Files
Odin/src/types.cpp

3716 lines
103 KiB
C++

struct Scope;
struct Ast;
struct Entity;
enum BasicKind {
Basic_Invalid,
Basic_llvm_bool,
Basic_bool,
Basic_b8,
Basic_b16,
Basic_b32,
Basic_b64,
Basic_i8,
Basic_u8,
Basic_i16,
Basic_u16,
Basic_i32,
Basic_u32,
Basic_i64,
Basic_u64,
Basic_i128,
Basic_u128,
Basic_rune,
Basic_f16,
Basic_f32,
Basic_f64,
Basic_complex32,
Basic_complex64,
Basic_complex128,
Basic_quaternion64,
Basic_quaternion128,
Basic_quaternion256,
Basic_int,
Basic_uint,
Basic_uintptr,
Basic_rawptr,
Basic_string, // ^u8 + int
Basic_cstring, // ^u8
Basic_any, // rawptr + ^Type_Info
Basic_typeid,
// Endian Specific Types
Basic_i16le,
Basic_u16le,
Basic_i32le,
Basic_u32le,
Basic_i64le,
Basic_u64le,
Basic_i128le,
Basic_u128le,
Basic_i16be,
Basic_u16be,
Basic_i32be,
Basic_u32be,
Basic_i64be,
Basic_u64be,
Basic_i128be,
Basic_u128be,
Basic_f16le,
Basic_f32le,
Basic_f64le,
Basic_f16be,
Basic_f32be,
Basic_f64be,
// Untyped types
Basic_UntypedBool,
Basic_UntypedInteger,
Basic_UntypedFloat,
Basic_UntypedComplex,
Basic_UntypedQuaternion,
Basic_UntypedString,
Basic_UntypedRune,
Basic_UntypedNil,
Basic_UntypedUndef,
Basic_COUNT,
Basic_byte = Basic_u8,
};
enum BasicFlag {
BasicFlag_Boolean = GB_BIT(0),
BasicFlag_Integer = GB_BIT(1),
BasicFlag_Unsigned = GB_BIT(2),
BasicFlag_Float = GB_BIT(3),
BasicFlag_Complex = GB_BIT(4),
BasicFlag_Quaternion = GB_BIT(5),
BasicFlag_Pointer = GB_BIT(6),
BasicFlag_String = GB_BIT(7),
BasicFlag_Rune = GB_BIT(8),
BasicFlag_Untyped = GB_BIT(9),
BasicFlag_LLVM = GB_BIT(11),
BasicFlag_EndianLittle = GB_BIT(13),
BasicFlag_EndianBig = GB_BIT(14),
BasicFlag_Numeric = BasicFlag_Integer | BasicFlag_Float | BasicFlag_Complex | BasicFlag_Quaternion,
BasicFlag_Ordered = BasicFlag_Integer | BasicFlag_Float | BasicFlag_String | BasicFlag_Pointer | BasicFlag_Rune,
BasicFlag_OrderedNumeric = BasicFlag_Integer | BasicFlag_Float | BasicFlag_Rune,
BasicFlag_ConstantType = BasicFlag_Boolean | BasicFlag_Numeric | BasicFlag_String | BasicFlag_Pointer | BasicFlag_Rune,
BasicFlag_SimpleCompare = BasicFlag_Boolean | BasicFlag_Numeric | BasicFlag_Pointer | BasicFlag_Rune,
};
struct BasicType {
BasicKind kind;
u32 flags;
i64 size; // -1 if arch. dep.
String name;
};
enum StructSoaKind {
StructSoa_None = 0,
StructSoa_Fixed = 1,
StructSoa_Slice = 2,
StructSoa_Dynamic = 3,
};
struct TypeStruct {
Array<Entity *> fields;
Array<String> tags;
Array<i64> offsets;
Ast * node;
Scope * scope;
Type * polymorphic_params; // Type_Tuple
Type * polymorphic_parent;
i64 custom_align;
Entity * names;
Type * soa_elem;
i64 soa_count;
StructSoaKind soa_kind;
bool are_offsets_set;
bool are_offsets_being_processed;
bool is_packed;
bool is_raw_union;
bool is_polymorphic;
bool is_poly_specialized;
};
struct TypeUnion {
Array<Type *> variants;
Ast * node;
Scope * scope;
i64 variant_block_size;
i64 custom_align;
i64 tag_size;
Type * polymorphic_params; // Type_Tuple
Type * polymorphic_parent;
bool no_nil;
bool maybe;
bool is_polymorphic;
bool is_poly_specialized;
};
struct TypeProc {
Ast *node;
Scope * scope;
Type * params; // Type_Tuple
Type * results; // Type_Tuple
i32 param_count;
i32 result_count;
isize specialization_count;
ProcCallingConvention calling_convention;
i32 variadic_index;
// TODO(bill): Make this a flag set rather than bools
bool variadic;
bool require_results;
bool c_vararg;
bool is_polymorphic;
bool is_poly_specialized;
bool has_proc_default_values;
bool has_named_results;
bool diverging; // no return
bool return_by_pointer;
bool optional_ok;
};
#define TYPE_KINDS \
TYPE_KIND(Basic, BasicType) \
TYPE_KIND(Named, struct { \
String name; \
Type * base; \
Entity *type_name; /* Entity_TypeName */ \
}) \
TYPE_KIND(Generic, struct { \
i64 id; \
String name; \
Type * specialized; \
Scope * scope; \
Entity *entity; \
}) \
TYPE_KIND(Pointer, struct { Type *elem; }) \
TYPE_KIND(Array, struct { \
Type *elem; \
i64 count; \
Type *generic_count; \
}) \
TYPE_KIND(EnumeratedArray, struct { \
Type *elem; \
Type *index; \
ExactValue min_value; \
ExactValue max_value; \
i64 count; \
TokenKind op; \
}) \
TYPE_KIND(Slice, struct { Type *elem; }) \
TYPE_KIND(DynamicArray, struct { Type *elem; }) \
TYPE_KIND(Map, struct { \
Type *key; \
Type *value; \
Type *entry_type; \
Type *generated_struct_type; \
Type *internal_type; \
Type *lookup_result_type; \
}) \
TYPE_KIND(Struct, TypeStruct) \
TYPE_KIND(Union, TypeUnion) \
TYPE_KIND(Enum, struct { \
Array<Entity *> fields; \
Ast *node; \
Scope * scope; \
Entity * names; \
Type * base_type; \
ExactValue min_value; \
ExactValue max_value; \
isize min_value_index; \
isize max_value_index; \
}) \
TYPE_KIND(Tuple, struct { \
Array<Entity *> variables; /* Entity_Variable */ \
Array<i64> offsets; \
bool are_offsets_being_processed; \
bool are_offsets_set; \
bool is_packed; \
}) \
TYPE_KIND(Proc, TypeProc) \
TYPE_KIND(BitSet, struct { \
Type *elem; \
Type *underlying; \
i64 lower; \
i64 upper; \
Ast * node; \
}) \
TYPE_KIND(SimdVector, struct { \
i64 count; \
Type *elem; \
}) \
TYPE_KIND(RelativePointer, struct { \
Type *pointer_type; \
Type *base_integer; \
}) \
TYPE_KIND(RelativeSlice, struct { \
Type *slice_type; \
Type *base_integer; \
})
enum TypeKind {
Type_Invalid,
#define TYPE_KIND(k, ...) GB_JOIN2(Type_, k),
TYPE_KINDS
#undef TYPE_KIND
Type_Count,
};
String const type_strings[] = {
{cast(u8 *)"Invalid", gb_size_of("Invalid")},
#define TYPE_KIND(k, ...) {cast(u8 *)#k, gb_size_of(#k)-1},
TYPE_KINDS
#undef TYPE_KIND
};
#define TYPE_KIND(k, ...) typedef __VA_ARGS__ GB_JOIN2(Type, k);
TYPE_KINDS
#undef TYPE_KIND
enum TypeFlag : u32 {
TypeFlag_Polymorphic = 1<<1,
TypeFlag_PolySpecialized = 1<<2,
TypeFlag_InProcessOfCheckingPolymorphic = 1<<3,
};
struct Type {
TypeKind kind;
union {
#define TYPE_KIND(k, ...) GB_JOIN2(Type, k) k;
TYPE_KINDS
#undef TYPE_KIND
};
// NOTE(bill): These need to be at the end to not affect the unionized data
i64 cached_size;
i64 cached_align;
u32 flags; // TypeFlag
bool failure;
};
// IMPORTANT NOTE(bill): This must match the same as the in core.odin
enum Typeid_Kind : u8 {
Typeid_Invalid,
Typeid_Integer,
Typeid_Rune,
Typeid_Float,
Typeid_Complex,
Typeid_Quaternion,
Typeid_String,
Typeid_Boolean,
Typeid_Any,
Typeid_Type_Id,
Typeid_Pointer,
Typeid_Procedure,
Typeid_Array,
Typeid_Enumerated_Array,
Typeid_Dynamic_Array,
Typeid_Slice,
Typeid_Tuple,
Typeid_Struct,
Typeid_Union,
Typeid_Enum,
Typeid_Map,
Typeid_Bit_Set,
Typeid_Simd_Vector,
Typeid_Relative_Pointer,
Typeid_Relative_Slice,
};
// IMPORTANT NOTE(bill): This must match the same as the in core.odin
enum TypeInfoFlag : u32 {
TypeInfoFlag_Comparable = 1<<0,
TypeInfoFlag_Simple_Compare = 1<<1,
};
bool is_type_comparable(Type *t);
bool is_type_simple_compare(Type *t);
u32 type_info_flags_of_type(Type *type) {
if (type == nullptr) {
return 0;
}
u32 flags = 0;
if (is_type_comparable(type)) {
flags |= TypeInfoFlag_Comparable;
}
if (is_type_simple_compare(type)) {
flags |= TypeInfoFlag_Comparable;
}
return flags;
}
// TODO(bill): Should I add extra information here specifying the kind of selection?
// e.g. field, constant, array field, type field, etc.
struct Selection {
Entity * entity;
Array<i32> index;
bool indirect; // Set if there was a pointer deref anywhere down the line
u8 swizzle_count; // maximum components = 4
u8 swizzle_indices; // 2 bits per component, representing which swizzle index
};
Selection empty_selection = {0};
Selection make_selection(Entity *entity, Array<i32> index, bool indirect) {
Selection s = {entity, index, indirect};
return s;
}
void selection_add_index(Selection *s, isize index) {
// IMPORTANT NOTE(bill): this requires a stretchy buffer/dynamic array so it requires some form
// of heap allocation
// TODO(bill): Find a way to use a backing buffer for initial use as the general case is probably .count<3
if (s->index.data == nullptr) {
array_init(&s->index, heap_allocator());
}
array_add(&s->index, cast(i32)index);
}
Selection selection_combine(Selection const &lhs, Selection const &rhs) {
Selection new_sel = lhs;
new_sel.indirect = lhs.indirect || rhs.indirect;
new_sel.index = array_make<i32>(heap_allocator(), lhs.index.count+rhs.index.count);
array_copy(&new_sel.index, lhs.index, 0);
array_copy(&new_sel.index, rhs.index, lhs.index.count);
return new_sel;
}
Selection sub_selection(Selection const &sel, isize offset) {
Selection res = {};
res.index.data = sel.index.data + offset;
res.index.count = gb_max(sel.index.count - offset, 0);
res.index.capacity = res.index.count;
return res;
}
Selection sub_selection_with_length(Selection const &sel, isize offset, isize len) {
Selection res = {};
res.index.data = sel.index.data + offset;
res.index.count = gb_max(len, gb_max(sel.index.count - offset, 0));
res.index.capacity = res.index.count;
return res;
}
gb_global Type basic_types[] = {
{Type_Basic, {Basic_Invalid, 0, 0, STR_LIT("invalid type")}},
{Type_Basic, {Basic_llvm_bool, BasicFlag_Boolean | BasicFlag_LLVM, 1, STR_LIT("llvm bool")}},
{Type_Basic, {Basic_bool, BasicFlag_Boolean, 1, STR_LIT("bool")}},
{Type_Basic, {Basic_b8, BasicFlag_Boolean, 1, STR_LIT("b8")}},
{Type_Basic, {Basic_b16, BasicFlag_Boolean, 2, STR_LIT("b16")}},
{Type_Basic, {Basic_b32, BasicFlag_Boolean, 4, STR_LIT("b32")}},
{Type_Basic, {Basic_b64, BasicFlag_Boolean, 8, STR_LIT("b64")}},
{Type_Basic, {Basic_i8, BasicFlag_Integer, 1, STR_LIT("i8")}},
{Type_Basic, {Basic_u8, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("u8")}},
{Type_Basic, {Basic_i16, BasicFlag_Integer, 2, STR_LIT("i16")}},
{Type_Basic, {Basic_u16, BasicFlag_Integer | BasicFlag_Unsigned, 2, STR_LIT("u16")}},
{Type_Basic, {Basic_i32, BasicFlag_Integer, 4, STR_LIT("i32")}},
{Type_Basic, {Basic_u32, BasicFlag_Integer | BasicFlag_Unsigned, 4, STR_LIT("u32")}},
{Type_Basic, {Basic_i64, BasicFlag_Integer, 8, STR_LIT("i64")}},
{Type_Basic, {Basic_u64, BasicFlag_Integer | BasicFlag_Unsigned, 8, STR_LIT("u64")}},
{Type_Basic, {Basic_i128, BasicFlag_Integer, 16, STR_LIT("i128")}},
{Type_Basic, {Basic_u128, BasicFlag_Integer | BasicFlag_Unsigned, 16, STR_LIT("u128")}},
{Type_Basic, {Basic_rune, BasicFlag_Integer | BasicFlag_Rune, 4, STR_LIT("rune")}},
{Type_Basic, {Basic_f16, BasicFlag_Float, 2, STR_LIT("f16")}},
{Type_Basic, {Basic_f32, BasicFlag_Float, 4, STR_LIT("f32")}},
{Type_Basic, {Basic_f64, BasicFlag_Float, 8, STR_LIT("f64")}},
{Type_Basic, {Basic_complex32, BasicFlag_Complex, 4, STR_LIT("complex32")}},
{Type_Basic, {Basic_complex64, BasicFlag_Complex, 8, STR_LIT("complex64")}},
{Type_Basic, {Basic_complex128, BasicFlag_Complex, 16, STR_LIT("complex128")}},
{Type_Basic, {Basic_quaternion64, BasicFlag_Quaternion, 8, STR_LIT("quaternion64")}},
{Type_Basic, {Basic_quaternion128, BasicFlag_Quaternion, 16, STR_LIT("quaternion128")}},
{Type_Basic, {Basic_quaternion256, BasicFlag_Quaternion, 32, STR_LIT("quaternion256")}},
{Type_Basic, {Basic_int, BasicFlag_Integer, -1, STR_LIT("int")}},
{Type_Basic, {Basic_uint, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uint")}},
{Type_Basic, {Basic_uintptr, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uintptr")}},
{Type_Basic, {Basic_rawptr, BasicFlag_Pointer, -1, STR_LIT("rawptr")}},
{Type_Basic, {Basic_string, BasicFlag_String, -1, STR_LIT("string")}},
{Type_Basic, {Basic_cstring, BasicFlag_String, -1, STR_LIT("cstring")}},
{Type_Basic, {Basic_any, 0, -1, STR_LIT("any")}},
{Type_Basic, {Basic_typeid, 0, -1, STR_LIT("typeid")}},
// Endian
{Type_Basic, {Basic_i16le, BasicFlag_Integer | BasicFlag_EndianLittle, 2, STR_LIT("i16le")}},
{Type_Basic, {Basic_u16le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 2, STR_LIT("u16le")}},
{Type_Basic, {Basic_i32le, BasicFlag_Integer | BasicFlag_EndianLittle, 4, STR_LIT("i32le")}},
{Type_Basic, {Basic_u32le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 4, STR_LIT("u32le")}},
{Type_Basic, {Basic_i64le, BasicFlag_Integer | BasicFlag_EndianLittle, 8, STR_LIT("i64le")}},
{Type_Basic, {Basic_u64le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 8, STR_LIT("u64le")}},
{Type_Basic, {Basic_i128le, BasicFlag_Integer | BasicFlag_EndianLittle, 16, STR_LIT("i128le")}},
{Type_Basic, {Basic_u128le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 16, STR_LIT("u128le")}},
{Type_Basic, {Basic_i16be, BasicFlag_Integer | BasicFlag_EndianBig, 2, STR_LIT("i16be")}},
{Type_Basic, {Basic_u16be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 2, STR_LIT("u16be")}},
{Type_Basic, {Basic_i32be, BasicFlag_Integer | BasicFlag_EndianBig, 4, STR_LIT("i32be")}},
{Type_Basic, {Basic_u32be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 4, STR_LIT("u32be")}},
{Type_Basic, {Basic_i64be, BasicFlag_Integer | BasicFlag_EndianBig, 8, STR_LIT("i64be")}},
{Type_Basic, {Basic_u64be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 8, STR_LIT("u64be")}},
{Type_Basic, {Basic_i128be, BasicFlag_Integer | BasicFlag_EndianBig, 16, STR_LIT("i128be")}},
{Type_Basic, {Basic_u128be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 16, STR_LIT("u128be")}},
{Type_Basic, {Basic_f16le, BasicFlag_Float | BasicFlag_EndianLittle, 2, STR_LIT("f16le")}},
{Type_Basic, {Basic_f32le, BasicFlag_Float | BasicFlag_EndianLittle, 4, STR_LIT("f32le")}},
{Type_Basic, {Basic_f64le, BasicFlag_Float | BasicFlag_EndianLittle, 8, STR_LIT("f64le")}},
{Type_Basic, {Basic_f16be, BasicFlag_Float | BasicFlag_EndianBig, 2, STR_LIT("f16be")}},
{Type_Basic, {Basic_f32be, BasicFlag_Float | BasicFlag_EndianBig, 4, STR_LIT("f32be")}},
{Type_Basic, {Basic_f64be, BasicFlag_Float | BasicFlag_EndianBig, 8, STR_LIT("f64be")}},
// Untyped types
{Type_Basic, {Basic_UntypedBool, BasicFlag_Boolean | BasicFlag_Untyped, 0, STR_LIT("untyped bool")}},
{Type_Basic, {Basic_UntypedInteger, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped integer")}},
{Type_Basic, {Basic_UntypedFloat, BasicFlag_Float | BasicFlag_Untyped, 0, STR_LIT("untyped float")}},
{Type_Basic, {Basic_UntypedComplex, BasicFlag_Complex | BasicFlag_Untyped, 0, STR_LIT("untyped complex")}},
{Type_Basic, {Basic_UntypedQuaternion, BasicFlag_Quaternion | BasicFlag_Untyped, 0, STR_LIT("untyped quaternion")}},
{Type_Basic, {Basic_UntypedString, BasicFlag_String | BasicFlag_Untyped, 0, STR_LIT("untyped string")}},
{Type_Basic, {Basic_UntypedRune, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped rune")}},
{Type_Basic, {Basic_UntypedNil, BasicFlag_Untyped, 0, STR_LIT("untyped nil")}},
{Type_Basic, {Basic_UntypedUndef, BasicFlag_Untyped, 0, STR_LIT("untyped undefined")}},
};
// gb_global Type basic_type_aliases[] = {
// // {Type_Basic, {Basic_byte, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("byte")}},
// // {Type_Basic, {Basic_rune, BasicFlag_Integer, 4, STR_LIT("rune")}},
// };
gb_global Type *t_invalid = &basic_types[Basic_Invalid];
gb_global Type *t_llvm_bool = &basic_types[Basic_llvm_bool];
gb_global Type *t_bool = &basic_types[Basic_bool];
gb_global Type *t_i8 = &basic_types[Basic_i8];
gb_global Type *t_u8 = &basic_types[Basic_u8];
gb_global Type *t_i16 = &basic_types[Basic_i16];
gb_global Type *t_u16 = &basic_types[Basic_u16];
gb_global Type *t_i32 = &basic_types[Basic_i32];
gb_global Type *t_u32 = &basic_types[Basic_u32];
gb_global Type *t_i64 = &basic_types[Basic_i64];
gb_global Type *t_u64 = &basic_types[Basic_u64];
gb_global Type *t_i128 = &basic_types[Basic_i128];
gb_global Type *t_u128 = &basic_types[Basic_u128];
gb_global Type *t_rune = &basic_types[Basic_rune];
gb_global Type *t_f16 = &basic_types[Basic_f16];
gb_global Type *t_f32 = &basic_types[Basic_f32];
gb_global Type *t_f64 = &basic_types[Basic_f64];
gb_global Type *t_complex32 = &basic_types[Basic_complex32];
gb_global Type *t_complex64 = &basic_types[Basic_complex64];
gb_global Type *t_complex128 = &basic_types[Basic_complex128];
gb_global Type *t_quaternion64 = &basic_types[Basic_quaternion64];
gb_global Type *t_quaternion128 = &basic_types[Basic_quaternion128];
gb_global Type *t_quaternion256 = &basic_types[Basic_quaternion256];
gb_global Type *t_int = &basic_types[Basic_int];
gb_global Type *t_uint = &basic_types[Basic_uint];
gb_global Type *t_uintptr = &basic_types[Basic_uintptr];
gb_global Type *t_rawptr = &basic_types[Basic_rawptr];
gb_global Type *t_string = &basic_types[Basic_string];
gb_global Type *t_cstring = &basic_types[Basic_cstring];
gb_global Type *t_any = &basic_types[Basic_any];
gb_global Type *t_typeid = &basic_types[Basic_typeid];
gb_global Type *t_i16le = &basic_types[Basic_i16le];
gb_global Type *t_u16le = &basic_types[Basic_u16le];
gb_global Type *t_i32le = &basic_types[Basic_i32le];
gb_global Type *t_u32le = &basic_types[Basic_u32le];
gb_global Type *t_i64le = &basic_types[Basic_i64le];
gb_global Type *t_u64le = &basic_types[Basic_u64le];
gb_global Type *t_i128le = &basic_types[Basic_i128le];
gb_global Type *t_u128le = &basic_types[Basic_u128le];
gb_global Type *t_i16be = &basic_types[Basic_i16be];
gb_global Type *t_u16be = &basic_types[Basic_u16be];
gb_global Type *t_i32be = &basic_types[Basic_i32be];
gb_global Type *t_u32be = &basic_types[Basic_u32be];
gb_global Type *t_i64be = &basic_types[Basic_i64be];
gb_global Type *t_u64be = &basic_types[Basic_u64be];
gb_global Type *t_i128be = &basic_types[Basic_i128be];
gb_global Type *t_u128be = &basic_types[Basic_u128be];
gb_global Type *t_untyped_bool = &basic_types[Basic_UntypedBool];
gb_global Type *t_untyped_integer = &basic_types[Basic_UntypedInteger];
gb_global Type *t_untyped_float = &basic_types[Basic_UntypedFloat];
gb_global Type *t_untyped_complex = &basic_types[Basic_UntypedComplex];
gb_global Type *t_untyped_quaternion = &basic_types[Basic_UntypedQuaternion];
gb_global Type *t_untyped_string = &basic_types[Basic_UntypedString];
gb_global Type *t_untyped_rune = &basic_types[Basic_UntypedRune];
gb_global Type *t_untyped_nil = &basic_types[Basic_UntypedNil];
gb_global Type *t_untyped_undef = &basic_types[Basic_UntypedUndef];
gb_global Type *t_u8_ptr = nullptr;
gb_global Type *t_int_ptr = nullptr;
gb_global Type *t_i64_ptr = nullptr;
gb_global Type *t_f64_ptr = nullptr;
gb_global Type *t_u8_slice = nullptr;
gb_global Type *t_string_slice = nullptr;
// Type generated for the "preload" file
gb_global Type *t_type_info = nullptr;
gb_global Type *t_type_info_enum_value = nullptr;
gb_global Type *t_type_info_ptr = nullptr;
gb_global Type *t_type_info_enum_value_ptr = nullptr;
gb_global Type *t_type_info_named = nullptr;
gb_global Type *t_type_info_integer = nullptr;
gb_global Type *t_type_info_rune = nullptr;
gb_global Type *t_type_info_float = nullptr;
gb_global Type *t_type_info_complex = nullptr;
gb_global Type *t_type_info_quaternion = nullptr;
gb_global Type *t_type_info_any = nullptr;
gb_global Type *t_type_info_typeid = nullptr;
gb_global Type *t_type_info_string = nullptr;
gb_global Type *t_type_info_boolean = nullptr;
gb_global Type *t_type_info_pointer = nullptr;
gb_global Type *t_type_info_procedure = nullptr;
gb_global Type *t_type_info_array = nullptr;
gb_global Type *t_type_info_enumerated_array = nullptr;
gb_global Type *t_type_info_dynamic_array = nullptr;
gb_global Type *t_type_info_slice = nullptr;
gb_global Type *t_type_info_tuple = nullptr;
gb_global Type *t_type_info_struct = nullptr;
gb_global Type *t_type_info_union = nullptr;
gb_global Type *t_type_info_enum = nullptr;
gb_global Type *t_type_info_map = nullptr;
gb_global Type *t_type_info_bit_set = nullptr;
gb_global Type *t_type_info_simd_vector = nullptr;
gb_global Type *t_type_info_relative_pointer = nullptr;
gb_global Type *t_type_info_relative_slice = nullptr;
gb_global Type *t_type_info_named_ptr = nullptr;
gb_global Type *t_type_info_integer_ptr = nullptr;
gb_global Type *t_type_info_rune_ptr = nullptr;
gb_global Type *t_type_info_float_ptr = nullptr;
gb_global Type *t_type_info_complex_ptr = nullptr;
gb_global Type *t_type_info_quaternion_ptr = nullptr;
gb_global Type *t_type_info_any_ptr = nullptr;
gb_global Type *t_type_info_typeid_ptr = nullptr;
gb_global Type *t_type_info_string_ptr = nullptr;
gb_global Type *t_type_info_boolean_ptr = nullptr;
gb_global Type *t_type_info_pointer_ptr = nullptr;
gb_global Type *t_type_info_procedure_ptr = nullptr;
gb_global Type *t_type_info_array_ptr = nullptr;
gb_global Type *t_type_info_enumerated_array_ptr = nullptr;
gb_global Type *t_type_info_dynamic_array_ptr = nullptr;
gb_global Type *t_type_info_slice_ptr = nullptr;
gb_global Type *t_type_info_tuple_ptr = nullptr;
gb_global Type *t_type_info_struct_ptr = nullptr;
gb_global Type *t_type_info_union_ptr = nullptr;
gb_global Type *t_type_info_enum_ptr = nullptr;
gb_global Type *t_type_info_map_ptr = nullptr;
gb_global Type *t_type_info_bit_set_ptr = nullptr;
gb_global Type *t_type_info_simd_vector_ptr = nullptr;
gb_global Type *t_type_info_relative_pointer_ptr = nullptr;
gb_global Type *t_type_info_relative_slice_ptr = nullptr;
gb_global Type *t_allocator = nullptr;
gb_global Type *t_allocator_ptr = nullptr;
gb_global Type *t_context = nullptr;
gb_global Type *t_context_ptr = nullptr;
gb_global Type *t_source_code_location = nullptr;
gb_global Type *t_source_code_location_ptr = nullptr;
gb_global Type *t_map_hash = nullptr;
gb_global Type *t_map_header = nullptr;
gb_global Type *t_equal_proc = nullptr;
gb_global Type *t_hasher_proc = nullptr;
i64 type_size_of (Type *t);
i64 type_align_of (Type *t);
i64 type_offset_of (Type *t, i32 index);
gbString type_to_string (Type *type);
void init_map_internal_types(Type *type);
Type * bit_set_to_int(Type *t);
bool are_types_identical(Type *x, Type *y);
bool is_type_pointer(Type *t);
bool is_type_slice(Type *t);
bool is_type_integer(Type *t);
bool type_ptr_set_exists(PtrSet<Type *> *s, Type *t) {
if (ptr_set_exists(s, t)) {
return true;
}
// TODO(bill, 2019-10-05): This is very slow and it's probably a lot
// faster to cache types correctly
for_array(i, s->entries) {
Type *f = s->entries[i].ptr;
if (are_types_identical(t, f)) {
ptr_set_add(s, t);
return true;
}
}
return false;
}
Type *base_type(Type *t) {
for (;;) {
if (t == nullptr) {
break;
}
if (t->kind != Type_Named) {
break;
}
if (t == t->Named.base) {
return t_invalid;
}
t = t->Named.base;
}
return t;
}
Type *base_enum_type(Type *t) {
Type *bt = base_type(t);
if (bt != nullptr &&
bt->kind == Type_Enum) {
return bt->Enum.base_type;
}
return t;
}
Type *core_type(Type *t) {
for (;;) {
if (t == nullptr) {
break;
}
switch (t->kind) {
case Type_Named:
if (t == t->Named.base) {
return t_invalid;
}
t = t->Named.base;
continue;
case Type_Enum:
t = t->Enum.base_type;
continue;
}
break;
}
return t;
}
void set_base_type(Type *t, Type *base) {
if (t && t->kind == Type_Named) {
t->Named.base = base;
}
}
Type *alloc_type(TypeKind kind) {
// gbAllocator a = heap_allocator();
gbAllocator a = permanent_allocator();
Type *t = gb_alloc_item(a, Type);
zero_item(t);
t->kind = kind;
t->cached_size = -1;
t->cached_align = -1;
return t;
}
Type *alloc_type_generic(Scope *scope, i64 id, String name, Type *specialized) {
Type *t = alloc_type(Type_Generic);
t->Generic.id = id;
t->Generic.name = name;
t->Generic.specialized = specialized;
t->Generic.scope = scope;
return t;
}
Type *alloc_type_pointer(Type *elem) {
Type *t = alloc_type(Type_Pointer);
t->Pointer.elem = elem;
return t;
}
Type *alloc_type_array(Type *elem, i64 count, Type *generic_count = nullptr) {
if (generic_count != nullptr) {
Type *t = alloc_type(Type_Array);
t->Array.elem = elem;
t->Array.count = count;
t->Array.generic_count = generic_count;
return t;
}
Type *t = alloc_type(Type_Array);
t->Array.elem = elem;
t->Array.count = count;
return t;
}
Type *alloc_type_enumerated_array(Type *elem, Type *index, ExactValue min_value, ExactValue max_value, TokenKind op) {
Type *t = alloc_type(Type_EnumeratedArray);
t->EnumeratedArray.elem = elem;
t->EnumeratedArray.index = index;
t->EnumeratedArray.min_value = min_value;
t->EnumeratedArray.max_value = max_value;
t->EnumeratedArray.op = op;
t->EnumeratedArray.count = 1 + exact_value_to_i64(exact_value_sub(max_value, min_value));
return t;
}
Type *alloc_type_slice(Type *elem) {
Type *t = alloc_type(Type_Slice);
t->Array.elem = elem;
return t;
}
Type *alloc_type_dynamic_array(Type *elem) {
Type *t = alloc_type(Type_DynamicArray);
t->DynamicArray.elem = elem;
return t;
}
Type *alloc_type_struct() {
Type *t = alloc_type(Type_Struct);
return t;
}
Type *alloc_type_union() {
Type *t = alloc_type(Type_Union);
return t;
}
Type *alloc_type_enum() {
Type *t = alloc_type(Type_Enum);
return t;
}
Type *alloc_type_relative_pointer(Type *pointer_type, Type *base_integer) {
GB_ASSERT(is_type_pointer(pointer_type));
GB_ASSERT(is_type_integer(base_integer));
Type *t = alloc_type(Type_RelativePointer);
t->RelativePointer.pointer_type = pointer_type;
t->RelativePointer.base_integer = base_integer;
return t;
}
Type *alloc_type_relative_slice(Type *slice_type, Type *base_integer) {
GB_ASSERT(is_type_slice(slice_type));
GB_ASSERT(is_type_integer(base_integer));
Type *t = alloc_type(Type_RelativeSlice);
t->RelativeSlice.slice_type = slice_type;
t->RelativeSlice.base_integer = base_integer;
return t;
}
Type *alloc_type_named(String name, Type *base, Entity *type_name) {
Type *t = alloc_type(Type_Named);
t->Named.name = name;
t->Named.base = base;
if (base != t) {
t->Named.base = base_type(base);
}
t->Named.type_name = type_name;
return t;
}
bool is_calling_convention_none(ProcCallingConvention calling_convention) {
switch (calling_convention) {
case ProcCC_None:
case ProcCC_InlineAsm:
return true;
}
return false;
}
bool is_calling_convention_odin(ProcCallingConvention calling_convention) {
switch (calling_convention) {
case ProcCC_Odin:
case ProcCC_Contextless:
return true;
}
return false;
}
Type *alloc_type_tuple() {
Type *t = alloc_type(Type_Tuple);
return t;
}
Type *alloc_type_proc(Scope *scope, Type *params, isize param_count, Type *results, isize result_count, bool variadic, ProcCallingConvention calling_convention) {
Type *t = alloc_type(Type_Proc);
if (variadic) {
if (param_count == 0) {
GB_PANIC("variadic procedure must have at least one parameter");
}
GB_ASSERT(params != nullptr && params->kind == Type_Tuple);
Entity *e = params->Tuple.variables[param_count-1];
if (base_type(e->type)->kind != Type_Slice) {
// NOTE(bill): For custom calling convention
GB_PANIC("variadic parameter must be of type slice");
}
}
t->Proc.scope = scope;
t->Proc.params = params;
t->Proc.param_count = cast(i32)param_count;
t->Proc.results = results;
t->Proc.result_count = cast(i32)result_count;
t->Proc.variadic = variadic;
t->Proc.calling_convention = calling_convention;
return t;
}
bool is_type_valid_for_keys(Type *t);
Type *alloc_type_map(i64 count, Type *key, Type *value) {
if (key != nullptr) {
GB_ASSERT(value != nullptr);
}
Type *t = alloc_type(Type_Map);
t->Map.key = key;
t->Map.value = value;
return t;
}
Type *alloc_type_bit_set() {
Type *t = alloc_type(Type_BitSet);
return t;
}
Type *alloc_type_simd_vector(i64 count, Type *elem) {
Type *t = alloc_type(Type_SimdVector);
t->SimdVector.count = count;
t->SimdVector.elem = elem;
return t;
}
////////////////////////////////////////////////////////////////
Type *type_deref(Type *t) {
if (t != nullptr) {
Type *bt = base_type(t);
if (bt == nullptr) {
return nullptr;
}
if (bt != nullptr && bt->kind == Type_Pointer) {
return bt->Pointer.elem;
}
if (bt != nullptr && bt->kind == Type_RelativePointer) {
return type_deref(bt->RelativePointer.pointer_type);
}
}
return t;
}
bool is_type_named(Type *t) {
if (t->kind == Type_Basic) {
return true;
}
return t->kind == Type_Named;
}
bool is_type_named_alias(Type *t) {
if (!is_type_named(t)) {
return false;
}
Entity *e = t->Named.type_name;
if (e == nullptr) {
return false;
}
if (e->kind != Entity_TypeName) {
return false;
}
return e->TypeName.is_type_alias;
}
bool is_type_boolean(Type *t) {
// t = core_type(t);
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Boolean) != 0;
}
return false;
}
bool is_type_integer(Type *t) {
// t = core_type(t);
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Integer) != 0;
}
return false;
}
bool is_type_integer_like(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & (BasicFlag_Integer|BasicFlag_Boolean)) != 0;
}
if (t->kind == Type_BitSet) {
if (t->BitSet.underlying) {
return is_type_integer_like(t->BitSet.underlying);
}
return true;
}
return false;
}
bool is_type_unsigned(Type *t) {
t = base_type(t);
// t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Unsigned) != 0;
}
return false;
}
bool is_type_integer_128bit(Type *t) {
// t = core_type(t);
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Integer) != 0 && t->Basic.size == 16;
}
return false;
}
bool is_type_rune(Type *t) {
// t = core_type(t);
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Rune) != 0;
}
return false;
}
bool is_type_numeric(Type *t) {
// t = core_type(t);
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Numeric) != 0;
} else if (t->kind == Type_Enum) {
return is_type_numeric(t->Enum.base_type);
}
// TODO(bill): Should this be here?
if (t->kind == Type_Array) {
return is_type_numeric(t->Array.elem);
}
return false;
}
bool is_type_string(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_String) != 0;
}
return false;
}
bool is_type_cstring(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_cstring;
}
return false;
}
bool is_type_typed(Type *t) {
t = base_type(t);
if (t == nullptr) {
return false;
}
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Untyped) == 0;
}
return true;
}
bool is_type_untyped(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Untyped) != 0;
}
return false;
}
bool is_type_ordered(Type *t) {
t = core_type(t);
switch (t->kind) {
case Type_Basic:
return (t->Basic.flags & BasicFlag_Ordered) != 0;
case Type_Pointer:
return true;
}
return false;
}
bool is_type_ordered_numeric(Type *t) {
t = core_type(t);
switch (t->kind) {
case Type_Basic:
return (t->Basic.flags & BasicFlag_OrderedNumeric) != 0;
}
return false;
}
bool is_type_constant_type(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_ConstantType) != 0;
}
if (t->kind == Type_BitSet) {
return true;
}
if (t->kind == Type_Proc) {
return true;
}
return false;
}
bool is_type_float(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Float) != 0;
}
return false;
}
bool is_type_complex(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Complex) != 0;
}
return false;
}
bool is_type_quaternion(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Quaternion) != 0;
}
return false;
}
bool is_type_f16(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_f16;
}
return false;
}
bool is_type_f32(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_f32;
}
return false;
}
bool is_type_f64(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_f64;
}
return false;
}
bool is_type_pointer(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Pointer) != 0;
}
return t->kind == Type_Pointer;
}
bool is_type_tuple(Type *t) {
t = base_type(t);
return t->kind == Type_Tuple;
}
bool is_type_uintptr(Type *t) {
if (t->kind == Type_Basic) {
return (t->Basic.kind == Basic_uintptr);
}
return false;
}
bool is_type_rawptr(Type *t) {
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_rawptr;
}
return false;
}
bool is_type_u8(Type *t) {
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_u8;
}
return false;
}
bool is_type_array(Type *t) {
t = base_type(t);
return t->kind == Type_Array;
}
bool is_type_enumerated_array(Type *t) {
t = base_type(t);
return t->kind == Type_EnumeratedArray;
}
bool is_type_dynamic_array(Type *t) {
t = base_type(t);
return t->kind == Type_DynamicArray;
}
bool is_type_slice(Type *t) {
t = base_type(t);
return t->kind == Type_Slice;
}
bool is_type_proc(Type *t) {
t = base_type(t);
return t->kind == Type_Proc;
}
bool is_type_asm_proc(Type *t) {
t = base_type(t);
return t->kind == Type_Proc && t->Proc.calling_convention == ProcCC_InlineAsm;
}
bool is_type_poly_proc(Type *t) {
t = base_type(t);
return t->kind == Type_Proc && t->Proc.is_polymorphic;
}
bool is_type_simd_vector(Type *t) {
t = base_type(t);
return t->kind == Type_SimdVector;
}
Type *base_array_type(Type *t) {
Type *bt = base_type(t);
if (is_type_array(bt)) {
return bt->Array.elem;
} else if (is_type_enumerated_array(bt)) {
return bt->EnumeratedArray.elem;
} else if (is_type_simd_vector(bt)) {
return bt->SimdVector.elem;
}
return t;
}
bool is_type_generic(Type *t) {
t = base_type(t);
return t->kind == Type_Generic;
}
bool is_type_relative_pointer(Type *t) {
t = base_type(t);
return t->kind == Type_RelativePointer;
}
bool is_type_relative_slice(Type *t) {
t = base_type(t);
return t->kind == Type_RelativeSlice;
}
bool is_type_u8_slice(Type *t) {
t = base_type(t);
if (t->kind == Type_Slice) {
return is_type_u8(t->Slice.elem);
}
return false;
}
bool is_type_u8_array(Type *t) {
t = base_type(t);
if (t->kind == Type_Array) {
return is_type_u8(t->Array.elem);
}
return false;
}
bool is_type_u8_ptr(Type *t) {
t = base_type(t);
if (t->kind == Type_Pointer) {
return is_type_u8(t->Slice.elem);
}
return false;
}
bool is_type_rune_array(Type *t) {
t = base_type(t);
if (t->kind == Type_Array) {
return is_type_rune(t->Array.elem);
}
return false;
}
Type *core_array_type(Type *t) {
for (;;) {
Type *prev = t;
t = base_array_type(t);
if (t->kind != Type_Array && t->kind != Type_EnumeratedArray && t->kind != Type_SimdVector) {
break;
}
}
return t;
}
Type *base_complex_elem_type(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
switch (t->Basic.kind) {
case Basic_complex32: return t_f16;
case Basic_complex64: return t_f32;
case Basic_complex128: return t_f64;
case Basic_quaternion64: return t_f16;
case Basic_quaternion128: return t_f32;
case Basic_quaternion256: return t_f64;
case Basic_UntypedComplex: return t_untyped_float;
case Basic_UntypedQuaternion: return t_untyped_float;
}
}
GB_PANIC("Invalid complex type");
return t_invalid;
}
bool is_type_struct(Type *t) {
t = base_type(t);
return t->kind == Type_Struct;
}
bool is_type_union(Type *t) {
t = base_type(t);
return t->kind == Type_Union;
}
bool is_type_soa_struct(Type *t) {
t = base_type(t);
return t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None;
}
bool is_type_raw_union(Type *t) {
t = base_type(t);
return (t->kind == Type_Struct && t->Struct.is_raw_union);
}
bool is_type_enum(Type *t) {
t = base_type(t);
return (t->kind == Type_Enum);
}
bool is_type_bit_set(Type *t) {
t = base_type(t);
return (t->kind == Type_BitSet);
}
bool is_type_map(Type *t) {
t = base_type(t);
return t->kind == Type_Map;
}
bool is_type_union_maybe_pointer(Type *t) {
t = base_type(t);
if (t->kind == Type_Union && t->Union.maybe) {
if (t->Union.variants.count == 1) {
return is_type_pointer(t->Union.variants[0]);
}
}
return false;
}
bool is_type_union_maybe_pointer_original_alignment(Type *t) {
t = base_type(t);
if (t->kind == Type_Union && t->Union.maybe) {
if (t->Union.variants.count == 1) {
Type *v = t->Union.variants[0];
if (is_type_pointer(v)) {
return type_align_of(v) == type_align_of(t);
}
}
}
return false;
}
bool is_type_integer_endian_big(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianBig) {
return true;
} else if (t->Basic.flags & BasicFlag_EndianLittle) {
return false;
}
return build_context.endian_kind == TargetEndian_Big;
} else if (t->kind == Type_BitSet) {
return is_type_integer_endian_big(bit_set_to_int(t));
} else if (t->kind == Type_Pointer) {
return is_type_integer_endian_big(&basic_types[Basic_uintptr]);
}
return build_context.endian_kind == TargetEndian_Big;
}
bool is_type_integer_endian_little(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianLittle) {
return true;
} else if (t->Basic.flags & BasicFlag_EndianBig) {
return false;
}
return build_context.endian_kind == TargetEndian_Little;
} else if (t->kind == Type_BitSet) {
return is_type_integer_endian_little(bit_set_to_int(t));
} else if (t->kind == Type_Pointer) {
return is_type_integer_endian_little(&basic_types[Basic_uintptr]);
}
return build_context.endian_kind == TargetEndian_Little;
}
bool is_type_endian_big(Type *t) {
return is_type_integer_endian_big(t);
}
bool is_type_endian_little(Type *t) {
return is_type_integer_endian_little(t);
}
bool types_have_same_internal_endian(Type *a, Type *b) {
return is_type_endian_little(a) == is_type_endian_little(b);
}
bool is_type_endian_specific(Type *t) {
t = core_type(t);
if (t->kind == Type_BitSet) {
t = bit_set_to_int(t);
}
if (t->kind == Type_Basic) {
switch (t->Basic.kind) {
case Basic_i16le:
case Basic_u16le:
case Basic_i32le:
case Basic_u32le:
case Basic_i64le:
case Basic_u64le:
case Basic_u128le:
return true;
case Basic_i16be:
case Basic_u16be:
case Basic_i32be:
case Basic_u32be:
case Basic_i64be:
case Basic_u64be:
case Basic_u128be:
return true;
case Basic_f16le:
case Basic_f16be:
case Basic_f32le:
case Basic_f32be:
case Basic_f64le:
case Basic_f64be:
return true;
}
}
return false;
}
bool is_type_dereferenceable(Type *t) {
if (is_type_rawptr(t)) {
return false;
}
return is_type_pointer(t);
}
bool is_type_different_to_arch_endianness(Type *t) {
switch (build_context.endian_kind) {
case TargetEndian_Little:
return !is_type_integer_endian_little(t);
case TargetEndian_Big:
return !is_type_integer_endian_big(t);
}
return false;
}
Type *integer_endian_type_to_platform_type(Type *t) {
t = core_type(t);
if (t->kind == Type_BitSet) {
t = bit_set_to_int(t);
}
GB_ASSERT_MSG(t->kind == Type_Basic, "%s", type_to_string(t));
switch (t->Basic.kind) {
// Endian Specific Types
case Basic_i16le: return t_i16;
case Basic_u16le: return t_u16;
case Basic_i32le: return t_i32;
case Basic_u32le: return t_u32;
case Basic_i64le: return t_i64;
case Basic_u64le: return t_u64;
case Basic_u128le: return t_u128;
case Basic_i16be: return t_i16;
case Basic_u16be: return t_u16;
case Basic_i32be: return t_i32;
case Basic_u32be: return t_u32;
case Basic_i64be: return t_i64;
case Basic_u64be: return t_u64;
case Basic_u128be: return t_u128;
case Basic_f16le: return t_f16;
case Basic_f16be: return t_f16;
case Basic_f32le: return t_f32;
case Basic_f32be: return t_f32;
case Basic_f64le: return t_f64;
case Basic_f64be: return t_f64;
}
return t;
}
bool is_type_any(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_any);
}
bool is_type_typeid(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_typeid);
}
bool is_type_untyped_nil(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_UntypedNil);
}
bool is_type_untyped_undef(Type *t) {
t = base_type(t);
return (t->kind == Type_Basic && t->Basic.kind == Basic_UntypedUndef);
}
bool is_type_empty_union(Type *t) {
t = base_type(t);
return t->kind == Type_Union && t->Union.variants.count == 0;
}
bool is_type_empty_struct(Type *t) {
t = base_type(t);
return t->kind == Type_Struct && !t->Struct.is_raw_union && t->Struct.fields.count == 0;
}
bool is_type_valid_for_keys(Type *t) {
t = core_type(t);
if (t->kind == Type_Generic) {
return true;
}
if (is_type_untyped(t)) {
return false;
}
return is_type_comparable(t);
}
bool is_type_valid_bit_set_elem(Type *t) {
if (is_type_enum(t)) {
return true;
}
t = core_type(t);
if (t->kind == Type_Generic) {
return true;
}
return false;
}
Type *bit_set_to_int(Type *t) {
GB_ASSERT(is_type_bit_set(t));
Type *bt = base_type(t);
Type *underlying = bt->BitSet.underlying;
if (underlying != nullptr && is_type_integer(underlying)) {
return underlying;
}
i64 sz = type_size_of(t);
switch (sz) {
case 0: return t_u8;
case 1: return t_u8;
case 2: return t_u16;
case 4: return t_u32;
case 8: return t_u64;
case 16: return t_u128;
}
GB_PANIC("Unknown bit_set size");
return nullptr;
}
bool is_type_valid_vector_elem(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianLittle) {
return false;
}
if (t->Basic.flags & BasicFlag_EndianBig) {
return false;
}
if (is_type_integer(t)) {
return true;
}
if (is_type_float(t)) {
return true;
}
}
return false;
}
bool is_type_indexable(Type *t) {
Type *bt = base_type(t);
switch (bt->kind) {
case Type_Basic:
return bt->Basic.kind == Basic_string;
case Type_Array:
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
return true;
case Type_EnumeratedArray:
return true;
case Type_RelativeSlice:
return true;
}
return false;
}
bool is_type_sliceable(Type *t) {
Type *bt = base_type(t);
switch (bt->kind) {
case Type_Basic:
return bt->Basic.kind == Basic_string;
case Type_Array:
case Type_Slice:
case Type_DynamicArray:
return true;
case Type_EnumeratedArray:
return false;
case Type_RelativeSlice:
return true;
}
return false;
}
bool is_type_polymorphic_record(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic;
} else if (t->kind == Type_Union) {
return t->Union.is_polymorphic;
}
return false;
}
Scope *polymorphic_record_parent_scope(Type *t) {
t = base_type(t);
if (is_type_polymorphic_record(t)) {
if (t->kind == Type_Struct) {
return t->Struct.scope->parent;
} else if (t->kind == Type_Union) {
return t->Union.scope->parent;
}
}
return nullptr;
}
bool is_type_polymorphic_record_specialized(Type *t) {
Type *original_type = t;
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_poly_specialized;
} else if (t->kind == Type_Union) {
return t->Union.is_poly_specialized;
}
return false;
}
bool is_type_polymorphic_record_unspecialized(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic && !t->Struct.is_poly_specialized;
} else if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic && !t->Struct.is_poly_specialized;
}
return false;
}
TypeTuple *get_record_polymorphic_params(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Struct:
if (t->Struct.polymorphic_params) {
return &t->Struct.polymorphic_params->Tuple;
}
break;
case Type_Union:
if (t->Union.polymorphic_params) {
return &t->Union.polymorphic_params->Tuple;
}
break;
}
return nullptr;
}
bool is_type_polymorphic(Type *t, bool or_specialized=false) {
if (t == nullptr) {
return false;
}
if (t->flags & TypeFlag_InProcessOfCheckingPolymorphic) {
return false;
}
switch (t->kind) {
case Type_Generic:
return true;
case Type_Named:
{
u32 flags = t->flags;
t->flags |= TypeFlag_InProcessOfCheckingPolymorphic;
bool ok = is_type_polymorphic(t->Named.base, or_specialized);
t->flags = flags;
return ok;
}
case Type_Pointer:
return is_type_polymorphic(t->Pointer.elem, or_specialized);
case Type_EnumeratedArray:
if (is_type_polymorphic(t->EnumeratedArray.index, or_specialized)) {
return true;
}
return is_type_polymorphic(t->EnumeratedArray.elem, or_specialized);
case Type_Array:
if (t->Array.generic_count != nullptr) {
return true;
}
return is_type_polymorphic(t->Array.elem, or_specialized);
case Type_DynamicArray:
return is_type_polymorphic(t->DynamicArray.elem, or_specialized);
case Type_Slice:
return is_type_polymorphic(t->Slice.elem, or_specialized);
case Type_Tuple:
for_array(i, t->Tuple.variables) {
if (is_type_polymorphic(t->Tuple.variables[i]->type, or_specialized)) {
return true;
}
}
break;
case Type_Proc:
if (t->Proc.is_polymorphic) {
return true;
}
#if 1
if (t->Proc.param_count > 0 &&
is_type_polymorphic(t->Proc.params, or_specialized)) {
return true;
}
if (t->Proc.result_count > 0 &&
is_type_polymorphic(t->Proc.results, or_specialized)) {
return true;
}
#endif
break;
case Type_Enum:
if (t->kind == Type_Enum) {
if (t->Enum.base_type != nullptr) {
return is_type_polymorphic(t->Enum.base_type, or_specialized);
}
return false;
}
break;
case Type_Union:
if (t->Union.is_polymorphic) {
return true;
}
if (or_specialized && t->Union.is_poly_specialized) {
return true;
}
// for_array(i, t->Union.variants) {
// if (is_type_polymorphic(t->Union.variants[i], or_specialized)) {
// return true;
// }
// }
break;
case Type_Struct:
if (t->Struct.is_polymorphic) {
return true;
}
if (or_specialized && t->Struct.is_poly_specialized) {
return true;
}
break;
case Type_Map:
if (t->Map.key == nullptr || t->Map.value == nullptr) {
return false;
}
if (is_type_polymorphic(t->Map.key, or_specialized)) {
return true;
}
if (is_type_polymorphic(t->Map.value, or_specialized)) {
return true;
}
break;
}
return false;
}
bool type_has_undef(Type *t) {
return true;
}
bool type_has_nil(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic: {
switch (t->Basic.kind) {
case Basic_rawptr:
case Basic_any:
return true;
case Basic_cstring:
return true;
case Basic_typeid:
return true;
}
return false;
} break;
case Type_Enum:
case Type_BitSet:
return true;
case Type_Slice:
case Type_Proc:
case Type_Pointer:
case Type_DynamicArray:
case Type_Map:
return true;
case Type_Union:
return !t->Union.no_nil;
case Type_Struct:
if (is_type_soa_struct(t)) {
switch (t->Struct.soa_kind) {
case StructSoa_Fixed: return false;
case StructSoa_Slice: return true;
case StructSoa_Dynamic: return true;
}
}
return false;
case Type_RelativePointer:
case Type_RelativeSlice:
return true;
}
return false;
}
bool elem_type_can_be_constant(Type *t) {
t = base_type(t);
if (t == t_invalid) {
return false;
}
if (is_type_any(t) || is_type_union(t) || is_type_raw_union(t)) {
return false;
}
return true;
}
bool is_type_comparable(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_UntypedNil:
case Basic_any:
return false;
case Basic_rune:
return true;
case Basic_string:
return true;
case Basic_cstring:
return true;
case Basic_typeid:
return true;
}
return true;
case Type_Pointer:
return true;
case Type_Enum:
return is_type_comparable(core_type(t));
case Type_EnumeratedArray:
return is_type_comparable(t->EnumeratedArray.elem);
case Type_Array:
return is_type_comparable(t->Array.elem);
case Type_Proc:
return true;
case Type_BitSet:
return true;
case Type_Struct:
if (type_size_of(t) == 0) {
return false;
}
if (t->Struct.soa_kind != StructSoa_None) {
return false;
}
if (t->Struct.is_raw_union) {
return is_type_simple_compare(t);
}
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
if (!is_type_comparable(f->type)) {
return false;
}
}
return true;
case Type_Union:
if (type_size_of(t) == 0) {
return false;
}
for_array(i, t->Union.variants) {
Type *v = t->Union.variants[i];
if (!is_type_comparable(v)) {
return false;
}
}
return true;
}
return false;
}
// NOTE(bill): type can be easily compared using memcmp
bool is_type_simple_compare(Type *t) {
t = core_type(t);
switch (t->kind) {
case Type_Array:
return is_type_simple_compare(t->Array.elem);
case Type_EnumeratedArray:
return is_type_simple_compare(t->EnumeratedArray.elem);
case Type_Basic:
if (t->Basic.flags & BasicFlag_SimpleCompare) {
return true;
}
if (t->Basic.kind == Basic_typeid) {
return true;
}
return false;
case Type_Pointer:
case Type_Proc:
case Type_BitSet:
return true;
case Type_Struct:
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
if (!is_type_simple_compare(f->type)) {
return false;
}
}
return true;
case Type_Union:
for_array(i, t->Union.variants) {
Type *v = t->Union.variants[i];
if (!is_type_simple_compare(v)) {
return false;
}
}
// make it dumb on purpose
return t->Union.variants.count == 1;
case Type_SimdVector:
return is_type_simple_compare(t->SimdVector.elem);
}
return false;
}
Type *strip_type_aliasing(Type *x) {
if (x == nullptr) {
return x;
}
if (x->kind == Type_Named) {
Entity *e = x->Named.type_name;
if (e != nullptr && e->kind == Entity_TypeName && e->TypeName.is_type_alias) {
return x->Named.base;
}
}
return x;
}
bool are_types_identical(Type *x, Type *y) {
if (x == y) {
return true;
}
if ((x == nullptr && y != nullptr) ||
(x != nullptr && y == nullptr)) {
return false;
}
x = strip_type_aliasing(x);
y = strip_type_aliasing(y);
switch (x->kind) {
case Type_Generic:
if (y->kind == Type_Generic) {
return are_types_identical(x->Generic.specialized, y->Generic.specialized);
}
break;
case Type_Basic:
if (y->kind == Type_Basic) {
return x->Basic.kind == y->Basic.kind;
}
break;
case Type_EnumeratedArray:
if (y->kind == Type_EnumeratedArray) {
return are_types_identical(x->EnumeratedArray.index, y->EnumeratedArray.index) &&
are_types_identical(x->EnumeratedArray.elem, y->EnumeratedArray.elem);
}
break;
case Type_Array:
if (y->kind == Type_Array) {
return (x->Array.count == y->Array.count) && are_types_identical(x->Array.elem, y->Array.elem);
}
break;
case Type_DynamicArray:
if (y->kind == Type_DynamicArray) {
return are_types_identical(x->DynamicArray.elem, y->DynamicArray.elem);
}
break;
case Type_Slice:
if (y->kind == Type_Slice) {
return are_types_identical(x->Slice.elem, y->Slice.elem);
}
break;
case Type_BitSet:
if (y->kind == Type_BitSet) {
return are_types_identical(x->BitSet.elem, y->BitSet.elem) &&
are_types_identical(x->BitSet.underlying, y->BitSet.underlying) &&
x->BitSet.lower == y->BitSet.lower &&
x->BitSet.upper == y->BitSet.upper;
}
break;
case Type_Enum:
return x == y; // NOTE(bill): All enums are unique
case Type_Union:
if (y->kind == Type_Union) {
if (x->Union.variants.count == y->Union.variants.count &&
x->Union.custom_align == y->Union.custom_align &&
x->Union.no_nil == y->Union.no_nil) {
// NOTE(bill): zeroth variant is nullptr
for_array(i, x->Union.variants) {
if (!are_types_identical(x->Union.variants[i], y->Union.variants[i])) {
return false;
}
}
return true;
}
}
break;
case Type_Struct:
if (y->kind == Type_Struct) {
if (x->Struct.is_raw_union == y->Struct.is_raw_union &&
x->Struct.fields.count == y->Struct.fields.count &&
x->Struct.is_packed == y->Struct.is_packed &&
x->Struct.custom_align == y->Struct.custom_align &&
x->Struct.soa_kind == y->Struct.soa_kind &&
x->Struct.soa_count == y->Struct.soa_count &&
are_types_identical(x->Struct.soa_elem, y->Struct.soa_elem)) {
// TODO(bill); Fix the custom alignment rule
for_array(i, x->Struct.fields) {
Entity *xf = x->Struct.fields[i];
Entity *yf = y->Struct.fields[i];
if (xf->kind != yf->kind) {
return false;
}
if (!are_types_identical(xf->type, yf->type)) {
return false;
}
if (xf->token.string != yf->token.string) {
return false;
}
bool xf_is_using = (xf->flags&EntityFlag_Using) != 0;
bool yf_is_using = (yf->flags&EntityFlag_Using) != 0;
if (xf_is_using ^ yf_is_using) {
return false;
}
if (x->Struct.tags.count != y->Struct.tags.count) {
return false;
}
if (x->Struct.tags.count > 0 && x->Struct.tags[i] != y->Struct.tags[i]) {
return false;
}
}
return true;
}
}
break;
case Type_Pointer:
if (y->kind == Type_Pointer) {
return are_types_identical(x->Pointer.elem, y->Pointer.elem);
}
break;
case Type_Named:
if (y->kind == Type_Named) {
return x->Named.type_name == y->Named.type_name;
}
break;
case Type_Tuple:
if (y->kind == Type_Tuple) {
if (x->Tuple.variables.count == y->Tuple.variables.count &&
x->Tuple.is_packed == y->Tuple.is_packed) {
for_array(i, x->Tuple.variables) {
Entity *xe = x->Tuple.variables[i];
Entity *ye = y->Tuple.variables[i];
if (xe->kind != ye->kind || !are_types_identical(xe->type, ye->type)) {
return false;
}
if (xe->kind == Entity_Constant && !compare_exact_values(Token_CmpEq, xe->Constant.value, ye->Constant.value)) {
// NOTE(bill): This is needed for polymorphic procedures
return false;
}
}
return true;
}
}
break;
case Type_Proc:
if (y->kind == Type_Proc) {
return x->Proc.calling_convention == y->Proc.calling_convention &&
x->Proc.c_vararg == y->Proc.c_vararg &&
x->Proc.variadic == y->Proc.variadic &&
x->Proc.diverging == y->Proc.diverging &&
x->Proc.optional_ok == y->Proc.optional_ok &&
are_types_identical(x->Proc.params, y->Proc.params) &&
are_types_identical(x->Proc.results, y->Proc.results);
}
break;
case Type_Map:
if (y->kind == Type_Map) {
return are_types_identical(x->Map.key, y->Map.key) &&
are_types_identical(x->Map.value, y->Map.value);
}
break;
case Type_SimdVector:
if (y->kind == Type_SimdVector) {
if (x->SimdVector.count == y->SimdVector.count) {
return are_types_identical(x->SimdVector.elem, y->SimdVector.elem);
}
}
break;
}
return false;
}
Type *default_type(Type *type) {
if (type == nullptr) {
return t_invalid;
}
if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_UntypedBool: return t_bool;
case Basic_UntypedInteger: return t_int;
case Basic_UntypedFloat: return t_f64;
case Basic_UntypedComplex: return t_complex128;
case Basic_UntypedQuaternion: return t_quaternion256;
case Basic_UntypedString: return t_string;
case Basic_UntypedRune: return t_rune;
}
}
return type;
}
i64 union_variant_index(Type *u, Type *v) {
u = base_type(u);
GB_ASSERT(u->kind == Type_Union);
for_array(i, u->Union.variants) {
Type *vt = u->Union.variants[i];
if (are_types_identical(v, vt)) {
if (u->Union.no_nil) {
return cast(i64)(i+0);
} else {
return cast(i64)(i+1);
}
}
}
return 0;
}
i64 union_tag_size(Type *u) {
u = base_type(u);
GB_ASSERT(u->kind == Type_Union);
if (u->Union.tag_size > 0) {
return u->Union.tag_size;
}
u64 n = cast(u64)u->Union.variants.count;
if (n == 0) {
return 0;
}
#if 1
// TODO(bill): Is this an okay approach?
i64 max_align = 1;
for_array(i, u->Union.variants) {
Type *variant_type = u->Union.variants[i];
i64 align = type_align_of(variant_type);
if (max_align < align) {
max_align = align;
}
}
u->Union.tag_size = gb_min(max_align, build_context.max_align);
return max_align;
#else
i64 bytes = next_pow2(cast(i64)(floor_log2(n)/8 + 1));
i64 tag_size = gb_max(bytes, 1);
u->Union.tag_size = tag_size;
return tag_size;
#endif
}
Type *union_tag_type(Type *u) {
i64 s = union_tag_size(u);
switch (s) {
case 0: return t_u8;
case 1: return t_u8;
case 2: return t_u16;
case 4: return t_u32;
case 8: return t_u64;
}
GB_PANIC("Invalid union_tag_size");
return t_uint;
}
enum ProcTypeOverloadKind {
ProcOverload_Identical, // The types are identical
ProcOverload_CallingConvention,
ProcOverload_ParamCount,
ProcOverload_ParamVariadic,
ProcOverload_ParamTypes,
ProcOverload_ResultCount,
ProcOverload_ResultTypes,
ProcOverload_Polymorphic,
ProcOverload_NotProcedure,
};
ProcTypeOverloadKind are_proc_types_overload_safe(Type *x, Type *y) {
if (x == nullptr && y == nullptr) return ProcOverload_NotProcedure;
if (x == nullptr && y != nullptr) return ProcOverload_NotProcedure;
if (x != nullptr && y == nullptr) return ProcOverload_NotProcedure;
if (!is_type_proc(x)) return ProcOverload_NotProcedure;
if (!is_type_proc(y)) return ProcOverload_NotProcedure;
TypeProc px = base_type(x)->Proc;
TypeProc py = base_type(y)->Proc;
// if (px.calling_convention != py.calling_convention) {
// return ProcOverload_CallingConvention;
// }
// if (px.is_polymorphic != py.is_polymorphic) {
// return ProcOverload_Polymorphic;
// }
if (px.param_count != py.param_count) {
return ProcOverload_ParamCount;
}
for (isize i = 0; i < px.param_count; i++) {
Entity *ex = px.params->Tuple.variables[i];
Entity *ey = py.params->Tuple.variables[i];
if (!are_types_identical(ex->type, ey->type)) {
return ProcOverload_ParamTypes;
}
}
// IMPORTANT TODO(bill): Determine the rules for overloading procedures with variadic parameters
if (px.variadic != py.variadic) {
return ProcOverload_ParamVariadic;
}
if (px.is_polymorphic != py.is_polymorphic) {
return ProcOverload_Polymorphic;
}
if (px.result_count != py.result_count) {
return ProcOverload_ResultCount;
}
for (isize i = 0; i < px.result_count; i++) {
Entity *ex = px.results->Tuple.variables[i];
Entity *ey = py.results->Tuple.variables[i];
if (!are_types_identical(ex->type, ey->type)) {
return ProcOverload_ResultTypes;
}
}
if (px.params != nullptr && py.params != nullptr) {
Entity *ex = px.params->Tuple.variables[0];
Entity *ey = py.params->Tuple.variables[0];
bool ok = are_types_identical(ex->type, ey->type);
if (ok) {
}
}
return ProcOverload_Identical;
}
Selection lookup_field_with_selection(Type *type_, String field_name, bool is_type, Selection sel, bool allow_blank_ident=false);
Selection lookup_field(Type *type_, String field_name, bool is_type, bool allow_blank_ident=false) {
return lookup_field_with_selection(type_, field_name, is_type, empty_selection, allow_blank_ident);
}
Selection lookup_field_from_index(Type *type, i64 index) {
GB_ASSERT(is_type_struct(type) || is_type_union(type) || is_type_tuple(type));
type = base_type(type);
gbAllocator a = permanent_allocator();
isize max_count = 0;
switch (type->kind) {
case Type_Struct: max_count = type->Struct.fields.count; break;
case Type_Tuple: max_count = type->Tuple.variables.count; break;
}
if (index >= max_count) {
return empty_selection;
}
switch (type->kind) {
case Type_Struct:
for (isize i = 0; i < max_count; i++) {
Entity *f = type->Struct.fields[i];
if (f->kind == Entity_Variable) {
if (f->Variable.field_src_index == index) {
auto sel_array = array_make<i32>(a, 1);
sel_array[0] = cast(i32)i;
return make_selection(f, sel_array, false);
}
}
}
break;
case Type_Tuple:
for (isize i = 0; i < max_count; i++) {
Entity *f = type->Tuple.variables[i];
if (i == index) {
auto sel_array = array_make<i32>(a, 1);
sel_array[0] = cast(i32)i;
return make_selection(f, sel_array, false);
}
}
break;
}
GB_PANIC("Illegal index");
return empty_selection;
}
Entity *scope_lookup_current(Scope *s, String const &name);
Selection lookup_field_with_selection(Type *type_, String field_name, bool is_type, Selection sel, bool allow_blank_ident) {
GB_ASSERT(type_ != nullptr);
if (!allow_blank_ident && is_blank_ident(field_name)) {
return empty_selection;
}
Type *type = type_deref(type_);
bool is_ptr = type != type_;
sel.indirect = sel.indirect || is_ptr;
type = base_type(type);
if (is_type) {
switch (type->kind) {
case Type_Struct:
if (type->Struct.names != nullptr &&
field_name == "names") {
sel.entity = type->Struct.names;
return sel;
}
break;
case Type_Enum:
if (type->Enum.names != nullptr &&
field_name == "names") {
sel.entity = type->Enum.names;
return sel;
}
break;
}
if (is_type_enum(type)) {
// NOTE(bill): These may not have been added yet, so check in case
for_array(i, type->Enum.fields) {
Entity *f = type->Enum.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
String str = f->token.string;
if (field_name == str) {
sel.entity = f;
// selection_add_index(&sel, i);
return sel;
}
}
}
if (type->kind == Type_Struct) {
Scope *s = type->Struct.scope;
if (s != nullptr) {
Entity *found = scope_lookup_current(s, field_name);
if (found != nullptr && found->kind != Entity_Variable) {
sel.entity = found;
return sel;
}
}
} else if (type->kind == Type_Union) {
Scope *s = type->Union.scope;
if (s != nullptr) {
Entity *found = scope_lookup_current(s, field_name);
if (found != nullptr && found->kind != Entity_Variable) {
sel.entity = found;
return sel;
}
}
} else if (type->kind == Type_BitSet) {
return lookup_field_with_selection(type->BitSet.elem, field_name, true, sel, allow_blank_ident);
}
if (type->kind == Type_Generic && type->Generic.specialized != nullptr) {
Type *specialized = type->Generic.specialized;
return lookup_field_with_selection(specialized, field_name, is_type, sel, allow_blank_ident);
}
} else if (type->kind == Type_Union) {
} else if (type->kind == Type_Struct) {
for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
if (f->kind != Entity_Variable || (f->flags & EntityFlag_Field) == 0) {
continue;
}
String str = f->token.string;
if (field_name == str) {
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel.entity = f;
return sel;
}
if (f->flags & EntityFlag_Using) {
isize prev_count = sel.index.count;
bool prev_indirect = sel.indirect;
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel = lookup_field_with_selection(f->type, field_name, is_type, sel, allow_blank_ident);
if (sel.entity != nullptr) {
if (is_type_pointer(f->type)) {
sel.indirect = true;
}
return sel;
}
sel.index.count = prev_count;
sel.indirect = prev_indirect;
}
}
bool is_soa = type->Struct.soa_kind != StructSoa_None;
bool is_soa_of_array = is_soa && is_type_array(type->Struct.soa_elem);
if (is_soa_of_array) {
String mapped_field_name = {};
if (field_name == "r") mapped_field_name = str_lit("x");
else if (field_name == "g") mapped_field_name = str_lit("y");
else if (field_name == "b") mapped_field_name = str_lit("z");
else if (field_name == "a") mapped_field_name = str_lit("w");
return lookup_field_with_selection(type, mapped_field_name, is_type, sel, allow_blank_ident);
}
} else if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_any: {
#if 1
// IMPORTANT TODO(bill): Should these members be available to should I only allow them with
// `Raw_Any` type?
String data_str = str_lit("data");
String id_str = str_lit("id");
gb_local_persist Entity *entity__any_data = alloc_entity_field(nullptr, make_token_ident(data_str), t_rawptr, false, 0);
gb_local_persist Entity *entity__any_id = alloc_entity_field(nullptr, make_token_ident(id_str), t_typeid, false, 1);
if (field_name == data_str) {
selection_add_index(&sel, 0);
sel.entity = entity__any_data;
return sel;
} else if (field_name == id_str) {
selection_add_index(&sel, 1);
sel.entity = entity__any_id;
return sel;
}
#endif
} break;
case Basic_quaternion64: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_f16, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_f16, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_f16, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_f16, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
case Basic_quaternion128: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_f32, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_f32, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_f32, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_f32, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
case Basic_quaternion256: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_f64, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_f64, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_f64, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_f64, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
case Basic_UntypedQuaternion: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_untyped_float, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_untyped_float, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_untyped_float, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_untyped_float, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
}
return sel;
} else if (type->kind == Type_Array) {
if (type->Array.count <= 4) {
// HACK(bill): Memory leak
switch (type->Array.count) {
#define _ARRAY_FIELD_CASE_IF(_length, _name) \
if (field_name == (_name)) { \
selection_add_index(&sel, (_length)-1); \
sel.entity = alloc_entity_array_elem(nullptr, make_token_ident(str_lit(_name)), type->Array.elem, (_length)-1); \
return sel; \
}
#define _ARRAY_FIELD_CASE(_length, _name0, _name1) \
case (_length): \
_ARRAY_FIELD_CASE_IF(_length, _name0); \
_ARRAY_FIELD_CASE_IF(_length, _name1); \
/*fallthrough*/
_ARRAY_FIELD_CASE(4, "w", "a");
_ARRAY_FIELD_CASE(3, "z", "b");
_ARRAY_FIELD_CASE(2, "y", "g");
_ARRAY_FIELD_CASE(1, "x", "r");
default: break;
#undef _ARRAY_FIELD_CASE
}
}
} else if (type->kind == Type_DynamicArray) {
// IMPORTANT TODO(bill): Should these members be available to should I only allow them with
// `Raw_Dynamic_Array` type?
GB_ASSERT(t_allocator != nullptr);
String allocator_str = str_lit("allocator");
gb_local_persist Entity *entity__allocator = alloc_entity_field(nullptr, make_token_ident(allocator_str), t_allocator, false, 3);
if (field_name == allocator_str) {
selection_add_index(&sel, 3);
sel.entity = entity__allocator;
return sel;
}
} else if (type->kind == Type_Map) {
// IMPORTANT TODO(bill): Should these members be available to should I only allow them with
// `Raw_Map` type?
GB_ASSERT(t_allocator != nullptr);
String allocator_str = str_lit("allocator");
gb_local_persist Entity *entity__allocator = alloc_entity_field(nullptr, make_token_ident(allocator_str), t_allocator, false, 3);
if (field_name == allocator_str) {
selection_add_index(&sel, 1);
selection_add_index(&sel, 3);
sel.entity = entity__allocator;
return sel;
}
}
return sel;
}
// IMPORTANT TODO(bill): SHould this TypePath code be removed since type cycle checking is handled much earlier on?
struct TypePath {
Array<Entity *> path; // Entity_TypeName;
bool failure;
};
void type_path_init(TypePath *tp) {
tp->path.allocator = heap_allocator();
}
void type_path_free(TypePath *tp) {
array_free(&tp->path);
}
void type_path_print_illegal_cycle(TypePath *tp, isize start_index) {
GB_ASSERT(tp != nullptr);
GB_ASSERT(start_index < tp->path.count);
Entity *e = tp->path[start_index];
GB_ASSERT(e != nullptr);
error(e->token, "Illegal declaration cycle of `%.*s`", LIT(e->token.string));
// NOTE(bill): Print cycle, if it's deep enough
for (isize j = start_index; j < tp->path.count; j++) {
Entity *e = tp->path[j];
error(e->token, "\t%.*s refers to", LIT(e->token.string));
}
// NOTE(bill): This will only print if the path count > 1
error(e->token, "\t%.*s", LIT(e->token.string));
tp->failure = true;
e->type->failure = true;
base_type(e->type)->failure = true;
}
bool type_path_push(TypePath *tp, Type *t) {
GB_ASSERT(tp != nullptr);
if (t->kind != Type_Named) {
return false;
}
Entity *e = t->Named.type_name;
for (isize i = 0; i < tp->path.count; i++) {
Entity *p = tp->path[i];
if (p == e) {
type_path_print_illegal_cycle(tp, i);
}
}
array_add(&tp->path, e);
return true;
}
void type_path_pop(TypePath *tp) {
if (tp != nullptr && tp->path.count > 0) {
array_pop(&tp->path);
}
}
#define FAILURE_SIZE 0
#define FAILURE_ALIGNMENT 0
i64 type_size_of_internal (Type *t, TypePath *path);
i64 type_align_of_internal(Type *t, TypePath *path);
i64 type_size_of(Type *t);
i64 type_align_of(Type *t);
i64 type_size_of_struct_pretend_is_packed(Type *ot) {
if (ot == nullptr) {
return 0;
}
Type *t = core_type(ot);
if (t->kind != Type_Struct) {
return type_size_of(ot);
}
if (t->Struct.is_packed) {
return type_size_of(ot);
}
i64 count = 0, size = 0, align = 1;
auto const &fields = t->Struct.fields;
count = fields.count;
if (count == 0) {
return 0;
}
for_array(i, fields) {
size += type_size_of(fields[i]->type);
}
return align_formula(size, align);
}
i64 type_size_of(Type *t) {
if (t == nullptr) {
return 0;
}
// NOTE(bill): Always calculate the size when it is a Type_Basic
if (t->kind == Type_Named && t->cached_size >= 0) {
} else if (t->kind != Type_Basic && t->cached_size >= 0) {
return t->cached_size;
}
TypePath path = {0};
type_path_init(&path);
t->cached_size = type_size_of_internal(t, &path);
type_path_free(&path);
return t->cached_size;
}
i64 type_align_of(Type *t) {
if (t == nullptr) {
return 1;
}
// NOTE(bill): Always calculate the size when it is a Type_Basic
if (t->kind == Type_Named && t->cached_align >= 0) {
} if (t->kind != Type_Basic && t->cached_align > 0) {
return t->cached_align;
}
TypePath path = {0};
type_path_init(&path);
t->cached_align = type_align_of_internal(t, &path);
type_path_free(&path);
return t->cached_align;
}
i64 type_align_of_internal(Type *t, TypePath *path) {
GB_ASSERT(path != nullptr);
if (t->failure) {
return FAILURE_ALIGNMENT;
}
t = base_type(t);
switch (t->kind) {
case Type_Basic: {
GB_ASSERT(is_type_typed(t));
switch (t->Basic.kind) {
case Basic_string: return build_context.word_size;
case Basic_cstring: return build_context.word_size;
case Basic_any: return build_context.word_size;
case Basic_typeid: return build_context.word_size;
case Basic_int: case Basic_uint: case Basic_uintptr: case Basic_rawptr:
return build_context.word_size;
case Basic_complex32: case Basic_complex64: case Basic_complex128:
return type_size_of_internal(t, path) / 2;
case Basic_quaternion64: case Basic_quaternion128: case Basic_quaternion256:
return type_size_of_internal(t, path) / 4;
}
} break;
case Type_Array: {
Type *elem = t->Array.elem;
bool pop = type_path_push(path, elem);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(t->Array.elem, path);
if (pop) type_path_pop(path);
return align;
}
case Type_EnumeratedArray: {
Type *elem = t->EnumeratedArray.elem;
bool pop = type_path_push(path, elem);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(t->EnumeratedArray.elem, path);
if (pop) type_path_pop(path);
return align;
}
case Type_DynamicArray:
// data, count, capacity, allocator
return build_context.word_size;
case Type_Slice:
return build_context.word_size;
case Type_Tuple: {
i64 max = 1;
for_array(i, t->Tuple.variables) {
i64 align = type_align_of_internal(t->Tuple.variables[i]->type, path);
if (max < align) {
max = align;
}
}
return max;
} break;
case Type_Map:
init_map_internal_types(t);
return type_align_of_internal(t->Map.internal_type, path);
case Type_Enum:
return type_align_of_internal(t->Enum.base_type, path);
case Type_Union: {
if (t->Union.variants.count == 0) {
return 1;
}
if (t->Union.custom_align > 0) {
return gb_clamp(t->Union.custom_align, 1, build_context.max_align);
}
i64 max = 1;
for_array(i, t->Union.variants) {
Type *variant = t->Union.variants[i];
bool pop = type_path_push(path, variant);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(variant, path);
if (pop) type_path_pop(path);
if (max < align) {
max = align;
}
}
return max;
} break;
case Type_Struct: {
if (t->Struct.custom_align > 0) {
return gb_clamp(t->Struct.custom_align, 1, build_context.max_align);
}
if (t->Struct.is_raw_union) {
i64 max = 1;
for_array(i, t->Struct.fields) {
Type *field_type = t->Struct.fields[i]->type;
bool pop = type_path_push(path, field_type);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(field_type, path);
if (pop) type_path_pop(path);
if (max < align) {
max = align;
}
}
return max;
} else if (t->Struct.fields.count > 0) {
i64 max = 1;
// NOTE(bill): Check the fields to check for cyclic definitions
for_array(i, t->Struct.fields) {
Type *field_type = t->Struct.fields[i]->type;
bool pop = type_path_push(path, field_type);
if (path->failure) return FAILURE_ALIGNMENT;
i64 align = type_align_of_internal(field_type, path);
if (pop) type_path_pop(path);
if (max < align) {
max = align;
}
}
if (t->Struct.is_packed) {
return 1;
}
return max;
}
} break;
case Type_BitSet: {
if (t->BitSet.underlying != nullptr) {
return type_align_of(t->BitSet.underlying);
}
i64 bits = t->BitSet.upper - t->BitSet.lower + 1;
if (bits <= 8) return 1;
if (bits <= 16) return 2;
if (bits <= 32) return 4;
if (bits <= 64) return 8;
if (bits <= 128) return 16;
return 8; // NOTE(bill): Could be an invalid range so limit it for now
}
case Type_SimdVector: {
// align of
i64 count = t->SimdVector.count;
Type *elem = t->SimdVector.elem;
i64 size = count * type_size_of_internal(elem, path);
// IMPORTANT TODO(bill): Figure out the alignment of vector types
return gb_clamp(next_pow2(type_size_of_internal(t, path)), 1, build_context.max_align);
}
case Type_RelativePointer:
return type_align_of_internal(t->RelativePointer.base_integer, path);
case Type_RelativeSlice:
return type_align_of_internal(t->RelativeSlice.base_integer, path);
}
// return gb_clamp(next_pow2(type_size_of(t)), 1, build_context.max_align);
// NOTE(bill): Things that are bigger than build_context.word_size, are actually comprised of smaller types
// TODO(bill): Is this correct for 128-bit types (integers)?
return gb_clamp(next_pow2(type_size_of_internal(t, path)), 1, build_context.word_size);
}
Array<i64> type_set_offsets_of(Array<Entity *> const &fields, bool is_packed, bool is_raw_union) {
gbAllocator a = permanent_allocator();
auto offsets = array_make<i64>(a, fields.count);
i64 curr_offset = 0;
if (is_raw_union) {
for_array(i, fields) {
offsets[i] = 0;
}
} else if (is_packed) {
for_array(i, fields) {
i64 size = type_size_of(fields[i]->type);
offsets[i] = curr_offset;
curr_offset += size;
}
} else {
for_array(i, fields) {
Type *t = fields[i]->type;
i64 align = gb_max(type_align_of(t), 1);
i64 size = gb_max(type_size_of( t), 0);
curr_offset = align_formula(curr_offset, align);
offsets[i] = curr_offset;
curr_offset += size;
}
}
return offsets;
}
bool type_set_offsets(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
if (!t->Struct.are_offsets_set) {
t->Struct.are_offsets_being_processed = true;
t->Struct.offsets = type_set_offsets_of(t->Struct.fields, t->Struct.is_packed, t->Struct.is_raw_union);
GB_ASSERT(t->Struct.offsets.count == t->Struct.fields.count);
t->Struct.are_offsets_being_processed = false;
t->Struct.are_offsets_set = true;
return true;
}
} else if (is_type_tuple(t)) {
if (!t->Tuple.are_offsets_set) {
t->Tuple.are_offsets_being_processed = true;
t->Tuple.offsets = type_set_offsets_of(t->Tuple.variables, t->Tuple.is_packed, false);
t->Tuple.are_offsets_being_processed = false;
t->Tuple.are_offsets_set = true;
return true;
}
} else {
GB_PANIC("Invalid type for setting offsets");
}
return false;
}
i64 type_size_of_internal(Type *t, TypePath *path) {
if (t->failure) {
return FAILURE_SIZE;
}
switch (t->kind) {
case Type_Named: {
bool pop = type_path_push(path, t);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 size = type_size_of_internal(t->Named.base, path);
if (pop) type_path_pop(path);
return size;
} break;
case Type_Basic: {
GB_ASSERT_MSG(is_type_typed(t), "%s", type_to_string(t));
BasicKind kind = t->Basic.kind;
i64 size = t->Basic.size;
if (size > 0) {
return size;
}
switch (kind) {
case Basic_string: return 2*build_context.word_size;
case Basic_cstring: return build_context.word_size;
case Basic_any: return 2*build_context.word_size;
case Basic_typeid: return build_context.word_size;
case Basic_int: case Basic_uint: case Basic_uintptr: case Basic_rawptr:
return build_context.word_size;
}
} break;
case Type_Pointer:
return build_context.word_size;
case Type_Array: {
i64 count, align, size, alignment;
count = t->Array.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t->Array.elem, path);
if (path->failure) {
return FAILURE_SIZE;
}
size = type_size_of_internal( t->Array.elem, path);
alignment = align_formula(size, align);
return alignment*(count-1) + size;
} break;
case Type_EnumeratedArray: {
i64 count, align, size, alignment;
count = t->EnumeratedArray.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t->EnumeratedArray.elem, path);
if (path->failure) {
return FAILURE_SIZE;
}
size = type_size_of_internal( t->EnumeratedArray.elem, path);
alignment = align_formula(size, align);
return alignment*(count-1) + size;
} break;
case Type_Slice: // ptr + len
return 2 * build_context.word_size;
case Type_DynamicArray:
// data + len + cap + allocator(procedure+data)
return 3*build_context.word_size + 2*build_context.word_size;
case Type_Map:
init_map_internal_types(t);
return type_size_of_internal(t->Map.internal_type, path);
case Type_Tuple: {
i64 count, align, size;
count = t->Tuple.variables.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t, path);
type_set_offsets(t);
size = t->Tuple.offsets[cast(isize)count-1] + type_size_of_internal(t->Tuple.variables[cast(isize)count-1]->type, path);
return align_formula(size, align);
} break;
case Type_Enum:
return type_size_of_internal(t->Enum.base_type, path);
case Type_Union: {
if (t->Union.variants.count == 0) {
return 0;
}
i64 align = type_align_of_internal(t, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 max = 0;
i64 field_size = 0;
for_array(i, t->Union.variants) {
Type *variant_type = t->Union.variants[i];
i64 size = type_size_of_internal(variant_type, path);
if (max < size) {
max = size;
}
}
i64 size = 0;
if (is_type_union_maybe_pointer(t)) {
size = max;
t->Union.tag_size = 0;
t->Union.variant_block_size = size;
} else {
// NOTE(bill): Align to tag
i64 tag_size = union_tag_size(t);
size = align_formula(max, tag_size);
// NOTE(bill): Calculate the padding between the common fields and the tag
t->Union.tag_size = tag_size;
t->Union.variant_block_size = size - field_size;
size += tag_size;
}
return align_formula(size, align);
} break;
case Type_Struct: {
if (t->Struct.is_raw_union) {
i64 count = t->Struct.fields.count;
i64 align = type_align_of_internal(t, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 max = 0;
for (isize i = 0; i < count; i++) {
i64 size = type_size_of_internal(t->Struct.fields[i]->type, path);
if (max < size) {
max = size;
}
}
// TODO(bill): Is this how it should work?
return align_formula(max, align);
} else {
i64 count = 0, size = 0, align = 0;
count = t->Struct.fields.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t, path);
if (path->failure) {
return FAILURE_SIZE;
}
if (t->Struct.are_offsets_being_processed && t->Struct.offsets.data == nullptr) {
type_path_print_illegal_cycle(path, path->path.count-1);
return FAILURE_SIZE;
}
if (t->Struct.are_offsets_set && t->Struct.offsets.count != t->Struct.fields.count) {
// TODO(bill, 2019-04-28): Determine exactly why the offsets length is different thatn the field length
// Are the the same at some point and then the struct length is increased?
// Why is this not handled by the type cycle checker?
t->Struct.are_offsets_set = false;
}
type_set_offsets(t);
GB_ASSERT_MSG(t->Struct.offsets.count == t->Struct.fields.count, "%s", type_to_string(t));
size = t->Struct.offsets[cast(isize)count-1] + type_size_of_internal(t->Struct.fields[cast(isize)count-1]->type, path);
return align_formula(size, align);
}
} break;
case Type_BitSet: {
if (t->BitSet.underlying != nullptr) {
return type_size_of(t->BitSet.underlying);
}
i64 bits = t->BitSet.upper - t->BitSet.lower + 1;
if (bits <= 8) return 1;
if (bits <= 16) return 2;
if (bits <= 32) return 4;
if (bits <= 64) return 8;
if (bits <= 128) return 16;
return 8; // NOTE(bill): Could be an invalid range so limit it for now
}
case Type_SimdVector: {
i64 count = t->SimdVector.count;
Type *elem = t->SimdVector.elem;
return count * type_size_of_internal(elem, path);
}
case Type_RelativePointer:
return type_size_of_internal(t->RelativePointer.base_integer, path);
case Type_RelativeSlice:
return 2*type_size_of_internal(t->RelativeSlice.base_integer, path);
}
// Catch all
return build_context.word_size;
}
i64 type_offset_of(Type *t, i32 index) {
t = base_type(t);
if (t->kind == Type_Struct) {
type_set_offsets(t);
if (gb_is_between(index, 0, t->Struct.fields.count-1)) {
return t->Struct.offsets[index];
}
} else if (t->kind == Type_Tuple) {
type_set_offsets(t);
if (gb_is_between(index, 0, t->Tuple.variables.count-1)) {
return t->Tuple.offsets[index];
}
} else if (t->kind == Type_Basic) {
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0: return 0; // data
case 1: return build_context.word_size; // len
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
case 0: return 0; // type_info
case 1: return build_context.word_size; // data
}
}
} else if (t->kind == Type_Slice) {
switch (index) {
case 0: return 0; // data
case 1: return 1*build_context.word_size; // len
case 2: return 2*build_context.word_size; // cap
}
} else if (t->kind == Type_DynamicArray) {
switch (index) {
case 0: return 0; // data
case 1: return 1*build_context.word_size; // len
case 2: return 2*build_context.word_size; // cap
case 3: return 3*build_context.word_size; // allocator
}
} else if (t->kind == Type_Union) {
/* i64 s = */ type_size_of(t);
switch (index) {
case -1: return align_formula(t->Union.variant_block_size, build_context.word_size); // __type_info
}
}
return 0;
}
i64 type_offset_of_from_selection(Type *type, Selection sel) {
GB_ASSERT(sel.indirect == false);
Type *t = type;
i64 offset = 0;
for_array(i, sel.index) {
i32 index = sel.index[i];
t = base_type(t);
offset += type_offset_of(t, index);
if (t->kind == Type_Struct && !t->Struct.is_raw_union) {
t = t->Struct.fields[index]->type;
} else {
// NOTE(bill): No need to worry about custom types, just need the alignment
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
case 0: t = t_type_info_ptr; break;
case 1: t = t_rawptr; break;
}
}
break;
case Type_Slice:
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
case 2: t = t_int; break;
}
break;
case Type_DynamicArray:
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
case 2: t = t_int; break;
case 3: t = t_allocator; break;
}
break;
}
}
}
return offset;
}
Type *get_struct_field_type(Type *t, isize index) {
t = base_type(type_deref(t));
GB_ASSERT(t->kind == Type_Struct);
return t->Struct.fields[index]->type;
}
Type *reduce_tuple_to_single_type(Type *original_type) {
if (original_type != nullptr) {
Type *t = core_type(original_type);
if (t->kind == Type_Tuple && t->Tuple.variables.count == 1) {
return t->Tuple.variables[0]->type;
}
}
return original_type;
}
Type *alloc_type_struct_from_field_types(Type **field_types, isize field_count, bool is_packed) {
Type *t = alloc_type_struct();
t->Struct.fields = array_make<Entity *>(heap_allocator(), field_count);
Scope *scope = nullptr;
for_array(i, t->Struct.fields) {
t->Struct.fields[i] = alloc_entity_field(scope, blank_token, field_types[i], false, cast(i32)i, EntityState_Resolved);
}
t->Struct.is_packed = is_packed;
return t;
}
Type *alloc_type_tuple_from_field_types(Type **field_types, isize field_count, bool is_packed, bool must_be_tuple) {
if (field_count == 0) {
return nullptr;
}
if (!must_be_tuple && field_count == 1) {
return field_types[0];
}
Type *t = alloc_type_tuple();
t->Tuple.variables = array_make<Entity *>(heap_allocator(), field_count);
Scope *scope = nullptr;
for_array(i, t->Tuple.variables) {
t->Tuple.variables[i] = alloc_entity_param(scope, blank_token, field_types[i], false, false);
}
t->Tuple.is_packed = is_packed;
return t;
}
Type *alloc_type_proc_from_types(Type **param_types, unsigned param_count, Type *results, bool is_c_vararg, ProcCallingConvention calling_convention) {
Type *params = alloc_type_tuple_from_field_types(param_types, param_count, false, true);
isize results_count = 0;
if (results != nullptr) {
if (results->kind != Type_Tuple) {
results = alloc_type_tuple_from_field_types(&results, 1, false, true);
}
results_count = results->Tuple.variables.count;
}
Scope *scope = nullptr;
Type *t = alloc_type_proc(scope, params, param_count, results, results_count, false, calling_convention);
t->Proc.c_vararg = is_c_vararg;
return t;
}
gbString write_type_to_string(gbString str, Type *type) {
if (type == nullptr) {
return gb_string_appendc(str, "<no type>");
}
switch (type->kind) {
case Type_Basic:
str = gb_string_append_length(str, type->Basic.name.text, type->Basic.name.len);
break;
case Type_Generic:
if (type->Generic.name.len == 0) {
if (type->Generic.entity != nullptr) {
String name = type->Generic.entity->token.string;
str = gb_string_append_rune(str, '$');
str = gb_string_append_length(str, name.text, name.len);
} else {
str = gb_string_appendc(str, "type");
}
} else {
String name = type->Generic.name;
str = gb_string_append_rune(str, '$');
str = gb_string_append_length(str, name.text, name.len);
if (type->Generic.specialized != nullptr) {
str = gb_string_append_rune(str, '/');
str = write_type_to_string(str, type->Generic.specialized);
}
}
break;
case Type_Pointer:
str = gb_string_append_rune(str, '^');
str = write_type_to_string(str, type->Pointer.elem);
break;
case Type_EnumeratedArray:
str = gb_string_append_rune(str, '[');
str = write_type_to_string(str, type->EnumeratedArray.index);
str = gb_string_append_rune(str, ']');
str = write_type_to_string(str, type->EnumeratedArray.elem);
break;
case Type_Array:
str = gb_string_appendc(str, gb_bprintf("[%d]", cast(int)type->Array.count));
str = write_type_to_string(str, type->Array.elem);
break;
case Type_Slice:
str = gb_string_appendc(str, "[]");
str = write_type_to_string(str, type->Array.elem);
break;
case Type_DynamicArray:
str = gb_string_appendc(str, "[dynamic]");
str = write_type_to_string(str, type->DynamicArray.elem);
break;
case Type_Enum:
str = gb_string_appendc(str, "enum");
if (type->Enum.base_type != nullptr) {
str = gb_string_appendc(str, " ");
str = write_type_to_string(str, type->Enum.base_type);
}
str = gb_string_appendc(str, " {");
for_array(i, type->Enum.fields) {
Entity *f = type->Enum.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
// str = gb_string_appendc(str, " = ");
}
str = gb_string_append_rune(str, '}');
break;
case Type_Union:
str = gb_string_appendc(str, "union");
if (type->Union.no_nil != 0) str = gb_string_appendc(str, " #no_nil");
if (type->Union.maybe != 0) str = gb_string_appendc(str, " #maybe");
if (type->Union.custom_align != 0) str = gb_string_append_fmt(str, " #align %d", cast(int)type->Union.custom_align);
str = gb_string_appendc(str, " {");
for_array(i, type->Union.variants) {
Type *t = type->Union.variants[i];
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_type_to_string(str, t);
}
str = gb_string_append_rune(str, '}');
break;
case Type_Struct: {
if (type->Struct.soa_kind != StructSoa_None) {
switch (type->Struct.soa_kind) {
case StructSoa_Fixed: str = gb_string_append_fmt(str, "#soa[%d]", cast(int)type->Struct.soa_count); break;
case StructSoa_Slice: str = gb_string_appendc(str, "#soa[]"); break;
case StructSoa_Dynamic: str = gb_string_appendc(str, "#soa[dynamic]"); break;
default: GB_PANIC("Unknown StructSoaKind"); break;
}
str = write_type_to_string(str, type->Struct.soa_elem);
break;
}
str = gb_string_appendc(str, "struct");
if (type->Struct.is_packed) str = gb_string_appendc(str, " #packed");
if (type->Struct.is_raw_union) str = gb_string_appendc(str, " #raw_union");
if (type->Struct.custom_align != 0) str = gb_string_append_fmt(str, " #align %d", cast(int)type->Struct.custom_align);
str = gb_string_appendc(str, " {");
for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, f->type);
}
str = gb_string_append_rune(str, '}');
} break;
case Type_Map: {
str = gb_string_appendc(str, "map[");
str = write_type_to_string(str, type->Map.key);
str = gb_string_append_rune(str, ']');
str = write_type_to_string(str, type->Map.value);
} break;
case Type_Named:
if (type->Named.type_name != nullptr) {
str = gb_string_append_length(str, type->Named.name.text, type->Named.name.len);
} else {
// NOTE(bill): Just in case
str = gb_string_appendc(str, "<named type>");
}
break;
case Type_Tuple:
if (type->Tuple.variables.count > 0) {
isize comma_index = 0;
for_array(i, type->Tuple.variables) {
Entity *var = type->Tuple.variables[i];
if (var == nullptr) {
continue;
}
String name = var->token.string;
if (var->kind == Entity_Constant) {
str = gb_string_appendc(str, "$");
str = gb_string_append_length(str, name.text, name.len);
if (!is_type_untyped(var->type)) {
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, var->type);
str = gb_string_appendc(str, " = ");
str = write_exact_value_to_string(str, var->Constant.value);
} else {
str = gb_string_appendc(str, "=");
str = write_exact_value_to_string(str, var->Constant.value);
}
continue;
}
if (comma_index++ > 0) {
str = gb_string_appendc(str, ", ");
}
if (var->kind == Entity_Variable) {
if (var->flags&EntityFlag_CVarArg) {
str = gb_string_appendc(str, "#c_vararg ");
}
if (var->flags&EntityFlag_Ellipsis) {
Type *slice = base_type(var->type);
str = gb_string_appendc(str, "..");
GB_ASSERT(var->type->kind == Type_Slice);
str = write_type_to_string(str, slice->Slice.elem);
} else {
str = write_type_to_string(str, var->type);
}
} else {
GB_ASSERT(var->kind == Entity_TypeName);
if (var->type->kind == Type_Generic) {
str = gb_string_appendc(str, "typeid/");
str = write_type_to_string(str, var->type);
} else {
if (var->kind == Entity_TypeName) {
str = gb_string_appendc(str, "$");
str = gb_string_append_length(str, name.text, name.len);
str = gb_string_appendc(str, "=");
str = write_type_to_string(str, var->type);
} else {
str = gb_string_appendc(str, "typeid");
}
}
}
}
}
break;
case Type_Proc:
str = gb_string_appendc(str, "proc");
switch (type->Proc.calling_convention) {
case ProcCC_Odin:
break;
case ProcCC_Contextless:
str = gb_string_appendc(str, " \"contextless\" ");
break;
case ProcCC_CDecl:
str = gb_string_appendc(str, " \"cdecl\" ");
break;
case ProcCC_StdCall:
str = gb_string_appendc(str, " \"stdcall\" ");
break;
case ProcCC_FastCall:
str = gb_string_appendc(str, " \"fastcall\" ");
break;
break;
case ProcCC_None:
str = gb_string_appendc(str, " \"none\" ");
break;
case ProcCC_Naked:
str = gb_string_appendc(str, " \"naked\" ");
break;
// case ProcCC_VectorCall:
// str = gb_string_appendc(str, " \"vectorcall\" ");
// break;
// case ProcCC_ClrCall:
// str = gb_string_appendc(str, " \"clrcall\" ");
// break;
}
str = gb_string_appendc(str, "(");
if (type->Proc.params) {
str = write_type_to_string(str, type->Proc.params);
}
str = gb_string_appendc(str, ")");
if (type->Proc.results) {
str = gb_string_appendc(str, " -> ");
if (type->Proc.results->Tuple.variables.count > 1) {
str = gb_string_appendc(str, "(");
}
str = write_type_to_string(str, type->Proc.results);
if (type->Proc.results->Tuple.variables.count > 1) {
str = gb_string_appendc(str, ")");
}
}
break;
case Type_BitSet:
str = gb_string_appendc(str, "bit_set[");
str = write_type_to_string(str, type->BitSet.elem);
if (type->BitSet.underlying != nullptr) {
str = gb_string_appendc(str, "; ");
str = write_type_to_string(str, type->BitSet.underlying);
}
str = gb_string_appendc(str, "]");
break;
case Type_SimdVector:
str = gb_string_append_fmt(str, "#simd[%d]", cast(int)type->SimdVector.count);
str = write_type_to_string(str, type->SimdVector.elem);
break;
case Type_RelativePointer:
str = gb_string_append_fmt(str, "#relative(");
str = write_type_to_string(str, type->RelativePointer.base_integer);
str = gb_string_append_fmt(str, ") ");
str = write_type_to_string(str, type->RelativePointer.pointer_type);
break;
case Type_RelativeSlice:
str = gb_string_append_fmt(str, "#relative(");
str = write_type_to_string(str, type->RelativeSlice.base_integer);
str = gb_string_append_fmt(str, ") ");
str = write_type_to_string(str, type->RelativeSlice.slice_type);
break;
}
return str;
}
gbString type_to_string(Type *type, gbAllocator allocator) {
return write_type_to_string(gb_string_make(allocator, ""), type);
}
gbString type_to_string(Type *type) {
return write_type_to_string(gb_string_make(heap_allocator(), ""), type);
}