate_local(p, lhs);
lbValue y = lb_address_from_load_or_generate_local(p, rhs);
GB_ASSERT(is_type_array(type));
Type *elem_type = base_array_type(type);
lbAddr res = lb_add_local_generated(p, type, false);
i64 count = base_type(type)->Array.count;
bool inline_array_arith = type_size_of(type) <= build_context.max_align;
if (inline_array_arith) {
for (i64 i = 0; i < count; i++) {
lbValue a = lb_emit_load(p, lb_emit_array_epi(p, x, i));
lbValue b = lb_emit_load(p, lb_emit_array_epi(p, y, i));
lbValue c = lb_emit_arith(p, op, a, b, elem_type);
lb_emit_store(p, lb_emit_array_epi(p, res.addr, i), c);
}
} else {
auto loop_data = lb_loop_start(p, count);
lbValue a = lb_emit_load(p, lb_emit_array_ep(p, x, loop_data.idx));
lbValue b = lb_emit_load(p, lb_emit_array_ep(p, y, loop_data.idx));
lbValue c = lb_emit_arith(p, op, a, b, elem_type);
lb_emit_store(p, lb_emit_array_ep(p, res.addr, loop_data.idx), c);
lb_loop_end(p, loop_data);
}
return lb_addr_load(p, res);
} else if (is_type_complex(type)) {
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
Type *ft = base_complex_elem_type(type);
if (op == Token_Quo) {
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = lhs;
args[1] = rhs;
switch (type_size_of(ft)) {
case 4: return lb_emit_runtime_call(p, "quo_complex64", args);
case 8: return lb_emit_runtime_call(p, "quo_complex128", args);
default: GB_PANIC("Unknown float type"); break;
}
}
lbAddr res = lb_add_local_generated(p, type, false); // NOTE: initialized in full later
lbValue a = lb_emit_struct_ev(p, lhs, 0);
lbValue b = lb_emit_struct_ev(p, lhs, 1);
lbValue c = lb_emit_struct_ev(p, rhs, 0);
lbValue d = lb_emit_struct_ev(p, rhs, 1);
lbValue real = {};
lbValue imag = {};
switch (op) {
case Token_Add:
real = lb_emit_arith(p, Token_Add, a, c, ft);
imag = lb_emit_arith(p, Token_Add, b, d, ft);
break;
case Token_Sub:
real = lb_emit_arith(p, Token_Sub, a, c, ft);
imag = lb_emit_arith(p, Token_Sub, b, d, ft);
break;
case Token_Mul: {
lbValue x = lb_emit_arith(p, Token_Mul, a, c, ft);
lbValue y = lb_emit_arith(p, Token_Mul, b, d, ft);
real = lb_emit_arith(p, Token_Sub, x, y, ft);
lbValue z = lb_emit_arith(p, Token_Mul, b, c, ft);
lbValue w = lb_emit_arith(p, Token_Mul, a, d, ft);
imag = lb_emit_arith(p, Token_Add, z, w, ft);
break;
}
}
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 1), imag);
return lb_addr_load(p, res);
} else if (is_type_quaternion(type)) {
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
Type *ft = base_complex_elem_type(type);
if (op == Token_Add || op == Token_Sub) {
lbAddr res = lb_add_local_generated(p, type, false); // NOTE: initialized in full later
lbValue x0 = lb_emit_struct_ev(p, lhs, 0);
lbValue x1 = lb_emit_struct_ev(p, lhs, 1);
lbValue x2 = lb_emit_struct_ev(p, lhs, 2);
lbValue x3 = lb_emit_struct_ev(p, lhs, 3);
lbValue y0 = lb_emit_struct_ev(p, rhs, 0);
lbValue y1 = lb_emit_struct_ev(p, rhs, 1);
lbValue y2 = lb_emit_struct_ev(p, rhs, 2);
lbValue y3 = lb_emit_struct_ev(p, rhs, 3);
lbValue z0 = lb_emit_arith(p, op, x0, y0, ft);
lbValue z1 = lb_emit_arith(p, op, x1, y1, ft);
lbValue z2 = lb_emit_arith(p, op, x2, y2, ft);
lbValue z3 = lb_emit_arith(p, op, x3, y3, ft);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 0), z0);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 1), z1);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 2), z2);
lb_emit_store(p, lb_emit_struct_ep(p, res.addr, 3), z3);
return lb_addr_load(p, res);
} else if (op == Token_Mul) {
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = lhs;
args[1] = rhs;
switch (8*type_size_of(ft)) {
case 32: return lb_emit_runtime_call(p, "mul_quaternion128", args);
case 64: return lb_emit_runtime_call(p, "mul_quaternion256", args);
default: GB_PANIC("Unknown float type"); break;
}
} else if (op == Token_Quo) {
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = lhs;
args[1] = rhs;
switch (8*type_size_of(ft)) {
case 32: return lb_emit_runtime_call(p, "quo_quaternion128", args);
case 64: return lb_emit_runtime_call(p, "quo_quaternion256", args);
default: GB_PANIC("Unknown float type"); break;
}
}
}
if (is_type_integer(type) && is_type_different_to_arch_endianness(type)) {
switch (op) {
case Token_AndNot:
case Token_And:
case Token_Or:
case Token_Xor:
goto handle_op;
}
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue x = lb_emit_byte_swap(p, lhs, integer_endian_type_to_platform_type(lhs.type));
lbValue y = lb_emit_byte_swap(p, rhs, integer_endian_type_to_platform_type(rhs.type));
lbValue res = lb_emit_arith(p, op, x, y, platform_type);
return lb_emit_byte_swap(p, res, type);
}
if (is_type_float(type) && is_type_different_to_arch_endianness(type)) {
Type *platform_type = integer_endian_type_to_platform_type(type);
lbValue x = lb_emit_conv(p, lhs, integer_endian_type_to_platform_type(lhs.type));
lbValue y = lb_emit_conv(p, rhs, integer_endian_type_to_platform_type(rhs.type));
lbValue res = lb_emit_arith(p, op, x, y, platform_type);
return lb_emit_byte_swap(p, res, type);
}
handle_op:
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
lbValue res = {};
res.type = type;
switch (op) {
case Token_Add:
if (is_type_float(type)) {
res.value = LLVMBuildFAdd(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildAdd(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Sub:
if (is_type_float(type)) {
res.value = LLVMBuildFSub(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSub(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Mul:
if (is_type_float(type)) {
res.value = LLVMBuildFMul(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildMul(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Quo:
if (is_type_float(type)) {
res.value = LLVMBuildFDiv(p->builder, lhs.value, rhs.value, "");
return res;
} else if (is_type_unsigned(type)) {
res.value = LLVMBuildUDiv(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSDiv(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Mod:
if (is_type_float(type)) {
res.value = LLVMBuildFRem(p->builder, lhs.value, rhs.value, "");
return res;
} else if (is_type_unsigned(type)) {
res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, "");
return res;
}
res.value = LLVMBuildSRem(p->builder, lhs.value, rhs.value, "");
return res;
case Token_ModMod:
if (is_type_unsigned(type)) {
res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, "");
return res;
} else {
LLVMValueRef a = LLVMBuildSRem(p->builder, lhs.value, rhs.value, "");
LLVMValueRef b = LLVMBuildAdd(p->builder, a, rhs.value, "");
LLVMValueRef c = LLVMBuildSRem(p->builder, b, rhs.value, "");
res.value = c;
return res;
}
case Token_And:
res.value = LLVMBuildAnd(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Or:
res.value = LLVMBuildOr(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Xor:
res.value = LLVMBuildXor(p->builder, lhs.value, rhs.value, "");
return res;
case Token_Shl:
{
rhs = lb_emit_conv(p, rhs, lhs.type);
LLVMValueRef lhsval = lhs.value;
LLVMValueRef bits = rhs.value;
LLVMValueRef max = LLVMConstInt(lb_type(p->module, rhs.type), 8*type_size_of(lhs.type) - 1, false);
LLVMValueRef less_equal_width = LLVMBuildICmp(p->builder, LLVMIntULE, bits, max, "");
res.value = LLVMBuildShl(p->builder, lhsval, bits, "");
LLVMValueRef zero = LLVMConstNull(lb_type(p->module, lhs.type));
res.value = LLVMBuildSelect(p->builder, less_equal_width, res.value, zero, "");
return res;
}
case Token_Shr:
{
rhs = lb_emit_conv(p, rhs, lhs.type);
LLVMValueRef lhsval = lhs.value;
LLVMValueRef bits = rhs.value;
bool is_unsigned = is_type_unsigned(type);
LLVMValueRef max = LLVMConstInt(lb_type(p->module, rhs.type), 8*type_size_of(lhs.type) - 1, false);
LLVMValueRef less_equal_width = LLVMBuildICmp(p->builder, LLVMIntULE, bits, max, "");
bits = LLVMBuildSelect(p->builder, less_equal_width, bits, max, "");
if (is_unsigned) {
res.value = LLVMBuildLShr(p->builder, lhs.value, bits, "");
} else {
res.value = LLVMBuildAShr(p->builder, lhsval, bits, "");
}
return res;
}
case Token_AndNot:
{
LLVMValueRef new_rhs = LLVMBuildNot(p->builder, rhs.value, "");
res.value = LLVMBuildAnd(p->builder, lhs.value, new_rhs, "");
return res;
}
break;
}
GB_PANIC("unhandled operator of lb_emit_arith");
return {};
}
lbValue lb_build_binary_expr(lbProcedure *p, Ast *expr) {
ast_node(be, BinaryExpr, expr);
TypeAndValue tv = type_and_value_of_expr(expr);
switch (be->op.kind) {
case Token_Add:
case Token_Sub:
case Token_Mul:
case Token_Quo:
case Token_Mod:
case Token_ModMod:
case Token_And:
case Token_Or:
case Token_Xor:
case Token_AndNot:
case Token_Shl:
case Token_Shr: {
Type *type = default_type(tv.type);
lbValue left = lb_build_expr(p, be->left);
lbValue right = lb_build_expr(p, be->right);
return lb_emit_arith(p, be->op.kind, left, right, type);
}
case Token_CmpEq:
case Token_NotEq:
case Token_Lt:
case Token_LtEq:
case Token_Gt:
case Token_GtEq:
{
lbValue left = {};
lbValue right = {};
if (be->left->tav.mode == Addressing_Type) {
left = lb_typeid(p->module, be->left->tav.type, t_typeid);
}
if (be->right->tav.mode == Addressing_Type) {
right = lb_typeid(p->module, be->right->tav.type, t_typeid);
}
if (left.value == nullptr) left = lb_build_expr(p, be->left);
if (right.value == nullptr) right = lb_build_expr(p, be->right);
lbValue cmp = lb_emit_comp(p, be->op.kind, left, right);
Type *type = default_type(tv.type);
return lb_emit_conv(p, cmp, type);
}
case Token_CmpAnd:
case Token_CmpOr:
return lb_emit_logical_binary_expr(p, be->op.kind, be->left, be->right, tv.type);
case Token_in:
case Token_not_in:
{
lbValue left = lb_build_expr(p, be->left);
Type *type = default_type(tv.type);
lbValue right = lb_build_expr(p, be->right);
Type *rt = base_type(right.type);
switch (rt->kind) {
case Type_Map:
{
lbValue addr = lb_address_from_load_or_generate_local(p, right);
lbValue h = lb_gen_map_header(p, addr, rt);
lbValue key = lb_gen_map_key(p, left, rt->Map.key);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = h;
args[1] = key;
lbValue ptr = lb_emit_runtime_call(p, "__dynamic_map_get", args);
if (be->op.kind == Token_in) {
return lb_emit_conv(p, lb_emit_comp_against_nil(p, Token_NotEq, ptr), t_bool);
} else {
return lb_emit_conv(p, lb_emit_comp_against_nil(p, Token_CmpEq, ptr), t_bool);
}
}
break;
case Type_BitSet:
{
Type *key_type = rt->BitSet.elem;
GB_ASSERT(are_types_identical(left.type, key_type));
Type *it = bit_set_to_int(rt);
left = lb_emit_conv(p, left, it);
lbValue lower = lb_const_value(p->module, it, exact_value_i64(rt->BitSet.lower));
lbValue key = lb_emit_arith(p, Token_Sub, left, lower, it);
lbValue bit = lb_emit_arith(p, Token_Shl, lb_const_int(p->module, it, 1), key, it);
bit = lb_emit_conv(p, bit, it);
lbValue old_value = lb_emit_transmute(p, right, it);
lbValue new_value = lb_emit_arith(p, Token_And, old_value, bit, it);
if (be->op.kind == Token_in) {
return lb_emit_conv(p, lb_emit_comp(p, Token_NotEq, new_value, lb_const_int(p->module, new_value.type, 0)), t_bool);
} else {
return lb_emit_conv(p, lb_emit_comp(p, Token_CmpEq, new_value, lb_const_int(p->module, new_value.type, 0)), t_bool);
}
}
break;
default:
GB_PANIC("Invalid 'in' type");
}
break;
}
break;
default:
GB_PANIC("Invalid binary expression");
break;
}
return {};
}
String lookup_subtype_polymorphic_field(CheckerInfo *info, Type *dst, Type *src) {
Type *prev_src = src;
// Type *prev_dst = dst;
src = base_type(type_deref(src));
// dst = base_type(type_deref(dst));
bool src_is_ptr = src != prev_src;
// bool dst_is_ptr = dst != prev_dst;
GB_ASSERT(is_type_struct(src) || is_type_union(src));
for_array(i, src->Struct.fields) {
Entity *f = src->Struct.fields[i];
if (f->kind == Entity_Variable && f->flags & EntityFlag_Using) {
if (are_types_identical(dst, f->type)) {
return f->token.string;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(type_deref(dst), f->type)) {
return f->token.string;
}
}
if (is_type_struct(f->type)) {
String name = lookup_subtype_polymorphic_field(info, dst, f->type);
if (name.len > 0) {
return name;
}
}
}
}
return str_lit("");
}
lbValue lb_const_ptr_cast(lbModule *m, lbValue value, Type *t) {
GB_ASSERT(is_type_pointer(value.type));
GB_ASSERT(is_type_pointer(t));
GB_ASSERT(lb_is_const(value));
lbValue res = {};
res.value = LLVMConstPointerCast(value.value, lb_type(m, t));
res.type = t;
return res;
}
lbValue lb_emit_conv(lbProcedure *p, lbValue value, Type *t) {
lbModule *m = p->module;
t = reduce_tuple_to_single_type(t);
Type *src_type = value.type;
if (are_types_identical(t, src_type)) {
return value;
}
Type *src = core_type(src_type);
Type *dst = core_type(t);
GB_ASSERT(src != nullptr);
GB_ASSERT(dst != nullptr);
if (is_type_untyped_nil(src)) {
return lb_const_nil(m, t);
}
if (is_type_untyped_undef(src)) {
return lb_const_undef(m, t);
}
if (LLVMIsConstant(value.value)) {
if (is_type_any(dst)) {
Type *st = default_type(src_type);
lbAddr default_value = lb_add_local_generated(p, st, false);
lb_addr_store(p, default_value, value);
lbValue data = lb_emit_conv(p, default_value.addr, t_rawptr);
lbValue id = lb_typeid(m, st);
lbAddr res = lb_add_local_generated(p, t, false);
lbValue a0 = lb_emit_struct_ep(p, res.addr, 0);
lbValue a1 = lb_emit_struct_ep(p, res.addr, 1);
lb_emit_store(p, a0, data);
lb_emit_store(p, a1, id);
return lb_addr_load(p, res);
} else if (dst->kind == Type_Basic) {
if (src->Basic.kind == Basic_string && dst->Basic.kind == Basic_cstring) {
String str = lb_get_const_string(m, value);
lbValue res = {};
res.type = t;
res.value = llvm_cstring(m, str);
return res;
}
// if (is_type_float(dst)) {
// return value;
// } else if (is_type_integer(dst)) {
// return value;
// }
// ExactValue ev = value->Constant.value;
// if (is_type_float(dst)) {
// ev = exact_value_to_float(ev);
// } else if (is_type_complex(dst)) {
// ev = exact_value_to_complex(ev);
// } else if (is_type_quaternion(dst)) {
// ev = exact_value_to_quaternion(ev);
// } else if (is_type_string(dst)) {
// // Handled elsewhere
// GB_ASSERT_MSG(ev.kind == ExactValue_String, "%d", ev.kind);
// } else if (is_type_integer(dst)) {
// ev = exact_value_to_integer(ev);
// } else if (is_type_pointer(dst)) {
// // IMPORTANT NOTE(bill): LLVM doesn't support pointer constants expect 'null'
// lbValue i = lb_add_module_constant(p->module, t_uintptr, ev);
// return lb_emit(p, lb_instr_conv(p, irConv_inttoptr, i, t_uintptr, dst));
// }
// return lb_const_value(p->module, t, ev);
}
}
if (are_types_identical(src, dst)) {
if (!are_types_identical(src_type, t)) {
return lb_emit_transmute(p, value, t);
}
return value;
}
// bool <-> llvm bool
if (is_type_boolean(src) && dst == t_llvm_bool) {
lbValue res = {};
res.value = LLVMBuildTrunc(p->builder, value.value, lb_type(m, dst), "");
res.type = dst;
return res;
}
if (src == t_llvm_bool && is_type_boolean(dst)) {
lbValue res = {};
res.value = LLVMBuildZExt(p->builder, value.value, lb_type(m, dst), "");
res.type = dst;
return res;
}
// integer -> integer
if (is_type_integer(src) && is_type_integer(dst)) {
GB_ASSERT(src->kind == Type_Basic &&
dst->kind == Type_Basic);
i64 sz = type_size_of(default_type(src));
i64 dz = type_size_of(default_type(dst));
if (sz > 1 && is_type_different_to_arch_endianness(src)) {
Type *platform_src_type = integer_endian_type_to_platform_type(src);
value = lb_emit_byte_swap(p, value, platform_src_type);
}
LLVMOpcode op = LLVMTrunc;
if (dz < sz) {
op = LLVMTrunc;
} else if (dz == sz) {
// NOTE(bill): In LLVM, all integers are signed and rely upon 2's compliment
// NOTE(bill): Copy the value just for type correctness
op = LLVMBitCast;
} else if (dz > sz) {
op = is_type_unsigned(src) ? LLVMZExt : LLVMSExt; // zero extent
}
if (dz > 1 && is_type_different_to_arch_endianness(dst)) {
Type *platform_dst_type = integer_endian_type_to_platform_type(dst);
lbValue res = {};
res.value = LLVMBuildCast(p->builder, op, value.value, lb_type(m, platform_dst_type), "");
res.type = t;
return lb_emit_byte_swap(p, res, t);
} else {
lbValue res = {};
res.value = LLVMBuildCast(p->builder, op, value.value, lb_type(m, t), "");
res.type = t;
return res;
}
}
// boolean -> boolean/integer
if (is_type_boolean(src) && (is_type_boolean(dst) || is_type_integer(dst))) {
LLVMValueRef b = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, value.type)), "");
lbValue res = {};
res.value = LLVMBuildIntCast2(p->builder, value.value, lb_type(m, t), false, "");
res.type = t;
return res;
}
if (is_type_cstring(src) && is_type_u8_ptr(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_u8_ptr(src) && is_type_cstring(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_cstring(src) && is_type_rawptr(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (is_type_rawptr(src) && is_type_cstring(dst)) {
return lb_emit_transmute(p, value, dst);
}
if (are_types_identical(src, t_cstring) && are_types_identical(dst, t_string)) {
lbValue c = lb_emit_conv(p, value, t_cstring);
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = c;
lbValue s = lb_emit_runtime_call(p, "cstring_to_string", args);
return lb_emit_conv(p, s, dst);
}
// integer -> boolean
if (is_type_integer(src) && is_type_boolean(dst)) {
lbValue res = {};
res.value = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, value.type)), "");
res.type = t_llvm_bool;
return lb_emit_conv(p, res, t);
}
// float -> float
if (is_type_float(src) && is_type_float(dst)) {
gbAllocator a = heap_allocator();
i64 sz = type_size_of(src);
i64 dz = type_size_of(dst);
if (dz == sz) {
if (types_have_same_internal_endian(src, dst)) {
lbValue res = {};
res.type = t;
res.value = value.value;
return res;
} else {
return lb_emit_byte_swap(p, value, t);
}
}
if (is_type_different_to_arch_endianness(src) || is_type_different_to_arch_endianness(dst)) {
Type *platform_src_type = integer_endian_type_to_platform_type(src);
Type *platform_dst_type = integer_endian_type_to_platform_type(dst);
lbValue res = {};
res = lb_emit_conv(p, value, platform_src_type);
res = lb_emit_conv(p, res, platform_dst_type);
if (is_type_different_to_arch_endianness(dst)) {
res = lb_emit_byte_swap(p, res, t);
}
return lb_emit_conv(p, res, t);
}
lbValue res = {};
res.type = t;
if (dz >= sz) {
res.value = LLVMBuildFPExt(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildFPTrunc(p->builder, value.value, lb_type(m, t), "");
}
return res;
}
if (is_type_complex(src) && is_type_complex(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, dst, false);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, lb_emit_struct_ev(p, value, 0), ft);
lbValue imag = lb_emit_conv(p, lb_emit_struct_ev(p, value, 1), ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 1), imag);
return lb_addr_load(p, gen);
}
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
// @QuaternionLayout
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, dst, false);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue q0 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 0), ft);
lbValue q1 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 1), ft);
lbValue q2 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 2), ft);
lbValue q3 = lb_emit_conv(p, lb_emit_struct_ev(p, value, 3), ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), q0);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 1), q1);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 2), q2);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), q3);
return lb_addr_load(p, gen);
}
if (is_type_float(src) && is_type_complex(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, dst, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, value, ft);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), real);
return lb_addr_load(p, gen);
}
if (is_type_float(src) && is_type_quaternion(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, dst, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, value, ft);
// @QuaternionLayout
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), real);
return lb_addr_load(p, gen);
}
if (is_type_complex(src) && is_type_quaternion(dst)) {
Type *ft = base_complex_elem_type(dst);
lbAddr gen = lb_add_local_generated(p, dst, true);
lbValue gp = lb_addr_get_ptr(p, gen);
lbValue real = lb_emit_conv(p, lb_emit_struct_ev(p, value, 0), ft);
lbValue imag = lb_emit_conv(p, lb_emit_struct_ev(p, value, 1), ft);
// @QuaternionLayout
lb_emit_store(p, lb_emit_struct_ep(p, gp, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, gp, 0), imag);
return lb_addr_load(p, gen);
}
// float <-> integer
if (is_type_float(src) && is_type_integer(dst)) {
lbValue res = {};
res.type = t;
if (is_type_unsigned(dst)) {
res.value = LLVMBuildFPToUI(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildFPToSI(p->builder, value.value, lb_type(m, t), "");
}
return res;
}
if (is_type_integer(src) && is_type_float(dst)) {
lbValue res = {};
res.type = t;
if (is_type_unsigned(src)) {
res.value = LLVMBuildUIToFP(p->builder, value.value, lb_type(m, t), "");
} else {
res.value = LLVMBuildSIToFP(p->builder, value.value, lb_type(m, t), "");
}
return res;
}
// Pointer <-> uintptr
if (is_type_pointer(src) && is_type_uintptr(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_uintptr(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), "");
return res;
}
#if 1
if (is_type_union(dst)) {
for_array(i, dst->Union.variants) {
Type *vt = dst->Union.variants[i];
if (are_types_identical(vt, src_type)) {
lbAddr parent = lb_add_local_generated(p, t, true);
lb_emit_store_union_variant(p, parent.addr, value, vt);
return lb_addr_load(p, parent);
}
}
}
#endif
// NOTE(bill): This has to be done before 'Pointer <-> Pointer' as it's
// subtype polymorphism casting
if (check_is_assignable_to_using_subtype(src_type, t)) {
Type *st = type_deref(src_type);
Type *pst = st;
st = type_deref(st);
bool st_is_ptr = is_type_pointer(src_type);
st = base_type(st);
Type *dt = t;
bool dt_is_ptr = type_deref(dt) != dt;
GB_ASSERT(is_type_struct(st) || is_type_raw_union(st));
String field_name = lookup_subtype_polymorphic_field(p->module->info, t, src_type);
if (field_name.len > 0) {
// NOTE(bill): It can be casted
Selection sel = lookup_field(st, field_name, false, true);
if (sel.entity != nullptr) {
if (st_is_ptr) {
lbValue res = lb_emit_deep_field_gep(p, value, sel);
Type *rt = res.type;
if (!are_types_identical(rt, dt) && are_types_identical(type_deref(rt), dt)) {
res = lb_emit_load(p, res);
}
return res;
} else {
if (is_type_pointer(value.type)) {
Type *rt = value.type;
if (!are_types_identical(rt, dt) && are_types_identical(type_deref(rt), dt)) {
value = lb_emit_load(p, value);
} else {
value = lb_emit_deep_field_gep(p, value, sel);
return lb_emit_load(p, value);
}
}
return lb_emit_deep_field_ev(p, value, sel);
}
} else {
GB_PANIC("invalid subtype cast %s.%.*s", type_to_string(src_type), LIT(field_name));
}
}
}
// Pointer <-> Pointer
if (is_type_pointer(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// proc <-> proc
if (is_type_proc(src) && is_type_proc(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// pointer -> proc
if (is_type_pointer(src) && is_type_proc(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// proc -> pointer
if (is_type_proc(src) && is_type_pointer(dst)) {
lbValue res = {};
res.type = t;
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(m, t), "");
return res;
}
// []byte/[]u8 <-> string
if (is_type_u8_slice(src) && is_type_string(dst)) {
return lb_emit_transmute(p, value, t);
}
if (is_type_string(src) && is_type_u8_slice(dst)) {
return lb_emit_transmute(p, value, t);
}
if (is_type_array(dst)) {
Type *elem = dst->Array.elem;
lbValue e = lb_emit_conv(p, value, elem);
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbAddr v = lb_add_local_generated(p, t, false);
isize index_count = cast(isize)dst->Array.count;
for (isize i = 0; i < index_count; i++) {
lbValue elem = lb_emit_array_epi(p, v.addr, i);
lb_emit_store(p, elem, e);
}
return lb_addr_load(p, v);
}
if (is_type_any(dst)) {
if (is_type_untyped_nil(src)) {
return lb_const_nil(p->module, t);
}
if (is_type_untyped_undef(src)) {
return lb_const_undef(p->module, t);
}
lbAddr result = lb_add_local_generated(p, t, true);
Type *st = default_type(src_type);
lbValue data = lb_address_from_load_or_generate_local(p, value);
GB_ASSERT_MSG(is_type_pointer(data.type), "%s", type_to_string(data.type));
GB_ASSERT_MSG(is_type_typed(st), "%s", type_to_string(st));
data = lb_emit_conv(p, data, t_rawptr);
lbValue id = lb_typeid(p->module, st);
lbValue any_data = lb_emit_struct_ep(p, result.addr, 0);
lbValue any_id = lb_emit_struct_ep(p, result.addr, 1);
lb_emit_store(p, any_data, data);
lb_emit_store(p, any_id, id);
return lb_addr_load(p, result);
}
if (is_type_untyped(src)) {
if (is_type_string(src) && is_type_string(dst)) {
lbAddr result = lb_add_local_generated(p, t, false);
lb_addr_store(p, result, value);
return lb_addr_load(p, result);
}
}
gb_printf_err("%.*s\n", LIT(p->name));
gb_printf_err("lb_emit_conv: src -> dst\n");
gb_printf_err("Not Identical %s != %s\n", type_to_string(src_type), type_to_string(t));
gb_printf_err("Not Identical %s != %s\n", type_to_string(src), type_to_string(dst));
gb_printf_err("Not Identical %p != %p\n", src_type, t);
gb_printf_err("Not Identical %p != %p\n", src, dst);
GB_PANIC("Invalid type conversion: '%s' to '%s' for procedure '%.*s'",
type_to_string(src_type), type_to_string(t),
LIT(p->name));
return {};
}
bool lb_is_type_aggregate(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_string:
case Basic_any:
return true;
// case Basic_complex32:
case Basic_complex64:
case Basic_complex128:
case Basic_quaternion128:
case Basic_quaternion256:
return true;
}
break;
case Type_Pointer:
return false;
case Type_Array:
case Type_Slice:
case Type_Struct:
case Type_Union:
case Type_Tuple:
case Type_DynamicArray:
case Type_Map:
case Type_BitField:
case Type_SimdVector:
return true;
case Type_Named:
return lb_is_type_aggregate(t->Named.base);
}
return false;
}
lbValue lb_emit_transmute(lbProcedure *p, lbValue value, Type *t) {
Type *src_type = value.type;
if (are_types_identical(t, src_type)) {
return value;
}
lbValue res = {};
res.type = t;
Type *src = base_type(src_type);
Type *dst = base_type(t);
lbModule *m = p->module;
i64 sz = type_size_of(src);
i64 dz = type_size_of(dst);
GB_ASSERT_MSG(sz == dz, "Invalid transmute conversion: '%s' to '%s'", type_to_string(src_type), type_to_string(t));
// NOTE(bill): Casting between an integer and a pointer cannot be done through a bitcast
if (is_type_uintptr(src) && is_type_pointer(dst)) {
res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_pointer(src) && is_type_uintptr(dst)) {
res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_uintptr(src) && is_type_proc(dst)) {
res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_proc(src) && is_type_uintptr(dst)) {
res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_integer(src) && (is_type_pointer(dst) || is_type_cstring(dst))) {
res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), "");
return res;
} else if ((is_type_pointer(src) || is_type_cstring(src)) && is_type_integer(dst)) {
res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), "");
return res;
}
if (is_type_pointer(src) && is_type_pointer(dst)) {
res.value = LLVMBuildPointerCast(p->builder, value.value, lb_type(p->module, t), "");
return res;
}
if (lb_is_type_aggregate(src) || lb_is_type_aggregate(dst)) {
lbValue s = lb_address_from_load_or_generate_local(p, value);
lbValue d = lb_emit_transmute(p, s, alloc_type_pointer(t));
return lb_emit_load(p, d);
}
res.value = LLVMBuildBitCast(p->builder, value.value, lb_type(p->module, t), "");
// GB_PANIC("lb_emit_transmute");
return res;
}
void lb_emit_init_context(lbProcedure *p, lbAddr addr) {
GB_ASSERT(addr.kind == lbAddr_Context);
GB_ASSERT(addr.ctx.sel.index.count == 0);
lbModule *m = p->module;
gbAllocator a = heap_allocator();
auto args = array_make<lbValue>(a, 1);
args[0] = addr.addr;
lb_emit_runtime_call(p, "__init_context", args);
}
void lb_push_context_onto_stack(lbProcedure *p, lbAddr ctx) {
ctx.kind = lbAddr_Context;
lbContextData cd = {ctx, p->scope_index};
array_add(&p->context_stack, cd);
}
lbAddr lb_find_or_generate_context_ptr(lbProcedure *p) {
if (p->context_stack.count > 0) {
return p->context_stack[p->context_stack.count-1].ctx;
}
Type *pt = base_type(p->type);
GB_ASSERT(pt->kind == Type_Proc);
{
lbAddr c = lb_add_local_generated(p, t_context, false);
c.kind = lbAddr_Context;
lb_emit_init_context(p, c);
lb_push_context_onto_stack(p, c);
return c;
}
}
lbValue lb_address_from_load_or_generate_local(lbProcedure *p, lbValue value) {
if (LLVMIsALoadInst(value.value)) {
lbValue res = {};
res.value = LLVMGetOperand(value.value, 0);
res.type = alloc_type_pointer(value.type);
return res;
}
GB_ASSERT(is_type_typed(value.type));
lbAddr res = lb_add_local_generated(p, value.type, false);
lb_addr_store(p, res, value);
return res.addr;
}
lbValue lb_address_from_load(lbProcedure *p, lbValue value) {
if (LLVMIsALoadInst(value.value)) {
lbValue res = {};
res.value = LLVMGetOperand(value.value, 0);
res.type = alloc_type_pointer(value.type);
return res;
}
GB_PANIC("lb_address_from_load");
return {};
}
lbValue lb_copy_value_to_ptr(lbProcedure *p, lbValue val, Type *new_type, i64 alignment) {
i64 type_alignment = type_align_of(new_type);
if (alignment < type_alignment) {
alignment = type_alignment;
}
GB_ASSERT_MSG(are_types_identical(new_type, val.type), "%s %s", type_to_string(new_type), type_to_string(val.type));
lbAddr ptr = lb_add_local_generated(p, new_type, false);
LLVMSetAlignment(ptr.addr.value, cast(unsigned)alignment);
lb_addr_store(p, ptr, val);
ptr.kind = lbAddr_Context;
return ptr.addr;
}
lbValue lb_emit_struct_ep(lbProcedure *p, lbValue s, i32 index) {
gbAllocator a = heap_allocator();
GB_ASSERT(is_type_pointer(s.type));
Type *t = base_type(type_deref(s.type));
Type *result_type = nullptr;
if (t->kind == Type_Opaque) {
t = t->Opaque.elem;
}
if (is_type_relative_pointer(t)) {
s = lb_addr_get_ptr(p, lb_addr(s));
}
if (is_type_struct(t)) {
result_type = get_struct_field_type(t, index);
} else if (is_type_union(t)) {
GB_ASSERT(index == -1);
return lb_emit_union_tag_ptr(p, s);
} else if (is_type_tuple(t)) {
GB_ASSERT(t->Tuple.variables.count > 0);
result_type = t->Tuple.variables[index]->type;
} else if (is_type_complex(t)) {
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
}
} else if (is_type_quaternion(t)) {
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
case 2: result_type = ft; break;
case 3: result_type = ft; break;
}
} else if (is_type_slice(t)) {
switch (index) {
case 0: result_type = alloc_type_pointer(t->Slice.elem); break;
case 1: result_type = t_int; break;
}
} else if (is_type_string(t)) {
switch (index) {
case 0: result_type = t_u8_ptr; break;
case 1: result_type = t_int; break;
}
} else if (is_type_any(t)) {
switch (index) {
case 0: result_type = t_rawptr; break;
case 1: result_type = t_typeid; break;
}
} else if (is_type_dynamic_array(t)) {
switch (index) {
case 0: result_type = alloc_type_pointer(t->DynamicArray.elem); break;
case 1: result_type = t_int; break;
case 2: result_type = t_int; break;
case 3: result_type = t_allocator; break;
}
} else if (is_type_map(t)) {
init_map_internal_types(t);
Type *itp = alloc_type_pointer(t->Map.internal_type);
s = lb_emit_transmute(p, s, itp);
Type *gst = t->Map.internal_type;
GB_ASSERT(gst->kind == Type_Struct);
switch (index) {
case 0: result_type = get_struct_field_type(gst, 0); break;
case 1: result_type = get_struct_field_type(gst, 1); break;
}
} else if (is_type_array(t)) {
return lb_emit_array_epi(p, s, index);
} else if (is_type_relative_slice(t)) {
switch (index) {
case 0: result_type = t->RelativeSlice.base_integer; break;
case 1: result_type = t->RelativeSlice.base_integer; break;
}
} else {
GB_PANIC("TODO(bill): struct_gep type: %s, %d", type_to_string(s.type), index);
}
GB_ASSERT_MSG(result_type != nullptr, "%s %d", type_to_string(t), index);
if (t->kind == Type_Struct && t->Struct.custom_align != 0) {
index += 1;
}
if (lb_is_const(s)) {
lbModule *m = p->module;
lbValue res = {};
LLVMValueRef indices[2] = {llvm_zero(m), LLVMConstInt(lb_type(m, t_i32), index, false)};
res.value = LLVMConstGEP(s.value, indices, gb_count_of(indices));
res.type = alloc_type_pointer(result_type);
return res;
} else {
lbValue res = {};
res.value = LLVMBuildStructGEP(p->builder, s.value, cast(unsigned)index, "");
res.type = alloc_type_pointer(result_type);
return res;
}
}
lbValue lb_emit_struct_ev(lbProcedure *p, lbValue s, i32 index) {
if (LLVMIsALoadInst(s.value)) {
lbValue res = {};
res.value = LLVMGetOperand(s.value, 0);
res.type = alloc_type_pointer(s.type);
lbValue ptr = lb_emit_struct_ep(p, res, index);
return lb_emit_load(p, ptr);
}
gbAllocator a = heap_allocator();
Type *t = base_type(s.type);
Type *result_type = nullptr;
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_string:
switch (index) {
case 0: result_type = t_u8_ptr; break;
case 1: result_type = t_int; break;
}
break;
case Basic_any:
switch (index) {
case 0: result_type = t_rawptr; break;
case 1: result_type = t_typeid; break;
}
break;
case Basic_complex64: case Basic_complex128:
{
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
}
break;
}
case Basic_quaternion128: case Basic_quaternion256:
{
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
case 2: result_type = ft; break;
case 3: result_type = ft; break;
}
break;
}
}
break;
case Type_Struct:
result_type = get_struct_field_type(t, index);
break;
case Type_Union:
GB_ASSERT(index == -1);
// return lb_emit_union_tag_value(p, s);
GB_PANIC("lb_emit_union_tag_value");
case Type_Tuple:
GB_ASSERT(t->Tuple.variables.count > 0);
result_type = t->Tuple.variables[index]->type;
if (t->Tuple.variables.count == 1) {
return s;
}
break;
case Type_Slice:
switch (index) {
case 0: result_type = alloc_type_pointer(t->Slice.elem); break;
case 1: result_type = t_int; break;
}
break;
case Type_DynamicArray:
switch (index) {
case 0: result_type = alloc_type_pointer(t->DynamicArray.elem); break;
case 1: result_type = t_int; break;
case 2: result_type = t_int; break;
case 3: result_type = t_allocator; break;
}
break;
case Type_Map:
{
init_map_internal_types(t);
Type *gst = t->Map.generated_struct_type;
switch (index) {
case 0: result_type = get_struct_field_type(gst, 0); break;
case 1: result_type = get_struct_field_type(gst, 1); break;
}
}
break;
case Type_Array:
result_type = t->Array.elem;
break;
default:
GB_PANIC("TODO(bill): struct_ev type: %s, %d", type_to_string(s.type), index);
break;
}
GB_ASSERT_MSG(result_type != nullptr, "%s, %d", type_to_string(s.type), index);
if (t->kind == Type_Struct && t->Struct.custom_align != 0) {
index += 1;
}
lbValue res = {};
res.value = LLVMBuildExtractValue(p->builder, s.value, cast(unsigned)index, "");
res.type = result_type;
return res;
}
lbValue lb_emit_deep_field_gep(lbProcedure *p, lbValue e, Selection sel) {
GB_ASSERT(sel.index.count > 0);
Type *type = type_deref(e.type);
gbAllocator a = heap_allocator();
for_array(i, sel.index) {
i32 index = cast(i32)sel.index[i];
if (is_type_pointer(type)) {
type = type_deref(type);
e = lb_emit_load(p, e);
}
type = core_type(type);
if (type->kind == Type_Opaque) {
type = type->Opaque.elem;
}
if (is_type_quaternion(type)) {
e = lb_emit_struct_ep(p, e, index);
} else if (is_type_raw_union(type)) {
type = get_struct_field_type(type, index);
GB_ASSERT(is_type_pointer(e.type));
e = lb_emit_transmute(p, e, alloc_type_pointer(type));
} else if (is_type_struct(type)) {
type = get_struct_field_type(type, index);
e = lb_emit_struct_ep(p, e, index);
} else if (type->kind == Type_Union) {
GB_ASSERT(index == -1);
type = t_type_info_ptr;
e = lb_emit_struct_ep(p, e, index);
} else if (type->kind == Type_Tuple) {
type = type->Tuple.variables[index]->type;
e = lb_emit_struct_ep(p, e, index);
} else if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_any: {
if (index == 0) {
type = t_rawptr;
} else if (index == 1) {
type = t_type_info_ptr;
}
e = lb_emit_struct_ep(p, e, index);
break;
}
case Basic_string:
e = lb_emit_struct_ep(p, e, index);
break;
default:
GB_PANIC("un-gep-able type %s", type_to_string(type));
break;
}
} else if (type->kind == Type_Slice) {
e = lb_emit_struct_ep(p, e, index);
} else if (type->kind == Type_DynamicArray) {
e = lb_emit_struct_ep(p, e, index);
} else if (type->kind == Type_Array) {
e = lb_emit_array_epi(p, e, index);
} else if (type->kind == Type_Map) {
e = lb_emit_struct_ep(p, e, index);
} else if (type->kind == Type_RelativePointer) {
e = lb_emit_struct_ep(p, e, index);
} else {
GB_PANIC("un-gep-able type %s", type_to_string(type));
}
}
return e;
}
lbValue lb_emit_deep_field_ev(lbProcedure *p, lbValue e, Selection sel) {
lbValue ptr = lb_address_from_load_or_generate_local(p, e);
lbValue res = lb_emit_deep_field_gep(p, ptr, sel);
return lb_emit_load(p, res);
}
void lb_build_defer_stmt(lbProcedure *p, lbDefer d) {
// NOTE(bill): The prev block may defer injection before it's terminator
LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block);
if (last_instr != nullptr && LLVMIsAReturnInst(last_instr)) {
// NOTE(bill): ReturnStmt defer stuff will be handled previously
return;
}
isize prev_context_stack_count = p->context_stack.count;
defer (p->context_stack.count = prev_context_stack_count);
p->context_stack.count = d.context_stack_count;
lbBlock *b = lb_create_block(p, "defer");
if (last_instr == nullptr || !LLVMIsATerminatorInst(last_instr)) {
lb_emit_jump(p, b);
}
if (last_instr == nullptr || !LLVMIsATerminatorInst(last_instr)) {
lb_emit_jump(p, b);
}
lb_start_block(p, b);
if (d.kind == lbDefer_Node) {
lb_build_stmt(p, d.stmt);
} else if (d.kind == lbDefer_Instr) {
// NOTE(bill): Need to make a new copy
LLVMValueRef instr = LLVMInstructionClone(d.instr.value);
LLVMInsertIntoBuilder(p->builder, instr);
} else if (d.kind == lbDefer_Proc) {
lb_emit_call(p, d.proc.deferred, d.proc.result_as_args);
}
}
void lb_emit_defer_stmts(lbProcedure *p, lbDeferExitKind kind, lbBlock *block) {
isize count = p->defer_stmts.count;
isize i = count;
while (i --> 0) {
lbDefer d = p->defer_stmts[i];
isize prev_context_stack_count = p->context_stack.count;
defer (p->context_stack.count = prev_context_stack_count);
p->context_stack.count = d.context_stack_count;
if (kind == lbDeferExit_Default) {
if (p->scope_index == d.scope_index &&
d.scope_index > 0) { // TODO(bill): Which is correct: > 0 or > 1?
lb_build_defer_stmt(p, d);
array_pop(&p->defer_stmts);
continue;
} else {
break;
}
} else if (kind == lbDeferExit_Return) {
lb_build_defer_stmt(p, d);
} else if (kind == lbDeferExit_Branch) {
GB_ASSERT(block != nullptr);
isize lower_limit = block->scope_index;
if (lower_limit < d.scope_index) {
lb_build_defer_stmt(p, d);
}
}
}
}
lbDefer lb_add_defer_node(lbProcedure *p, isize scope_index, Ast *stmt) {
lbDefer d = {lbDefer_Node};
d.scope_index = scope_index;
d.context_stack_count = p->context_stack.count;
d.block = p->curr_block;
d.stmt = stmt;
array_add(&p->defer_stmts, d);
return d;
}
lbDefer lb_add_defer_proc(lbProcedure *p, isize scope_index, lbValue deferred, Array<lbValue> const &result_as_args) {
lbDefer d = {lbDefer_Proc};
d.scope_index = p->scope_index;
d.block = p->curr_block;
d.proc.deferred = deferred;
d.proc.result_as_args = result_as_args;
array_add(&p->defer_stmts, d);
return d;
}
Array<lbValue> lb_value_to_array(lbProcedure *p, lbValue value) {
Array<lbValue> array = {};
Type *t = base_type(value.type);
if (t == nullptr) {
// Do nothing
} else if (is_type_tuple(t)) {
GB_ASSERT(t->kind == Type_Tuple);
auto *rt = &t->Tuple;
if (rt->variables.count > 0) {
array = array_make<lbValue>(heap_allocator(), rt->variables.count);
for_array(i, rt->variables) {
lbValue elem = lb_emit_struct_ev(p, value, cast(i32)i);
array[i] = elem;
}
}
} else {
array = array_make<lbValue>(heap_allocator(), 1);
array[0] = value;
}
return array;
}
lbValue lb_emit_call_internal(lbProcedure *p, lbValue value, lbValue return_ptr, Array<lbValue> const &processed_args, Type *abi_rt, lbAddr context_ptr, ProcInlining inlining) {
unsigned arg_count = cast(unsigned)processed_args.count;
if (return_ptr.value != nullptr) {
arg_count += 1;
}
if (context_ptr.addr.value != nullptr) {
arg_count += 1;
}
LLVMValueRef *args = gb_alloc_array(heap_allocator(), LLVMValueRef, arg_count);
isize arg_index = 0;
if (return_ptr.value != nullptr) {
args[arg_index++] = return_ptr.value;
}
for_array(i, processed_args) {
lbValue arg = processed_args[i];
args[arg_index++] = arg.value;
}
if (context_ptr.addr.value != nullptr) {
args[arg_index++] = context_ptr.addr.value;
}
LLVMBasicBlockRef curr_block = LLVMGetInsertBlock(p->builder);
GB_ASSERT(curr_block != p->decl_block->block);
LLVMValueRef ret = LLVMBuildCall2(p->builder, LLVMGetElementType(lb_type(p->module, value.type)), value.value, args, arg_count, "");;
lbValue res = {};
res.value = ret;
res.type = abi_rt;
return res;
}
lbValue lb_emit_runtime_call(lbProcedure *p, char const *c_name, Array<lbValue> const &args) {
String name = make_string_c(c_name);
AstPackage *pkg = p->module->info->runtime_package;
Entity *e = scope_lookup_current(pkg->scope, name);
lbValue *found = nullptr;
if (p->module != e->code_gen_module) {
gb_mutex_lock(&p->module->mutex);
}
found = map_get(&e->code_gen_module->values, hash_entity(e));
if (p->module != e->code_gen_module) {
gb_mutex_unlock(&p->module->mutex);
}
GB_ASSERT_MSG(found != nullptr, "%s", c_name);
return lb_emit_call(p, *found, args);
}
lbValue lb_emit_call(lbProcedure *p, lbValue value, Array<lbValue> const &args, ProcInlining inlining, bool use_return_ptr_hint) {
lbModule *m = p->module;
Type *pt = base_type(value.type);
GB_ASSERT(pt->kind == Type_Proc);
Type *results = pt->Proc.results;
if (p->entity != nullptr) {
if (p->entity->flags & EntityFlag_Disabled) {
return {};
}
}
lbAddr context_ptr = {};
if (pt->Proc.calling_convention == ProcCC_Odin) {
context_ptr = lb_find_or_generate_context_ptr(p);
}
defer (if (pt->Proc.diverging) {
LLVMBuildUnreachable(p->builder);
});
set_procedure_abi_types(heap_allocator(), pt);
bool is_c_vararg = pt->Proc.c_vararg;
isize param_count = pt->Proc.param_count;
if (is_c_vararg) {
GB_ASSERT(param_count-1 <= args.count);
param_count -= 1;
} else {
GB_ASSERT_MSG(param_count == args.count, "%td == %td", param_count, args.count);
}
auto processed_args = array_make<lbValue>(heap_allocator(), 0, args.count);
for (isize i = 0; i < param_count; i++) {
Entity *e = pt->Proc.params->Tuple.variables[i];
if (e->kind != Entity_Variable) {
// array_add(&processed_args, args[i]);
continue;
}
GB_ASSERT(e->flags & EntityFlag_Param);
Type *original_type = e->type;
Type *new_type = pt->Proc.abi_compat_params[i];
Type *arg_type = args[i].type;
if (are_types_identical(arg_type, new_type)) {
// NOTE(bill): Done
array_add(&processed_args, args[i]);
} else if (!are_types_identical(original_type, new_type)) {
if (is_type_pointer(new_type) && !is_type_pointer(original_type)) {
Type *av = core_type(type_deref(new_type));
if (are_types_identical(av, core_type(original_type))) {
if (e->flags&EntityFlag_ImplicitReference) {
array_add(&processed_args, lb_address_from_load_or_generate_local(p, args[i]));
} else if (!is_type_pointer(arg_type)) {
array_add(&processed_args, lb_copy_value_to_ptr(p, args[i], original_type, 16));
}
} else {
array_add(&processed_args, lb_emit_transmute(p, args[i], new_type));
}
} else if (new_type == t_llvm_bool) {
array_add(&processed_args, lb_emit_conv(p, args[i], new_type));
} else if (is_type_integer(new_type) || is_type_float(new_type) || is_type_boolean(new_type)) {
array_add(&processed_args, lb_emit_transmute(p, args[i], new_type));
} else if (is_type_simd_vector(new_type)) {
array_add(&processed_args, lb_emit_transmute(p, args[i], new_type));
} else if (is_type_tuple(new_type)) {
Type *abi_type = pt->Proc.abi_compat_params[i];
Type *st = struct_type_from_systemv_distribute_struct_fields(abi_type);
lbValue x = {};
i64 st_sz = type_size_of(st);
i64 arg_sz = type_size_of(args[i].type);
if (st_sz == arg_sz) {
x = lb_emit_transmute(p, args[i], st);
} else {
// NOTE(bill): struct{f32, f32, f32} != struct{#simd[2]f32, f32}
GB_ASSERT(st_sz > arg_sz);
lbAddr xx = lb_add_local_generated(p, st, false);
lbValue pp = lb_emit_conv(p, xx.addr, alloc_type_pointer(args[i].type));
lb_emit_store(p, pp, args[i]);
x = lb_addr_load(p, xx);
}
for (isize j = 0; j < new_type->Tuple.variables.count; j++) {
lbValue xx = lb_emit_struct_ev(p, x, cast(i32)j);
array_add(&processed_args, xx);
}
}
} else {
lbValue x = lb_emit_conv(p, args[i], new_type);
array_add(&processed_args, x);
}
}
if (inlining == ProcInlining_none) {
inlining = p->inlining;
}
lbValue result = {};
Type *abi_rt = reduce_tuple_to_single_type(pt->Proc.abi_compat_result_type);
Type *rt = reduce_tuple_to_single_type(results);
if (pt->Proc.return_by_pointer) {
lbValue return_ptr = {};
if (use_return_ptr_hint && p->return_ptr_hint_value.value != nullptr) {
if (are_types_identical(type_deref(p->return_ptr_hint_value.type), rt)) {
return_ptr = p->return_ptr_hint_value;
p->return_ptr_hint_used = true;
}
}
if (return_ptr.value == nullptr) {
lbAddr r = lb_add_local_generated(p, rt, true);
return_ptr = r.addr;
}
GB_ASSERT(is_type_pointer(return_ptr.type));
lb_emit_call_internal(p, value, return_ptr, processed_args, nullptr, context_ptr, inlining);
result = lb_emit_load(p, return_ptr);
} else {
result = lb_emit_call_internal(p, value, {}, processed_args, abi_rt, context_ptr, inlining);
if (abi_rt != rt) {
result = lb_emit_transmute(p, result, rt);
}
}
Entity **found = map_get(&p->module->procedure_values, hash_pointer(value.value));
if (found != nullptr) {
Entity *e = *found;
if (e != nullptr && entity_has_deferred_procedure(e)) {
DeferredProcedureKind kind = e->Procedure.deferred_procedure.kind;
Entity *deferred_entity = e->Procedure.deferred_procedure.entity;
lbValue *deferred_found = map_get(&p->module->values, hash_entity(deferred_entity));
GB_ASSERT(deferred_found != nullptr);
lbValue deferred = *deferred_found;
auto in_args = args;
Array<lbValue> result_as_args = {};
switch (kind) {
case DeferredProcedure_none:
break;
case DeferredProcedure_in:
result_as_args = in_args;
break;
case DeferredProcedure_out:
result_as_args = lb_value_to_array(p, result);
break;
case DeferredProcedure_in_out:
{
auto out_args = lb_value_to_array(p, result);
array_init(&result_as_args, heap_allocator(), in_args.count + out_args.count);
array_copy(&result_as_args, in_args, 0);
array_copy(&result_as_args, out_args, in_args.count);
}
break;
}
lb_add_defer_proc(p, p->scope_index, deferred, result_as_args);
}
}
return result;
}
lbValue lb_emit_array_ep(lbProcedure *p, lbValue s, lbValue index) {
Type *t = s.type;
GB_ASSERT(is_type_pointer(t));
Type *st = base_type(type_deref(t));
GB_ASSERT_MSG(is_type_array(st) || is_type_enumerated_array(st), "%s", type_to_string(st));
GB_ASSERT_MSG(is_type_integer(index.type), "%s", type_to_string(index.type));
LLVMValueRef indices[2] = {};
indices[0] = llvm_zero(p->module);
indices[1] = lb_emit_conv(p, index, t_int).value;
Type *ptr = base_array_type(st);
lbValue res = {};
res.value = LLVMBuildGEP(p->builder, s.value, indices, 2, "");
res.type = alloc_type_pointer(ptr);
return res;
}
lbValue lb_emit_array_epi(lbProcedure *p, lbValue s, isize index) {
Type *t = s.type;
GB_ASSERT(is_type_pointer(t));
Type *st = base_type(type_deref(t));
GB_ASSERT_MSG(is_type_array(st) || is_type_enumerated_array(st), "%s", type_to_string(st));
GB_ASSERT(0 <= index);
Type *ptr = base_array_type(st);
LLVMValueRef indices[2] = {
LLVMConstInt(lb_type(p->module, t_int), 0, false),
LLVMConstInt(lb_type(p->module, t_int), cast(unsigned)index, false),
};
lbValue res = {};
if (lb_is_const(s)) {
res.value = LLVMConstGEP(s.value, indices, gb_count_of(indices));
} else {
res.value = LLVMBuildGEP(p->builder, s.value, indices, gb_count_of(indices), "");
}
res.type = alloc_type_pointer(ptr);
return res;
}
lbValue lb_emit_ptr_offset(lbProcedure *p, lbValue ptr, lbValue index) {
LLVMValueRef indices[1] = {index.value};
lbValue res = {};
res.type = ptr.type;
if (lb_is_const(ptr) && lb_is_const(index)) {
res.value = LLVMConstGEP(ptr.value, indices, 1);
} else {
res.value = LLVMBuildGEP(p->builder, ptr.value, indices, 1, "");
}
return res;
}
LLVMValueRef llvm_const_slice(lbValue data, lbValue len) {
GB_ASSERT(is_type_pointer(data.type));
GB_ASSERT(are_types_identical(len.type, t_int));
LLVMValueRef vals[2] = {
data.value,
len.value,
};
return LLVMConstStruct(vals, gb_count_of(vals), false);
}
void lb_fill_slice(lbProcedure *p, lbAddr const &slice, lbValue base_elem, lbValue len) {
Type *t = lb_addr_type(slice);
GB_ASSERT(is_type_slice(t));
lbValue ptr = lb_addr_get_ptr(p, slice);
lb_emit_store(p, lb_emit_struct_ep(p, ptr, 0), base_elem);
lb_emit_store(p, lb_emit_struct_ep(p, ptr, 1), len);
}
void lb_fill_string(lbProcedure *p, lbAddr const &string, lbValue base_elem, lbValue len) {
Type *t = lb_addr_type(string);
GB_ASSERT(is_type_string(t));
lbValue ptr = lb_addr_get_ptr(p, string);
lb_emit_store(p, lb_emit_struct_ep(p, ptr, 0), base_elem);
lb_emit_store(p, lb_emit_struct_ep(p, ptr, 1), len);
}
lbValue lb_string_elem(lbProcedure *p, lbValue string) {
Type *t = base_type(string.type);
GB_ASSERT(t->kind == Type_Basic && t->Basic.kind == Basic_string);
return lb_emit_struct_ev(p, string, 0);
}
lbValue lb_string_len(lbProcedure *p, lbValue string) {
Type *t = base_type(string.type);
GB_ASSERT_MSG(t->kind == Type_Basic && t->Basic.kind == Basic_string, "%s", type_to_string(t));
return lb_emit_struct_ev(p, string, 1);
}
lbValue lb_cstring_len(lbProcedure *p, lbValue value) {
GB_ASSERT(is_type_cstring(value.type));
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = lb_emit_conv(p, value, t_cstring);
return lb_emit_runtime_call(p, "cstring_len", args);
}
lbValue lb_array_elem(lbProcedure *p, lbValue array_ptr) {
Type *t = type_deref(array_ptr.type);
GB_ASSERT(is_type_array(t));
return lb_emit_struct_ep(p, array_ptr, 0);
}
lbValue lb_slice_elem(lbProcedure *p, lbValue slice) {
GB_ASSERT(is_type_slice(slice.type));
return lb_emit_struct_ev(p, slice, 0);
}
lbValue lb_slice_len(lbProcedure *p, lbValue slice) {
GB_ASSERT(is_type_slice(slice.type));
return lb_emit_struct_ev(p, slice, 1);
}
lbValue lb_dynamic_array_elem(lbProcedure *p, lbValue da) {
GB_ASSERT(is_type_dynamic_array(da.type));
return lb_emit_struct_ev(p, da, 0);
}
lbValue lb_dynamic_array_len(lbProcedure *p, lbValue da) {
GB_ASSERT(is_type_dynamic_array(da.type));
return lb_emit_struct_ev(p, da, 1);
}
lbValue lb_dynamic_array_cap(lbProcedure *p, lbValue da) {
GB_ASSERT(is_type_dynamic_array(da.type));
return lb_emit_struct_ev(p, da, 2);
}
lbValue lb_dynamic_array_allocator(lbProcedure *p, lbValue da) {
GB_ASSERT(is_type_dynamic_array(da.type));
return lb_emit_struct_ev(p, da, 3);
}
lbValue lb_map_entries(lbProcedure *p, lbValue value) {
gbAllocator a = heap_allocator();
Type *t = base_type(value.type);
GB_ASSERT_MSG(t->kind == Type_Map, "%s", type_to_string(t));
init_map_internal_types(t);
Type *gst = t->Map.generated_struct_type;
i32 index = 1;
lbValue entries = lb_emit_struct_ev(p, value, index);
return entries;
}
lbValue lb_map_entries_ptr(lbProcedure *p, lbValue value) {
gbAllocator a = heap_allocator();
Type *t = base_type(type_deref(value.type));
GB_ASSERT_MSG(t->kind == Type_Map, "%s", type_to_string(t));
init_map_internal_types(t);
Type *gst = t->Map.generated_struct_type;
i32 index = 1;
lbValue entries = lb_emit_struct_ep(p, value, index);
return entries;
}
lbValue lb_map_len(lbProcedure *p, lbValue value) {
lbValue entries = lb_map_entries(p, value);
return lb_dynamic_array_len(p, entries);
}
lbValue lb_map_cap(lbProcedure *p, lbValue value) {
lbValue entries = lb_map_entries(p, value);
return lb_dynamic_array_cap(p, entries);
}
lbValue lb_soa_struct_len(lbProcedure *p, lbValue value) {
Type *t = base_type(value.type);
bool is_ptr = false;
if (is_type_pointer(t)) {
is_ptr = true;
t = base_type(type_deref(t));
}
if (t->Struct.soa_kind == StructSoa_Fixed) {
return lb_const_int(p->module, t_int, t->Struct.soa_count);
}
GB_ASSERT(t->Struct.soa_kind == StructSoa_Slice ||
t->Struct.soa_kind == StructSoa_Dynamic);
isize n = 0;
Type *elem = base_type(t->Struct.soa_elem);
if (elem->kind == Type_Struct) {
n = elem->Struct.fields.count;
} else if (elem->kind == Type_Array) {
n = elem->Array.count;
} else {
GB_PANIC("Unreachable");
}
if (is_ptr) {
lbValue v = lb_emit_struct_ep(p, value, cast(i32)n);
return lb_emit_load(p, v);
}
return lb_emit_struct_ev(p, value, cast(i32)n);
}
lbValue lb_soa_struct_cap(lbProcedure *p, lbValue value) {
Type *t = base_type(value.type);
bool is_ptr = false;
if (is_type_pointer(t)) {
is_ptr = true;
t = base_type(type_deref(t));
}
if (t->Struct.soa_kind == StructSoa_Fixed) {
return lb_const_int(p->module, t_int, t->Struct.soa_count);
}
GB_ASSERT(t->Struct.soa_kind == StructSoa_Dynamic);
isize n = 0;
Type *elem = base_type(t->Struct.soa_elem);
if (elem->kind == Type_Struct) {
n = elem->Struct.fields.count+1;
} else if (elem->kind == Type_Array) {
n = elem->Array.count+1;
} else {
GB_PANIC("Unreachable");
}
if (is_ptr) {
lbValue v = lb_emit_struct_ep(p, value, cast(i32)n);
return lb_emit_load(p, v);
}
return lb_emit_struct_ev(p, value, cast(i32)n);
}
lbValue lb_build_builtin_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv, BuiltinProcId id) {
ast_node(ce, CallExpr, expr);
switch (id) {
case BuiltinProc_DIRECTIVE: {
ast_node(bd, BasicDirective, ce->proc);
String name = bd->name;
GB_ASSERT(name == "location");
String procedure = p->entity->token.string;
TokenPos pos = ast_token(ce->proc).pos;
if (ce->args.count > 0) {
Ast *ident = unselector_expr(ce->args[0]);
GB_ASSERT(ident->kind == Ast_Ident);
Entity *e = entity_of_node(ident);
GB_ASSERT(e != nullptr);
if (e->parent_proc_decl != nullptr && e->parent_proc_decl->entity != nullptr) {
procedure = e->parent_proc_decl->entity->token.string;
} else {
procedure = str_lit("");
}
pos = e->token.pos;
}
return lb_emit_source_code_location(p, procedure, pos);
}
case BuiltinProc_type_info_of: {
Ast *arg = ce->args[0];
TypeAndValue tav = type_and_value_of_expr(arg);
if (tav.mode == Addressing_Type) {
Type *t = default_type(type_of_expr(arg));
return lb_type_info(p->module, t);
}
GB_ASSERT(is_type_typeid(tav.type));
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = lb_build_expr(p, arg);
return lb_emit_runtime_call(p, "__type_info_of", args);
}
case BuiltinProc_typeid_of: {
Ast *arg = ce->args[0];
TypeAndValue tav = type_and_value_of_expr(arg);
if (tav.mode == Addressing_Type) {
Type *t = default_type(type_of_expr(arg));
return lb_typeid(p->module, t);
}
Type *t = base_type(tav.type);
GB_ASSERT(are_types_identical(t, t_type_info_ptr));
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = lb_emit_conv(p, lb_build_expr(p, arg), t_type_info_ptr);
return lb_emit_runtime_call(p, "__typeid_of", args);
}
case BuiltinProc_len: {
lbValue v = lb_build_expr(p, ce->args[0]);
Type *t = base_type(v.type);
if (is_type_pointer(t)) {
// IMPORTANT TODO(bill): Should there be a nil pointer check?
v = lb_emit_load(p, v);
t = type_deref(t);
}
if (is_type_cstring(t)) {
return lb_cstring_len(p, v);
} else if (is_type_string(t)) {
return lb_string_len(p, v);
} else if (is_type_array(t)) {
GB_PANIC("Array lengths are constant");
} else if (is_type_slice(t)) {
return lb_slice_len(p, v);
} else if (is_type_dynamic_array(t)) {
return lb_dynamic_array_len(p, v);
} else if (is_type_map(t)) {
return lb_map_len(p, v);
} else if (is_type_soa_struct(t)) {
return lb_soa_struct_len(p, v);
}
GB_PANIC("Unreachable");
break;
}
case BuiltinProc_cap: {
lbValue v = lb_build_expr(p, ce->args[0]);
Type *t = base_type(v.type);
if (is_type_pointer(t)) {
// IMPORTANT TODO(bill): Should there be a nil pointer check?
v = lb_emit_load(p, v);
t = type_deref(t);
}
if (is_type_string(t)) {
GB_PANIC("Unreachable");
} else if (is_type_array(t)) {
GB_PANIC("Array lengths are constant");
} else if (is_type_slice(t)) {
return lb_slice_len(p, v);
} else if (is_type_dynamic_array(t)) {
return lb_dynamic_array_cap(p, v);
} else if (is_type_map(t)) {
return lb_map_cap(p, v);
} else if (is_type_soa_struct(t)) {
return lb_soa_struct_cap(p, v);
}
GB_PANIC("Unreachable");
break;
}
case BuiltinProc_swizzle: {
isize index_count = ce->args.count-1;
if (is_type_simd_vector(tv.type)) {
lbValue vec = lb_build_expr(p, ce->args[0]);
if (index_count == 0) {
return vec;
}
unsigned mask_len = cast(unsigned)index_count;
LLVMValueRef *mask_elems = gb_alloc_array(heap_allocator(), LLVMValueRef, index_count);
for (isize i = 1; i < ce->args.count; i++) {
TypeAndValue tv = type_and_value_of_expr(ce->args[i]);
GB_ASSERT(is_type_integer(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Integer);
u32 index = cast(u32)big_int_to_i64(&tv.value.value_integer);
mask_elems[i-1] = LLVMConstInt(lb_type(p->module, t_u32), index, false);
}
LLVMValueRef mask = LLVMConstVector(mask_elems, mask_len);
LLVMValueRef v1 = vec.value;
LLVMValueRef v2 = vec.value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildShuffleVector(p->builder, v1, v2, mask, "");
return res;
}
lbAddr addr = lb_build_addr(p, ce->args[0]);
if (index_count == 0) {
return lb_addr_load(p, addr);
}
lbValue src = lb_addr_get_ptr(p, addr);
// TODO(bill): Should this be zeroed or not?
lbAddr dst = lb_add_local_generated(p, tv.type, true);
lbValue dst_ptr = lb_addr_get_ptr(p, dst);
for (i32 i = 1; i < ce->args.count; i++) {
TypeAndValue tv = type_and_value_of_expr(ce->args[i]);
GB_ASSERT(is_type_integer(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Integer);
i32 src_index = cast(i32)big_int_to_i64(&tv.value.value_integer);
i32 dst_index = i-1;
lbValue src_elem = lb_emit_array_epi(p, src, src_index);
lbValue dst_elem = lb_emit_array_epi(p, dst_ptr, dst_index);
lb_emit_store(p, dst_elem, lb_emit_load(p, src_elem));
}
return lb_addr_load(p, dst);
}
case BuiltinProc_complex: {
lbValue real = lb_build_expr(p, ce->args[0]);
lbValue imag = lb_build_expr(p, ce->args[1]);
lbAddr dst_addr = lb_add_local_generated(p, tv.type, false);
lbValue dst = lb_addr_get_ptr(p, dst_addr);
Type *ft = base_complex_elem_type(tv.type);
real = lb_emit_conv(p, real, ft);
imag = lb_emit_conv(p, imag, ft);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), imag);
return lb_emit_load(p, dst);
}
case BuiltinProc_quaternion: {
lbValue real = lb_build_expr(p, ce->args[0]);
lbValue imag = lb_build_expr(p, ce->args[1]);
lbValue jmag = lb_build_expr(p, ce->args[2]);
lbValue kmag = lb_build_expr(p, ce->args[3]);
// @QuaternionLayout
lbAddr dst_addr = lb_add_local_generated(p, tv.type, false);
lbValue dst = lb_addr_get_ptr(p, dst_addr);
Type *ft = base_complex_elem_type(tv.type);
real = lb_emit_conv(p, real, ft);
imag = lb_emit_conv(p, imag, ft);
jmag = lb_emit_conv(p, jmag, ft);
kmag = lb_emit_conv(p, kmag, ft);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), imag);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), jmag);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 2), kmag);
return lb_emit_load(p, dst);
}
case BuiltinProc_real: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_complex(val.type)) {
lbValue real = lb_emit_struct_ev(p, val, 0);
return lb_emit_conv(p, real, tv.type);
} else if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue real = lb_emit_struct_ev(p, val, 3);
return lb_emit_conv(p, real, tv.type);
}
GB_PANIC("invalid type for real");
return {};
}
case BuiltinProc_imag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_complex(val.type)) {
lbValue imag = lb_emit_struct_ev(p, val, 1);
return lb_emit_conv(p, imag, tv.type);
} else if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 0);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for imag");
return {};
}
case BuiltinProc_jmag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 1);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for jmag");
return {};
}
case BuiltinProc_kmag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 2);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for kmag");
return {};
}
case BuiltinProc_conj: {
lbValue val = lb_build_expr(p, ce->args[0]);
lbValue res = {};
Type *t = val.type;
if (is_type_complex(t)) {
res = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
lbValue real = lb_emit_struct_ev(p, val, 0);
lbValue imag = lb_emit_struct_ev(p, val, 1);
imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
lb_emit_store(p, lb_emit_struct_ep(p, res, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, res, 1), imag);
} else if (is_type_quaternion(t)) {
// @QuaternionLayout
res = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
lbValue real = lb_emit_struct_ev(p, val, 3);
lbValue imag = lb_emit_struct_ev(p, val, 0);
lbValue jmag = lb_emit_struct_ev(p, val, 1);
lbValue kmag = lb_emit_struct_ev(p, val, 2);
imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
jmag = lb_emit_unary_arith(p, Token_Sub, jmag, jmag.type);
kmag = lb_emit_unary_arith(p, Token_Sub, kmag, kmag.type);
lb_emit_store(p, lb_emit_struct_ep(p, res, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, res, 0), imag);
lb_emit_store(p, lb_emit_struct_ep(p, res, 1), jmag);
lb_emit_store(p, lb_emit_struct_ep(p, res, 2), kmag);
}
return lb_emit_load(p, res);
}
case BuiltinProc_expand_to_tuple: {
lbValue val = lb_build_expr(p, ce->args[0]);
Type *t = base_type(val.type);
if (!is_type_tuple(tv.type)) {
if (t->kind == Type_Struct) {
GB_ASSERT(t->Struct.fields.count == 1);
return lb_emit_struct_ev(p, val, 0);
} else if (t->kind == Type_Array) {
GB_ASSERT(t->Array.count == 1);
return lb_emit_array_epi(p, val, 0);
} else {
GB_PANIC("Unknown type of expand_to_tuple");
}
}
GB_ASSERT(is_type_tuple(tv.type));
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbValue tuple = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
if (t->kind == Type_Struct) {
for_array(src_index, t->Struct.fields) {
Entity *field = t->Struct.fields[src_index];
i32 field_index = field->Variable.field_index;
lbValue f = lb_emit_struct_ev(p, val, field_index);
lbValue ep = lb_emit_struct_ep(p, tuple, cast(i32)src_index);
lb_emit_store(p, ep, f);
}
} else if (t->kind == Type_Array) {
// TODO(bill): Clean-up this code
lbValue ap = lb_address_from_load_or_generate_local(p, val);
for (i32 i = 0; i < cast(i32)t->Array.count; i++) {
lbValue f = lb_emit_load(p, lb_emit_array_epi(p, ap, i));
lbValue ep = lb_emit_struct_ep(p, tuple, i);
lb_emit_store(p, ep, f);
}
} else {
GB_PANIC("Unknown type of expand_to_tuple");
}
return lb_emit_load(p, tuple);
}
case BuiltinProc_min: {
Type *t = type_of_expr(expr);
if (ce->args.count == 2) {
return lb_emit_min(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]));
} else {
lbValue x = lb_build_expr(p, ce->args[0]);
for (isize i = 1; i < ce->args.count; i++) {
x = lb_emit_min(p, t, x, lb_build_expr(p, ce->args[i]));
}
return x;
}
}
case BuiltinProc_max: {
Type *t = type_of_expr(expr);
if (ce->args.count == 2) {
return lb_emit_max(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]));
} else {
lbValue x = lb_build_expr(p, ce->args[0]);
for (isize i = 1; i < ce->args.count; i++) {
x = lb_emit_max(p, t, x, lb_build_expr(p, ce->args[i]));
}
return x;
}
}
case BuiltinProc_abs: {
gbAllocator a = heap_allocator();
lbValue x = lb_build_expr(p, ce->args[0]);
Type *t = x.type;
if (is_type_unsigned(t)) {
return x;
}
if (is_type_quaternion(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = x;
switch (sz) {
case 128: return lb_emit_runtime_call(p, "abs_quaternion128", args);
case 256: return lb_emit_runtime_call(p, "abs_quaternion256", args);
}
GB_PANIC("Unknown complex type");
} else if (is_type_complex(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = x;
switch (sz) {
case 64: return lb_emit_runtime_call(p, "abs_complex64", args);
case 128: return lb_emit_runtime_call(p, "abs_complex128", args);
}
GB_PANIC("Unknown complex type");
} else if (is_type_float(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = x;
switch (sz) {
case 32: return lb_emit_runtime_call(p, "abs_f32", args);
case 64: return lb_emit_runtime_call(p, "abs_f64", args);
}
GB_PANIC("Unknown float type");
}
lbValue zero = lb_const_nil(p->module, t);
lbValue cond = lb_emit_comp(p, Token_Lt, x, zero);
lbValue neg = lb_emit_unary_arith(p, Token_Sub, x, t);
return lb_emit_select(p, cond, neg, x);
}
case BuiltinProc_clamp:
return lb_emit_clamp(p, type_of_expr(expr),
lb_build_expr(p, ce->args[0]),
lb_build_expr(p, ce->args[1]),
lb_build_expr(p, ce->args[2]));
// "Intrinsics"
case BuiltinProc_alloca:
{
lbValue sz = lb_build_expr(p, ce->args[0]);
i64 al = exact_value_to_i64(type_and_value_of_expr(ce->args[1]).value);
lbValue res = {};
res.type = t_u8_ptr;
res.value = LLVMBuildArrayAlloca(p->builder, lb_type(p->module, t_u8), sz.value, "");
LLVMSetAlignment(res.value, cast(unsigned)al);
return res;
}
case BuiltinProc_cpu_relax:
// TODO(bill): BuiltinProc_cpu_relax
// ir_write_str_lit(f, "call void asm sideeffect \"pause\", \"\"()");
return {};
case BuiltinProc_atomic_fence:
LLVMBuildFence(p->builder, LLVMAtomicOrderingSequentiallyConsistent, false, "");
return {};
case BuiltinProc_atomic_fence_acq:
LLVMBuildFence(p->builder, LLVMAtomicOrderingAcquire, false, "");
return {};
case BuiltinProc_atomic_fence_rel:
LLVMBuildFence(p->builder, LLVMAtomicOrderingRelease, false, "");
return {};
case BuiltinProc_atomic_fence_acqrel:
LLVMBuildFence(p->builder, LLVMAtomicOrderingAcquireRelease, false, "");
return {};
case BuiltinProc_atomic_store:
case BuiltinProc_atomic_store_rel:
case BuiltinProc_atomic_store_relaxed:
case BuiltinProc_atomic_store_unordered: {
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue val = lb_build_expr(p, ce->args[1]);
val = lb_emit_conv(p, val, type_deref(dst.type));
LLVMValueRef instr = LLVMBuildStore(p->builder, val.value, dst.value);
switch (id) {
case BuiltinProc_atomic_store: LLVMSetOrdering(instr, LLVMAtomicOrderingSequentiallyConsistent); break;
case BuiltinProc_atomic_store_rel: LLVMSetOrdering(instr, LLVMAtomicOrderingRelease); break;
case BuiltinProc_atomic_store_relaxed: LLVMSetOrdering(instr, LLVMAtomicOrderingMonotonic); break;
case BuiltinProc_atomic_store_unordered: LLVMSetOrdering(instr, LLVMAtomicOrderingUnordered); break;
}
LLVMSetAlignment(instr, cast(unsigned)type_align_of(type_deref(dst.type)));
return {};
}
case BuiltinProc_atomic_load:
case BuiltinProc_atomic_load_acq:
case BuiltinProc_atomic_load_relaxed:
case BuiltinProc_atomic_load_unordered: {
lbValue dst = lb_build_expr(p, ce->args[0]);
LLVMValueRef instr = LLVMBuildLoad(p->builder, dst.value, "");
switch (id) {
case BuiltinProc_atomic_load: LLVMSetOrdering(instr, LLVMAtomicOrderingSequentiallyConsistent); break;
case BuiltinProc_atomic_load_acq: LLVMSetOrdering(instr, LLVMAtomicOrderingAcquire); break;
case BuiltinProc_atomic_load_relaxed: LLVMSetOrdering(instr, LLVMAtomicOrderingMonotonic); break;
case BuiltinProc_atomic_load_unordered: LLVMSetOrdering(instr, LLVMAtomicOrderingUnordered); break;
}
LLVMSetAlignment(instr, cast(unsigned)type_align_of(type_deref(dst.type)));
lbValue res = {};
res.value = instr;
res.type = type_deref(dst.type);
return res;
}
case BuiltinProc_atomic_add:
case BuiltinProc_atomic_add_acq:
case BuiltinProc_atomic_add_rel:
case BuiltinProc_atomic_add_acqrel:
case BuiltinProc_atomic_add_relaxed:
case BuiltinProc_atomic_sub:
case BuiltinProc_atomic_sub_acq:
case BuiltinProc_atomic_sub_rel:
case BuiltinProc_atomic_sub_acqrel:
case BuiltinProc_atomic_sub_relaxed:
case BuiltinProc_atomic_and:
case BuiltinProc_atomic_and_acq:
case BuiltinProc_atomic_and_rel:
case BuiltinProc_atomic_and_acqrel:
case BuiltinProc_atomic_and_relaxed:
case BuiltinProc_atomic_nand:
case BuiltinProc_atomic_nand_acq:
case BuiltinProc_atomic_nand_rel:
case BuiltinProc_atomic_nand_acqrel:
case BuiltinProc_atomic_nand_relaxed:
case BuiltinProc_atomic_or:
case BuiltinProc_atomic_or_acq:
case BuiltinProc_atomic_or_rel:
case BuiltinProc_atomic_or_acqrel:
case BuiltinProc_atomic_or_relaxed:
case BuiltinProc_atomic_xor:
case BuiltinProc_atomic_xor_acq:
case BuiltinProc_atomic_xor_rel:
case BuiltinProc_atomic_xor_acqrel:
case BuiltinProc_atomic_xor_relaxed:
case BuiltinProc_atomic_xchg:
case BuiltinProc_atomic_xchg_acq:
case BuiltinProc_atomic_xchg_rel:
case BuiltinProc_atomic_xchg_acqrel:
case BuiltinProc_atomic_xchg_relaxed: {
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue val = lb_build_expr(p, ce->args[1]);
val = lb_emit_conv(p, val, type_deref(dst.type));
LLVMAtomicRMWBinOp op = {};
LLVMAtomicOrdering ordering = {};
switch (id) {
case BuiltinProc_atomic_add: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_add_acq: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_add_rel: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_add_acqrel: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_add_relaxed: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingMonotonic; break;
case BuiltinProc_atomic_sub: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_sub_acq: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_sub_rel: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_sub_acqrel: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_sub_relaxed: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingMonotonic; break;
case BuiltinProc_atomic_and: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_and_acq: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_and_rel: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_and_acqrel: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_and_relaxed: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingMonotonic; break;
case BuiltinProc_atomic_nand: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_nand_acq: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_nand_rel: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_nand_acqrel: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_nand_relaxed: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingMonotonic; break;
case BuiltinProc_atomic_or: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_or_acq: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_or_rel: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_or_acqrel: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_or_relaxed: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingMonotonic; break;
case BuiltinProc_atomic_xor: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_xor_acq: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_xor_rel: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_xor_acqrel: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_xor_relaxed: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingMonotonic; break;
case BuiltinProc_atomic_xchg: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_xchg_acq: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingAcquire; break;
case BuiltinProc_atomic_xchg_rel: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingRelease; break;
case BuiltinProc_atomic_xchg_acqrel: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingAcquireRelease; break;
case BuiltinProc_atomic_xchg_relaxed: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingMonotonic; break;
}
lbValue res = {};
res.value = LLVMBuildAtomicRMW(p->builder, op, dst.value, val.value, ordering, false);
res.type = tv.type;
return res;
}
case BuiltinProc_atomic_cxchg:
case BuiltinProc_atomic_cxchg_acq:
case BuiltinProc_atomic_cxchg_rel:
case BuiltinProc_atomic_cxchg_acqrel:
case BuiltinProc_atomic_cxchg_relaxed:
case BuiltinProc_atomic_cxchg_failrelaxed:
case BuiltinProc_atomic_cxchg_failacq:
case BuiltinProc_atomic_cxchg_acq_failrelaxed:
case BuiltinProc_atomic_cxchg_acqrel_failrelaxed:
case BuiltinProc_atomic_cxchgweak:
case BuiltinProc_atomic_cxchgweak_acq:
case BuiltinProc_atomic_cxchgweak_rel:
case BuiltinProc_atomic_cxchgweak_acqrel:
case BuiltinProc_atomic_cxchgweak_relaxed:
case BuiltinProc_atomic_cxchgweak_failrelaxed:
case BuiltinProc_atomic_cxchgweak_failacq:
case BuiltinProc_atomic_cxchgweak_acq_failrelaxed:
case BuiltinProc_atomic_cxchgweak_acqrel_failrelaxed: {
Type *type = expr->tav.type;
lbValue address = lb_build_expr(p, ce->args[0]);
Type *elem = type_deref(address.type);
lbValue old_value = lb_build_expr(p, ce->args[1]);
lbValue new_value = lb_build_expr(p, ce->args[2]);
old_value = lb_emit_conv(p, old_value, elem);
new_value = lb_emit_conv(p, new_value, elem);
LLVMAtomicOrdering success_ordering = {};
LLVMAtomicOrdering failure_ordering = {};
LLVMBool weak = false;
switch (id) {
case BuiltinProc_atomic_cxchg: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_cxchg_acq: success_ordering = LLVMAtomicOrderingAcquire; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_cxchg_rel: success_ordering = LLVMAtomicOrderingRelease; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_cxchg_acqrel: success_ordering = LLVMAtomicOrderingAcquireRelease; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_cxchg_relaxed: success_ordering = LLVMAtomicOrderingMonotonic; failure_ordering = LLVMAtomicOrderingMonotonic; weak = false; break;
case BuiltinProc_atomic_cxchg_failrelaxed: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingMonotonic; weak = false; break;
case BuiltinProc_atomic_cxchg_failacq: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingAcquire; weak = false; break;
case BuiltinProc_atomic_cxchg_acq_failrelaxed: success_ordering = LLVMAtomicOrderingAcquire; failure_ordering = LLVMAtomicOrderingMonotonic; weak = false; break;
case BuiltinProc_atomic_cxchg_acqrel_failrelaxed: success_ordering = LLVMAtomicOrderingAcquireRelease; failure_ordering = LLVMAtomicOrderingMonotonic; weak = false; break;
case BuiltinProc_atomic_cxchgweak: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_cxchgweak_acq: success_ordering = LLVMAtomicOrderingAcquire; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = true; break;
case BuiltinProc_atomic_cxchgweak_rel: success_ordering = LLVMAtomicOrderingRelease; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = true; break;
case BuiltinProc_atomic_cxchgweak_acqrel: success_ordering = LLVMAtomicOrderingAcquireRelease; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = true; break;
case BuiltinProc_atomic_cxchgweak_relaxed: success_ordering = LLVMAtomicOrderingMonotonic; failure_ordering = LLVMAtomicOrderingMonotonic; weak = true; break;
case BuiltinProc_atomic_cxchgweak_failrelaxed: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingMonotonic; weak = true; break;
case BuiltinProc_atomic_cxchgweak_failacq: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingAcquire; weak = true; break;
case BuiltinProc_atomic_cxchgweak_acq_failrelaxed: success_ordering = LLVMAtomicOrderingAcquire; failure_ordering = LLVMAtomicOrderingMonotonic; weak = true; break;
case BuiltinProc_atomic_cxchgweak_acqrel_failrelaxed: success_ordering = LLVMAtomicOrderingAcquireRelease; failure_ordering = LLVMAtomicOrderingMonotonic; weak = true; break;
}
// TODO(bill): Figure out how to make it weak
LLVMBool single_threaded = weak;
LLVMValueRef value = LLVMBuildAtomicCmpXchg(
p->builder, address.value,
old_value.value, new_value.value,
success_ordering,
failure_ordering,
single_threaded
);
GB_ASSERT(tv.type->kind == Type_Tuple);
Type *fix_typed = alloc_type_tuple();
array_init(&fix_typed->Tuple.variables, heap_allocator(), 2);
fix_typed->Tuple.variables[0] = tv.type->Tuple.variables[0];
fix_typed->Tuple.variables[1] = alloc_entity_field(nullptr, blank_token, t_llvm_bool, false, 1);
lbValue res = {};
res.value = value;
res.type = fix_typed;
return res;
}
}
GB_PANIC("Unhandled built-in procedure %.*s", LIT(builtin_procs[id].name));
return {};
}
lbValue lb_build_call_expr(lbProcedure *p, Ast *expr) {
lbModule *m = p->module;
TypeAndValue tv = type_and_value_of_expr(expr);
ast_node(ce, CallExpr, expr);
TypeAndValue proc_tv = type_and_value_of_expr(ce->proc);
AddressingMode proc_mode = proc_tv.mode;
if (proc_mode == Addressing_Type) {
GB_ASSERT(ce->args.count == 1);
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_emit_conv(p, x, tv.type);
return y;
}
Ast *pexpr = unparen_expr(ce->proc);
if (proc_mode == Addressing_Builtin) {
Entity *e = entity_of_node(pexpr);
BuiltinProcId id = BuiltinProc_Invalid;
if (e != nullptr) {
id = cast(BuiltinProcId)e->Builtin.id;
} else {
id = BuiltinProc_DIRECTIVE;
}
return lb_build_builtin_proc(p, expr, tv, id);
}
// NOTE(bill): Regular call
lbValue value = {};
Ast *proc_expr = unparen_expr(ce->proc);
if (proc_expr->tav.mode == Addressing_Constant) {
ExactValue v = proc_expr->tav.value;
switch (v.kind) {
case ExactValue_Integer:
{
u64 u = big_int_to_u64(&v.value_integer);
lbValue x = {};
x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
case ExactValue_Pointer:
{
u64 u = cast(u64)v.value_pointer;
lbValue x = {};
x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
}
}
if (value.value == nullptr) {
value = lb_build_expr(p, proc_expr);
}
GB_ASSERT(value.value != nullptr);
Type *proc_type_ = base_type(value.type);
GB_ASSERT(proc_type_->kind == Type_Proc);
TypeProc *pt = &proc_type_->Proc;
set_procedure_abi_types(heap_allocator(), proc_type_);
if (is_call_expr_field_value(ce)) {
auto args = array_make<lbValue>(heap_allocator(), pt->param_count);
for_array(arg_index, ce->args) {
Ast *arg = ce->args[arg_index];
ast_node(fv, FieldValue, arg);
GB_ASSERT(fv->field->kind == Ast_Ident);
String name = fv->field->Ident.token.string;
isize index = lookup_procedure_parameter(pt, name);
GB_ASSERT(index >= 0);
TypeAndValue tav = type_and_value_of_expr(fv->value);
if (tav.mode == Addressing_Type) {
args[index] = lb_const_nil(m, tav.type);
} else {
args[index] = lb_build_expr(p, fv->value);
}
}
TypeTuple *params = &pt->params->Tuple;
for (isize i = 0; i < args.count; i++) {
Entity *e = params->variables[i];
if (e->kind == Entity_TypeName) {
args[i] = lb_const_nil(m, e->type);
} else if (e->kind == Entity_Constant) {
continue;
} else {
GB_ASSERT(e->kind == Entity_Variable);
if (args[i].value == nullptr) {
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[i] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[i] = lb_const_nil(m, e->type);
break;
case ParameterValue_Location:
args[i] = lb_emit_source_code_location(p, p->entity->token.string, ast_token(expr).pos);
break;
case ParameterValue_Value:
args[i] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
} else {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
}
for (isize i = 0; i < args.count; i++) {
Entity *e = params->variables[i];
if (args[i].type == nullptr) {
continue;
} else if (is_type_untyped_nil(args[i].type)) {
args[i] = lb_const_nil(m, e->type);
} else if (is_type_untyped_undef(args[i].type)) {
args[i] = lb_const_undef(m, e->type);
}
}
return lb_emit_call(p, value, args, ce->inlining, p->return_ptr_hint_ast == expr);
}
isize arg_index = 0;
isize arg_count = 0;
for_array(i, ce->args) {
Ast *arg = ce->args[i];
TypeAndValue tav = type_and_value_of_expr(arg);
GB_ASSERT_MSG(tav.mode != Addressing_Invalid, "%s %s", expr_to_string(arg), expr_to_string(expr));
GB_ASSERT_MSG(tav.mode != Addressing_ProcGroup, "%s", expr_to_string(arg));
Type *at = tav.type;
if (at->kind == Type_Tuple) {
arg_count += at->Tuple.variables.count;
} else {
arg_count++;
}
}
isize param_count = 0;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_count = pt->params->Tuple.variables.count;
}
auto args = array_make<lbValue>(heap_allocator(), cast(isize)gb_max(param_count, arg_count));
isize variadic_index = pt->variadic_index;
bool variadic = pt->variadic && variadic_index >= 0;
bool vari_expand = ce->ellipsis.pos.line != 0;
bool is_c_vararg = pt->c_vararg;
String proc_name = {};
if (p->entity != nullptr) {
proc_name = p->entity->token.string;
}
TokenPos pos = ast_token(ce->proc).pos;
TypeTuple *param_tuple = nullptr;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_tuple = &pt->params->Tuple;
}
for_array(i, ce->args) {
Ast *arg = ce->args[i];
TypeAndValue arg_tv = type_and_value_of_expr(arg);
if (arg_tv.mode == Addressing_Type) {
args[arg_index++] = lb_const_nil(m, arg_tv.type);
} else {
lbValue a = lb_build_expr(p, arg);
Type *at = a.type;
if (at->kind == Type_Tuple) {
for_array(i, at->Tuple.variables) {
Entity *e = at->Tuple.variables[i];
lbValue v = lb_emit_struct_ev(p, a, cast(i32)i);
args[arg_index++] = v;
}
} else {
args[arg_index++] = a;
}
}
}
if (param_count > 0) {
GB_ASSERT_MSG(pt->params != nullptr, "%s %td", expr_to_string(expr), pt->param_count);
GB_ASSERT(param_count < 1000000);
if (arg_count < param_count) {
isize end = cast(isize)param_count;
if (variadic) {
end = variadic_index;
}
while (arg_index < end) {
Entity *e = param_tuple->variables[arg_index];
GB_ASSERT(e->kind == Entity_Variable);
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[arg_index++] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[arg_index++] = lb_const_nil(m, e->type);
break;
case ParameterValue_Location:
args[arg_index++] = lb_emit_source_code_location(p, proc_name, pos);
break;
case ParameterValue_Value:
args[arg_index++] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
}
}
if (is_c_vararg) {
GB_ASSERT(variadic);
GB_ASSERT(!vari_expand);
isize i = 0;
for (; i < variadic_index; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
Type *variadic_type = param_tuple->variables[i]->type;
GB_ASSERT(is_type_slice(variadic_type));
variadic_type = base_type(variadic_type)->Slice.elem;
if (!is_type_any(variadic_type)) {
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], variadic_type);
}
} else {
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], default_type(args[i].type));
}
}
} else if (variadic) {
isize i = 0;
for (; i < variadic_index; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
if (!vari_expand) {
Type *variadic_type = param_tuple->variables[i]->type;
GB_ASSERT(is_type_slice(variadic_type));
variadic_type = base_type(variadic_type)->Slice.elem;
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], variadic_type);
}
}
} else {
for (isize i = 0; i < param_count; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
if (args[i].value == nullptr) {
continue;
}
GB_ASSERT_MSG(args[i].value != nullptr, "%.*s", LIT(e->token.string));
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
}
if (variadic && !vari_expand && !is_c_vararg) {
// variadic call argument generation
gbAllocator allocator = heap_allocator();
Type *slice_type = param_tuple->variables[variadic_index]->type;
Type *elem_type = base_type(slice_type)->Slice.elem;
lbAddr slice = lb_add_local_generated(p, slice_type, true);
isize slice_len = arg_count+1 - (variadic_index+1);
if (slice_len > 0) {
lbAddr base_array = lb_add_local_generated(p, alloc_type_array(elem_type, slice_len), true);
for (isize i = variadic_index, j = 0; i < arg_count; i++, j++) {
lbValue addr = lb_emit_array_epi(p, base_array.addr, cast(i32)j);
lb_emit_store(p, addr, args[i]);
}
lbValue base_elem = lb_emit_array_epi(p, base_array.addr, 0);
lbValue len = lb_const_int(m, t_int, slice_len);
lb_fill_slice(p, slice, base_elem, len);
}
arg_count = param_count;
args[variadic_index] = lb_addr_load(p, slice);
}
}
if (variadic && variadic_index+1 < param_count) {
for (isize i = variadic_index+1; i < param_count; i++) {
Entity *e = param_tuple->variables[i];
switch (e->Variable.param_value.kind) {
case ParameterValue_Constant:
args[i] = lb_const_value(p->module, e->type, e->Variable.param_value.value);
break;
case ParameterValue_Nil:
args[i] = lb_const_nil(m, e->type);
break;
case ParameterValue_Location:
args[i] = lb_emit_source_code_location(p, proc_name, pos);
break;
case ParameterValue_Value:
args[i] = lb_build_expr(p, e->Variable.param_value.ast_value);
break;
}
}
}
isize final_count = param_count;
if (is_c_vararg) {
final_count = arg_count;
}
if (param_tuple != nullptr) {
for (isize i = 0; i < gb_min(args.count, param_tuple->variables.count); i++) {
Entity *e = param_tuple->variables[i];
if (args[i].type == nullptr) {
continue;
} else if (is_type_untyped_nil(args[i].type)) {
args[i] = lb_const_nil(m, e->type);
} else if (is_type_untyped_undef(args[i].type)) {
args[i] = lb_const_undef(m, e->type);
}
}
}
auto call_args = array_slice(args, 0, final_count);
return lb_emit_call(p, value, call_args, ce->inlining, p->return_ptr_hint_ast == expr);
}
bool lb_is_const(lbValue value) {
LLVMValueRef v = value.value;
if (is_type_untyped_nil(value.type) || is_type_untyped_undef(value.type)) {
// TODO(bill): Is this correct behaviour?
return true;
}
if (LLVMIsConstant(v)) {
return true;
}
return false;
}
bool lb_is_const_nil(lbValue value) {
LLVMValueRef v = value.value;
if (LLVMIsConstant(v)) {
if (LLVMIsAConstantAggregateZero(v)) {
return true;
} else if (LLVMIsAConstantPointerNull(v)) {
return true;
}
}
return false;
}
String lb_get_const_string(lbModule *m, lbValue value) {
GB_ASSERT(lb_is_const(value));
Type *t = base_type(value.type);
GB_ASSERT(are_types_identical(t, t_string));
unsigned ptr_indices[1] = {0};
unsigned len_indices[1] = {1};
LLVMValueRef underlying_ptr = LLVMConstExtractValue(value.value, ptr_indices, gb_count_of(ptr_indices));
LLVMValueRef underlying_len = LLVMConstExtractValue(value.value, len_indices, gb_count_of(len_indices));
GB_ASSERT(LLVMGetConstOpcode(underlying_ptr) == LLVMGetElementPtr);
underlying_ptr = LLVMGetOperand(underlying_ptr, 0);
GB_ASSERT(LLVMIsAGlobalVariable(underlying_ptr));
underlying_ptr = LLVMGetInitializer(underlying_ptr);
size_t length = 0;
char const *text = LLVMGetAsString(underlying_ptr, &length);
isize real_length = cast(isize)LLVMConstIntGetSExtValue(underlying_len);
return make_string(cast(u8 const *)text, real_length);
}
void lb_emit_increment(lbProcedure *p, lbValue addr) {
GB_ASSERT(is_type_pointer(addr.type));
Type *type = type_deref(addr.type);
lbValue v_one = lb_const_value(p->module, type, exact_value_i64(1));
lb_emit_store(p, addr, lb_emit_arith(p, Token_Add, lb_emit_load(p, addr), v_one, type));
}
LLVMValueRef lb_lookup_runtime_procedure(lbModule *m, String const &name) {
AstPackage *pkg = m->info->runtime_package;
Entity *e = scope_lookup_current(pkg->scope, name);
lbValue *found = nullptr;
if (m != e->code_gen_module) {
gb_mutex_lock(&m->mutex);
}
found = map_get(&e->code_gen_module->values, hash_entity(e));
if (m != e->code_gen_module) {
gb_mutex_unlock(&m->mutex);
}
GB_ASSERT(found != nullptr);
return found->value;
}
lbValue lb_emit_byte_swap(lbProcedure *p, lbValue value, Type *platform_type) {
Type *vt = core_type(value.type);
GB_ASSERT(type_size_of(vt) == type_size_of(platform_type));
// TODO(bill): lb_emit_byte_swap
lbValue res = {};
res.type = platform_type;
res.value = value.value;
int sz = cast(int)type_size_of(vt);
if (sz > 1) {
if (is_type_float(platform_type)) {
String name = {};
switch (sz) {
case 4: name = str_lit("bswap_f32"); break;
case 8: name = str_lit("bswap_f64"); break;
default: GB_PANIC("unhandled byteswap size"); break;
}
LLVMValueRef fn = lb_lookup_runtime_procedure(p->module, name);
res.value = LLVMBuildCall(p->builder, fn, &value.value, 1, "");
} else {
GB_ASSERT(is_type_integer(platform_type));
String name = {};
switch (sz) {
case 2: name = str_lit("bswap_16"); break;
case 4: name = str_lit("bswap_32"); break;
case 8: name = str_lit("bswap_64"); break;
case 16: name = str_lit("bswap_128"); break;
default: GB_PANIC("unhandled byteswap size"); break;
}
LLVMValueRef fn = lb_lookup_runtime_procedure(p->module, name);
res.value = LLVMBuildCall(p->builder, fn, &value.value, 1, "");
}
}
return res;
}
lbLoopData lb_loop_start(lbProcedure *p, isize count, Type *index_type) {
lbLoopData data = {};
lbValue max = lb_const_int(p->module, t_int, count);
data.idx_addr = lb_add_local_generated(p, index_type, true);
data.body = lb_create_block(p, "loop.body");
data.done = lb_create_block(p, "loop.done");
data.loop = lb_create_block(p, "loop.loop");
lb_emit_jump(p, data.loop);
lb_start_block(p, data.loop);
data.idx = lb_addr_load(p, data.idx_addr);
lbValue cond = lb_emit_comp(p, Token_Lt, data.idx, max);
lb_emit_if(p, cond, data.body, data.done);
lb_start_block(p, data.body);
return data;
}
void lb_loop_end(lbProcedure *p, lbLoopData const &data) {
if (data.idx_addr.addr.value != nullptr) {
lb_emit_increment(p, data.idx_addr.addr);
lb_emit_jump(p, data.loop);
lb_start_block(p, data.done);
}
}
lbValue lb_emit_comp_against_nil(lbProcedure *p, TokenKind op_kind, lbValue x) {
lbValue res = {};
res.type = t_llvm_bool;
Type *t = x.type;
if (is_type_pointer(t)) {
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, x.value, "");
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, x.value, "");
}
return res;
} else if (is_type_cstring(t)) {
lbValue ptr = lb_emit_conv(p, x, t_u8_ptr);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, ptr.value, "");
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, ptr.value, "");
}
return res;
} else if (is_type_proc(t)) {
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, x.value, "");
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, x.value, "");
}
return res;
} else if (is_type_any(t)) {
// TODO(bill): is this correct behaviour for nil comparison for any?
lbValue data = lb_emit_struct_ev(p, x, 0);
lbValue ti = lb_emit_struct_ev(p, x, 1);
if (op_kind == Token_CmpEq) {
LLVMValueRef a = LLVMBuildIsNull(p->builder, data.value, "");
LLVMValueRef b = LLVMBuildIsNull(p->builder, ti.value, "");
res.value = LLVMBuildOr(p->builder, a, b, "");
return res;
} else if (op_kind == Token_NotEq) {
LLVMValueRef a = LLVMBuildIsNotNull(p->builder, data.value, "");
LLVMValueRef b = LLVMBuildIsNotNull(p->builder, ti.value, "");
res.value = LLVMBuildAnd(p->builder, a, b, "");
return res;
}
} else if (is_type_slice(t)) {
lbValue len = lb_emit_struct_ev(p, x, 1);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, len.value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, len.value, "");
return res;
}
} else if (is_type_dynamic_array(t)) {
lbValue cap = lb_emit_struct_ev(p, x, 2);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, cap.value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, cap.value, "");
return res;
}
} else if (is_type_map(t)) {
lbValue cap = lb_map_cap(p, x);
return lb_emit_comp(p, op_kind, cap, lb_zero(p->module, cap.type));
} else if (is_type_union(t)) {
if (type_size_of(t) == 0) {
if (op_kind == Token_CmpEq) {
return lb_const_bool(p->module, t_llvm_bool, true);
} else if (op_kind == Token_NotEq) {
return lb_const_bool(p->module, t_llvm_bool, false);
}
} else {
lbValue tag = lb_emit_union_tag_value(p, x);
return lb_emit_comp(p, op_kind, tag, lb_zero(p->module, tag.type));
}
} else if (is_type_typeid(t)) {
lbValue invalid_typeid = lb_const_value(p->module, t_typeid, exact_value_i64(0));
return lb_emit_comp(p, op_kind, x, invalid_typeid);
} else if (is_type_bit_field(t)) {
auto args = array_make<lbValue>(heap_allocator(), 2);
lbValue lhs = lb_address_from_load_or_generate_local(p, x);
args[0] = lb_emit_conv(p, lhs, t_rawptr);
args[1] = lb_const_int(p->module, t_int, type_size_of(t));
lbValue val = lb_emit_runtime_call(p, "memory_compare_zero", args);
lbValue res = lb_emit_comp(p, op_kind, val, lb_const_int(p->module, t_int, 0));
return res;
} else if (is_type_soa_struct(t)) {
Type *bt = base_type(t);
if (bt->Struct.soa_kind == StructSoa_Slice) {
lbValue len = lb_soa_struct_len(p, x);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, len.value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, len.value, "");
return res;
}
} else if (bt->Struct.soa_kind == StructSoa_Dynamic) {
lbValue cap = lb_soa_struct_cap(p, x);
if (op_kind == Token_CmpEq) {
res.value = LLVMBuildIsNull(p->builder, cap.value, "");
return res;
} else if (op_kind == Token_NotEq) {
res.value = LLVMBuildIsNotNull(p->builder, cap.value, "");
return res;
}
}
} else if (is_type_struct(t) && type_has_nil(t)) {
auto args = array_make<lbValue>(heap_allocator(), 2);
lbValue lhs = lb_address_from_load_or_generate_local(p, x);
args[0] = lb_emit_conv(p, lhs, t_rawptr);
args[1] = lb_const_int(p->module, t_int, type_size_of(t));
lbValue val = lb_emit_runtime_call(p, "memory_compare_zero", args);
lbValue res = lb_emit_comp(p, op_kind, val, lb_const_int(p->module, t_int, 0));
return res;
}
return {};
}
lbValue lb_emit_comp(lbProcedure *p, TokenKind op_kind, lbValue left, lbValue right) {
Type *a = core_type(left.type);
Type *b = core_type(right.type);
GB_ASSERT(gb_is_between(op_kind, Token__ComparisonBegin+1, Token__ComparisonEnd-1));
lbValue nil_check = {};
if (is_type_untyped_nil(left.type)) {
nil_check = lb_emit_comp_against_nil(p, op_kind, right);
} else if (is_type_untyped_nil(right.type)) {
nil_check = lb_emit_comp_against_nil(p, op_kind, left);
}
if (nil_check.value != nullptr) {
return nil_check;
}
if (are_types_identical(a, b)) {
// NOTE(bill): No need for a conversion
} else if (lb_is_const(left) || lb_is_const_nil(left)) {
left = lb_emit_conv(p, left, right.type);
} else if (lb_is_const(right) || lb_is_const_nil(right)) {
right = lb_emit_conv(p, right, left.type);
} else {
gbAllocator a = heap_allocator();
Type *lt = left.type;
Type *rt = right.type;
if (is_type_bit_set(lt) && is_type_bit_set(rt)) {
Type *blt = base_type(lt);
Type *brt = base_type(rt);
GB_ASSERT(is_type_bit_field_value(blt));
GB_ASSERT(is_type_bit_field_value(brt));
i64 bits = gb_max(blt->BitFieldValue.bits, brt->BitFieldValue.bits);
i64 bytes = bits / 8;
switch (bytes) {
case 1:
left = lb_emit_conv(p, left, t_u8);
right = lb_emit_conv(p, right, t_u8);
break;
case 2:
left = lb_emit_conv(p, left, t_u16);
right = lb_emit_conv(p, right, t_u16);
break;
case 4:
left = lb_emit_conv(p, left, t_u32);
right = lb_emit_conv(p, right, t_u32);
break;
case 8:
left = lb_emit_conv(p, left, t_u64);
right = lb_emit_conv(p, right, t_u64);
break;
default: GB_PANIC("Unknown integer size"); break;
}
}
lt = left.type;
rt = right.type;
i64 ls = type_size_of(lt);
i64 rs = type_size_of(rt);
if (ls < rs) {
left = lb_emit_conv(p, left, rt);
} else if (ls > rs) {
right = lb_emit_conv(p, right, lt);
} else {
right = lb_emit_conv(p, right, lt);
}
}
if (is_type_array(a)) {
Type *tl = base_type(a);
lbValue lhs = lb_address_from_load_or_generate_local(p, left);
lbValue rhs = lb_address_from_load_or_generate_local(p, right);
TokenKind cmp_op = Token_And;
lbValue res = lb_const_bool(p->module, t_llvm_bool, true);
if (op_kind == Token_NotEq) {
res = lb_const_bool(p->module, t_llvm_bool, false);
cmp_op = Token_Or;
} else if (op_kind == Token_CmpEq) {
res = lb_const_bool(p->module, t_llvm_bool, true);
cmp_op = Token_And;
}
bool inline_array_arith = type_size_of(tl) <= build_context.max_align;
i32 count = cast(i32)tl->Array.count;
if (inline_array_arith) {
// inline
lbAddr val = lb_add_local_generated(p, t_bool, false);
lb_addr_store(p, val, res);
for (i32 i = 0; i < count; i++) {
lbValue x = lb_emit_load(p, lb_emit_array_epi(p, lhs, i));
lbValue y = lb_emit_load(p, lb_emit_array_epi(p, rhs, i));
lbValue cmp = lb_emit_comp(p, op_kind, x, y);
lbValue new_res = lb_emit_arith(p, cmp_op, lb_addr_load(p, val), cmp, t_bool);
lb_addr_store(p, val, lb_emit_conv(p, new_res, t_bool));
}
return lb_addr_load(p, val);
} else {
if (is_type_simple_compare(tl) && (op_kind == Token_CmpEq || op_kind == Token_NotEq)) {
// TODO(bill): Test to see if this is actually faster!!!!
auto args = array_make<lbValue>(heap_allocator(), 3);
args[0] = lb_emit_conv(p, lhs, t_rawptr);
args[1] = lb_emit_conv(p, rhs, t_rawptr);
args[2] = lb_const_int(p->module, t_int, type_size_of(tl));
lbValue val = lb_emit_runtime_call(p, "memory_compare", args);
lbValue res = lb_emit_comp(p, op_kind, val, lb_const_nil(p->module, val.type));
return lb_emit_conv(p, res, t_bool);
} else {
lbAddr val = lb_add_local_generated(p, t_bool, false);
lb_addr_store(p, val, res);
auto loop_data = lb_loop_start(p, count, t_i32);
{
lbValue i = loop_data.idx;
lbValue x = lb_emit_load(p, lb_emit_array_ep(p, lhs, i));
lbValue y = lb_emit_load(p, lb_emit_array_ep(p, rhs, i));
lbValue cmp = lb_emit_comp(p, op_kind, x, y);
lbValue new_res = lb_emit_arith(p, cmp_op, lb_addr_load(p, val), cmp, t_bool);
lb_addr_store(p, val, lb_emit_conv(p, new_res, t_bool));
}
lb_loop_end(p, loop_data);
return lb_addr_load(p, val);
}
}
}
if (is_type_string(a)) {
if (is_type_cstring(a)) {
left = lb_emit_conv(p, left, t_string);
right = lb_emit_conv(p, right, t_string);
}
char const *runtime_procedure = nullptr;
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "string_eq"; break;
case Token_NotEq: runtime_procedure = "string_ne"; break;
case Token_Lt: runtime_procedure = "string_lt"; break;
case Token_Gt: runtime_procedure = "string_gt"; break;
case Token_LtEq: runtime_procedure = "string_le"; break;
case Token_GtEq: runtime_procedure = "string_gt"; break;
}
GB_ASSERT(runtime_procedure != nullptr);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = left;
args[1] = right;
return lb_emit_runtime_call(p, runtime_procedure, args);
}
if (is_type_complex(a)) {
char const *runtime_procedure = "";
i64 sz = 8*type_size_of(a);
switch (sz) {
case 64:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "complex64_eq"; break;
case Token_NotEq: runtime_procedure = "complex64_ne"; break;
}
break;
case 128:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "complex128_eq"; break;
case Token_NotEq: runtime_procedure = "complex128_ne"; break;
}
break;
}
GB_ASSERT(runtime_procedure != nullptr);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = left;
args[1] = right;
return lb_emit_runtime_call(p, runtime_procedure, args);
}
if (is_type_quaternion(a)) {
char const *runtime_procedure = "";
i64 sz = 8*type_size_of(a);
switch (sz) {
case 128:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "quaternion128_eq"; break;
case Token_NotEq: runtime_procedure = "quaternion128_ne"; break;
}
break;
case 256:
switch (op_kind) {
case Token_CmpEq: runtime_procedure = "quaternion256_eq"; break;
case Token_NotEq: runtime_procedure = "quaternion256_ne"; break;
}
break;
}
GB_ASSERT(runtime_procedure != nullptr);
auto args = array_make<lbValue>(heap_allocator(), 2);
args[0] = left;
args[1] = right;
return lb_emit_runtime_call(p, runtime_procedure, args);
}
if (is_type_bit_set(a)) {
switch (op_kind) {
case Token_Lt:
case Token_LtEq:
case Token_Gt:
case Token_GtEq:
{
Type *it = bit_set_to_int(a);
lbValue lhs = lb_emit_transmute(p, left, it);
lbValue rhs = lb_emit_transmute(p, right, it);
lbValue res = lb_emit_arith(p, Token_And, lhs, rhs, it);
if (op_kind == Token_Lt || op_kind == Token_LtEq) {
// (lhs & rhs) == lhs
res.value = LLVMBuildICmp(p->builder, LLVMIntEQ, res.value, lhs.value, "");
res.type = t_llvm_bool;
} else if (op_kind == Token_Gt || op_kind == Token_GtEq) {
// (lhs & rhs) == rhs
res.value = LLVMBuildICmp(p->builder, LLVMIntEQ, res.value, rhs.value, "");
res.type = t_llvm_bool;
}
// NOTE(bill): Strict subsets
if (op_kind == Token_Lt || op_kind == Token_Gt) {
// res &~ (lhs == rhs)
lbValue eq = {};
eq.value = LLVMBuildICmp(p->builder, LLVMIntEQ, lhs.value, rhs.value, "");
eq.type = t_llvm_bool;
res = lb_emit_arith(p, Token_AndNot, res, eq, t_llvm_bool);
}
return res;
}
case Token_CmpEq:
case Token_NotEq:
{
LLVMIntPredicate pred = {};
switch (op_kind) {
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
lbValue res = {};
res.type = t_llvm_bool;
res.value = LLVMBuildICmp(p->builder, pred, left.value, right.value, "");
return res;
}
}
}
if (op_kind != Token_CmpEq && op_kind != Token_NotEq) {
Type *t = left.type;
if (is_type_integer(t) && is_type_different_to_arch_endianness(t)) {
Type *platform_type = integer_endian_type_to_platform_type(t);
lbValue x = lb_emit_byte_swap(p, left, platform_type);
lbValue y = lb_emit_byte_swap(p, right, platform_type);
left = x;
right = y;
} else if (is_type_float(t) && is_type_different_to_arch_endianness(t)) {
Type *platform_type = integer_endian_type_to_platform_type(t);
lbValue x = lb_emit_conv(p, left, platform_type);
lbValue y = lb_emit_conv(p, right, platform_type);
left = x;
right = y;
}
}
a = core_type(left.type);
b = core_type(right.type);
lbValue res = {};
res.type = t_llvm_bool;
if (is_type_integer(a) ||
is_type_boolean(a) ||
is_type_pointer(a) ||
is_type_proc(a) ||
is_type_enum(a)) {
LLVMIntPredicate pred = {};
if (is_type_unsigned(left.type)) {
switch (op_kind) {
case Token_Gt: pred = LLVMIntUGT; break;
case Token_GtEq: pred = LLVMIntUGE; break;
case Token_Lt: pred = LLVMIntULT; break;
case Token_LtEq: pred = LLVMIntULE; break;
}
} else {
switch (op_kind) {
case Token_Gt: pred = LLVMIntSGT; break;
case Token_GtEq: pred = LLVMIntSGE; break;
case Token_Lt: pred = LLVMIntSLT; break;
case Token_LtEq: pred = LLVMIntSLE; break;
}
}
switch (op_kind) {
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
res.value = LLVMBuildICmp(p->builder, pred, left.value, right.value, "");
} else if (is_type_float(a)) {
LLVMRealPredicate pred = {};
switch (op_kind) {
case Token_CmpEq: pred = LLVMRealOEQ; break;
case Token_Gt: pred = LLVMRealOGT; break;
case Token_GtEq: pred = LLVMRealOGE; break;
case Token_Lt: pred = LLVMRealOLT; break;
case Token_LtEq: pred = LLVMRealOLE; break;
case Token_NotEq: pred = LLVMRealONE; break;
}
res.value = LLVMBuildFCmp(p->builder, pred, left.value, right.value, "");
} else if (is_type_typeid(a)) {
LLVMIntPredicate pred = {};
switch (op_kind) {
case Token_Gt: pred = LLVMIntUGT; break;
case Token_GtEq: pred = LLVMIntUGE; break;
case Token_Lt: pred = LLVMIntULT; break;
case Token_LtEq: pred = LLVMIntULE; break;
case Token_CmpEq: pred = LLVMIntEQ; break;
case Token_NotEq: pred = LLVMIntNE; break;
}
res.value = LLVMBuildICmp(p->builder, pred, left.value, right.value, "");
} else {
GB_PANIC("Unhandled comparison kind %s (%s) %.*s %s (%s)", type_to_string(left.type), type_to_string(base_type(left.type)), LIT(token_strings[op_kind]), type_to_string(right.type), type_to_string(base_type(right.type)));
}
return res;
}
lbValue lb_generate_anonymous_proc_lit(lbModule *m, String const &prefix_name, Ast *expr, lbProcedure *parent) {
auto *found = map_get(&m->anonymous_proc_lits, hash_pointer(expr));
if (found != nullptr) {
lbValue value = {};
value.value = (*found)->value;
value.type = (*found)->type;
return value;
}
ast_node(pl, ProcLit, expr);
// NOTE(bill): Generate a new name
// parent$count
isize name_len = prefix_name.len + 1 + 8 + 1;
char *name_text = gb_alloc_array(heap_allocator(), char, name_len);
i32 name_id = cast(i32)m->anonymous_proc_lits.entries.count;
name_len = gb_snprintf(name_text, name_len, "%.*s$anon-%d", LIT(prefix_name), name_id);
String name = make_string((u8 *)name_text, name_len-1);
Type *type = type_of_expr(expr);
set_procedure_abi_types(heap_allocator(), type);
Token token = {};
token.pos = ast_token(expr).pos;
token.kind = Token_Ident;
token.string = name;
Entity *e = alloc_entity_procedure(nullptr, token, type, pl->tags);
e->decl_info = pl->decl;
lbProcedure *p = lb_create_procedure(m, e);
lbValue value = {};
value.value = p->value;
value.type = p->type;
array_add(&m->procedures_to_generate, p);
if (parent != nullptr) {
array_add(&parent->children, p);
} else {
string_map_set(&m->members, name, value);
}
map_set(&m->anonymous_proc_lits, hash_pointer(expr), p);
return value;
}
lbValue lb_emit_union_cast(lbProcedure *p, lbValue value, Type *type, TokenPos pos, bool do_conversion_check=true) {
lbModule *m = p->module;
Type *src_type = value.type;
bool is_ptr = is_type_pointer(src_type);
bool is_tuple = true;
Type *tuple = type;
if (type->kind != Type_Tuple) {
is_tuple = false;
tuple = make_optional_ok_type(type);
}
lbAddr v = lb_add_local_generated(p, tuple, true);
if (is_ptr) {
value = lb_emit_load(p, value);
}
Type *src = base_type(type_deref(src_type));
GB_ASSERT_MSG(is_type_union(src), "%s", type_to_string(src_type));
Type *dst = tuple->Tuple.variables[0]->type;
lbValue value_ = lb_address_from_load_or_generate_local(p, value);
lbValue tag = {};
lbValue dst_tag = {};
lbValue cond = {};
lbValue data = {};
lbValue gep0 = lb_emit_struct_ep(p, v.addr, 0);
lbValue gep1 = lb_emit_struct_ep(p, v.addr, 1);
if (is_type_union_maybe_pointer(src)) {
data = lb_emit_load(p, lb_emit_conv(p, value_, gep0.type));
} else {
tag = lb_emit_load(p, lb_emit_union_tag_ptr(p, value_));
dst_tag = lb_const_union_tag(m, src, dst);
}
lbBlock *ok_block = lb_create_block(p, "union_cast.ok");
lbBlock *end_block = lb_create_block(p, "union_cast.end");
if (data.value != nullptr) {
GB_ASSERT(is_type_union_maybe_pointer(src));
cond = lb_emit_comp_against_nil(p, Token_NotEq, data);
} else {
cond = lb_emit_comp(p, Token_CmpEq, tag, dst_tag);
}
lb_emit_if(p, cond, ok_block, end_block);
lb_start_block(p, ok_block);
if (data.value == nullptr) {
data = lb_emit_load(p, lb_emit_conv(p, value_, gep0.type));
}
lb_emit_store(p, gep0, data);
lb_emit_store(p, gep1, lb_const_bool(m, t_bool, true));
lb_emit_jump(p, end_block);
lb_start_block(p, end_block);
if (!is_tuple) {
if (do_conversion_check) {
// NOTE(bill): Panic on invalid conversion
Type *dst_type = tuple->Tuple.variables[0]->type;
lbValue ok = lb_emit_load(p, lb_emit_struct_ep(p, v.addr, 1));
auto args = array_make<lbValue>(heap_allocator(), 6);
args[0] = ok;
args[1] = lb_const_string(m, pos.file);
args[2] = lb_const_int(m, t_int, pos.line);
args[3] = lb_const_int(m, t_int, pos.column);
args[4] = lb_typeid(m, src_type);
args[5] = lb_typeid(m, dst_type);
lb_emit_runtime_call(p, "type_assertion_check", args);
}
return lb_emit_load(p, lb_emit_struct_ep(p, v.addr, 0));
}
return lb_addr_load(p, v);
}
lbAddr lb_emit_any_cast_addr(lbProcedure *p, lbValue value, Type *type, TokenPos pos) {
lbModule *m = p->module;
Type *src_type = value.type;
if (is_type_pointer(src_type)) {
value = lb_emit_load(p, value);
}
bool is_tuple = true;
Type *tuple = type;
if (type->kind != Type_Tuple) {
is_tuple = false;
tuple = make_optional_ok_type(type);
}
Type *dst_type = tuple->Tuple.variables[0]->type;
lbAddr v = lb_add_local_generated(p, tuple, true);
lbValue dst_typeid = lb_typeid(m, dst_type);
lbValue any_typeid = lb_emit_struct_ev(p, value, 1);
lbBlock *ok_block = lb_create_block(p, "any_cast.ok");
lbBlock *end_block = lb_create_block(p, "any_cast.end");
lbValue cond = lb_emit_comp(p, Token_CmpEq, any_typeid, dst_typeid);
lb_emit_if(p, cond, ok_block, end_block);
lb_start_block(p, ok_block);
lbValue gep0 = lb_emit_struct_ep(p, v.addr, 0);
lbValue gep1 = lb_emit_struct_ep(p, v.addr, 1);
lbValue any_data = lb_emit_struct_ev(p, value, 0);
lbValue ptr = lb_emit_conv(p, any_data, alloc_type_pointer(dst_type));
lb_emit_store(p, gep0, lb_emit_load(p, ptr));
lb_emit_store(p, gep1, lb_const_bool(m, t_bool, true));
lb_emit_jump(p, end_block);
lb_start_block(p, end_block);
if (!is_tuple) {
// NOTE(bill): Panic on invalid conversion
lbValue ok = lb_emit_load(p, lb_emit_struct_ep(p, v.addr, 1));
auto args = array_make<lbValue>(heap_allocator(), 6);
args[0] = ok;
args[1] = lb_const_string(m, pos.file);
args[2] = lb_const_int(m, t_int, pos.line);
args[3] = lb_const_int(m, t_int, pos.column);
args[4] = any_typeid;
args[5] = dst_typeid;
lb_emit_runtime_call(p, "type_assertion_check", args);
return lb_addr(lb_emit_struct_ep(p, v.addr, 0));
}
return v;
}
lbValue lb_emit_any_cast(lbProcedure *p, lbValue value, Type *type, TokenPos pos) {
return lb_addr_load(p, lb_emit_any_cast_addr(p, value, type, pos));
}
lbValue lb_build_expr(lbProcedure *p, Ast *expr) {
lbModule *m = p->module;
u64 prev_state_flags = p->module->state_flags;
defer (p->module->state_flags = prev_state_flags);
if (expr->state_flags != 0) {
u64 in = expr->state_flags;
u64 out = p->module->state_flags;
if (in & StateFlag_bounds_check) {
out |= StateFlag_bounds_check;
out &= ~StateFlag_no_bounds_check;
} else if (in & StateFlag_no_bounds_check) {
out |= StateFlag_no_bounds_check;
out &= ~StateFlag_bounds_check;
}
p->module->state_flags = out;
}
expr = unparen_expr(expr);
TypeAndValue tv = type_and_value_of_expr(expr);
GB_ASSERT_MSG(tv.mode != Addressing_Invalid, "%s", expr_to_string(expr));
GB_ASSERT(tv.mode != Addressing_Type);
if (tv.value.kind != ExactValue_Invalid) {
// NOTE(bill): Short on constant values
return lb_const_value(p->module, tv.type, tv.value);
}
switch (expr->kind) {
case_ast_node(bl, BasicLit, expr);
TokenPos pos = bl->token.pos;
GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(token_strings[bl->token.kind]));
case_end;
case_ast_node(bd, BasicDirective, expr);
TokenPos pos = bd->token.pos;
GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(bd->name));
case_end;
case_ast_node(i, Implicit, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(u, Undef, expr)
lbValue res = {};
if (is_type_untyped(tv.type)) {
res.value = nullptr;
res.type = t_untyped_undef;
} else {
res.value = LLVMGetUndef(lb_type(m, tv.type));
res.type = tv.type;
}
return res;
case_end;
case_ast_node(i, Ident, expr);
Entity *e = entity_from_expr(expr);
e = strip_entity_wrapping(e);
GB_ASSERT_MSG(e != nullptr, "%s", expr_to_string(expr));
if (e->kind == Entity_Builtin) {
Token token = ast_token(expr);
GB_PANIC("TODO(bill): lb_build_expr Entity_Builtin '%.*s'\n"
"\t at %.*s(%td:%td)", LIT(builtin_procs[e->Builtin.id].name),
LIT(token.pos.file), token.pos.line, token.pos.column);
return {};
} else if (e->kind == Entity_Nil) {
lbValue res = {};
res.value = nullptr;
res.type = e->type;
return res;
}
GB_ASSERT(e->kind != Entity_ProcGroup);
auto *found = map_get(&p->module->values, hash_entity(e));
if (found) {
auto v = *found;
// NOTE(bill): This is because pointers are already pointers in LLVM
if (is_type_proc(v.type)) {
return v;
}
return lb_emit_load(p, v);
} else if (e != nullptr && e->kind == Entity_Variable) {
return lb_addr_load(p, lb_build_addr(p, expr));
}
gb_printf_err("Error in: %.*s(%td:%td)\n", LIT(p->name), i->token.pos.line, i->token.pos.column);
String pkg = {};
if (e->pkg) {
pkg = e->pkg->name;
}
GB_PANIC("nullptr value for expression from identifier: %.*s.%.*s (%p) : %s @ %p", LIT(pkg), LIT(e->token.string), e, type_to_string(e->type), expr);
return {};
case_end;
case_ast_node(de, DerefExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(se, SelectorExpr, expr);
TypeAndValue tav = type_and_value_of_expr(expr);
GB_ASSERT(tav.mode != Addressing_Invalid);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ise, ImplicitSelectorExpr, expr);
TypeAndValue tav = type_and_value_of_expr(expr);
GB_ASSERT(tav.mode == Addressing_Constant);
return lb_const_value(p->module, tv.type, tv.value);
case_end;
case_ast_node(se, SelectorCallExpr, expr);
GB_ASSERT(se->modified_call);
TypeAndValue tav = type_and_value_of_expr(expr);
GB_ASSERT(tav.mode != Addressing_Invalid);
return lb_build_expr(p, se->call);
case_end;
case_ast_node(te, TernaryExpr, expr);
LLVMValueRef incoming_values[2] = {};
LLVMBasicBlockRef incoming_blocks[2] = {};
GB_ASSERT(te->y != nullptr);
lbBlock *then = lb_create_block(p, "if.then");
lbBlock *done = lb_create_block(p, "if.done"); // NOTE(bill): Append later
lbBlock *else_ = lb_create_block(p, "if.else");
lbValue cond = lb_build_cond(p, te->cond, then, else_);
lb_start_block(p, then);
Type *type = default_type(type_of_expr(expr));
lb_open_scope(p);
incoming_values[0] = lb_emit_conv(p, lb_build_expr(p, te->x), type).value;
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_emit_jump(p, done);
lb_start_block(p, else_);
lb_open_scope(p);
incoming_values[1] = lb_emit_conv(p, lb_build_expr(p, te->y), type).value;
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_emit_jump(p, done);
lb_start_block(p, done);
lbValue res = {};
res.value = LLVMBuildPhi(p->builder, lb_type(p->module, type), "");
res.type = type;
GB_ASSERT(p->curr_block->preds.count >= 2);
incoming_blocks[0] = p->curr_block->preds[0]->block;
incoming_blocks[1] = p->curr_block->preds[1]->block;
LLVMAddIncoming(res.value, incoming_values, incoming_blocks, 2);
return res;
case_end;
case_ast_node(te, TernaryIfExpr, expr);
LLVMValueRef incoming_values[2] = {};
LLVMBasicBlockRef incoming_blocks[2] = {};
GB_ASSERT(te->y != nullptr);
lbBlock *then = lb_create_block(p, "if.then");
lbBlock *done = lb_create_block(p, "if.done"); // NOTE(bill): Append later
lbBlock *else_ = lb_create_block(p, "if.else");
lbValue cond = lb_build_cond(p, te->cond, then, else_);
lb_start_block(p, then);
Type *type = default_type(type_of_expr(expr));
lb_open_scope(p);
incoming_values[0] = lb_emit_conv(p, lb_build_expr(p, te->x), type).value;
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_emit_jump(p, done);
lb_start_block(p, else_);
lb_open_scope(p);
incoming_values[1] = lb_emit_conv(p, lb_build_expr(p, te->y), type).value;
lb_close_scope(p, lbDeferExit_Default, nullptr);
lb_emit_jump(p, done);
lb_start_block(p, done);
lbValue res = {};
res.value = LLVMBuildPhi(p->builder, lb_type(p->module, type), "");
res.type = type;
GB_ASSERT(p->curr_block->preds.count >= 2);
incoming_blocks[0] = p->curr_block->preds[0]->block;
incoming_blocks[1] = p->curr_block->preds[1]->block;
LLVMAddIncoming(res.value, incoming_values, incoming_blocks, 2);
return res;
case_end;
case_ast_node(te, TernaryWhenExpr, expr);
TypeAndValue tav = type_and_value_of_expr(te->cond);
GB_ASSERT(tav.mode == Addressing_Constant);
GB_ASSERT(tav.value.kind == ExactValue_Bool);
if (tav.value.value_bool) {
return lb_build_expr(p, te->x);
} else {
return lb_build_expr(p, te->y);
}
case_end;
case_ast_node(ta, TypeAssertion, expr);
TokenPos pos = ast_token(expr).pos;
Type *type = tv.type;
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
return lb_emit_union_cast(p, e, type, pos);
} else if (is_type_any(t)) {
return lb_emit_any_cast(p, e, type, pos);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(e.type));
}
case_end;
case_ast_node(tc, TypeCast, expr);
lbValue e = lb_build_expr(p, tc->expr);
switch (tc->token.kind) {
case Token_cast:
return lb_emit_conv(p, e, tv.type);
case Token_transmute:
return lb_emit_transmute(p, e, tv.type);
}
GB_PANIC("Invalid AST TypeCast");
case_end;
case_ast_node(ac, AutoCast, expr);
return lb_build_expr(p, ac->expr);
case_end;
case_ast_node(ue, UnaryExpr, expr);
switch (ue->op.kind) {
case Token_And: {
Ast *ue_expr = unparen_expr(ue->expr);
if (ue_expr->kind == Ast_CompoundLit) {
lbValue v = lb_build_expr(p, ue->expr);
Type *type = v.type;
lbAddr addr = {};
if (p->is_startup) {
addr = lb_add_global_generated(p->module, type, v);
} else {
addr = lb_add_local_generated(p, type, false);
}
lb_addr_store(p, addr, v);
return addr.addr;
} else if (ue_expr->kind == Ast_TypeAssertion) {
gbAllocator a = heap_allocator();
GB_ASSERT(is_type_pointer(tv.type));
ast_node(ta, TypeAssertion, ue_expr);
TokenPos pos = ast_token(expr).pos;
Type *type = type_of_expr(ue_expr);
GB_ASSERT(!is_type_tuple(type));
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
lbValue v = e;
if (!is_type_pointer(v.type)) {
v = lb_address_from_load_or_generate_local(p, v);
}
Type *src_type = type_deref(v.type);
Type *dst_type = type;
lbValue src_tag = lb_emit_load(p, lb_emit_union_tag_ptr(p, v));
lbValue dst_tag = lb_const_union_tag(p->module, src_type, dst_type);
lbValue ok = lb_emit_comp(p, Token_CmpEq, src_tag, dst_tag);
auto args = array_make<lbValue>(heap_allocator(), 6);
args[0] = ok;
args[1] = lb_find_or_add_entity_string(p->module, pos.file);
args[2] = lb_const_int(p->module, t_int, pos.line);
args[3] = lb_const_int(p->module, t_int, pos.column);
args[4] = lb_typeid(p->module, src_type);
args[5] = lb_typeid(p->module, dst_type);
lb_emit_runtime_call(p, "type_assertion_check", args);
lbValue data_ptr = v;
return lb_emit_conv(p, data_ptr, tv.type);
} else if (is_type_any(t)) {
lbValue v = e;
if (is_type_pointer(v.type)) {
v = lb_emit_load(p, v);
}
lbValue data_ptr = lb_emit_struct_ev(p, v, 0);
lbValue any_id = lb_emit_struct_ev(p, v, 1);
lbValue id = lb_typeid(p->module, type);
lbValue ok = lb_emit_comp(p, Token_CmpEq, any_id, id);
auto args = array_make<lbValue>(heap_allocator(), 6);
args[0] = ok;
args[1] = lb_find_or_add_entity_string(p->module, pos.file);
args[2] = lb_const_int(p->module, t_int, pos.line);
args[3] = lb_const_int(p->module, t_int, pos.column);
args[4] = any_id;
args[5] = id;
lb_emit_runtime_call(p, "type_assertion_check", args);
return lb_emit_conv(p, data_ptr, tv.type);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(type));
}
}
return lb_build_addr_ptr(p, ue->expr);
}
default:
{
lbValue v = lb_build_expr(p, ue->expr);
return lb_emit_unary_arith(p, ue->op.kind, v, tv.type);
}
}
case_end;
case_ast_node(be, BinaryExpr, expr);
return lb_build_binary_expr(p, expr);
case_end;
case_ast_node(pl, ProcLit, expr);
return lb_generate_anonymous_proc_lit(p->module, p->name, expr, p);
case_end;
case_ast_node(cl, CompoundLit, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ce, CallExpr, expr);
lbValue res = lb_build_call_expr(p, expr);
if (ce->optional_ok_one) { // TODO(bill): Minor hack for #optional_ok procedures
GB_ASSERT(is_type_tuple(res.type));
GB_ASSERT(res.type->Tuple.variables.count == 2);
return lb_emit_struct_ev(p, res, 0);
}
return res;
case_end;
case_ast_node(se, SliceExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
case_ast_node(ie, IndexExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
}
GB_PANIC("lb_build_expr: %.*s", LIT(ast_strings[expr->kind]));
return {};
}
lbValue lb_get_using_variable(lbProcedure *p, Entity *e) {
GB_ASSERT(e->kind == Entity_Variable && e->flags & EntityFlag_Using);
String name = e->token.string;
Entity *parent = e->using_parent;
Selection sel = lookup_field(parent->type, name, false);
GB_ASSERT(sel.entity != nullptr);
lbValue *pv = map_get(&p->module->values, hash_entity(parent));
lbValue v = {};
if (pv != nullptr) {
v = *pv;
} else {
GB_ASSERT_MSG(e->using_expr != nullptr, "%.*s", LIT(name));
v = lb_build_addr_ptr(p, e->using_expr);
}
GB_ASSERT(v.value != nullptr);
GB_ASSERT(parent->type == type_deref(v.type));
return lb_emit_deep_field_gep(p, v, sel);
}
lbAddr lb_build_addr_from_entity(lbProcedure *p, Entity *e, Ast *expr) {
GB_ASSERT(e != nullptr);
if (e->kind == Entity_Constant) {
Type *t = default_type(type_of_expr(expr));
lbValue v = lb_const_value(p->module, t, e->Constant.value);
lbAddr g = lb_add_global_generated(p->module, t, v);
return g;
}
lbValue v = {};
lbValue *found = map_get(&p->module->values, hash_entity(e));
if (found) {
v = *found;
} else if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) {
// NOTE(bill): Calculate the using variable every time
v = lb_get_using_variable(p, e);
}
if (v.value == nullptr) {
error(expr, "%.*s Unknown value: %.*s, entity: %p %.*s",
LIT(p->name),
LIT(e->token.string), e, LIT(entity_strings[e->kind]));
GB_PANIC("Unknown value");
}
return lb_addr(v);
}
lbValue lb_gen_map_header(lbProcedure *p, lbValue map_val_ptr, Type *map_type) {
GB_ASSERT_MSG(is_type_pointer(map_val_ptr.type), "%s", type_to_string(map_val_ptr.type));
gbAllocator a = heap_allocator();
lbAddr h = lb_add_local_generated(p, t_map_header, false); // all the values will be initialzed later
map_type = base_type(map_type);
GB_ASSERT(map_type->kind == Type_Map);
Type *key_type = map_type->Map.key;
Type *val_type = map_type->Map.value;
// NOTE(bill): Removes unnecessary allocation if split gep
lbValue gep0 = lb_emit_struct_ep(p, h.addr, 0);
lbValue m = lb_emit_conv(p, map_val_ptr, type_deref(gep0.type));
lb_emit_store(p, gep0, m);
lb_emit_store(p, lb_emit_struct_ep(p, h.addr, 1), lb_const_bool(p->module, t_bool, is_type_string(key_type)));
i64 entry_size = type_size_of (map_type->Map.entry_type);
i64 entry_align = type_align_of (map_type->Map.entry_type);
i64 value_offset = type_offset_of(map_type->Map.entry_type, 2);
i64 value_size = type_size_of (map_type->Map.value);
lb_emit_store(p, lb_emit_struct_ep(p, h.addr, 2), lb_const_int(p->module, t_int, entry_size));
lb_emit_store(p, lb_emit_struct_ep(p, h.addr, 3), lb_const_int(p->module, t_int, entry_align));
lb_emit_store(p, lb_emit_struct_ep(p, h.addr, 4), lb_const_int(p->module, t_uintptr, value_offset));
lb_emit_store(p, lb_emit_struct_ep(p, h.addr, 5), lb_const_int(p->module, t_int, value_size));
return lb_addr_load(p, h);
}
lbValue lb_gen_map_key(lbProcedure *p, lbValue key, Type *key_type) {
Type *hash_type = t_u64;
lbAddr v = lb_add_local_generated(p, t_map_key, true);
Type *t = base_type(key.type);
key = lb_emit_conv(p, key, key_type);
if (is_type_integer(t)) {
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 0), lb_emit_conv(p, key, hash_type));
} else if (is_type_enum(t)) {
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 0), lb_emit_conv(p, key, hash_type));
} else if (is_type_typeid(t)) {
lbValue i = lb_emit_transmute(p, key, t_uint);
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 0), lb_emit_conv(p, i, hash_type));
} else if (is_type_pointer(t)) {
lbValue ptr = lb_emit_conv(p, key, t_uintptr);
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 0), lb_emit_conv(p, ptr, hash_type));
} else if (is_type_float(t)) {
lbValue bits = {};
i64 size = type_size_of(t);
switch (8*size) {
case 32: bits = lb_emit_transmute(p, key, t_u32); break;
case 64: bits = lb_emit_transmute(p, key, t_u64); break;
default: GB_PANIC("Unhandled float size: %lld bits", size); break;
}
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 0), lb_emit_conv(p, bits, hash_type));
} else if (is_type_string(t)) {
lbValue str = lb_emit_conv(p, key, t_string);
lbValue hashed_str = {};
if (false && lb_is_const(str)) {
String value = lb_get_const_string(p->module, str);
u64 hs = fnv64a(value.text, value.len);
hashed_str = lb_const_value(p->module, t_u64, exact_value_u64(hs));
} else {
auto args = array_make<lbValue>(heap_allocator(), 1);
args[0] = str;
hashed_str = lb_emit_runtime_call(p, "default_hash_string", args);
}
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 0), hashed_str);
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 1), str);
} else {
GB_PANIC("Unhandled map key type");
}
return lb_addr_load(p, v);
}
void lb_insert_dynamic_map_key_and_value(lbProcedure *p, lbAddr addr, Type *map_type,
lbValue map_key, lbValue map_value, Ast *node) {
map_type = base_type(map_type);
GB_ASSERT(map_type->kind == Type_Map);
lbValue h = lb_gen_map_header(p, addr.addr, map_type);
lbValue key = lb_gen_map_key(p, map_key, map_type->Map.key);
lbValue v = lb_emit_conv(p, map_value, map_type->Map.value);
lbAddr value_addr = lb_add_local_generated(p, v.type, false);
lb_addr_store(p, value_addr, v);
auto args = array_make<lbValue>(heap_allocator(), 4);
args[0] = h;
args[1] = key;
args[2] = lb_emit_conv(p, value_addr.addr, t_rawptr);
args[3] = lb_emit_source_code_location(p, node);
lb_emit_runtime_call(p, "__dynamic_map_set", args);
}
lbAddr lb_build_addr(lbProcedure *p, Ast *expr) {
expr = unparen_expr(expr);
switch (expr->kind) {
case_ast_node(i, Implicit, expr);
lbAddr v = {};
switch (i->kind) {
case Token_context:
v = lb_find_or_generate_context_ptr(p);
break;
}
GB_ASSERT(v.addr.value != nullptr);
return v;
case_end;
case_ast_node(i, Ident, expr);
if (is_blank_ident(expr)) {
lbAddr val = {};
return val;
}
String name = i->token.string;
Entity *e = entity_of_node(expr);
return lb_build_addr_from_entity(p, e, expr);
case_end;
case_ast_node(se, SelectorExpr, expr);
Ast *sel = unparen_expr(se->selector);
if (sel->kind == Ast_Ident) {
String selector = sel->Ident.token.string;
TypeAndValue tav = type_and_value_of_expr(se->expr);
if (tav.mode == Addressing_Invalid) {
// NOTE(bill): Imports
Entity *imp = entity_of_node(se->expr);
if (imp != nullptr) {
GB_ASSERT(imp->kind == Entity_ImportName);
}
return lb_build_addr(p, unparen_expr(se->selector));
}
Type *type = base_type(tav.type);
if (tav.mode == Addressing_Type) { // Addressing_Type
Selection sel = lookup_field(type, selector, true);
Entity *e = sel.entity;
GB_ASSERT_MSG(e->kind == Entity_Variable, "Entity_%.*s", LIT(entity_strings[e->kind]));
GB_ASSERT(e->flags & EntityFlag_TypeField);
String name = e->token.string;
/*if (name == "names") {
lbValue ti_ptr = lb_type_info(m, type);
lbValue variant = lb_emit_struct_ep(p, ti_ptr, 2);
lbValue names_ptr = nullptr;
if (is_type_enum(type)) {
lbValue enum_info = lb_emit_conv(p, variant, t_type_info_enum_ptr);
names_ptr = lb_emit_struct_ep(p, enum_info, 1);
} else if (type->kind == Type_Struct) {
lbValue struct_info = lb_emit_conv(p, variant, t_type_info_struct_ptr);
names_ptr = lb_emit_struct_ep(p, struct_info, 1);
}
return ir_addr(names_ptr);
} else */{
GB_PANIC("Unhandled TypeField %.*s", LIT(name));
}
GB_PANIC("Unreachable");
}
Selection sel = lookup_field(type, selector, false);
GB_ASSERT(sel.entity != nullptr);
if (sel.entity->type->kind == Type_BitFieldValue) {
lbAddr addr = lb_build_addr(p, se->expr);
Type *bft = type_deref(lb_addr_type(addr));
if (sel.index.count == 1) {
GB_ASSERT(is_type_bit_field(bft));
i32 index = sel.index[0];
return lb_addr_bit_field(lb_addr_get_ptr(p, addr), index);
} else {
Selection s = sel;
s.index.count--;
i32 index = s.index[s.index.count-1];
lbValue a = lb_addr_get_ptr(p, addr);
a = lb_emit_deep_field_gep(p, a, s);
return lb_addr_bit_field(a, index);
}
} else {
lbAddr addr = lb_build_addr(p, se->expr);
if (addr.kind == lbAddr_Map) {
lbValue v = lb_addr_load(p, addr);
lbValue a = lb_address_from_load_or_generate_local(p, v);
a = lb_emit_deep_field_gep(p, a, sel);
return lb_addr(a);
} else if (addr.kind == lbAddr_Context) {
GB_ASSERT(sel.index.count > 0);
if (addr.ctx.sel.index.count >= 0) {
sel = selection_combine(addr.ctx.sel, sel);
}
addr.ctx.sel = sel;
addr.kind = lbAddr_Context;
return addr;
} else if (addr.kind == lbAddr_SoaVariable) {
lbValue index = addr.soa.index;
i32 first_index = sel.index[0];
Selection sub_sel = sel;
sub_sel.index.data += 1;
sub_sel.index.count -= 1;
lbValue arr = lb_emit_struct_ep(p, addr.addr, first_index);
Type *t = base_type(type_deref(addr.addr.type));
GB_ASSERT(is_type_soa_struct(t));
// TODO(bill): Bounds check
if (!lb_is_const(addr.soa.index) || t->Struct.soa_kind != StructSoa_Fixed) {
lbValue len = lb_soa_struct_len(p, addr.addr);
lb_emit_bounds_check(p, ast_token(addr.soa.index_expr), addr.soa.index, len);
}
lbValue item = {};
if (t->Struct.soa_kind == StructSoa_Fixed) {
item = lb_emit_array_ep(p, arr, index);
} else {
item = lb_emit_load(p, lb_emit_ptr_offset(p, arr, index));
}
if (sub_sel.index.count > 0) {
item = lb_emit_deep_field_gep(p, item, sub_sel);
}
return lb_addr(item);
}
lbValue a = lb_addr_get_ptr(p, addr);
a = lb_emit_deep_field_gep(p, a, sel);
return lb_addr(a);
}
} else {
GB_PANIC("Unsupported selector expression");
}
case_end;
case_ast_node(se, SelectorCallExpr, expr);
GB_ASSERT(se->modified_call);
TypeAndValue tav = type_and_value_of_expr(expr);
GB_ASSERT(tav.mode != Addressing_Invalid);
return lb_build_addr(p, se->call);
case_end;
case_ast_node(ta, TypeAssertion, expr);
gbAllocator a = heap_allocator();
TokenPos pos = ast_token(expr).pos;
lbValue e = lb_build_expr(p, ta->expr);
Type *t = type_deref(e.type);
if (is_type_union(t)) {
Type *type = type_of_expr(expr);
lbAddr v = lb_add_local_generated(p, type, false);
lb_addr_store(p, v, lb_emit_union_cast(p, lb_build_expr(p, ta->expr), type, pos));
return v;
} else if (is_type_any(t)) {
Type *type = type_of_expr(expr);
return lb_emit_any_cast_addr(p, lb_build_expr(p, ta->expr), type, pos);
} else {
GB_PANIC("TODO(bill): type assertion %s", type_to_string(e.type));
}
case_end;
case_ast_node(ue, UnaryExpr, expr);
switch (ue->op.kind) {
case Token_And: {
return lb_build_addr(p, ue->expr);
}
default:
GB_PANIC("Invalid unary expression for lb_build_addr");
}
case_end;
case_ast_node(be, BinaryExpr, expr);
lbValue v = lb_build_expr(p, expr);
Type *t = v.type;
if (is_type_pointer(t)) {
return lb_addr(v);
}
return lb_addr(lb_address_from_load_or_generate_local(p, v));
case_end;
case_ast_node(ie, IndexExpr, expr);
Type *t = base_type(type_of_expr(ie->expr));
gbAllocator a = heap_allocator();
bool deref = is_type_pointer(t);
t = base_type(type_deref(t));
if (is_type_soa_struct(t)) {
// SOA STRUCTURES!!!!
lbValue val = lb_build_addr_ptr(p, ie->expr);
if (deref) {
val = lb_emit_load(p, val);
}
lbValue index = lb_build_expr(p, ie->index);
return lb_addr_soa_variable(val, index, ie->index);
}
if (ie->expr->tav.mode == Addressing_SoaVariable) {
// SOA Structures for slices/dynamic arrays
GB_ASSERT(is_type_pointer(type_of_expr(ie->expr)));
lbValue field = lb_build_expr(p, ie->expr);
lbValue index = lb_build_expr(p, ie->index);
if (!build_context.no_bounds_check) {
// TODO HACK(bill): Clean up this hack to get the length for bounds checking
// GB_ASSERT(LLVMIsALoadInst(field.value));
// lbValue a = {};
// a.value = LLVMGetOperand(field.value, 0);
// a.type = alloc_type_pointer(field.type);
// irInstr *b = &a->Instr;
// GB_ASSERT(b->kind == irInstr_StructElementPtr);
// lbValue base_struct = b->StructElementPtr.address;
// GB_ASSERT(is_type_soa_struct(type_deref(ir_type(base_struct))));
// lbValue len = ir_soa_struct_len(p, base_struct);
// lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
lbValue val = lb_emit_ptr_offset(p, field, index);
return lb_addr(val);
}
if (!is_type_indexable(t)) {
AtomOpMapEntry *found = map_get(&p->module->info->atom_op_map, hash_pointer(expr));
if (found != nullptr) {
if (found->kind == TypeAtomOp_index_get) {
return lb_build_addr(p, found->node);
} else if (found->kind == TypeAtomOp_index_get_ptr) {
return lb_addr(lb_build_expr(p, found->node));
} else if (found->kind == TypeAtomOp_index_set) {
lbValue ptr = lb_build_addr_ptr(p, ie->expr);
if (deref) {
ptr = lb_emit_load(p, ptr);
}
lbAddr addr = {lbAddr_AtomOp_index_set};
addr.addr = ptr;
addr.index_set.index = lb_build_expr(p, ie->index);
addr.index_set.node = found->node;
return addr;
}
}
}
GB_ASSERT_MSG(is_type_indexable(t), "%s %s", type_to_string(t), expr_to_string(expr));
if (is_type_map(t)) {
lbValue map_val = lb_build_addr_ptr(p, ie->expr);
if (deref) {
map_val = lb_emit_load(p, map_val);
}
lbValue key = lb_build_expr(p, ie->index);
key = lb_emit_conv(p, key, t->Map.key);
Type *result_type = type_of_expr(expr);
return lb_addr_map(map_val, key, t, result_type);
}
switch (t->kind) {
case Type_Array: {
lbValue array = {};
array = lb_build_addr_ptr(p, ie->expr);
if (deref) {
array = lb_emit_load(p, array);
}
lbValue index = lb_build_expr(p, ie->index);
index = lb_emit_conv(p, index, t_int);
lbValue elem = lb_emit_array_ep(p, array, index);
auto index_tv = type_and_value_of_expr(ie->index);
if (index_tv.mode != Addressing_Constant) {
lbValue len = lb_const_int(p->module, t_int, t->Array.count);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
return lb_addr(elem);
}
case Type_EnumeratedArray: {
lbValue array = {};
array = lb_build_addr_ptr(p, ie->expr);
if (deref) {
array = lb_emit_load(p, array);
}
Type *index_type = t->EnumeratedArray.index;
auto index_tv = type_and_value_of_expr(ie->index);
lbValue index = {};
if (compare_exact_values(Token_NotEq, t->EnumeratedArray.min_value, exact_value_i64(0))) {
if (index_tv.mode == Addressing_Constant) {
ExactValue idx = exact_value_sub(index_tv.value, t->EnumeratedArray.min_value);
index = lb_const_value(p->module, index_type, idx);
} else {
index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
index = lb_emit_arith(p, Token_Sub, index, lb_const_value(p->module, index_type, t->EnumeratedArray.min_value), index_type);
}
} else {
index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
}
lbValue elem = lb_emit_array_ep(p, array, index);
if (index_tv.mode != Addressing_Constant) {
lbValue len = lb_const_int(p->module, t_int, t->EnumeratedArray.count);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
}
return lb_addr(elem);
}
case Type_Slice: {
lbValue slice = {};
slice = lb_build_expr(p, ie->expr);
if (deref) {
slice = lb_emit_load(p, slice);
}
lbValue elem = lb_slice_elem(p, slice);
lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lbValue len = lb_slice_len(p, slice);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
case Type_RelativeSlice: {
lbAddr slice_addr = {};
if (deref) {
slice_addr = lb_addr(lb_build_expr(p, ie->expr));
} else {
slice_addr = lb_build_addr(p, ie->expr);
}
lbValue slice = lb_addr_load(p, slice_addr);
lbValue elem = lb_slice_elem(p, slice);
lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lbValue len = lb_slice_len(p, slice);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
case Type_DynamicArray: {
lbValue dynamic_array = {};
dynamic_array = lb_build_expr(p, ie->expr);
if (deref) {
dynamic_array = lb_emit_load(p, dynamic_array);
}
lbValue elem = lb_dynamic_array_elem(p, dynamic_array);
lbValue len = lb_dynamic_array_len(p, dynamic_array);
lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
case Type_Basic: { // Basic_string
lbValue str;
lbValue elem;
lbValue len;
lbValue index;
str = lb_build_expr(p, ie->expr);
if (deref) {
str = lb_emit_load(p, str);
}
elem = lb_string_elem(p, str);
len = lb_string_len(p, str);
index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int);
lb_emit_bounds_check(p, ast_token(ie->index), index, len);
return lb_addr(lb_emit_ptr_offset(p, elem, index));
}
}
case_end;
case_ast_node(se, SliceExpr, expr);
gbAllocator a = heap_allocator();
lbValue low = lb_const_int(p->module, t_int, 0);
lbValue high = {};
if (se->low != nullptr) low = lb_build_expr(p, se->low);
if (se->high != nullptr) high = lb_build_expr(p, se->high);
bool no_indices = se->low == nullptr && se->high == nullptr;
{
Type *type = base_type(type_of_expr(se->expr));
if (type->kind == Type_Struct && !is_type_soa_struct(type)) {
TypeAtomOpTable *atom_op_table = type->Struct.atom_op_table;
if (atom_op_table != nullptr && atom_op_table->op[TypeAtomOp_slice]) {
AtomOpMapEntry *found = map_get(&p->module->info->atom_op_map, hash_pointer(expr));
if (found) {
lbValue base = lb_build_expr(p, found->node);
Type *slice_type = base.type;
lbValue len = lb_slice_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_slice_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
}
}
}
lbAddr addr = lb_build_addr(p, se->expr);
lbValue base = lb_addr_load(p, addr);
Type *type = base_type(base.type);
if (is_type_pointer(type)) {
type = base_type(type_deref(type));
addr = lb_addr(base);
base = lb_addr_load(p, addr);
}
switch (type->kind) {
case Type_Slice: {
Type *slice_type = type;
lbValue len = lb_slice_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_slice_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
case Type_RelativeSlice:
GB_PANIC("TODO(bill): Type_RelativeSlice should be handled above already on the lb_addr_load");
break;
case Type_DynamicArray: {
Type *elem_type = type->DynamicArray.elem;
Type *slice_type = alloc_type_slice(elem_type);
lbValue len = lb_dynamic_array_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_dynamic_array_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
case Type_Array: {
Type *slice_type = alloc_type_slice(type->Array.elem);
lbValue len = lb_const_int(p->module, t_int, type->Array.count);
if (high.value == nullptr) high = len;
bool low_const = type_and_value_of_expr(se->low).mode == Addressing_Constant;
bool high_const = type_and_value_of_expr(se->high).mode == Addressing_Constant;
if (!low_const || !high_const) {
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
}
lbValue elem = lb_emit_ptr_offset(p, lb_array_elem(p, lb_addr_get_ptr(p, addr)), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, elem, new_len);
return slice;
}
case Type_Basic: {
GB_ASSERT(type == t_string);
lbValue len = lb_string_len(p, base);
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
lbValue elem = lb_emit_ptr_offset(p, lb_string_elem(p, base), low);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lbAddr str = lb_add_local_generated(p, t_string, false);
lb_fill_string(p, str, elem, new_len);
return str;
}
case Type_Struct:
if (is_type_soa_struct(type)) {
lbValue len = lb_soa_struct_len(p, lb_addr_get_ptr(p, addr));
if (high.value == nullptr) high = len;
if (!no_indices) {
lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr);
}
#if 1
lbAddr dst = lb_add_local_generated(p, type_of_expr(expr), true);
if (type->Struct.soa_kind == StructSoa_Fixed) {
i32 field_count = cast(i32)type->Struct.fields.count;
for (i32 i = 0; i < field_count; i++) {
lbValue field_dst = lb_emit_struct_ep(p, dst.addr, i);
lbValue field_src = lb_emit_struct_ep(p, lb_addr_get_ptr(p, addr), i);
field_src = lb_emit_array_ep(p, field_src, low);
lb_emit_store(p, field_dst, field_src);
}
lbValue len_dst = lb_emit_struct_ep(p, dst.addr, field_count);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lb_emit_store(p, len_dst, new_len);
} else if (type->Struct.soa_kind == StructSoa_Slice) {
if (no_indices) {
lb_addr_store(p, dst, base);
} else {
i32 field_count = cast(i32)type->Struct.fields.count - 1;
for (i32 i = 0; i < field_count; i++) {
lbValue field_dst = lb_emit_struct_ep(p, dst.addr, i);
lbValue field_src = lb_emit_struct_ev(p, base, i);
field_src = lb_emit_ptr_offset(p, field_src, low);
lb_emit_store(p, field_dst, field_src);
}
lbValue len_dst = lb_emit_struct_ep(p, dst.addr, field_count);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lb_emit_store(p, len_dst, new_len);
}
} else if (type->Struct.soa_kind == StructSoa_Dynamic) {
i32 field_count = cast(i32)type->Struct.fields.count - 3;
for (i32 i = 0; i < field_count; i++) {
lbValue field_dst = lb_emit_struct_ep(p, dst.addr, i);
lbValue field_src = lb_emit_struct_ev(p, base, i);
field_src = lb_emit_ptr_offset(p, field_src, low);
lb_emit_store(p, field_dst, field_src);
}
lbValue len_dst = lb_emit_struct_ep(p, dst.addr, field_count);
lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int);
lb_emit_store(p, len_dst, new_len);
}
return dst;
#endif
}
break;
}
GB_PANIC("Unknown slicable type");
case_end;
case_ast_node(de, DerefExpr, expr);
if (is_type_relative_pointer(type_of_expr(de->expr))) {
lbAddr addr = lb_build_addr(p, de->expr);
addr.relative.deref = true;
return addr;
}
lbValue addr = lb_build_expr(p, de->expr);
return lb_addr(addr);
case_end;
case_ast_node(ce, CallExpr, expr);
// NOTE(bill): This is make sure you never need to have an 'array_ev'
lbValue e = lb_build_expr(p, expr);
lbAddr v = lb_add_local_generated(p, e.type, false);
lb_addr_store(p, v, e);
return v;
case_end;
case_ast_node(cl, CompoundLit, expr);
Type *type = type_of_expr(expr);
Type *bt = base_type(type);
lbAddr v = lb_add_local_generated(p, type, true);
Type *et = nullptr;
switch (bt->kind) {
case Type_Array: et = bt->Array.elem; break;
case Type_EnumeratedArray: et = bt->EnumeratedArray.elem; break;
case Type_Slice: et = bt->Slice.elem; break;
case Type_BitSet: et = bt->BitSet.elem; break;
case Type_SimdVector: et = bt->SimdVector.elem; break;
}
String proc_name = {};
if (p->entity) {
proc_name = p->entity->token.string;
}
TokenPos pos = ast_token(expr).pos;
switch (bt->kind) {
default: GB_PANIC("Unknown CompoundLit type: %s", type_to_string(type)); break;
case Type_Struct: {
// TODO(bill): "constant" '#raw_union's are not initialized constantly at the moment.
// NOTE(bill): This is due to the layout of the unions when printed to LLVM-IR
bool is_raw_union = is_type_raw_union(bt);
GB_ASSERT(is_type_struct(bt) || is_raw_union);
TypeStruct *st = &bt->Struct;
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
for_array(field_index, cl->elems) {
Ast *elem = cl->elems[field_index];
lbValue field_expr = {};
Entity *field = nullptr;
isize index = field_index;
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(bt, name, false);
index = sel.index[0];
elem = fv->value;
TypeAndValue tav = type_and_value_of_expr(elem);
} else {
TypeAndValue tav = type_and_value_of_expr(elem);
Selection sel = lookup_field_from_index(bt, st->fields[field_index]->Variable.field_src_index);
index = sel.index[0];
}
field = st->fields[index];
Type *ft = field->type;
if (!is_raw_union && !is_type_typeid(ft) && lb_is_elem_const(elem, ft)) {
continue;
}
field_expr = lb_build_expr(p, elem);
Type *fet = field_expr.type;
GB_ASSERT(fet->kind != Type_Tuple);
// HACK TODO(bill): THIS IS A MASSIVE HACK!!!!
if (is_type_union(ft) && !are_types_identical(fet, ft) && !is_type_untyped(fet)) {
GB_ASSERT_MSG(union_variant_index(ft, fet) > 0, "%s", type_to_string(fet));
lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index);
lb_emit_store_union_variant(p, gep, field_expr, fet);
} else {
lbValue fv = lb_emit_conv(p, field_expr, ft);
lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index);
lb_emit_store(p, gep, fv);
}
}
}
break;
}
case Type_Map: {
if (cl->elems.count == 0) {
break;
}
gbAllocator a = heap_allocator();
{
auto args = array_make<lbValue>(a, 3);
args[0] = lb_gen_map_header(p, v.addr, type);
args[1] = lb_const_int(p->module, t_int, 2*cl->elems.count);
args[2] = lb_emit_source_code_location(p, proc_name, pos);
lb_emit_runtime_call(p, "__dynamic_map_reserve", args);
}
for_array(field_index, cl->elems) {
Ast *elem = cl->elems[field_index];
ast_node(fv, FieldValue, elem);
lbValue key = lb_build_expr(p, fv->field);
lbValue value = lb_build_expr(p, fv->value);
lb_insert_dynamic_map_key_and_value(p, v, type, key, value, elem);
}
break;
}
case Type_Array: {
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
auto temp_data = array_make<lbCompoundLitElemTempData>(heap_allocator(), 0, cl->elems.count);
defer (array_free(&temp_data));
// NOTE(bill): Separate value, gep, store into their own chunks
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
if (lb_is_elem_const(fv->value, et)) {
continue;
}
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
lbValue value = lb_build_expr(p, fv->value);
for (i64 k = lo; k < hi; k++) {
lbCompoundLitElemTempData data = {};
data.value = value;
data.elem_index = cast(i32)k;
array_add(&temp_data, data);
}
} else {
auto tav = fv->field->tav;
GB_ASSERT(tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(tav.value);
lbValue value = lb_build_expr(p, fv->value);
lbCompoundLitElemTempData data = {};
data.value = lb_emit_conv(p, value, et);
data.expr = fv->value;
data.elem_index = cast(i32)index;
array_add(&temp_data, data);
}
} else {
if (lb_is_elem_const(elem, et)) {
continue;
}
lbCompoundLitElemTempData data = {};
data.expr = elem;
data.elem_index = cast(i32)i;
array_add(&temp_data, data);
}
}
for_array(i, temp_data) {
temp_data[i].gep = lb_emit_array_epi(p, lb_addr_get_ptr(p, v), temp_data[i].elem_index);
}
for_array(i, temp_data) {
auto return_ptr_hint_ast = p->return_ptr_hint_ast;
auto return_ptr_hint_value = p->return_ptr_hint_value;
auto return_ptr_hint_used = p->return_ptr_hint_used;
defer (p->return_ptr_hint_ast = return_ptr_hint_ast);
defer (p->return_ptr_hint_value = return_ptr_hint_value);
defer (p->return_ptr_hint_used = return_ptr_hint_used);
lbValue field_expr = temp_data[i].value;
Ast *expr = temp_data[i].expr;
p->return_ptr_hint_value = temp_data[i].gep;
p->return_ptr_hint_ast = unparen_expr(expr);
if (field_expr.value == nullptr) {
field_expr = lb_build_expr(p, expr);
}
Type *t = field_expr.type;
GB_ASSERT(t->kind != Type_Tuple);
lbValue ev = lb_emit_conv(p, field_expr, et);
if (!p->return_ptr_hint_used) {
temp_data[i].value = ev;
}
}
for_array(i, temp_data) {
if (temp_data[i].value.value != nullptr) {
lb_emit_store(p, temp_data[i].gep, temp_data[i].value);
}
}
}
break;
}
case Type_EnumeratedArray: {
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
auto temp_data = array_make<lbCompoundLitElemTempData>(heap_allocator(), 0, cl->elems.count);
defer (array_free(&temp_data));
// NOTE(bill): Separate value, gep, store into their own chunks
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
if (lb_is_elem_const(fv->value, et)) {
continue;
}
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
lbValue value = lb_build_expr(p, fv->value);
for (i64 k = lo; k < hi; k++) {
lbCompoundLitElemTempData data = {};
data.value = value;
data.elem_index = cast(i32)k;
array_add(&temp_data, data);
}
} else {
auto tav = fv->field->tav;
GB_ASSERT(tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(tav.value);
lbValue value = lb_build_expr(p, fv->value);
lbCompoundLitElemTempData data = {};
data.value = lb_emit_conv(p, value, et);
data.expr = fv->value;
data.elem_index = cast(i32)index;
array_add(&temp_data, data);
}
} else {
if (lb_is_elem_const(elem, et)) {
continue;
}
lbCompoundLitElemTempData data = {};
data.expr = elem;
data.elem_index = cast(i32)i;
array_add(&temp_data, data);
}
}
i32 index_offset = cast(i32)exact_value_to_i64(bt->EnumeratedArray.min_value);
for_array(i, temp_data) {
i32 index = temp_data[i].elem_index - index_offset;
temp_data[i].gep = lb_emit_array_epi(p, lb_addr_get_ptr(p, v), index);
}
for_array(i, temp_data) {
auto return_ptr_hint_ast = p->return_ptr_hint_ast;
auto return_ptr_hint_value = p->return_ptr_hint_value;
auto return_ptr_hint_used = p->return_ptr_hint_used;
defer (p->return_ptr_hint_ast = return_ptr_hint_ast);
defer (p->return_ptr_hint_value = return_ptr_hint_value);
defer (p->return_ptr_hint_used = return_ptr_hint_used);
lbValue field_expr = temp_data[i].value;
Ast *expr = temp_data[i].expr;
p->return_ptr_hint_value = temp_data[i].gep;
p->return_ptr_hint_ast = unparen_expr(expr);
if (field_expr.value == nullptr) {
field_expr = lb_build_expr(p, expr);
}
Type *t = field_expr.type;
GB_ASSERT(t->kind != Type_Tuple);
lbValue ev = lb_emit_conv(p, field_expr, et);
if (!p->return_ptr_hint_used) {
temp_data[i].value = ev;
}
}
for_array(i, temp_data) {
if (temp_data[i].value.value != nullptr) {
lb_emit_store(p, temp_data[i].gep, temp_data[i].value);
}
}
}
break;
}
case Type_Slice: {
if (cl->elems.count > 0) {
Type *elem_type = bt->Slice.elem;
Type *elem_ptr_type = alloc_type_pointer(elem_type);
Type *elem_ptr_ptr_type = alloc_type_pointer(elem_ptr_type);
lbValue slice = lb_const_value(p->module, type, exact_value_compound(expr));
lbValue data = lb_slice_elem(p, slice);
auto temp_data = array_make<lbCompoundLitElemTempData>(heap_allocator(), 0, cl->elems.count);
defer (array_free(&temp_data));
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
if (lb_is_elem_const(fv->value, et)) {
continue;
}
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
lbValue value = lb_emit_conv(p, lb_build_expr(p, fv->value), et);
for (i64 k = lo; k < hi; k++) {
lbCompoundLitElemTempData data = {};
data.value = value;
data.elem_index = cast(i32)k;
array_add(&temp_data, data);
}
} else {
GB_ASSERT(fv->field->tav.mode == Addressing_Constant);
i64 index = exact_value_to_i64(fv->field->tav.value);
lbValue field_expr = lb_build_expr(p, fv->value);
GB_ASSERT(!is_type_tuple(field_expr.type));
lbValue ev = lb_emit_conv(p, field_expr, et);
lbCompoundLitElemTempData data = {};
data.value = ev;
data.elem_index = cast(i32)index;
array_add(&temp_data, data);
}
} else {
if (lb_is_elem_const(elem, et)) {
continue;
}
lbValue field_expr = lb_build_expr(p, elem);
GB_ASSERT(!is_type_tuple(field_expr.type));
lbValue ev = lb_emit_conv(p, field_expr, et);
lbCompoundLitElemTempData data = {};
data.value = ev;
data.elem_index = cast(i32)i;
array_add(&temp_data, data);
}
}
for_array(i, temp_data) {
temp_data[i].gep = lb_emit_ptr_offset(p, data, lb_const_int(p->module, t_int, temp_data[i].elem_index));
}
for_array(i, temp_data) {
lb_emit_store(p, temp_data[i].gep, temp_data[i].value);
}
{
lbValue count = {};
count.type = t_int;
if (lb_is_const(slice)) {
unsigned indices[1] = {1};
count.value = LLVMConstExtractValue(slice.value, indices, gb_count_of(indices));
} else {
count.value = LLVMBuildExtractValue(p->builder, slice.value, 1, "");
}
lb_fill_slice(p, v, data, count);
}
}
break;
}
case Type_DynamicArray: {
if (cl->elems.count == 0) {
break;
}
Type *et = bt->DynamicArray.elem;
gbAllocator a = heap_allocator();
lbValue size = lb_const_int(p->module, t_int, type_size_of(et));
lbValue align = lb_const_int(p->module, t_int, type_align_of(et));
i64 item_count = gb_max(cl->max_count, cl->elems.count);
{
auto args = array_make<lbValue>(a, 5);
args[0] = lb_emit_conv(p, lb_addr_get_ptr(p, v), t_rawptr);
args[1] = size;
args[2] = align;
args[3] = lb_const_int(p->module, t_int, 2*item_count); // TODO(bill): Is this too much waste?
args[4] = lb_emit_source_code_location(p, proc_name, pos);
lb_emit_runtime_call(p, "__dynamic_array_reserve", args);
}
lbValue items = lb_generate_local_array(p, et, item_count);
// lbValue items = lb_generate_global_array(p->module, et, item_count, str_lit("dacl$"), cast(i64)cast(intptr)expr);
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
if (is_ast_range(fv->field)) {
ast_node(ie, BinaryExpr, fv->field);
TypeAndValue lo_tav = ie->left->tav;
TypeAndValue hi_tav = ie->right->tav;
GB_ASSERT(lo_tav.mode == Addressing_Constant);
GB_ASSERT(hi_tav.mode == Addressing_Constant);
TokenKind op = ie->op.kind;
i64 lo = exact_value_to_i64(lo_tav.value);
i64 hi = exact_value_to_i64(hi_tav.value);
if (op == Token_Ellipsis) {
hi += 1;
}
lbValue value = lb_emit_conv(p, lb_build_expr(p, fv->value), et);
for (i64 k = lo; k < hi; k++) {
lbValue ep = lb_emit_array_epi(p, items, cast(i32)k);
lb_emit_store(p, ep, value);
}
} else {
GB_ASSERT(fv->field->tav.mode == Addressing_Constant);
i64 field_index = exact_value_to_i64(fv->field->tav.value);
lbValue ev = lb_build_expr(p, fv->value);
lbValue value = lb_emit_conv(p, ev, et);
lbValue ep = lb_emit_array_epi(p, items, cast(i32)field_index);
lb_emit_store(p, ep, value);
}
} else {
lbValue value = lb_emit_conv(p, lb_build_expr(p, elem), et);
lbValue ep = lb_emit_array_epi(p, items, cast(i32)i);
lb_emit_store(p, ep, value);
}
}
{
auto args = array_make<lbValue>(a, 6);
args[0] = lb_emit_conv(p, v.addr, t_rawptr);
args[1] = size;
args[2] = align;
args[3] = lb_emit_conv(p, items, t_rawptr);
args[4] = lb_const_int(p->module, t_int, item_count);
args[5] = lb_emit_source_code_location(p, proc_name, pos);
lb_emit_runtime_call(p, "__dynamic_array_append", args);
}
break;
}
case Type_Basic: {
GB_ASSERT(is_type_any(bt));
if (cl->elems.count > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
String field_names[2] = {
str_lit("data"),
str_lit("id"),
};
Type *field_types[2] = {
t_rawptr,
t_typeid,
};
for_array(field_index, cl->elems) {
Ast *elem = cl->elems[field_index];
lbValue field_expr = {};
isize index = field_index;
if (elem->kind == Ast_FieldValue) {
ast_node(fv, FieldValue, elem);
Selection sel = lookup_field(bt, fv->field->Ident.token.string, false);
index = sel.index[0];
elem = fv->value;
} else {
TypeAndValue tav = type_and_value_of_expr(elem);
Selection sel = lookup_field(bt, field_names[field_index], false);
index = sel.index[0];
}
field_expr = lb_build_expr(p, elem);
GB_ASSERT(field_expr.type->kind != Type_Tuple);
Type *ft = field_types[index];
lbValue fv = lb_emit_conv(p, field_expr, ft);
lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index);
lb_emit_store(p, gep, fv);
}
}
break;
}
case Type_BitSet: {
i64 sz = type_size_of(type);
if (cl->elems.count > 0 && sz > 0) {
lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
lbValue lower = lb_const_value(p->module, t_int, exact_value_i64(bt->BitSet.lower));
for_array(i, cl->elems) {
Ast *elem = cl->elems[i];
GB_ASSERT(elem->kind != Ast_FieldValue);
if (lb_is_elem_const(elem, et)) {
continue;
}
lbValue expr = lb_build_expr(p, elem);
GB_ASSERT(expr.type->kind != Type_Tuple);
Type *it = bit_set_to_int(bt);
lbValue one = lb_const_value(p->module, it, exact_value_i64(1));
lbValue e = lb_emit_conv(p, expr, it);
e = lb_emit_arith(p, Token_Sub, e, lower, it);
e = lb_emit_arith(p, Token_Shl, one, e, it);
lbValue old_value = lb_emit_transmute(p, lb_addr_load(p, v), it);
lbValue new_value = lb_emit_arith(p, Token_Or, old_value, e, it);
new_value = lb_emit_transmute(p, new_value, type);
lb_addr_store(p, v, new_value);
}
}
break;
}
}
return v;
case_end;
case_ast_node(tc, TypeCast, expr);
Type *type = type_of_expr(expr);
lbValue x = lb_build_expr(p, tc->expr);
lbValue e = {};
switch (tc->token.kind) {
case Token_cast:
e = lb_emit_conv(p, x, type);
break;
case Token_transmute:
e = lb_emit_transmute(p, x, type);
break;
default:
GB_PANIC("Invalid AST TypeCast");
}
lbAddr v = lb_add_local_generated(p, type, false);
lb_addr_store(p, v, e);
return v;
case_end;
case_ast_node(ac, AutoCast, expr);
return lb_build_addr(p, ac->expr);
case_end;
}
TokenPos token_pos = ast_token(expr).pos;
GB_PANIC("Unexpected address expression\n"
"\tAst: %.*s @ "
"%.*s(%td:%td)\n",
LIT(ast_strings[expr->kind]),
LIT(token_pos.file), token_pos.line, token_pos.column);
return {};
}
void lb_init_module(lbModule *m, Checker *c) {
m->info = &c->info;
m->ctx = LLVMGetGlobalContext();
m->mod = LLVMModuleCreateWithNameInContext("odin_module", m->ctx);
m->debug_builder = LLVMCreateDIBuilder(m->mod);
m->state_flags = 0;
m->state_flags |= StateFlag_bounds_check;
gb_mutex_init(&m->mutex);
gbAllocator a = heap_allocator();
map_init(&m->types, a);
map_init(&m->values, a);
string_map_init(&m->members, a);
map_init(&m->procedure_values, a);
string_map_init(&m->procedures, a);
string_map_init(&m->const_strings, a);
map_init(&m->anonymous_proc_lits, a);
array_init(&m->procedures_to_generate, a);
array_init(&m->foreign_library_paths, a);
map_init(&m->debug_values, a);
}
bool lb_init_generator(lbGenerator *gen, Checker *c) {
if (global_error_collector.count != 0) {
return false;
}
isize tc = c->parser->total_token_count;
if (tc < 2) {
return false;
}
String init_fullpath = c->parser->init_fullpath;
if (build_context.out_filepath.len == 0) {
gen->output_name = remove_directory_from_path(init_fullpath);
gen->output_name = remove_extension_from_path(gen->output_name);
gen->output_name = string_trim_whitespace(gen->output_name);
if (gen->output_name.len == 0) {
gen->output_name = c->info.init_scope->pkg->name;
}
gen->output_base = gen->output_name;
} else {
gen->output_name = build_context.out_filepath;
gen->output_name = string_trim_whitespace(gen->output_name);
if (gen->output_name.len == 0) {
gen->output_name = c->info.init_scope->pkg->name;
}
isize pos = string_extension_position(gen->output_name);
if (pos < 0) {
gen->output_base = gen->output_name;
} else {
gen->output_base = substring(gen->output_name, 0, pos);
}
}
gbAllocator ha = heap_allocator();
array_init(&gen->output_object_paths, ha);
gen->output_base = path_to_full_path(ha, gen->output_base);
gbString output_file_path = gb_string_make_length(ha, gen->output_base.text, gen->output_base.len);
output_file_path = gb_string_appendc(output_file_path, ".obj");
defer (gb_string_free(output_file_path));
gen->info = &c->info;
lb_init_module(&gen->module, c);
return true;
}
lbAddr lb_add_global_generated(lbModule *m, Type *type, lbValue value) {
GB_ASSERT(type != nullptr);
type = default_type(type);
isize max_len = 7+8+1;
u8 *str = cast(u8 *)gb_alloc_array(heap_allocator(), u8, max_len);
isize len = gb_snprintf(cast(char *)str, max_len, "ggv$%x", m->global_generated_index);
m->global_generated_index++;
String name = make_string(str, len-1);
Scope *scope = nullptr;
Entity *e = alloc_entity_variable(scope, make_token_ident(name), type);
lbValue g = {};
g.type = alloc_type_pointer(type);
g.value = LLVMAddGlobal(m->mod, lb_type(m, type), cast(char const *)str);
if (value.value != nullptr) {
GB_ASSERT(LLVMIsConstant(value.value));
LLVMSetInitializer(g.value, value.value);
} else {
LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, type)));
}
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
return lb_addr(g);
}
lbValue lb_find_runtime_value(lbModule *m, String const &name) {
AstPackage *p = m->info->runtime_package;
Entity *e = scope_lookup_current(p->scope, name);
lbValue *found = map_get(&m->values, hash_entity(e));
GB_ASSERT_MSG(found != nullptr, "Unable to find runtime value '%.*s'", LIT(name));
lbValue value = *found;
return value;
}
lbValue lb_get_type_info_ptr(lbModule *m, Type *type) {
i32 index = cast(i32)lb_type_info_index(m->info, type);
GB_ASSERT(index >= 0);
// gb_printf_err("%d %s\n", index, type_to_string(type));
LLVMValueRef indices[2] = {
LLVMConstInt(lb_type(m, t_int), 0, false),
LLVMConstInt(lb_type(m, t_int), index, false),
};
lbValue res = {};
res.type = t_type_info_ptr;
res.value = LLVMConstGEP(lb_global_type_info_data.addr.value, indices, cast(unsigned)gb_count_of(indices));
return res;
}
lbValue lb_type_info_member_types_offset(lbProcedure *p, isize count) {
lbValue offset = lb_emit_array_epi(p, lb_global_type_info_member_types.addr, lb_global_type_info_member_types_index);
lb_global_type_info_member_types_index += cast(i32)count;
return offset;
}
lbValue lb_type_info_member_names_offset(lbProcedure *p, isize count) {
lbValue offset = lb_emit_array_epi(p, lb_global_type_info_member_names.addr, lb_global_type_info_member_names_index);
lb_global_type_info_member_names_index += cast(i32)count;
return offset;
}
lbValue lb_type_info_member_offsets_offset(lbProcedure *p, isize count) {
lbValue offset = lb_emit_array_epi(p, lb_global_type_info_member_offsets.addr, lb_global_type_info_member_offsets_index);
lb_global_type_info_member_offsets_index += cast(i32)count;
return offset;
}
lbValue lb_type_info_member_usings_offset(lbProcedure *p, isize count) {
lbValue offset = lb_emit_array_epi(p, lb_global_type_info_member_usings.addr, lb_global_type_info_member_usings_index);
lb_global_type_info_member_usings_index += cast(i32)count;
return offset;
}
lbValue lb_type_info_member_tags_offset(lbProcedure *p, isize count) {
lbValue offset = lb_emit_array_epi(p, lb_global_type_info_member_tags.addr, lb_global_type_info_member_tags_index);
lb_global_type_info_member_tags_index += cast(i32)count;
return offset;
}
lbValue lb_generate_local_array(lbProcedure *p, Type *elem_type, i64 count, bool zero_init) {
lbAddr addr = lb_add_local_generated(p, alloc_type_array(elem_type, count), zero_init);
return lb_addr_get_ptr(p, addr);
}
lbValue lb_generate_global_array(lbModule *m, Type *elem_type, i64 count, String prefix, i64 id) {
gbAllocator a = heap_allocator();
Token token = {Token_Ident};
isize name_len = prefix.len + 1 + 20;
auto suffix_id = cast(unsigned long long)id;
char *text = gb_alloc_array(a, char, name_len+1);
gb_snprintf(text, name_len,
"%.*s-%llu", LIT(prefix), suffix_id);
text[name_len] = 0;
String s = make_string_c(text);
Type *t = alloc_type_array(elem_type, count);
lbValue g = {};
g.value = LLVMAddGlobal(m->mod, lb_type(m, t), text);
g.type = alloc_type_pointer(t);
LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g.value, LLVMInternalLinkage);
string_map_set(&m->members, s, g);
return g;
}
void lb_setup_type_info_data(lbProcedure *p) { // NOTE(bill): Setup type_info data
lbModule *m = p->module;
LLVMContextRef ctx = m->ctx;
gbAllocator a = heap_allocator();
CheckerInfo *info = m->info;
{
// NOTE(bill): Set the type_table slice with the global backing array
lbValue global_type_table = lb_find_runtime_value(m, str_lit("type_table"));
Type *type = base_type(lb_addr_type(lb_global_type_info_data));
GB_ASSERT(is_type_array(type));
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef values[2] = {
LLVMConstInBoundsGEP(lb_global_type_info_data.addr.value, indices, gb_count_of(indices)),
LLVMConstInt(lb_type(m, t_int), type->Array.count, true),
};
LLVMValueRef slice = LLVMConstStructInContext(ctx, values, gb_count_of(values), false);
LLVMSetInitializer(global_type_table.value, slice);
}
// Useful types
Type *t_i64_slice_ptr = alloc_type_pointer(alloc_type_slice(t_i64));
Type *t_string_slice_ptr = alloc_type_pointer(alloc_type_slice(t_string));
i32 type_info_member_types_index = 0;
i32 type_info_member_names_index = 0;
i32 type_info_member_offsets_index = 0;
for_array(type_info_type_index, info->type_info_types) {
Type *t = info->type_info_types[type_info_type_index];
t = default_type(t);
if (t == t_invalid) {
continue;
}
isize entry_index = lb_type_info_index(info, t, false);
if (entry_index <= 0) {
continue;
}
lbValue tag = {};
lbValue ti_ptr = lb_emit_array_epi(p, lb_global_type_info_data.addr, cast(i32)entry_index);
lbValue variant_ptr = lb_emit_struct_ep(p, ti_ptr, 3);
lb_emit_store(p, lb_emit_struct_ep(p, ti_ptr, 0), lb_const_int(m, t_int, type_size_of(t)));
lb_emit_store(p, lb_emit_struct_ep(p, ti_ptr, 1), lb_const_int(m, t_int, type_align_of(t)));
lb_emit_store(p, lb_emit_struct_ep(p, ti_ptr, 2), lb_typeid(m, t));
switch (t->kind) {
case Type_Named: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_named_ptr);
LLVMValueRef vals[2] = {
lb_const_string(p->module, t->Named.type_name->token.string).value,
lb_get_type_info_ptr(m, t->Named.base).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Basic:
switch (t->Basic.kind) {
case Basic_bool:
case Basic_b8:
case Basic_b16:
case Basic_b32:
case Basic_b64:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_boolean_ptr);
break;
case Basic_i8:
case Basic_u8:
case Basic_i16:
case Basic_u16:
case Basic_i32:
case Basic_u32:
case Basic_i64:
case Basic_u64:
case Basic_i128:
case Basic_u128:
case Basic_i16le:
case Basic_u16le:
case Basic_i32le:
case Basic_u32le:
case Basic_i64le:
case Basic_u64le:
case Basic_i128le:
case Basic_u128le:
case Basic_i16be:
case Basic_u16be:
case Basic_i32be:
case Basic_u32be:
case Basic_i64be:
case Basic_u64be:
case Basic_i128be:
case Basic_u128be:
case Basic_int:
case Basic_uint:
case Basic_uintptr: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_integer_ptr);
lbValue is_signed = lb_const_bool(m, t_bool, (t->Basic.flags & BasicFlag_Unsigned) == 0);
// NOTE(bill): This is matches the runtime layout
u8 endianness_value = 0;
if (t->Basic.flags & BasicFlag_EndianLittle) {
endianness_value = 1;
} else if (t->Basic.flags & BasicFlag_EndianBig) {
endianness_value = 2;
}
lbValue endianness = lb_const_int(m, t_u8, endianness_value);
LLVMValueRef vals[2] = {
is_signed.value,
endianness.value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Basic_rune:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_rune_ptr);
break;
// case Basic_f16:
case Basic_f32:
case Basic_f64:
case Basic_f32le:
case Basic_f64le:
case Basic_f32be:
case Basic_f64be:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_float_ptr);
// NOTE(bill): This is matches the runtime layout
u8 endianness_value = 0;
if (t->Basic.flags & BasicFlag_EndianLittle) {
endianness_value = 1;
} else if (t->Basic.flags & BasicFlag_EndianBig) {
endianness_value = 2;
}
lbValue endianness = lb_const_int(m, t_u8, endianness_value);
LLVMValueRef vals[1] = {
endianness.value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
// case Basic_complex32:
case Basic_complex64:
case Basic_complex128:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_complex_ptr);
break;
case Basic_quaternion128:
case Basic_quaternion256:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_quaternion_ptr);
break;
case Basic_rawptr:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_pointer_ptr);
break;
case Basic_string:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_string_ptr);
break;
case Basic_cstring:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_string_ptr);
LLVMValueRef vals[1] = {
lb_const_bool(m, t_bool, true).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
case Basic_any:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_any_ptr);
break;
case Basic_typeid:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_typeid_ptr);
break;
}
break;
case Type_Pointer: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_pointer_ptr);
lbValue gep = lb_get_type_info_ptr(m, t->Pointer.elem);
LLVMValueRef vals[1] = {
gep.value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Array: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_array_ptr);
i64 ez = type_size_of(t->Array.elem);
LLVMValueRef vals[3] = {
lb_get_type_info_ptr(m, t->Array.elem).value,
lb_const_int(m, t_int, ez).value,
lb_const_int(m, t_int, t->Array.count).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_EnumeratedArray: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_enumerated_array_ptr);
LLVMValueRef vals[6] = {
lb_get_type_info_ptr(m, t->EnumeratedArray.elem).value,
lb_get_type_info_ptr(m, t->EnumeratedArray.index).value,
lb_const_int(m, t_int, type_size_of(t->EnumeratedArray.elem)).value,
lb_const_int(m, t_int, t->EnumeratedArray.count).value,
// Unions
LLVMConstNull(lb_type(m, t_type_info_enum_value)),
LLVMConstNull(lb_type(m, t_type_info_enum_value)),
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
// NOTE(bill): Union assignment
lbValue min_value = lb_emit_struct_ep(p, tag, 4);
lbValue max_value = lb_emit_struct_ep(p, tag, 5);
lbValue min_v = lb_const_value(m, t_i64, t->EnumeratedArray.min_value);
lbValue max_v = lb_const_value(m, t_i64, t->EnumeratedArray.max_value);
lb_emit_store(p, min_value, min_v);
lb_emit_store(p, max_value, max_v);
break;
}
case Type_DynamicArray: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_dynamic_array_ptr);
LLVMValueRef vals[2] = {
lb_get_type_info_ptr(m, t->DynamicArray.elem).value,
lb_const_int(m, t_int, type_size_of(t->DynamicArray.elem)).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Slice: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_slice_ptr);
LLVMValueRef vals[2] = {
lb_get_type_info_ptr(m, t->Slice.elem).value,
lb_const_int(m, t_int, type_size_of(t->Slice.elem)).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Proc: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_procedure_ptr);
LLVMValueRef params = LLVMConstNull(lb_type(m, t_type_info_ptr));
LLVMValueRef results = LLVMConstNull(lb_type(m, t_type_info_ptr));
if (t->Proc.params != nullptr) {
params = lb_get_type_info_ptr(m, t->Proc.params).value;
}
if (t->Proc.results != nullptr) {
results = lb_get_type_info_ptr(m, t->Proc.results).value;
}
LLVMValueRef vals[4] = {
params,
results,
lb_const_bool(m, t_bool, t->Proc.variadic).value,
lb_const_int(m, t_u8, t->Proc.calling_convention).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Tuple: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_tuple_ptr);
lbValue memory_types = lb_type_info_member_types_offset(p, t->Tuple.variables.count);
lbValue memory_names = lb_type_info_member_names_offset(p, t->Tuple.variables.count);
for_array(i, t->Tuple.variables) {
// NOTE(bill): offset is not used for tuples
Entity *f = t->Tuple.variables[i];
lbValue index = lb_const_int(m, t_int, i);
lbValue type_info = lb_emit_ptr_offset(p, memory_types, index);
// TODO(bill): Make this constant if possible, 'lb_const_store' does not work
lb_emit_store(p, type_info, lb_type_info(m, f->type));
if (f->token.string.len > 0) {
lbValue name = lb_emit_ptr_offset(p, memory_names, index);
lb_emit_store(p, name, lb_const_string(m, f->token.string));
}
}
lbValue count = lb_const_int(m, t_int, t->Tuple.variables.count);
LLVMValueRef types_slice = llvm_const_slice(memory_types, count);
LLVMValueRef names_slice = llvm_const_slice(memory_names, count);
LLVMValueRef vals[2] = {
types_slice,
names_slice,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Enum:
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_enum_ptr);
{
GB_ASSERT(t->Enum.base_type != nullptr);
// GB_ASSERT_MSG(type_size_of(t_type_info_enum_value) == 16, "%lld == 16", cast(long long)type_size_of(t_type_info_enum_value));
LLVMValueRef vals[3] = {};
vals[0] = lb_type_info(m, t->Enum.base_type).value;
if (t->Enum.fields.count > 0) {
auto fields = t->Enum.fields;
lbValue name_array = lb_generate_global_array(m, t_string, fields.count,
str_lit("$enum_names"), cast(i64)entry_index);
lbValue value_array = lb_generate_global_array(m, t_type_info_enum_value, fields.count,
str_lit("$enum_values"), cast(i64)entry_index);
LLVMValueRef *name_values = gb_alloc_array(heap_allocator(), LLVMValueRef, fields.count);
LLVMValueRef *value_values = gb_alloc_array(heap_allocator(), LLVMValueRef, fields.count);
defer (gb_free(heap_allocator(), name_values));
defer (gb_free(heap_allocator(), value_values));
GB_ASSERT(is_type_integer(t->Enum.base_type));
LLVMTypeRef align_type = lb_alignment_prefix_type_hack(m, type_align_of(t));
LLVMTypeRef array_type = LLVMArrayType(lb_type(m, t_u8), 8);
for_array(i, fields) {
name_values[i] = lb_const_string(m, fields[i]->token.string).value;
value_values[i] = lb_const_value(m, t_i64, fields[i]->Constant.value).value;
}
LLVMValueRef name_init = LLVMConstArray(lb_type(m, t_string), name_values, cast(unsigned)fields.count);
LLVMValueRef value_init = LLVMConstArray(lb_type(m, t_type_info_enum_value), value_values, cast(unsigned)fields.count);
LLVMSetInitializer(name_array.value, name_init);
LLVMSetInitializer(value_array.value, value_init);
lbValue v_count = lb_const_int(m, t_int, fields.count);
vals[1] = llvm_const_slice(lb_array_elem(p, name_array), v_count);
vals[2] = llvm_const_slice(lb_array_elem(p, value_array), v_count);
} else {
vals[1] = LLVMConstNull(lb_type(m, base_type(t_type_info_enum)->Struct.fields[1]->type));
vals[2] = LLVMConstNull(lb_type(m, base_type(t_type_info_enum)->Struct.fields[2]->type));
}
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
case Type_Union: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_union_ptr);
{
LLVMValueRef vals[6] = {};
isize variant_count = gb_max(0, t->Union.variants.count);
lbValue memory_types = lb_type_info_member_types_offset(p, variant_count);
// NOTE(bill): Zeroth is nil so ignore it
for (isize variant_index = 0; variant_index < variant_count; variant_index++) {
Type *vt = t->Union.variants[variant_index];
lbValue tip = lb_get_type_info_ptr(m, vt);
lbValue index = lb_const_int(m, t_int, variant_index);
lbValue type_info = lb_emit_ptr_offset(p, memory_types, index);
lb_emit_store(p, type_info, lb_type_info(m, vt));
}
lbValue count = lb_const_int(m, t_int, variant_count);
vals[0] = llvm_const_slice(memory_types, count);
i64 tag_size = union_tag_size(t);
i64 tag_offset = align_formula(t->Union.variant_block_size, tag_size);
if (tag_size > 0) {
vals[1] = lb_const_int(m, t_uintptr, tag_offset).value;
vals[2] = lb_type_info(m, union_tag_type(t)).value;
} else {
vals[1] = lb_const_int(m, t_uintptr, 0).value;
vals[2] = LLVMConstNull(lb_type(m, t_type_info_ptr));
}
vals[3] = lb_const_bool(m, t_bool, t->Union.custom_align != 0).value;
vals[4] = lb_const_bool(m, t_bool, t->Union.no_nil).value;
vals[5] = lb_const_bool(m, t_bool, t->Union.maybe).value;
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
}
case Type_Struct: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_struct_ptr);
LLVMValueRef vals[11] = {};
{
lbValue is_packed = lb_const_bool(m, t_bool, t->Struct.is_packed);
lbValue is_raw_union = lb_const_bool(m, t_bool, t->Struct.is_raw_union);
lbValue is_custom_align = lb_const_bool(m, t_bool, t->Struct.custom_align != 0);
vals[5] = is_packed.value;
vals[6] = is_raw_union.value;
vals[7] = is_custom_align.value;
if (t->Struct.soa_kind != StructSoa_None) {
lbValue kind = lb_emit_struct_ep(p, tag, 8);
Type *kind_type = type_deref(kind.type);
lbValue soa_kind = lb_const_value(m, kind_type, exact_value_i64(t->Struct.soa_kind));
lbValue soa_type = lb_type_info(m, t->Struct.soa_elem);
lbValue soa_len = lb_const_int(m, t_int, t->Struct.soa_count);
vals[8] = soa_kind.value;
vals[9] = soa_type.value;
vals[10] = soa_len.value;
}
}
isize count = t->Struct.fields.count;
if (count > 0) {
lbValue memory_types = lb_type_info_member_types_offset (p, count);
lbValue memory_names = lb_type_info_member_names_offset (p, count);
lbValue memory_offsets = lb_type_info_member_offsets_offset(p, count);
lbValue memory_usings = lb_type_info_member_usings_offset (p, count);
lbValue memory_tags = lb_type_info_member_tags_offset (p, count);
type_set_offsets(t); // NOTE(bill): Just incase the offsets have not been set yet
for (isize source_index = 0; source_index < count; source_index++) {
// TODO(bill): Order fields in source order not layout order
Entity *f = t->Struct.fields[source_index];
lbValue tip = lb_get_type_info_ptr(m, f->type);
i64 foffset = 0;
if (!t->Struct.is_raw_union) {
foffset = t->Struct.offsets[f->Variable.field_index];
}
GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field);
lbValue index = lb_const_int(m, t_int, source_index);
lbValue type_info = lb_emit_ptr_offset(p, memory_types, index);
lbValue offset = lb_emit_ptr_offset(p, memory_offsets, index);
lbValue is_using = lb_emit_ptr_offset(p, memory_usings, index);
lb_emit_store(p, type_info, lb_type_info(m, f->type));
if (f->token.string.len > 0) {
lbValue name = lb_emit_ptr_offset(p, memory_names, index);
lb_emit_store(p, name, lb_const_string(m, f->token.string));
}
lb_emit_store(p, offset, lb_const_int(m, t_uintptr, foffset));
lb_emit_store(p, is_using, lb_const_bool(m, t_bool, (f->flags&EntityFlag_Using) != 0));
if (t->Struct.tags.count > 0) {
String tag_string = t->Struct.tags[source_index];
if (tag_string.len > 0) {
lbValue tag_ptr = lb_emit_ptr_offset(p, memory_tags, index);
lb_emit_store(p, tag_ptr, lb_const_string(m, tag_string));
}
}
}
lbValue cv = lb_const_int(m, t_int, count);
vals[0] = llvm_const_slice(memory_types, cv);
vals[1] = llvm_const_slice(memory_names, cv);
vals[2] = llvm_const_slice(memory_offsets, cv);
vals[3] = llvm_const_slice(memory_usings, cv);
vals[4] = llvm_const_slice(memory_tags, cv);
}
for (isize i = 0; i < gb_count_of(vals); i++) {
if (vals[i] == nullptr) {
vals[i] = LLVMConstNull(lb_type(m, get_struct_field_type(tag.type, i)));
}
}
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_Map: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_map_ptr);
init_map_internal_types(t);
LLVMValueRef vals[3] = {
lb_get_type_info_ptr(m, t->Map.key).value,
lb_get_type_info_ptr(m, t->Map.value).value,
lb_get_type_info_ptr(m, t->Map.generated_struct_type).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
break;
}
case Type_BitField: {
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_bit_field_ptr);
// names: []string;
// bits: []u32;
// offsets: []u32;
isize count = t->BitField.fields.count;
if (count > 0) {
auto fields = t->BitField.fields;
lbValue name_array = lb_generate_global_array(m, t_string, count, str_lit("$bit_field_names"), cast(i64)entry_index);
lbValue bit_array = lb_generate_global_array(m, t_i32, count, str_lit("$bit_field_bits"), cast(i64)entry_index);
lbValue offset_array = lb_generate_global_array(m, t_i32, count, str_lit("$bit_field_offsets"), cast(i64)entry_index);
for (isize i = 0; i < count; i++) {
Entity *f = fields[i];
GB_ASSERT(f->type != nullptr);
GB_ASSERT(f->type->kind == Type_BitFieldValue);
lbValue name_ep = lb_emit_array_epi(p, name_array, cast(i32)i);
lbValue bit_ep = lb_emit_array_epi(p, bit_array, cast(i32)i);
lbValue offset_ep = lb_emit_array_epi(p, offset_array, cast(i32)i);
lb_emit_store(p, name_ep, lb_const_string(m, f->token.string));
lb_emit_store(p, bit_ep, lb_const_int(m, t_i32, f->type->BitFieldValue.bits));
lb_emit_store(p, offset_ep, lb_const_int(m, t_i32, t->BitField.offsets[i]));
}
lbValue v_count = lb_const_int(m, t_int, count);
lbValue name_array_elem = lb_array_elem(p, name_array);
lbValue bit_array_elem = lb_array_elem(p, bit_array);
lbValue offset_array_elem = lb_array_elem(p, offset_array);
LLVMValueRef vals[3] = {
llvm_const_slice(name_array_elem, v_count),
llvm_const_slice(bit_array_elem, v_count),
llvm_const_slice(offset_array_elem, v_count),
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
}
case Type_BitSet:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_bit_set_ptr);
GB_ASSERT(is_type_typed(t->BitSet.elem));
LLVMValueRef vals[4] = {
lb_get_type_info_ptr(m, t->BitSet.elem).value,
LLVMConstNull(lb_type(m, t_type_info_ptr)),
lb_const_int(m, t_i64, t->BitSet.lower).value,
lb_const_int(m, t_i64, t->BitSet.upper).value,
};
if (t->BitSet.underlying != nullptr) {
vals[1] =lb_get_type_info_ptr(m, t->BitSet.underlying).value;
}
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
case Type_Opaque:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_opaque_ptr);
LLVMValueRef vals[1] = {
lb_get_type_info_ptr(m, t->Opaque.elem).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
case Type_SimdVector:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_simd_vector_ptr);
LLVMValueRef vals[4] = {};
if (t->SimdVector.is_x86_mmx) {
vals[3] = lb_const_bool(m, t_bool, true).value;
} else {
vals[0] = lb_get_type_info_ptr(m, t->SimdVector.elem).value;
vals[1] = lb_const_int(m, t_int, type_size_of(t->SimdVector.elem)).value;
vals[2] = lb_const_int(m, t_int, t->SimdVector.count).value;
}
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
case Type_RelativePointer:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_relative_pointer_ptr);
LLVMValueRef vals[2] = {
lb_get_type_info_ptr(m, t->RelativePointer.pointer_type).value,
lb_get_type_info_ptr(m, t->RelativePointer.base_integer).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
case Type_RelativeSlice:
{
tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_relative_slice_ptr);
LLVMValueRef vals[2] = {
lb_get_type_info_ptr(m, t->RelativeSlice.slice_type).value,
lb_get_type_info_ptr(m, t->RelativeSlice.base_integer).value,
};
lbValue res = {};
res.type = type_deref(tag.type);
res.value = LLVMConstNamedStruct(lb_type(m, res.type), vals, gb_count_of(vals));
lb_emit_store(p, tag, res);
}
break;
}
if (tag.value != nullptr) {
Type *tag_type = type_deref(tag.type);
GB_ASSERT(is_type_named(tag_type));
// lb_emit_store_union_variant(p, variant_ptr, lb_emit_load(p, tag), tag_type);
lb_emit_store_union_variant_tag(p, variant_ptr, tag_type);
} else {
if (t != t_llvm_bool) {
GB_PANIC("Unhandled Type_Info variant: %s", type_to_string(t));
}
}
}
}
void lb_generate_code(lbGenerator *gen) {
#define TIME_SECTION(str) do { if (build_context.show_more_timings) timings_start_section(&global_timings, str_lit(str)); } while (0)
TIME_SECTION("LLVM Initializtion");
lbModule *m = &gen->module;
LLVMModuleRef mod = gen->module.mod;
CheckerInfo *info = gen->info;
Arena temp_arena = {};
arena_init(&temp_arena, heap_allocator());
gbAllocator temp_allocator = arena_allocator(&temp_arena);
gen->module.global_default_context = lb_add_global_generated(m, t_context, {});
gen->module.global_default_context.kind = lbAddr_Context;
auto *min_dep_set = &info->minimum_dependency_set;
LLVMInitializeAllTargetInfos();
LLVMInitializeAllTargets();
LLVMInitializeAllTargetMCs();
LLVMInitializeAllAsmPrinters();
LLVMInitializeAllAsmParsers();
LLVMInitializeAllDisassemblers();
LLVMInitializeNativeTarget();
char const *target_triple = alloc_cstring(heap_allocator(), build_context.metrics.target_triplet);
char const *target_data_layout = alloc_cstring(heap_allocator(), build_context.metrics.target_data_layout);
LLVMSetTarget(mod, target_triple);
LLVMTargetRef target = {};
char *llvm_error = nullptr;
LLVMGetTargetFromTriple(target_triple, &target, &llvm_error);
GB_ASSERT(target != nullptr);
TIME_SECTION("LLVM Create Target Machine");
LLVMCodeModel code_mode = LLVMCodeModelDefault;
if (build_context.metrics.arch == TargetArch_wasm32) {
code_mode = LLVMCodeModelJITDefault;
}
LLVMTargetMachineRef target_machine = LLVMCreateTargetMachine(target, target_triple, "generic", "", LLVMCodeGenLevelNone, LLVMRelocDefault, code_mode);
defer (LLVMDisposeTargetMachine(target_machine));
LLVMSetModuleDataLayout(mod, LLVMCreateTargetDataLayout(target_machine));
{ // Debug Info
for_array(i, info->files.entries) {
AstFile *f = info->files.entries[i].value;
String fullpath = f->fullpath;
String filename = filename_from_path(fullpath);
String directory = directory_from_path(fullpath);
LLVMMetadataRef res = LLVMDIBuilderCreateFile(m->debug_builder,
cast(char const *)filename.text, filename.len,
cast(char const *)directory.text, directory.len);
map_set(&m->debug_values, hash_pointer(f), res);
f->llvm_metadata = res;
}
m->debug_compile_unit = LLVMDIBuilderCreateCompileUnit(m->debug_builder, LLVMDWARFSourceLanguageC,
cast(LLVMMetadataRef)m->info->files.entries[0].value->llvm_metadata,
"odin", 4,
false, "", 0,
1, "", 0,
LLVMDWARFEmissionFull, 0, true,
true
);
}
TIME_SECTION("LLVM Global Variables");
{
{ // Add type info data
isize max_type_info_count = info->minimum_dependency_type_info_set.entries.count+1;
// gb_printf_err("max_type_info_count: %td\n", max_type_info_count);
Type *t = alloc_type_array(t_type_info, max_type_info_count);
LLVMValueRef g = LLVMAddGlobal(mod, lb_type(m, t), LB_TYPE_INFO_DATA_NAME);
LLVMSetInitializer(g, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g, LLVMInternalLinkage);
lbValue value = {};
value.value = g;
value.type = alloc_type_pointer(t);
lb_global_type_info_data = lb_addr(value);
}
{ // Type info member buffer
// NOTE(bill): Removes need for heap allocation by making it global memory
isize count = 0;
for_array(entry_index, m->info->type_info_types) {
Type *t = m->info->type_info_types[entry_index];
isize index = lb_type_info_index(m->info, t, false);
if (index < 0) {
continue;
}
switch (t->kind) {
case Type_Union:
count += t->Union.variants.count;
break;
case Type_Struct:
count += t->Struct.fields.count;
break;
case Type_Tuple:
count += t->Tuple.variables.count;
break;
}
}
if (count > 0) {
{
char const *name = LB_TYPE_INFO_TYPES_NAME;
Type *t = alloc_type_array(t_type_info_ptr, count);
LLVMValueRef g = LLVMAddGlobal(mod, lb_type(m, t), name);
LLVMSetInitializer(g, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g, LLVMInternalLinkage);
lb_global_type_info_member_types = lb_addr({g, alloc_type_pointer(t)});
}
{
char const *name = LB_TYPE_INFO_NAMES_NAME;
Type *t = alloc_type_array(t_string, count);
LLVMValueRef g = LLVMAddGlobal(mod, lb_type(m, t), name);
LLVMSetInitializer(g, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g, LLVMInternalLinkage);
lb_global_type_info_member_names = lb_addr({g, alloc_type_pointer(t)});
}
{
char const *name = LB_TYPE_INFO_OFFSETS_NAME;
Type *t = alloc_type_array(t_uintptr, count);
LLVMValueRef g = LLVMAddGlobal(mod, lb_type(m, t), name);
LLVMSetInitializer(g, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g, LLVMInternalLinkage);
lb_global_type_info_member_offsets = lb_addr({g, alloc_type_pointer(t)});
}
{
char const *name = LB_TYPE_INFO_USINGS_NAME;
Type *t = alloc_type_array(t_bool, count);
LLVMValueRef g = LLVMAddGlobal(mod, lb_type(m, t), name);
LLVMSetInitializer(g, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g, LLVMInternalLinkage);
lb_global_type_info_member_usings = lb_addr({g, alloc_type_pointer(t)});
}
{
char const *name = LB_TYPE_INFO_TAGS_NAME;
Type *t = alloc_type_array(t_string, count);
LLVMValueRef g = LLVMAddGlobal(mod, lb_type(m, t), name);
LLVMSetInitializer(g, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g, LLVMInternalLinkage);
lb_global_type_info_member_tags = lb_addr({g, alloc_type_pointer(t)});
}
}
}
}
isize global_variable_max_count = 0;
Entity *entry_point = info->entry_point;
bool has_dll_main = false;
bool has_win_main = false;
for_array(i, info->entities) {
Entity *e = info->entities[i];
String name = e->token.string;
bool is_global = e->pkg != nullptr;
if (e->kind == Entity_Variable) {
global_variable_max_count++;
} else if (e->kind == Entity_Procedure && !is_global) {
if ((e->scope->flags&ScopeFlag_Init) && name == "main") {
GB_ASSERT(e == entry_point);
// entry_point = e;
}
if (e->Procedure.is_export ||
(e->Procedure.link_name.len > 0) ||
((e->scope->flags&ScopeFlag_File) && e->Procedure.link_name.len > 0)) {
if (!has_dll_main && name == "DllMain") {
has_dll_main = true;
} else if (!has_win_main && name == "WinMain") {
has_win_main = true;
}
}
}
}
struct GlobalVariable {
lbValue var;
lbValue init;
DeclInfo *decl;
};
auto global_variables = array_make<GlobalVariable>(heap_allocator(), 0, global_variable_max_count);
for_array(i, info->variable_init_order) {
DeclInfo *d = info->variable_init_order[i];
Entity *e = d->entity;
if ((e->scope->flags & ScopeFlag_File) == 0) {
continue;
}
if (!ptr_set_exists(min_dep_set, e)) {
continue;
}
DeclInfo *decl = decl_info_of_entity(e);
if (decl == nullptr) {
continue;
}
GB_ASSERT(e->kind == Entity_Variable);
bool is_foreign = e->Variable.is_foreign;
bool is_export = e->Variable.is_export;
String name = lb_get_entity_name(m, e);
lbValue g = {};
g.value = LLVMAddGlobal(m->mod, lb_type(m, e->type), alloc_cstring(heap_allocator(), name));
g.type = alloc_type_pointer(e->type);
if (e->Variable.thread_local_model != "") {
LLVMSetThreadLocal(g.value, true);
String m = e->Variable.thread_local_model;
LLVMThreadLocalMode mode = LLVMGeneralDynamicTLSModel;
if (m == "default") {
mode = LLVMGeneralDynamicTLSModel;
} else if (m == "localdynamic") {
mode = LLVMLocalDynamicTLSModel;
} else if (m == "initialexec") {
mode = LLVMInitialExecTLSModel;
} else if (m == "localexec") {
mode = LLVMLocalExecTLSModel;
} else {
GB_PANIC("Unhandled thread local mode %.*s", LIT(m));
}
LLVMSetThreadLocalMode(g.value, mode);
}
if (is_foreign) {
LLVMSetExternallyInitialized(g.value, true);
} else {
LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, e->type)));
}
if (is_export) {
LLVMSetLinkage(g.value, LLVMDLLExportLinkage);
LLVMSetDLLStorageClass(g.value, LLVMDLLExportStorageClass);
}
GlobalVariable var = {};
var.var = g;
var.decl = decl;
if (decl->init_expr != nullptr && !is_type_any(e->type)) {
TypeAndValue tav = type_and_value_of_expr(decl->init_expr);
if (tav.mode != Addressing_Invalid) {
if (tav.value.kind != ExactValue_Invalid) {
ExactValue v = tav.value;
lbValue init = lb_const_value(m, tav.type, v);
LLVMSetInitializer(g.value, init.value);
}
}
}
array_add(&global_variables, var);
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
}
TIME_SECTION("LLVM Global Procedures and Types");
for_array(i, info->entities) {
// arena_free_all(&temp_arena);
// gbAllocator a = temp_allocator;
Entity *e = info->entities[i];
String name = e->token.string;
DeclInfo *decl = e->decl_info;
Scope * scope = e->scope;
if ((scope->flags & ScopeFlag_File) == 0) {
continue;
}
Scope *package_scope = scope->parent;
GB_ASSERT(package_scope->flags & ScopeFlag_Pkg);
switch (e->kind) {
case Entity_Variable:
// NOTE(bill): Handled above as it requires a specific load order
continue;
case Entity_ProcGroup:
continue;
case Entity_TypeName:
case Entity_Procedure:
break;
}
bool polymorphic_struct = false;
if (e->type != nullptr && e->kind == Entity_TypeName) {
Type *bt = base_type(e->type);
if (bt->kind == Type_Struct) {
polymorphic_struct = is_type_polymorphic(bt);
}
}
if (!polymorphic_struct && !ptr_set_exists(min_dep_set, e)) {
// NOTE(bill): Nothing depends upon it so doesn't need to be built
continue;
}
String mangled_name = lb_get_entity_name(m, e);
switch (e->kind) {
case Entity_TypeName:
lb_type(m, e->type);
break;
case Entity_Procedure:
{
lbProcedure *p = lb_create_procedure(m, e);
array_add(&m->procedures_to_generate, p);
}
break;
}
}
TIME_SECTION("LLVM Registry Initializtion");
LLVMPassRegistryRef pass_registry = LLVMGetGlobalPassRegistry();
LLVMPassManagerRef default_function_pass_manager = LLVMCreateFunctionPassManagerForModule(mod);
defer (LLVMDisposePassManager(default_function_pass_manager));
{
LLVMAddMemCpyOptPass(default_function_pass_manager);
LLVMAddPromoteMemoryToRegisterPass(default_function_pass_manager);
LLVMAddMergedLoadStoreMotionPass(default_function_pass_manager);
LLVMAddAggressiveInstCombinerPass(default_function_pass_manager);
LLVMAddConstantPropagationPass(default_function_pass_manager);
LLVMAddAggressiveDCEPass(default_function_pass_manager);
LLVMAddMergedLoadStoreMotionPass(default_function_pass_manager);
LLVMAddPromoteMemoryToRegisterPass(default_function_pass_manager);
LLVMAddCFGSimplificationPass(default_function_pass_manager);
// LLVMAddUnifyFunctionExitNodesPass(default_function_pass_manager);
if (build_context.optimization_level >= 2) {
LLVMAddAggressiveInstCombinerPass(default_function_pass_manager);
LLVMAddEarlyCSEPass(default_function_pass_manager);
LLVMAddEarlyCSEMemSSAPass(default_function_pass_manager);
LLVMAddLowerExpectIntrinsicPass(default_function_pass_manager);
LLVMAddAlignmentFromAssumptionsPass(default_function_pass_manager);
LLVMAddLoopRotatePass(default_function_pass_manager);
LLVMAddDeadStoreEliminationPass(default_function_pass_manager);
LLVMAddScalarizerPass(default_function_pass_manager);
LLVMAddReassociatePass(default_function_pass_manager);
LLVMAddAddDiscriminatorsPass(default_function_pass_manager);
LLVMAddPromoteMemoryToRegisterPass(default_function_pass_manager);
LLVMAddCorrelatedValuePropagationPass(default_function_pass_manager);
LLVMAddSLPVectorizePass(default_function_pass_manager);
LLVMAddLoopVectorizePass(default_function_pass_manager);
}
}
LLVMPassManagerRef default_function_pass_manager_without_memcpy = LLVMCreateFunctionPassManagerForModule(mod);
defer (LLVMDisposePassManager(default_function_pass_manager_without_memcpy));
{
LLVMAddPromoteMemoryToRegisterPass(default_function_pass_manager_without_memcpy);
LLVMAddMergedLoadStoreMotionPass(default_function_pass_manager_without_memcpy);
LLVMAddAggressiveInstCombinerPass(default_function_pass_manager_without_memcpy);
LLVMAddConstantPropagationPass(default_function_pass_manager_without_memcpy);
LLVMAddAggressiveDCEPass(default_function_pass_manager_without_memcpy);
LLVMAddMergedLoadStoreMotionPass(default_function_pass_manager_without_memcpy);
LLVMAddPromoteMemoryToRegisterPass(default_function_pass_manager_without_memcpy);
LLVMAddCFGSimplificationPass(default_function_pass_manager_without_memcpy);
// LLVMAddUnifyFunctionExitNodesPass(default_function_pass_manager_without_memcpy);
}
TIME_SECTION("LLVM Runtime Creation");
lbProcedure *startup_type_info = nullptr;
lbProcedure *startup_context = nullptr;
lbProcedure *startup_runtime = nullptr;
{ // Startup Type Info
Type *params = alloc_type_tuple();
Type *results = alloc_type_tuple();
Type *proc_type = alloc_type_proc(nullptr, nullptr, 0, nullptr, 0, false, ProcCC_CDecl);
lbProcedure *p = lb_create_dummy_procedure(m, str_lit(LB_STARTUP_TYPE_INFO_PROC_NAME), proc_type);
p->is_startup = true;
startup_type_info = p;
lb_begin_procedure_body(p);
lb_setup_type_info_data(p);
lb_end_procedure_body(p);
if (LLVMVerifyFunction(p->value, LLVMReturnStatusAction)) {
gb_printf_err("LLVM CODE GEN FAILED FOR PROCEDURE: %s\n", "main");
LLVMDumpValue(p->value);
gb_printf_err("\n\n\n\n");
LLVMVerifyFunction(p->value, LLVMAbortProcessAction);
}
LLVMRunFunctionPassManager(default_function_pass_manager, p->value);
}
{ // Startup Context
Type *params = alloc_type_tuple();
Type *results = alloc_type_tuple();
Type *proc_type = alloc_type_proc(nullptr, nullptr, 0, nullptr, 0, false, ProcCC_CDecl);
lbProcedure *p = lb_create_dummy_procedure(m, str_lit(LB_STARTUP_CONTEXT_PROC_NAME), proc_type);
p->is_startup = true;
startup_context = p;
lb_begin_procedure_body(p);
lb_emit_init_context(p, p->module->global_default_context);
lb_end_procedure_body(p);
if (LLVMVerifyFunction(p->value, LLVMReturnStatusAction)) {
gb_printf_err("LLVM CODE GEN FAILED FOR PROCEDURE: %s\n", "main");
LLVMDumpValue(p->value);
gb_printf_err("\n\n\n\n");
LLVMVerifyFunction(p->value, LLVMAbortProcessAction);
}
LLVMRunFunctionPassManager(default_function_pass_manager, p->value);
}
{ // Startup Runtime
Type *params = alloc_type_tuple();
Type *results = alloc_type_tuple();
Type *proc_type = alloc_type_proc(nullptr, nullptr, 0, nullptr, 0, false, ProcCC_CDecl);
lbProcedure *p = lb_create_dummy_procedure(m, str_lit(LB_STARTUP_RUNTIME_PROC_NAME), proc_type);
p->is_startup = true;
startup_runtime = p;
lb_begin_procedure_body(p);
for_array(i, global_variables) {
auto *var = &global_variables[i];
if (var->decl->init_expr != nullptr) {
lbValue init = lb_build_expr(p, var->decl->init_expr);
if (!lb_is_const(init)) {
var->init = init;
}
}
Entity *e = var->decl->entity;
GB_ASSERT(e->kind == Entity_Variable);
if (e->Variable.is_foreign) {
Entity *fl = e->Procedure.foreign_library;
lb_add_foreign_library_path(m, fl);
}
if (e->flags & EntityFlag_Static) {
LLVMSetLinkage(var->var.value, LLVMInternalLinkage);
}
if (var->init.value != nullptr) {
Type *t = type_deref(var->var.type);
if (is_type_any(t)) {
// NOTE(bill): Edge case for 'any' type
Type *var_type = default_type(var->init.type);
lbAddr g = lb_add_global_generated(m, var_type, var->init);
lb_addr_store(p, g, var->init);
lbValue gp = lb_addr_get_ptr(p, g);
lbValue data = lb_emit_struct_ep(p, var->var, 0);
lbValue ti = lb_emit_struct_ep(p, var->var, 1);
lb_emit_store(p, data, lb_emit_conv(p, gp, t_rawptr));
lb_emit_store(p, ti, lb_type_info(m, var_type));
} else {
lb_emit_store(p, var->var, lb_emit_conv(p, var->init, t));
}
}
}
lb_end_procedure_body(p);
if (LLVMVerifyFunction(p->value, LLVMReturnStatusAction)) {
gb_printf_err("LLVM CODE GEN FAILED FOR PROCEDURE: %s\n", "main");
LLVMDumpValue(p->value);
gb_printf_err("\n\n\n\n");
LLVMVerifyFunction(p->value, LLVMAbortProcessAction);
}
LLVMRunFunctionPassManager(default_function_pass_manager, p->value);
/*{
LLVMValueRef last_instr = LLVMGetLastInstruction(p->decl_block->block);
for (LLVMValueRef instr = LLVMGetFirstInstruction(p->decl_block->block);
instr != last_instr;
instr = LLVMGetNextInstruction(instr)) {
if (LLVMIsAAllocaInst(instr)) {
LLVMTypeRef type = LLVMGetAllocatedType(instr);
LLVMValueRef sz_val = LLVMSizeOf(type);
GB_ASSERT(LLVMIsConstant(sz_val));
gb_printf_err(">> 0x%p\n", sz_val);
LLVMTypeRef sz_type = LLVMTypeOf(sz_val);
gb_printf_err(">> %s\n", LLVMPrintTypeToString(sz_type));
unsigned long long sz = LLVMConstIntGetZExtValue(sz_val);
// long long sz = LLVMConstIntGetSExtValue(sz_val);
gb_printf_err(">> %ll\n", sz);
}
}
}*/
}
if (!(build_context.build_mode == BuildMode_DynamicLibrary && !has_dll_main)) {
Type *params = alloc_type_tuple();
Type *results = alloc_type_tuple();
String name = str_lit("main");
if (build_context.metrics.os == TargetOs_windows && build_context.metrics.arch == TargetArch_386) {
name = str_lit("mainCRTStartup");
} else {
array_init(&params->Tuple.variables, heap_allocator(), 2);
params->Tuple.variables[0] = alloc_entity_param(nullptr, make_token_ident("argc"), t_i32, false, true);
params->Tuple.variables[1] = alloc_entity_param(nullptr, make_token_ident("argv"), alloc_type_pointer(t_cstring), false, true);
}
array_init(&results->Tuple.variables, heap_allocator(), 1);
results->Tuple.variables[0] = alloc_entity_param(nullptr, make_token_ident("_"), t_i32, false, true);
Type *proc_type = alloc_type_proc(nullptr,
params, params->Tuple.variables.count,
results, results->Tuple.variables.count, false, ProcCC_CDecl);
lbProcedure *p = lb_create_dummy_procedure(m, name, proc_type);
p->is_startup = true;
lb_begin_procedure_body(p);
lbValue *found = map_get(&m->values, hash_entity(entry_point));
GB_ASSERT(found != nullptr);
LLVMBuildCall2(p->builder, LLVMGetElementType(lb_type(m, startup_type_info->type)), startup_type_info->value, nullptr, 0, "");
LLVMBuildCall2(p->builder, LLVMGetElementType(lb_type(m, startup_context->type)), startup_context->value, nullptr, 0, "");
LLVMBuildCall2(p->builder, LLVMGetElementType(lb_type(m, startup_runtime->type)), startup_runtime->value, nullptr, 0, "");
LLVMBuildCall2(p->builder, LLVMGetElementType(lb_type(m, found->type)), found->value, nullptr, 0, "");
LLVMBuildRet(p->builder, LLVMConstInt(lb_type(m, t_i32), 0, false));
lb_end_procedure_body(p);
if (LLVMVerifyFunction(p->value, LLVMReturnStatusAction)) {
gb_printf_err("LLVM CODE GEN FAILED FOR PROCEDURE: %s\n", "main");
LLVMDumpValue(p->value);
gb_printf_err("\n\n\n\n");
LLVMVerifyFunction(p->value, LLVMAbortProcessAction);
}
LLVMRunFunctionPassManager(default_function_pass_manager, p->value);
}
TIME_SECTION("LLVM Procedure Generation");
for_array(i, m->procedures_to_generate) {
lbProcedure *p = m->procedures_to_generate[i];
if (p->is_done) {
continue;
}
if (p->body != nullptr) { // Build Procedure
m->curr_procedure = p;
lb_begin_procedure_body(p);
lb_build_stmt(p, p->body);
lb_end_procedure_body(p);
p->is_done = true;
m->curr_procedure = nullptr;
}
lb_end_procedure(p);
// Add Flags
if (p->body != nullptr) {
if (p->name == "memcpy" || p->name == "memmove" ||
p->name == "runtime.mem_copy" || p->name == "mem_copy_non_overlapping" ||
string_starts_with(p->name, str_lit("llvm.memcpy")) ||
string_starts_with(p->name, str_lit("llvm.memmove"))) {
p->flags |= lbProcedureFlag_WithoutMemcpyPass;
}
}
if (LLVMVerifyFunction(p->value, LLVMReturnStatusAction)) {
gb_printf_err("LLVM CODE GEN FAILED FOR PROCEDURE: %.*s\n", LIT(p->name));
LLVMDumpValue(p->value);
gb_printf_err("\n\n\n\n");
LLVMVerifyFunction(p->value, LLVMAbortProcessAction);
}
}
TIME_SECTION("LLVM Function Pass");
for_array(i, m->procedures_to_generate) {
lbProcedure *p = m->procedures_to_generate[i];
if (p->body != nullptr) { // Build Procedure
for (i32 i = 0; i <= build_context.optimization_level; i++) {
if (p->flags & lbProcedureFlag_WithoutMemcpyPass) {
LLVMRunFunctionPassManager(default_function_pass_manager_without_memcpy, p->value);
} else {
LLVMRunFunctionPassManager(default_function_pass_manager, p->value);
}
}
}
}
TIME_SECTION("LLVM Module Pass");
LLVMPassManagerRef module_pass_manager = LLVMCreatePassManager();
defer (LLVMDisposePassManager(module_pass_manager));
LLVMAddAlwaysInlinerPass(module_pass_manager);
LLVMAddStripDeadPrototypesPass(module_pass_manager);
// if (build_context.optimization_level >= 2) {
// LLVMAddArgumentPromotionPass(module_pass_manager);
// LLVMAddConstantMergePass(module_pass_manager);
// LLVMAddGlobalDCEPass(module_pass_manager);
// LLVMAddDeadArgEliminationPass(module_pass_manager);
// }
LLVMPassManagerBuilderRef pass_manager_builder = LLVMPassManagerBuilderCreate();
defer (LLVMPassManagerBuilderDispose(pass_manager_builder));
LLVMPassManagerBuilderSetOptLevel(pass_manager_builder, build_context.optimization_level);
LLVMPassManagerBuilderSetSizeLevel(pass_manager_builder, build_context.optimization_level);
LLVMPassManagerBuilderPopulateLTOPassManager(pass_manager_builder, module_pass_manager, false, false);
LLVMRunPassManager(module_pass_manager, mod);
llvm_error = nullptr;
defer (LLVMDisposeMessage(llvm_error));
String filepath_ll = concatenate_strings(heap_allocator(), gen->output_base, STR_LIT(".ll"));
defer (gb_free(heap_allocator(), filepath_ll.text));
String filepath_obj = {};
switch (build_context.metrics.os) {
case TargetOs_windows:
filepath_obj = concatenate_strings(heap_allocator(), gen->output_base, STR_LIT(".obj"));
break;
case TargetOs_darwin:
case TargetOs_linux:
case TargetOs_essence:
filepath_obj = concatenate_strings(heap_allocator(), gen->output_base, STR_LIT(".o"));
break;
case TargetOs_js:
filepath_obj = concatenate_strings(heap_allocator(), gen->output_base, STR_LIT(".wasm-obj"));
break;
}
LLVMDIBuilderFinalize(m->debug_builder);
if (LLVMVerifyModule(mod, LLVMAbortProcessAction, &llvm_error)) {
gb_printf_err("LLVM Error: %s\n", llvm_error);
return;
}
llvm_error = nullptr;
if (build_context.keep_temp_files) {
TIME_SECTION("LLVM Print Module to File");
if (LLVMPrintModuleToFile(mod, cast(char const *)filepath_ll.text, &llvm_error)) {
gb_printf_err("LLVM Error: %s\n", llvm_error);
return;
}
}
TIME_SECTION("LLVM Object Generation");
LLVMCodeGenFileType code_gen_file_type = LLVMObjectFile;
if (LLVMTargetMachineEmitToFile(target_machine, mod, cast(char *)filepath_obj.text, code_gen_file_type, &llvm_error)) {
gb_printf_err("LLVM Error: %s\n", llvm_error);
gb_exit(1);
return;
}
array_add(&gen->output_object_paths, filepath_obj);
for_array(i, m->info->required_foreign_imports_through_force) {
Entity *e = m->info->required_foreign_imports_through_force[i];
lb_add_foreign_library_path(m, e);
}
#undef TIME_SECTION
}