Files
Odin/src/old_vm.cpp
Ginger Bill 6c2772d093 Scrap Virtual Machine and begin again
I just didn't like the style of it.
2016-11-03 16:26:22 +00:00

1306 lines
39 KiB
C++

// TODO(bill): COMPLETELY REWORK THIS ENTIRE INTERPRETER
#include "dyncall/include/dyncall.h"
struct VirtualMachine;
struct vmValueProc {
ssaProcedure *proc; // If `NULL`, use `ptr` instead and call external procedure
void * ptr;
};
struct vmValue {
// NOTE(bill): Shouldn't need to store type here as the type checking
// has already been handled in the SSA
union {
f32 val_f32;
f64 val_f64;
void * val_ptr;
i64 val_int;
vmValueProc val_proc;
};
Array<vmValue> val_comp; // NOTE(bill): Will be freed through "stack"
Type *type;
};
vmValue vm_make_value_ptr(Type *type, void *ptr) {
GB_ASSERT(is_type_pointer(type));
vmValue v = {};
v.type = default_type(type);
v.val_ptr = ptr;
return v;
}
vmValue vm_make_value_int(Type *type, i64 i) {
GB_ASSERT(is_type_integer(type) ||
is_type_boolean(type) ||
is_type_enum(type));
vmValue v = {};
v.type = default_type(type);
v.val_int = i;
return v;
}
vmValue vm_make_value_f32(Type *type, f32 f) {
GB_ASSERT(is_type_f32(type));
vmValue v = {};
v.type = default_type(type);
v.val_f32 = f;
return v;
}
vmValue vm_make_value_f64(Type *type, f64 f) {
GB_ASSERT(is_type_f64(type));
vmValue v = {};
v.type = default_type(type);
v.val_f64 = f;
return v;
}
vmValue vm_make_value_comp(Type *type, gbAllocator allocator, isize count) {
GB_ASSERT(is_type_string(type) ||
is_type_any (type) ||
is_type_array (type) ||
is_type_vector(type) ||
is_type_slice (type) ||
is_type_maybe (type) ||
is_type_struct(type) ||
is_type_union(type) ||
is_type_raw_union(type) ||
is_type_tuple (type) ||
is_type_proc (type));
vmValue v = {};
v.type = default_type(type);
array_init_count(&v.val_comp, allocator, count);
return v;
}
struct vmFrame {
VirtualMachine * vm;
vmFrame * caller;
ssaProcedure * curr_proc;
ssaBlock * prev_block;
ssaBlock * curr_block;
i32 instr_index; // For the current block
Map<vmValue> values; // Key: ssaValue *
gbTempArenaMemory temp_arena_memory;
gbAllocator stack_allocator;
Array<void *> locals; // Memory to locals
vmValue result;
};
struct VirtualMachine {
ssaModule * module;
gbArena stack_arena;
gbAllocator stack_allocator;
gbAllocator heap_allocator;
Array<vmFrame> frame_stack;
Map<vmValue> globals; // Key: ssaValue *
Map<vmValue> const_compound_lits; // Key: ssaValue *
vmValue exit_value;
};
void vm_exec_instr (VirtualMachine *vm, ssaValue *value);
vmValue vm_operand_value(VirtualMachine *vm, ssaValue *value);
void vm_store (VirtualMachine *vm, void *dst, vmValue val, Type *type);
vmValue vm_load (VirtualMachine *vm, void *ptr, Type *type);
void vm_print_value (vmValue value, Type *type);
void vm_jump_block(vmFrame *f, ssaBlock *target) {
f->prev_block = f->curr_block;
f->curr_block = target;
f->instr_index = 0;
}
vmFrame *vm_back_frame(VirtualMachine *vm) {
if (vm->frame_stack.count > 0) {
return &vm->frame_stack[vm->frame_stack.count-1];
}
return NULL;
}
i64 vm_type_size_of(VirtualMachine *vm, Type *type) {
return type_size_of(vm->module->sizes, vm->heap_allocator, type);
}
i64 vm_type_align_of(VirtualMachine *vm, Type *type) {
return type_align_of(vm->module->sizes, vm->heap_allocator, type);
}
i64 vm_type_offset_of(VirtualMachine *vm, Type *type, i64 index) {
return type_offset_of(vm->module->sizes, vm->heap_allocator, type, index);
}
void vm_init(VirtualMachine *vm, ssaModule *module) {
gb_arena_init_from_allocator(&vm->stack_arena, heap_allocator(), gb_megabytes(64));
vm->module = module;
vm->stack_allocator = gb_arena_allocator(&vm->stack_arena);
vm->heap_allocator = heap_allocator();
array_init(&vm->frame_stack, vm->heap_allocator);
map_init(&vm->globals, vm->heap_allocator);
map_init(&vm->const_compound_lits, vm->heap_allocator);
for_array(i, vm->module->values.entries) {
ssaValue *v = vm->module->values.entries[i].value;
switch (v->kind) {
case ssaValue_Global: {
Type *t = ssa_type(v);
GB_ASSERT(is_type_pointer(t));
i64 size = vm_type_size_of(vm, t);
i64 align = vm_type_align_of(vm, t);
void *mem = gb_alloc_align(vm->heap_allocator, size, align);
if (v->Global.value != NULL && v->Global.value->kind == ssaValue_Constant) {
vm_store(vm, mem, vm_operand_value(vm, v->Global.value), type_deref(t));
}
map_set(&vm->globals, hash_pointer(v), vm_make_value_ptr(t, mem));
} break;
}
}
}
void vm_destroy(VirtualMachine *vm) {
array_free(&vm->frame_stack);
map_destroy(&vm->globals);
map_destroy(&vm->const_compound_lits);
gb_arena_free(&vm->stack_arena);
}
void vm_set_value(vmFrame *f, ssaValue *v, vmValue val) {
if (v != NULL) {
GB_ASSERT(ssa_type(v) != NULL);
map_set(&f->values, hash_pointer(v), val);
}
}
vmFrame *vm_push_frame(VirtualMachine *vm, ssaProcedure *proc) {
vmFrame frame = {};
frame.vm = vm;
frame.curr_proc = proc;
frame.prev_block = proc->blocks[0];
frame.curr_block = proc->blocks[0];
frame.instr_index = 0;
frame.caller = vm_back_frame(vm);
frame.stack_allocator = vm->stack_allocator;
frame.temp_arena_memory = gb_temp_arena_memory_begin(&vm->stack_arena);
map_init(&frame.values, vm->heap_allocator);
array_init(&frame.locals, vm->heap_allocator, proc->local_count);
array_add(&vm->frame_stack, frame);
return vm_back_frame(vm);
}
void vm_pop_frame(VirtualMachine *vm) {
vmFrame *f = vm_back_frame(vm);
gb_temp_arena_memory_end(f->temp_arena_memory);
array_free(&f->locals);
map_destroy(&f->values);
array_pop(&vm->frame_stack);
}
vmValue vm_call_proc(VirtualMachine *vm, ssaProcedure *proc, Array<vmValue> values) {
Type *type = base_type(proc->type);
GB_ASSERT_MSG(type->Proc.param_count == values.count,
"Incorrect number of arguments passed into procedure call!\n"
"%.*s -> %td vs %td",
LIT(proc->name),
type->Proc.param_count, values.count);
Type *result_type = type->Proc.results;
if (result_type != NULL &&
result_type->Tuple.variable_count == 1) {
result_type = result_type->Tuple.variables[0]->type;
}
if (proc->body == NULL) {
// GB_PANIC("TODO(bill): external procedure");
gb_printf_err("TODO(bill): external procedure: %.*s\n", LIT(proc->name));
vmValue result = {};
result.type = result_type;
return result;
}
void *result_mem = NULL;
if (result_type != NULL) {
result_mem = gb_alloc_align(vm->stack_allocator,
vm_type_size_of(vm, result_type),
vm_type_align_of(vm, result_type));
}
gb_printf("call: %.*s\n", LIT(proc->name));
vmFrame *f = vm_push_frame(vm, proc);
for_array(i, proc->params) {
vm_set_value(f, proc->params[i], values[i]);
}
while (f->curr_block != NULL) {
ssaValue *curr_instr = f->curr_block->instrs[f->instr_index++];
vm_exec_instr(vm, curr_instr);
}
if (type->Proc.result_count > 0) {
vmValue r = f->result;
gb_printf("%.*s -> ", LIT(proc->name));
vm_print_value(r, result_type);
gb_printf("\n");
vm_store(vm, result_mem, r, result_type);
}
vm_pop_frame(vm);
if (result_mem != NULL) {
return vm_load(vm, result_mem, result_type);
}
vmValue void_result = {};
return void_result;
}
ssaProcedure *vm_lookup_procedure(VirtualMachine *vm, String name) {
ssaValue *v = ssa_lookup_member(vm->module, name);
GB_ASSERT(v->kind == ssaValue_Proc);
return &v->Proc;
}
vmValue vm_call_proc_by_name(VirtualMachine *vm, String name, Array<vmValue> args) {
return vm_call_proc(vm, vm_lookup_procedure(vm, name), args);
}
vmValue vm_exact_value(VirtualMachine *vm, ssaValue *ptr, ExactValue value, Type *t) {
Type *original_type = t;
t = base_type(get_enum_base_type(t));
// i64 size = vm_type_size_of(vm, t);
if (is_type_boolean(t)) {
return vm_make_value_int(original_type, value.value_bool);
} else if (is_type_integer(t)) {
return vm_make_value_int(original_type, value.value_integer);
} else if (is_type_float(t)) {
if (t->Basic.kind == Basic_f32) {
return vm_make_value_f32(original_type, cast(f32)value.value_float);
} else if (t->Basic.kind == Basic_f64) {
return vm_make_value_f64(original_type, cast(f64)value.value_float);
}
} else if (is_type_pointer(t)) {
return vm_make_value_ptr(original_type, cast(void *)cast(intptr)value.value_pointer);
} else if (is_type_string(t)) {
vmValue result = vm_make_value_comp(original_type, vm->stack_allocator, 2);
String str = value.value_string;
i64 len = str.len;
u8 *text = gb_alloc_array(vm->heap_allocator, u8, len);
gb_memcopy(text, str.text, len);
result.val_comp[0] = vm_make_value_ptr(t_u8_ptr, text);
result.val_comp[1] = vm_make_value_int(t_int, len);
return result;
} else if (value.kind == ExactValue_Compound) {
if (ptr != NULL) {
vmValue *found = map_get(&vm->const_compound_lits, hash_pointer(ptr));
if (found != NULL) {
return *found;
}
}
ast_node(cl, CompoundLit, value.value_compound);
if (is_type_array(t)) {
vmValue result = {};
isize elem_count = cl->elems.count;
if (elem_count == 0) {
if (ptr != NULL) {
map_set(&vm->const_compound_lits, hash_pointer(ptr), result);
}
return result;
}
Type *type = base_type(t);
result = vm_make_value_comp(t, vm->heap_allocator, type->Array.count);
for (isize i = 0; i < elem_count; i++) {
TypeAndValue *tav = type_and_value_of_expression(vm->module->info, cl->elems[i]);
vmValue elem = vm_exact_value(vm, NULL, tav->value, tav->type);
result.val_comp[i] = elem;
}
if (ptr != NULL) {
map_set(&vm->const_compound_lits, hash_pointer(ptr), result);
}
return result;
} else if (is_type_vector(t)) {
vmValue result = {};
isize elem_count = cl->elems.count;
if (elem_count == 0) {
if (ptr != NULL) {
map_set(&vm->const_compound_lits, hash_pointer(ptr), result);
}
return result;
}
Type *type = base_type(t);
result = vm_make_value_comp(t, vm->heap_allocator, type->Array.count);
for (isize i = 0; i < elem_count; i++) {
TypeAndValue *tav = type_and_value_of_expression(vm->module->info, cl->elems[i]);
vmValue elem = vm_exact_value(vm, NULL, tav->value, tav->type);
result.val_comp[i] = elem;
}
if (ptr != NULL) {
map_set(&vm->const_compound_lits, hash_pointer(ptr), result);
}
return result;
} else if (is_type_struct(t)) {
ast_node(cl, CompoundLit, value.value_compound);
isize value_count = t->Record.field_count;
vmValue result = vm_make_value_comp(t, vm->heap_allocator, value_count);
if (cl->elems.count == 0) {
return result;
}
if (cl->elems[0]->kind == AstNode_FieldValue) {
isize elem_count = cl->elems.count;
for (isize i = 0; i < elem_count; i++) {
ast_node(fv, FieldValue, cl->elems[i]);
String name = fv->field->Ident.string;
TypeAndValue *tav = type_and_value_of_expression(vm->module->info, fv->value);
GB_ASSERT(tav != NULL);
Selection sel = lookup_field(vm->heap_allocator, t, name, false);
Entity *f = t->Record.fields[sel.index[0]];
result.val_comp[f->Variable.field_index] = vm_exact_value(vm, NULL, tav->value, f->type);
}
} else {
for (isize i = 0; i < value_count; i++) {
TypeAndValue *tav = type_and_value_of_expression(vm->module->info, cl->elems[i]);
GB_ASSERT(tav != NULL);
Entity *f = t->Record.fields_in_src_order[i];
result.val_comp[f->Variable.field_index] = vm_exact_value(vm, NULL, tav->value, f->type);
}
}
return result;
} else {
GB_PANIC("TODO(bill): Other compound types\n");
}
} else if (value.kind == ExactValue_Invalid) {
vmValue zero_result = {};
zero_result.type = t;
return zero_result;
} else {
gb_printf_err("TODO(bill): Other constant types: %s\n", type_to_string(original_type));
}
GB_ASSERT_MSG(t == NULL, "%s - %d", type_to_string(t), value.kind);
vmValue void_result = {};
return void_result;
}
vmValue vm_operand_value(VirtualMachine *vm, ssaValue *value) {
vmFrame *f = vm_back_frame(vm);
vmValue v = {};
switch (value->kind) {
case ssaValue_Constant: {
v = vm_exact_value(vm, value, value->Constant.value, value->Constant.type);
} break;
case ssaValue_ConstantSlice: {
auto *cs = &value->ConstantSlice;
v = vm_make_value_comp(ssa_type(value), vm->stack_allocator, 3);
v.val_comp[0] = vm_operand_value(vm, cs->backing_array);
v.val_comp[1] = vm_make_value_int(t_int, cs->count);
v.val_comp[2] = vm_make_value_int(t_int, cs->count);
} break;
case ssaValue_Nil:
GB_PANIC("TODO(bill): ssaValue_Nil");
break;
case ssaValue_TypeName:
GB_PANIC("ssaValue_TypeName has no operand value");
break;
case ssaValue_Global:
v = *map_get(&vm->globals, hash_pointer(value));
break;
case ssaValue_Param:
v = *map_get(&f->values, hash_pointer(value));
break;
case ssaValue_Proc: {
v.type = ssa_type(value);
v.val_proc.proc = &value->Proc;
// GB_PANIC("TODO(bill): ssaValue_Proc");
} break;
case ssaValue_Block:
GB_PANIC("ssaValue_Block has no operand value");
break;
case ssaValue_Instr: {
vmValue *found = map_get(&f->values, hash_pointer(value));
if (found) {
v = *found;
} else {
GB_PANIC("Invalid instruction");
}
} break;
}
return v;
}
void vm_store_integer(VirtualMachine *vm, void *dst, vmValue val) {
// TODO(bill): I assume little endian here
GB_ASSERT(dst != NULL);
Type *type = val.type;
GB_ASSERT_MSG(is_type_integer(type) || is_type_boolean(type),
"\nExpected integer/boolean, got %s (%s)",
type_to_string(type),
type_to_string(base_type(type)));
i64 size = vm_type_size_of(vm, type);
gb_memcopy(dst, &val.val_int, size);
}
void vm_store_pointer(VirtualMachine *vm, void *dst, vmValue val) {
// TODO(bill): I assume little endian here
GB_ASSERT(dst != NULL);
GB_ASSERT(is_type_pointer(val.type));
gb_memcopy(dst, &val.val_ptr, vm_type_size_of(vm, t_rawptr));
}
void vm_store(VirtualMachine *vm, void *dst, vmValue val, Type *type) {
i64 size = vm_type_size_of(vm, type);
Type *original_type = type;
// NOTE(bill): enums are pretty much integers
type = base_type(get_enum_base_type(type));
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_bool:
case Basic_i8:
case Basic_u8:
case Basic_i16:
case Basic_u16:
case Basic_i32:
case Basic_u32:
case Basic_i64:
case Basic_u64:
case Basic_int:
case Basic_uint:
vm_store_integer(vm, dst, val);
break;
case Basic_f32:
*cast(f32 *)dst = val.val_f32;
break;
case Basic_f64:
*cast(f64 *)dst = val.val_f64;
break;
case Basic_rawptr:
vm_store_pointer(vm, dst, val); // NOTE(bill): A pointer can be treated as an integer
break;
case Basic_string: {
i64 word_size = vm_type_size_of(vm, t_int);
u8 *mem = cast(u8 *)dst;
vm_store_pointer(vm, mem+0*word_size, val.val_comp[0]);
vm_store_integer(vm, mem+1*word_size, val.val_comp[1]);
} break;
case Basic_any: {
i64 word_size = vm_type_size_of(vm, t_int);
u8 *mem = cast(u8 *)dst;
vm_store_pointer(vm, mem+0*word_size, val.val_comp[0]);
vm_store_pointer(vm, mem+1*word_size, val.val_comp[1]);
} break;
default:
gb_printf_err("TODO(bill): other basic types for `vm_store` %s\n", type_to_string(type));
break;
}
break;
case Type_Pointer:
vm_store_pointer(vm, dst, val);
break;
case Type_Record: {
u8 *mem = cast(u8 *)dst;
gb_zero_size(mem, size);
if (is_type_struct(type)) {
GB_ASSERT_MSG(type->Record.field_count >= val.val_comp.count,
"%td vs %td",
type->Record.field_count, val.val_comp.count);
isize field_count = gb_min(val.val_comp.count, type->Record.field_count);
for (isize i = 0; i < field_count; i++) {
Entity *f = type->Record.fields[i];
i64 offset = vm_type_offset_of(vm, type, i);
vm_store(vm, mem+offset, val.val_comp[i], f->type);
}
} else if (is_type_union(type)) {
GB_ASSERT(val.val_comp.count == 2);
i64 word_size = vm_type_size_of(vm, t_int);
i64 size_of_union = vm_type_size_of(vm, type) - word_size;
for (isize i = 0; i < size_of_union; i++) {
mem[i] = cast(u8)val.val_comp[0].val_comp[i].val_int;
}
vm_store_integer(vm, mem + size_of_union, val.val_comp[1]);
} else if (is_type_raw_union(type)) {
GB_ASSERT(val.val_comp.count == 1);
i64 word_size = vm_type_size_of(vm, t_int);
i64 size_of_union = vm_type_size_of(vm, type) - word_size;
for (isize i = 0; i < size_of_union; i++) {
mem[i] = cast(u8)val.val_comp[0].val_comp[i].val_int;
}
} else {
GB_PANIC("Unknown record type: %s", type_to_string(type));
}
} break;
case Type_Tuple: {
u8 *mem = cast(u8 *)dst;
GB_ASSERT_MSG(type->Tuple.variable_count >= val.val_comp.count,
"%td vs %td",
type->Tuple.variable_count, val.val_comp.count);
isize variable_count = gb_min(val.val_comp.count, type->Tuple.variable_count);
for (isize i = 0; i < variable_count; i++) {
Entity *f = type->Tuple.variables[i];
void *ptr = mem + vm_type_offset_of(vm, type, i);
vm_store(vm, ptr, val.val_comp[i], f->type);
}
} break;
case Type_Array: {
Type *elem_type = type->Array.elem;
u8 *mem = cast(u8 *)dst;
i64 elem_size = vm_type_size_of(vm, elem_type);
i64 elem_count = gb_min(val.val_comp.count, type->Array.count);
for (i64 i = 0; i < elem_count; i++) {
vm_store(vm, mem + i*elem_size, val.val_comp[i], elem_type);
}
} break;
case Type_Vector: {
Type *elem_type = type->Array.elem;
GB_ASSERT_MSG(!is_type_boolean(elem_type), "TODO(bill): Booleans of vectors");
u8 *mem = cast(u8 *)dst;
i64 elem_size = vm_type_size_of(vm, elem_type);
i64 elem_count = gb_min(val.val_comp.count, type->Array.count);
for (i64 i = 0; i < elem_count; i++) {
vm_store(vm, mem + i*elem_size, val.val_comp[i], elem_type);
}
} break;
case Type_Slice: {
i64 word_size = vm_type_size_of(vm, t_int);
u8 *mem = cast(u8 *)dst;
vm_store_pointer(vm, mem+0*word_size, val.val_comp[0]);
vm_store_integer(vm, mem+1*word_size, val.val_comp[1]);
vm_store_integer(vm, mem+2*word_size, val.val_comp[2]);
} break;
default:
gb_printf_err("TODO(bill): other types for `vm_store` %s\n", type_to_string(type));
break;
}
}
vmValue vm_load_integer(VirtualMachine *vm, void *ptr, Type *type) {
// TODO(bill): I assume little endian here
vmValue v = {};
v.type = type;
GB_ASSERT(is_type_integer(type) || is_type_boolean(type));
// NOTE(bill): Only load the needed amount
gb_memcopy(&v.val_int, ptr, vm_type_size_of(vm, type));
return v;
}
vmValue vm_load_pointer(VirtualMachine *vm, void *ptr, Type *type) {
// TODO(bill): I assume little endian here
vmValue v = {};
v.type = type;
GB_ASSERT(is_type_pointer(type));
// NOTE(bill): Only load the needed amount
gb_memcopy(&v.val_int, ptr, vm_type_size_of(vm, type));
return v;
}
vmValue vm_load(VirtualMachine *vm, void *ptr, Type *type) {
i64 size = vm_type_size_of(vm, type);
Type *original_type = type;
type = base_type(get_enum_base_type(type));
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_bool:
case Basic_i8:
case Basic_u8:
case Basic_i16:
case Basic_u16:
case Basic_i32:
case Basic_u32:
case Basic_i64:
case Basic_u64:
case Basic_int:
case Basic_uint:
return vm_load_integer(vm, ptr, original_type);
case Basic_f32:
return vm_make_value_f32(original_type, *cast(f32 *)ptr);
case Basic_f64:
return vm_make_value_f64(original_type, *cast(f64 *)ptr);
case Basic_rawptr:
return vm_load_pointer(vm, ptr, original_type);
case Basic_string: {
u8 *mem = cast(u8 *)ptr;
i64 word_size = vm_type_size_of(vm, t_int);
vmValue result = vm_make_value_comp(type, vm->stack_allocator, 2);
result.val_comp[0] = vm_load_pointer(vm, mem+0*word_size, t_u8_ptr);
result.val_comp[1] = vm_load_integer(vm, mem+1*word_size, t_int);
return result;
} break;
default:
GB_PANIC("TODO(bill): other basic types for `vm_load` %s", type_to_string(type));
break;
}
break;
case Type_Pointer:
return vm_load_pointer(vm, ptr, original_type);
case Type_Array: {
i64 count = type->Array.count;
Type *elem_type = type->Array.elem;
i64 elem_size = vm_type_size_of(vm, elem_type);
vmValue result = vm_make_value_comp(type, vm->stack_allocator, count);
u8 *mem = cast(u8 *)ptr;
for (isize i = 0; i < count; i++) {
i64 offset = elem_size*i;
vmValue val = vm_load(vm, mem+offset, elem_type);
result.val_comp[i] = val;
}
return result;
} break;
case Type_Slice: {
Type *elem_type = type->Slice.elem;
i64 elem_size = vm_type_size_of(vm, elem_type);
i64 word_size = vm_type_size_of(vm, t_int);
vmValue result = vm_make_value_comp(type, vm->stack_allocator, 3);
u8 *mem = cast(u8 *)ptr;
result.val_comp[0] = vm_load(vm, mem+0*word_size, t_rawptr); // data
result.val_comp[1] = vm_load(vm, mem+1*word_size, t_int); // count
result.val_comp[2] = vm_load(vm, mem+2*word_size, t_int); // capacity
return result;
} break;
case Type_Record: {
if (is_type_struct(type)) {
isize field_count = type->Record.field_count;
vmValue result = vm_make_value_comp(type, vm->stack_allocator, field_count);
u8 *mem = cast(u8 *)ptr;
for (isize i = 0; i < field_count; i++) {
Entity *f = type->Record.fields[i];
i64 offset = vm_type_offset_of(vm, type, i);
result.val_comp[i] = vm_load(vm, mem+offset, f->type);
}
return result;
} else if (is_type_union(type)) {
i64 word_size = vm_type_size_of(vm, t_int);
i64 size_of_union = vm_type_size_of(vm, type) - word_size;
u8 *mem = cast(u8 *)ptr;
vmValue result = vm_make_value_comp(type, vm->stack_allocator, 2);
result.val_comp[0] = vm_load(vm, mem, make_type_array(vm->stack_allocator, t_u8, size_of_union));
result.val_comp[1] = vm_load(vm, mem+size_of_union, t_int);
return result;
} else if (is_type_raw_union(type)) {
gb_printf_err("TODO(bill): load raw_union\n");
} else {
gb_printf_err("TODO(bill): load other records\n");
}
} break;
case Type_Tuple: {
isize count = type->Tuple.variable_count;
vmValue result = vm_make_value_comp(type, vm->stack_allocator, count);
u8 *mem = cast(u8 *)ptr;
for (isize i = 0; i < count; i++) {
Entity *f = type->Tuple.variables[i];
i64 offset = vm_type_offset_of(vm, type, i);
result.val_comp[i] = vm_load(vm, mem+offset, f->type);
}
return result;
} break;
default:
GB_PANIC("TODO(bill): other types for `vm_load` %s", type_to_string(type));
break;
}
GB_ASSERT(type == NULL);
vmValue void_result = {};
return void_result;
}
vmValue vm_exec_binary_op(VirtualMachine *vm, Type *type, vmValue lhs, vmValue rhs, TokenKind op) {
vmValue result = {};
type = base_type(type);
if (is_type_vector(type)) {
Type *elem = type->Vector.elem;
i64 count = type->Vector.count;
result = vm_make_value_comp(type, vm->stack_allocator, count);
for (i64 i = 0; i < count; i++) {
result.val_comp[i] = vm_exec_binary_op(vm, elem, lhs.val_comp[i], rhs.val_comp[i], op);
}
return result;
}
if (gb_is_between(op, Token__ComparisonBegin+1, Token__ComparisonEnd-1)) {
if (is_type_integer(type) || is_type_boolean(type)) {
// TODO(bill): Do I need to take into account the size of the integer?
switch (op) {
case Token_CmpEq: result.val_int = lhs.val_int == rhs.val_int; break;
case Token_NotEq: result.val_int = lhs.val_int != rhs.val_int; break;
case Token_Lt: result.val_int = lhs.val_int < rhs.val_int; break;
case Token_Gt: result.val_int = lhs.val_int > rhs.val_int; break;
case Token_LtEq: result.val_int = lhs.val_int <= rhs.val_int; break;
case Token_GtEq: result.val_int = lhs.val_int >= rhs.val_int; break;
}
} else if (type == t_f32) {
switch (op) {
case Token_CmpEq: result.val_f32 = lhs.val_f32 == rhs.val_f32; break;
case Token_NotEq: result.val_f32 = lhs.val_f32 != rhs.val_f32; break;
case Token_Lt: result.val_f32 = lhs.val_f32 < rhs.val_f32; break;
case Token_Gt: result.val_f32 = lhs.val_f32 > rhs.val_f32; break;
case Token_LtEq: result.val_f32 = lhs.val_f32 <= rhs.val_f32; break;
case Token_GtEq: result.val_f32 = lhs.val_f32 >= rhs.val_f32; break;
}
} else if (type == t_f64) {
switch (op) {
case Token_CmpEq: result.val_f64 = lhs.val_f64 == rhs.val_f64; break;
case Token_NotEq: result.val_f64 = lhs.val_f64 != rhs.val_f64; break;
case Token_Lt: result.val_f64 = lhs.val_f64 < rhs.val_f64; break;
case Token_Gt: result.val_f64 = lhs.val_f64 > rhs.val_f64; break;
case Token_LtEq: result.val_f64 = lhs.val_f64 <= rhs.val_f64; break;
case Token_GtEq: result.val_f64 = lhs.val_f64 >= rhs.val_f64; break;
}
} else if (is_type_string(type)) {
Array<vmValue> args = {};
array_init_count(&args, vm->stack_allocator, 2);
args[0] = lhs;
args[1] = rhs;
switch (op) {
case Token_CmpEq: result = vm_call_proc_by_name(vm, make_string("__string_eq"), args); break;
case Token_NotEq: result = vm_call_proc_by_name(vm, make_string("__string_ne"), args); break;
case Token_Lt: result = vm_call_proc_by_name(vm, make_string("__string_lt"), args); break;
case Token_Gt: result = vm_call_proc_by_name(vm, make_string("__string_gt"), args); break;
case Token_LtEq: result = vm_call_proc_by_name(vm, make_string("__string_le"), args); break;
case Token_GtEq: result = vm_call_proc_by_name(vm, make_string("__string_ge"), args); break;
}
} else {
GB_PANIC("TODO(bill): Vector BinaryOp");
}
} else {
if (is_type_integer(type) || is_type_boolean(type)) {
switch (op) {
case Token_Add: result.val_int = lhs.val_int + rhs.val_int; break;
case Token_Sub: result.val_int = lhs.val_int - rhs.val_int; break;
case Token_And: result.val_int = lhs.val_int & rhs.val_int; break;
case Token_Or: result.val_int = lhs.val_int | rhs.val_int; break;
case Token_Xor: result.val_int = lhs.val_int ^ rhs.val_int; break;
case Token_Shl: result.val_int = lhs.val_int << rhs.val_int; break;
case Token_Shr: result.val_int = lhs.val_int >> rhs.val_int; break;
case Token_Mul: result.val_int = lhs.val_int * rhs.val_int; break;
case Token_Not: result.val_int = lhs.val_int ^ rhs.val_int; break;
case Token_AndNot: result.val_int = lhs.val_int & (~rhs.val_int); break;
// TODO(bill): Take into account size of integer and signedness
case Token_Quo: GB_PANIC("TODO(bill): BinaryOp Integer Token_Quo"); break;
case Token_Mod: GB_PANIC("TODO(bill): BinaryOp Integer Token_Mod"); break;
}
} else if (is_type_float(type)) {
if (type == t_f32) {
switch (op) {
case Token_Add: result.val_f32 = lhs.val_f32 + rhs.val_f32; break;
case Token_Sub: result.val_f32 = lhs.val_f32 - rhs.val_f32; break;
case Token_Mul: result.val_f32 = lhs.val_f32 * rhs.val_f32; break;
case Token_Quo: result.val_f32 = lhs.val_f32 / rhs.val_f32; break;
case Token_Mod: GB_PANIC("TODO(bill): BinaryOp f32 Token_Mod"); break;
}
} else if (type == t_f64) {
switch (op) {
case Token_Add: result.val_f64 = lhs.val_f64 + rhs.val_f64; break;
case Token_Sub: result.val_f64 = lhs.val_f64 - rhs.val_f64; break;
case Token_Mul: result.val_f64 = lhs.val_f64 * rhs.val_f64; break;
case Token_Quo: result.val_f64 = lhs.val_f64 / rhs.val_f64; break;
case Token_Mod: GB_PANIC("TODO(bill): BinaryOp f64 Token_Mod"); break;
}
}
} else {
GB_PANIC("Invalid binary op type");
}
}
return result;
}
void vm_exec_instr(VirtualMachine *vm, ssaValue *value) {
GB_ASSERT(value != NULL);
GB_ASSERT(value->kind == ssaValue_Instr);
ssaInstr *instr = &value->Instr;
vmFrame *f = vm_back_frame(vm);
#if 0
if (instr->kind != ssaInstr_Comment) {
gb_printf("exec_instr: %.*s\n", LIT(ssa_instr_strings[instr->kind]));
}
#endif
switch (instr->kind) {
case ssaInstr_StartupRuntime: {
#if 1
Array<vmValue> args = {}; // Empty
vm_call_proc_by_name(vm, make_string(SSA_STARTUP_RUNTIME_PROC_NAME), args); // NOTE(bill): No return value
#endif
} break;
case ssaInstr_Comment:
break;
case ssaInstr_Local: {
Type *type = ssa_type(value);
GB_ASSERT(is_type_pointer(type));
isize size = gb_max(1, vm_type_size_of(vm, type));
isize align = gb_max(1, vm_type_align_of(vm, type));
void *memory = gb_alloc_align(vm->stack_allocator, size, align);
GB_ASSERT(memory != NULL);
vm_set_value(f, value, vm_make_value_ptr(type, memory));
array_add(&f->locals, memory);
} break;
case ssaInstr_ZeroInit: {
Type *t = type_deref(ssa_type(instr->ZeroInit.address));
vmValue addr = vm_operand_value(vm, instr->ZeroInit.address);
void *data = addr.val_ptr;
i64 size = vm_type_size_of(vm, t);
gb_zero_size(data, size);
} break;
case ssaInstr_Store: {
vmValue addr = vm_operand_value(vm, instr->Store.address);
vmValue val = vm_operand_value(vm, instr->Store.value);
GB_ASSERT(val.type != NULL);
Type *t = type_deref(ssa_type(instr->Store.address));
vm_store(vm, addr.val_ptr, val, t);
} break;
case ssaInstr_Load: {
vmValue addr = vm_operand_value(vm, instr->Load.address);
Type *t = ssa_type(value);
vmValue v = vm_load(vm, addr.val_ptr, t);
vm_set_value(f, value, v);
} break;
case ssaInstr_ArrayElementPtr: {
vmValue address = vm_operand_value(vm, instr->ArrayElementPtr.address);
vmValue elem_index = vm_operand_value(vm, instr->ArrayElementPtr.elem_index);
Type *t = ssa_type(instr->ArrayElementPtr.address);
GB_ASSERT(is_type_pointer(t));
i64 elem_size = vm_type_size_of(vm, type_deref(t));
void *ptr = cast(u8 *)address.val_ptr + elem_index.val_int*elem_size;
vm_set_value(f, value, vm_make_value_ptr(t, ptr));
} break;
case ssaInstr_StructElementPtr: {
vmValue address = vm_operand_value(vm, instr->StructElementPtr.address);
i32 elem_index = instr->StructElementPtr.elem_index;
Type *t = ssa_type(instr->StructElementPtr.address);
GB_ASSERT(is_type_pointer(t));
i64 offset = vm_type_offset_of(vm, type_deref(t), elem_index);
void *ptr = cast(u8 *)address.val_ptr + offset;
vm_set_value(f, value, vm_make_value_ptr(t, ptr));
} break;
case ssaInstr_PtrOffset: {
Type *t = ssa_type(instr->PtrOffset.address);
GB_ASSERT(is_type_pointer(t));
i64 elem_size = vm_type_size_of(vm, type_deref(t));
vmValue address = vm_operand_value(vm, instr->PtrOffset.address);
vmValue offset = vm_operand_value(vm, instr->PtrOffset.offset);
void *ptr = cast(u8 *)address.val_ptr + offset.val_int*elem_size;
vm_set_value(f, value, vm_make_value_ptr(t, ptr));
} break;
case ssaInstr_Phi: {
for_array(i, f->curr_block->preds) {
ssaBlock *pred = f->curr_block->preds[i];
if (f->prev_block == pred) {
vmValue edge = vm_operand_value(vm, instr->Phi.edges[i]);
vm_set_value(f, value, edge);
break;
}
}
} break;
case ssaInstr_ArrayExtractValue: {
vmValue s = vm_operand_value(vm, instr->ArrayExtractValue.address);
vmValue v = s.val_comp[instr->ArrayExtractValue.index];
vm_set_value(f, value, v);
} break;
case ssaInstr_StructExtractValue: {
vmValue s = vm_operand_value(vm, instr->StructExtractValue.address);
vmValue v = s.val_comp[instr->StructExtractValue.index];
vm_set_value(f, value, v);
} break;
case ssaInstr_Jump: {
vm_jump_block(f, instr->Jump.block);
} break;
case ssaInstr_If: {
vmValue cond = vm_operand_value(vm, instr->If.cond);
if (cond.val_int != 0) {
vm_jump_block(f, instr->If.true_block);
} else {
vm_jump_block(f, instr->If.false_block);
}
} break;
case ssaInstr_Return: {
Type *return_type = NULL;
vmValue result = {};
if (instr->Return.value != NULL) {
return_type = ssa_type(instr->Return.value);
result = vm_operand_value(vm, instr->Return.value);
}
f->result = result;
f->curr_block = NULL;
f->instr_index = 0;
return;
} break;
case ssaInstr_Conv: {
// TODO(bill): Assuming little endian
vmValue dst = {};
vmValue src = vm_operand_value(vm, instr->Conv.value);
i64 from_size = vm_type_size_of(vm, instr->Conv.from);
i64 to_size = vm_type_size_of(vm, instr->Conv.to);
switch (instr->Conv.kind) {
case ssaConv_trunc:
gb_memcopy(&dst, &src, to_size);
break;
case ssaConv_zext:
gb_memcopy(&dst, &src, from_size);
break;
case ssaConv_fptrunc: {
GB_ASSERT(from_size > to_size);
GB_ASSERT(base_type(instr->Conv.from) == t_f64);
GB_ASSERT(base_type(instr->Conv.to) == t_f32);
dst.val_f32 = cast(f32)src.val_f64;
} break;
case ssaConv_fpext: {
GB_ASSERT(from_size < to_size);
GB_ASSERT(base_type(instr->Conv.from) == t_f32);
GB_ASSERT(base_type(instr->Conv.to) == t_f64);
dst.val_f64 = cast(f64)src.val_f32;
} break;
case ssaConv_fptoui: {
Type *from = base_type(instr->Conv.from);
if (from == t_f64) {
u64 u = cast(u64)src.val_f64;
vm_store_integer(vm, &dst, vm_make_value_int(instr->Conv.to, u));
} else {
u64 u = cast(u64)src.val_f32;
vm_store_integer(vm, &dst, vm_make_value_int(instr->Conv.to, u));
}
} break;
case ssaConv_fptosi: {
Type *from = base_type(instr->Conv.from);
if (from == t_f64) {
i64 i = cast(i64)src.val_f64;
vm_store_integer(vm, &dst, vm_make_value_int(instr->Conv.to, i));
} else {
i64 i = cast(i64)src.val_f32;
vm_store_integer(vm, &dst, vm_make_value_int(instr->Conv.to, i));
}
} break;
case ssaConv_uitofp: {
Type *to = base_type(instr->Conv.to);
if (to == t_f64) {
dst = vm_make_value_f64(instr->Conv.to, cast(f64)cast(u64)src.val_int);
} else {
dst = vm_make_value_f32(instr->Conv.to, cast(f32)cast(u64)src.val_int);
}
} break;
case ssaConv_sitofp: {
Type *to = base_type(instr->Conv.to);
if (to == t_f64) {
dst = vm_make_value_f64(instr->Conv.to, cast(f64)cast(i64)src.val_int);
} else {
dst = vm_make_value_f32(instr->Conv.to, cast(f32)cast(i64)src.val_int);
}
} break;
case ssaConv_ptrtoint:
dst = vm_make_value_int(instr->Conv.to, cast(i64)src.val_ptr);
break;
case ssaConv_inttoptr:
dst = vm_make_value_ptr(instr->Conv.to, cast(void *)src.val_int);
break;
case ssaConv_bitcast:
dst = src;
dst.type = instr->Conv.to;
break;
}
vm_set_value(f, value, dst);
} break;
case ssaInstr_Unreachable: {
GB_PANIC("Unreachable");
} break;
case ssaInstr_BinaryOp: {
auto *bo = &instr->BinaryOp;
Type *type = ssa_type(bo->left);
vmValue lhs = vm_operand_value(vm, bo->left);
vmValue rhs = vm_operand_value(vm, bo->right);
vmValue v = vm_exec_binary_op(vm, type, lhs, rhs, bo->op);
vm_set_value(f, value, v);
} break;
case ssaInstr_Call: {
Array<vmValue> args = {};
array_init(&args, f->stack_allocator, instr->Call.arg_count);
for (isize i = 0; i < instr->Call.arg_count; i++) {
array_add(&args, vm_operand_value(vm, instr->Call.args[i]));
}
vmValue proc = vm_operand_value(vm, instr->Call.value);
if (proc.val_proc.proc != NULL) {
vmValue result = vm_call_proc(vm, proc.val_proc.proc, args);
vm_set_value(f, value, result);
} else {
GB_PANIC("TODO(bill): external procedure calls");
}
} break;
case ssaInstr_Select: {
vmValue v = {};
vmValue cond = vm_operand_value(vm, instr->Select.cond);
if (cond.val_int != 0) {
v = vm_operand_value(vm, instr->Select.true_value);
} else {
v = vm_operand_value(vm, instr->Select.false_value);
}
vm_set_value(f, value, v);
} break;
case ssaInstr_VectorExtractElement: {
vmValue vector = vm_operand_value(vm, instr->VectorExtractElement.vector);
vmValue index = vm_operand_value(vm, instr->VectorExtractElement.index);
vmValue v = vector.val_comp[index.val_int];
vm_set_value(f, value, v);
} break;
case ssaInstr_VectorInsertElement: {
vmValue vector = vm_operand_value(vm, instr->VectorInsertElement.vector);
vmValue elem = vm_operand_value(vm, instr->VectorInsertElement.elem);
vmValue index = vm_operand_value(vm, instr->VectorInsertElement.index);
vector.val_comp[index.val_int] = elem;
} break;
case ssaInstr_VectorShuffle: {
auto *vs = &instr->VectorShuffle;
vmValue old_vector = vm_operand_value(vm, instr->VectorShuffle.vector);
vmValue new_vector = vm_make_value_comp(ssa_type(value), vm->stack_allocator, vs->index_count);
for (i32 i = 0; i < vs->index_count; i++) {
new_vector.val_comp[i] = old_vector.val_comp[vs->indices[i]];
}
vm_set_value(f, value, new_vector);
} break;
case ssaInstr_BoundsCheck: {
auto *bc = &instr->BoundsCheck;
Array<vmValue> args = {};
array_init(&args, vm->stack_allocator, 5);
array_add(&args, vm_exact_value(vm, NULL, make_exact_value_string(bc->pos.file), t_string));
array_add(&args, vm_exact_value(vm, NULL, make_exact_value_integer(bc->pos.line), t_int));
array_add(&args, vm_exact_value(vm, NULL, make_exact_value_integer(bc->pos.column), t_int));
array_add(&args, vm_operand_value(vm, bc->index));
array_add(&args, vm_operand_value(vm, bc->len));
vm_call_proc_by_name(vm, make_string("__bounds_check_error"), args);
} break;
case ssaInstr_SliceBoundsCheck: {
auto *bc = &instr->SliceBoundsCheck;
Array<vmValue> args = {};
array_init(&args, vm->stack_allocator, 7);
array_add(&args, vm_exact_value(vm, NULL, make_exact_value_string(bc->pos.file), t_string));
array_add(&args, vm_exact_value(vm, NULL, make_exact_value_integer(bc->pos.line), t_int));
array_add(&args, vm_exact_value(vm, NULL, make_exact_value_integer(bc->pos.column), t_int));
array_add(&args, vm_operand_value(vm, bc->low));
array_add(&args, vm_operand_value(vm, bc->high));
if (!bc->is_substring) {
array_add(&args, vm_operand_value(vm, bc->max));
vm_call_proc_by_name(vm, make_string("__slice_expr_error"), args);
} else {
vm_call_proc_by_name(vm, make_string("__substring_expr_error"), args);
}
} break;
default: {
GB_PANIC("<unknown instr> %d\n", instr->kind);
} break;
}
}
void vm_print_value(vmValue value, Type *type) {
type = base_type(type);
if (is_type_string(type)) {
vmValue data = value.val_comp[0];
vmValue count = value.val_comp[1];
gb_printf("`%.*s`", cast(int)count.val_int, cast(u8 *)data.val_ptr);
} else if (is_type_boolean(type)) {
if (value.val_int != 0) {
gb_printf("true");
} else {
gb_printf("false");
}
} else if (is_type_integer(type)) {
gb_printf("%lld", cast(i64)value.val_int);
} else if (type == t_f32) {
gb_printf("%f", value.val_f32);
} else if (type == t_f64) {
gb_printf("%f", value.val_f64);
} else if (is_type_pointer(type)) {
gb_printf("0x%08x", value.val_ptr);
} else if (is_type_array(type)) {
gb_printf("[");
for_array(i, value.val_comp) {
if (i > 0) {
gb_printf(", ");
}
vm_print_value(value.val_comp[i], type->Array.elem);
}
gb_printf("]");
} else if (is_type_vector(type)) {
gb_printf("<");
for_array(i, value.val_comp) {
if (i > 0) {
gb_printf(", ");
}
vm_print_value(value.val_comp[i], type->Vector.elem);
}
gb_printf(">");
} else if (is_type_slice(type)) {
gb_printf("[");
for_array(i, value.val_comp) {
if (i > 0) {
gb_printf(", ");
}
vm_print_value(value.val_comp[i], type->Slice.elem);
}
gb_printf("]");
} else if (is_type_maybe(type)) {
if (value.val_comp[1].val_int != 0) {
gb_printf("?");
vm_print_value(value.val_comp[0], type->Maybe.elem);
} else {
gb_printf("nil");
}
} else if (is_type_struct(type)) {
if (value.val_comp.count == 0) {
gb_printf("nil");
} else {
gb_printf("{");
for_array(i, value.val_comp) {
if (i > 0) {
gb_printf(", ");
}
vm_print_value(value.val_comp[i], type->Record.fields[i]->type);
}
gb_printf("}");
}
} else if (is_type_tuple(type)) {
if (value.val_comp.count != 1) {
gb_printf("(");
}
for_array(i, value.val_comp) {
if (i > 0) {
gb_printf(", ");
}
vm_print_value(value.val_comp[i], type->Tuple.variables[i]->type);
}
if (value.val_comp.count != 1) {
gb_printf(")");
}
}
}