Files
Odin/src/array.cpp
2021-08-07 14:44:48 +01:00

487 lines
13 KiB
C++

#define ARRAY_GROW_FORMULA(x) (2*(x) + 8)
GB_STATIC_ASSERT(ARRAY_GROW_FORMULA(0) > 0);
#if 1
template <typename T>
struct Array {
gbAllocator allocator;
T * data;
isize count;
isize capacity;
T &operator[](isize index) {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(0 <= index && index < count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
T const &operator[](isize index) const {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(0 <= index && index < count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
};
template <typename T> void array_init (Array<T> *array, gbAllocator const &a);
template <typename T> void array_init (Array<T> *array, gbAllocator const &a, isize count);
template <typename T> void array_init (Array<T> *array, gbAllocator const &a, isize count, isize capacity);
template <typename T> Array<T> array_make (gbAllocator const &a);
template <typename T> Array<T> array_make (gbAllocator const &a, isize count);
template <typename T> Array<T> array_make (gbAllocator const &a, isize count, isize capacity);
template <typename T> Array<T> array_make_from_ptr (T *data, isize count, isize capacity);
template <typename T> void array_free (Array<T> *array);
template <typename T> void array_add (Array<T> *array, T const &t);
template <typename T> T * array_add_and_get (Array<T> *array);
template <typename T> void array_add_elems (Array<T> *array, T const *elems, isize elem_count);
template <typename T> T array_pop (Array<T> *array);
template <typename T> void array_clear (Array<T> *array);
template <typename T> void array_reserve (Array<T> *array, isize capacity);
template <typename T> void array_resize (Array<T> *array, isize count);
template <typename T> void array_set_capacity (Array<T> *array, isize capacity);
template <typename T> Array<T> array_slice (Array<T> const &array, isize lo, isize hi);
template <typename T> Array<T> array_clone (gbAllocator const &a, Array<T> const &array);
template <typename T> void array_ordered_remove (Array<T> *array, isize index);
template <typename T> void array_unordered_remove(Array<T> *array, isize index);
template <typename T> void array_copy(Array<T> *array, Array<T> const &data, isize offset);
template <typename T> void array_copy(Array<T> *array, Array<T> const &data, isize offset, isize count);
template <typename T> T *array_end_ptr(Array<T> *array);
template <typename T>
struct Slice {
T *data;
isize count;
T &operator[](isize index) {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(0 <= index && index < count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
T const &operator[](isize index) const {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(0 <= index && index < count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
};
template <typename T> Slice<T> slice_from_array(Array<T> const &a);
template <typename T>
Slice<T> slice_make(gbAllocator const &allocator, isize count) {
Slice<T> s = {};
s.data = gb_alloc_array(allocator, T, count);
s.count = count;
return s;
}
template <typename T>
Slice<T> slice_from_array(Array<T> const &a) {
return {a.data, a.count};
}
template <typename T>
Slice<T> slice_array(Array<T> const &array, isize lo, isize hi) {
GB_ASSERT(0 <= lo && lo <= hi && hi <= array.count);
Slice<T> out = {};
isize len = hi-lo;
if (len > 0) {
out.data = array.data+lo;
out.count = len;
}
return out;
}
template <typename T>
Slice<T> slice_clone(gbAllocator const &allocator, Slice<T> const &a) {
T *data = cast(T *)gb_alloc_copy_align(allocator, a.data, a.count*gb_size_of(T), gb_align_of(T));
return {data, a.count};
}
template <typename T>
Slice<T> slice_clone_from_array(gbAllocator const &allocator, Array<T> const &a) {
auto c = array_clone(allocator, a);
return {c.data, c.count};
}
template <typename T>
void slice_copy(Slice<T> *slice, Slice<T> const &data) {
isize n = gb_min(slice->count, data.count);
gb_memmove(slice->data, data.data, gb_size_of(T)*n);
}
template <typename T>
void slice_copy(Slice<T> *slice, Slice<T> const &data, isize offset) {
isize n = gb_clamp(slice->count-offset, 0, data.count);
gb_memmove(slice->data+offset, data.data, gb_size_of(T)*n);
}
template <typename T>
void slice_copy(Slice<T> *slice, Slice<T> const &data, isize offset, isize count) {
isize n = gb_clamp(slice->count-offset, 0, gb_min(data.count, count));
gb_memmove(slice->data+offset, data.data, gb_size_of(T)*n);
}
template <typename T>
void slice_ordered_remove(Slice<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize bytes = gb_size_of(T) * (array->count-(index+1));
gb_memmove(array->data+index, array->data+index+1, bytes);
array->count -= 1;
}
template <typename T>
void slice_unordered_remove(Slice<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize n = array->count-1;
if (index != n) {
gb_memmove(array->data+index, array->data+n, gb_size_of(T));
}
array->count -= 1;
}
template <typename T>
void array_copy(Array<T> *array, Array<T> const &data, isize offset) {
gb_memmove(array->data+offset, data.data, gb_size_of(T)*data.count);
}
template <typename T>
void array_copy(Array<T> *array, Array<T> const &data, isize offset, isize count) {
gb_memmove(array->data+offset, data.data, gb_size_of(T)*gb_min(data.count, count));
}
template <typename T>
T *array_end_ptr(Array<T> *array) {
if (array->count > 0) {
return &array->data[array->count-1];
}
return nullptr;
}
template <typename T>
gb_inline void array_init(Array<T> *array, gbAllocator const &a) {
isize cap = ARRAY_GROW_FORMULA(0);
array_init(array, a, 0, cap);
}
template <typename T>
gb_inline void array_init(Array<T> *array, gbAllocator const &a, isize count) {
array_init(array, a, count, count);
}
template <typename T>
gb_inline void array_init(Array<T> *array, gbAllocator const &a, isize count, isize capacity) {
array->allocator = a;
array->data = nullptr;
if (capacity > 0) {
array->data = gb_alloc_array(a, T, capacity);
}
array->count = count;
array->capacity = capacity;
}
template <typename T>
gb_inline Array<T> array_make_from_ptr(T *data, isize count, isize capacity) {
Array<T> a = {0};
a.data = data;
a.count = count;
a.capacity = capacity;
return a;
}
template <typename T>
gb_inline Array<T> array_make(gbAllocator const &a) {
isize capacity = ARRAY_GROW_FORMULA(0);
Array<T> array = {};
array.allocator = a;
array.data = gb_alloc_array(a, T, capacity);
array.count = 0;
array.capacity = capacity;
return array;
}
template <typename T>
gb_inline Array<T> array_make(gbAllocator const &a, isize count) {
Array<T> array = {};
array.allocator = a;
array.data = gb_alloc_array(a, T, count);
array.count = count;
array.capacity = count;
return array;
}
template <typename T>
gb_inline Array<T> array_make(gbAllocator const &a, isize count, isize capacity) {
Array<T> array = {};
array.allocator = a;
array.data = gb_alloc_array(a, T, capacity);
array.count = count;
array.capacity = capacity;
return array;
}
template <typename T>
gb_inline void array_free(Array<T> *array) {
if (array->allocator.proc != nullptr) {
gb_free(array->allocator, array->data);
}
array->count = 0;
array->capacity = 0;
}
template <typename T>
void array__grow(Array<T> *array, isize min_capacity) {
isize new_capacity = ARRAY_GROW_FORMULA(array->capacity);
if (new_capacity < min_capacity) {
new_capacity = min_capacity;
}
array_set_capacity(array, new_capacity);
}
template <typename T>
void array_add(Array<T> *array, T const &t) {
if (array->capacity < array->count+1) {
array__grow(array, 0);
}
array->data[array->count] = t;
array->count++;
}
template <typename T>
T *array_add_and_get(Array<T> *array) {
if (array->count < array->capacity) {
return &array->data[array->count++];
}
if (array->capacity < array->count+1) {
array__grow(array, 0);
}
return &array->data[array->count++];
}
template <typename T>
void array_add_elems(Array<T> *array, T const *elems, isize elem_count) {
GB_ASSERT(elem_count >= 0);
if (array->capacity < array->count+elem_count) {
array__grow(array, array->count+elem_count);
}
gb_memmove(array->data + array->count, elems, elem_count * gb_size_of(T));
array->count += elem_count;
}
template <typename T>
gb_inline T array_pop(Array<T> *array) {
GB_ASSERT(array->count > 0);
array->count--;
return array->data[array->count];
}
template <typename T>
void array_clear(Array<T> *array) {
array->count = 0;
}
template <typename T>
void array_reserve(Array<T> *array, isize capacity) {
if (array->capacity < capacity) {
array_set_capacity(array, capacity);
}
}
template <typename T>
void array_resize(Array<T> *array, isize count) {
if (array->capacity < count) {
array__grow(array, count);
}
array->count = count;
}
template <typename T>
void array_set_capacity(Array<T> *array, isize capacity) {
if (capacity == array->capacity) {
return;
}
if (capacity < array->count) {
array_resize(array, capacity);
}
T *new_data = nullptr;
#if 0
// NOTE(bill): try gb_resize_align first, and then fallback to alloc+memmove+free
isize old_size = array->capacity * gb_size_of(T);
isize new_size = capacity * gb_size_of(T);
new_data = cast(T *)gb_resize_align(array->allocator, array->data, old_size, new_size, gb_align_of(T));
#endif
if (new_data == nullptr) {
if (capacity > 0) {
new_data = gb_alloc_array(array->allocator, T, capacity);
GB_ASSERT(new_data != nullptr);
gb_memmove(new_data, array->data, gb_size_of(T) * array->capacity);
}
gb_free(array->allocator, array->data);
}
array->data = new_data;
array->capacity = capacity;
}
template <typename T>
gb_inline Array<T> array_slice(Array<T> const &array, isize lo, isize hi) {
GB_ASSERT(0 <= lo && lo <= hi && hi <= array.count);
Array<T> out = {};
isize len = hi-lo;
if (len > 0) {
out.data = array.data+lo;
out.count = len;
out.capacity = len;
}
return out;
}
template <typename T>
Array<T> array_clone(gbAllocator const &allocator, Array<T> const &array) {
auto clone = array_make<T>(allocator, array.count, array.count);
array_copy(&clone, array, 0);
return clone;
}
template <typename T>
void array_ordered_remove(Array<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize bytes = gb_size_of(T) * (array->count-(index+1));
gb_memmove(array->data+index, array->data+index+1, bytes);
array->count -= 1;
}
template <typename T>
void array_unordered_remove(Array<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize n = array->count-1;
if (index != n) {
gb_memmove(array->data+index, array->data+n, gb_size_of(T));
}
array_pop(array);
}
#endif
#if 0
#define Array(Type_) struct { \
gbAllocator const &allocator; \
Type_ * e; \
isize count; \
isize capacity; \
}
typedef Array(void) ArrayVoid;
#define array_init_reserve(x_, allocator_, init_capacity_) do { \
void **e = cast(void **)&((x_)->e); \
GB_ASSERT((x_) != nullptr); \
(x_)->allocator = (allocator_); \
(x_)->count = 0; \
(x_)->capacity = (init_capacity_); \
*e = gb_alloc((allocator_), gb_size_of(*(x_)->e)*(init_capacity_)); \
} while (0)
#define array_init_count(x_, allocator_, init_count_) do { \
void **e = cast(void **)&((x_)->e); \
GB_ASSERT((x_) != nullptr); \
(x_)->allocator = (allocator_); \
(x_)->count = (init_count_); \
(x_)->capacity = (init_count_); \
*e = gb_alloc((allocator_), gb_size_of(*(x_)->e)*(init_count_)); \
} while (0)
#define array_init(x_, allocator_) do { array_init_reserve(x_, allocator_, ARRAY_GROW_FORMULA(0)); } while (0)
#define array_free(x_) do { gb_free((x_)->allocator, (x_)->e); } while (0)
#define array_set_capacity(x_, capacity_) do { array__set_capacity((x_), (capacity_), gb_size_of(*(x_)->e)); } while (0)
#define array_grow(x_, min_capacity_) do { \
isize new_capacity = ARRAY_GROW_FORMULA((x_)->capacity); \
if (new_capacity < (min_capacity_)) { \
new_capacity = (min_capacity_); \
} \
array_set_capacity(x_, new_capacity); \
} while (0)
#define array_add(x_, item_) do { \
if ((x_)->capacity < (x_)->count+1) { \
array_grow(x_, 0); \
} \
(x_)->e[(x_)->count++] = item_; \
} while (0)
#define array_pop(x_) do { GB_ASSERT((x_)->count > 0); (x_)->count--; } while (0)
#define array_clear(x_) do { (x_)->count = 0; } while (0)
#define array_resize(x_, new_count_) do { \
if ((x_)->capacity < (new_count_)) { \
array_grow((x_), (new_count_)); \
} \
(x_)->count = (new_count_); \
} while (0)
#define array_reserve(x_, new_capacity_) do { \
if ((x_)->capacity < (new_capacity_)) { \
array_set_capacity((x_), (new_capacity_)); \
} \
} while (0)
void array__set_capacity(void *ptr, isize capacity, isize element_size) {
ArrayVoid *x = cast(ArrayVoid *)ptr;
GB_ASSERT(ptr != nullptr);
GB_ASSERT(element_size > 0);
if (capacity == x->capacity) {
return;
}
if (capacity < x->count) {
if (x->capacity < capacity) {
isize new_capacity = ARRAY_GROW_FORMULA(x->capacity);
if (new_capacity < capacity) {
new_capacity = capacity;
}
array__set_capacity(ptr, new_capacity, element_size);
}
x->count = capacity;
}
x->e = gb_resize(x->allocator, x->e, element_size*x->capacity, element_size*capacity);
x->capacity = capacity;
}
#endif