Files
Odin/core/math/bits/bits.odin
2021-09-15 15:18:20 +01:00

460 lines
12 KiB
Odin

package math_bits
import "core:intrinsics"
U8_MIN :: 0
U16_MIN :: 0
U32_MIN :: 0
U64_MIN :: 0
U8_MAX :: 1 << 8 - 1
U16_MAX :: 1 << 16 - 1
U32_MAX :: 1 << 32 - 1
U64_MAX :: 1 << 64 - 1
I8_MIN :: - 1 << 7
I16_MIN :: - 1 << 15
I32_MIN :: - 1 << 31
I64_MIN :: - 1 << 63
I8_MAX :: 1 << 7 - 1
I16_MAX :: 1 << 15 - 1
I32_MAX :: 1 << 31 - 1
I64_MAX :: 1 << 63 - 1
count_ones :: intrinsics.count_ones
count_zeros :: intrinsics.count_zeros
trailing_zeros :: intrinsics.count_trailing_zeros
leading_zeros :: intrinsics.count_leading_zeros
count_trailing_zeros :: intrinsics.count_trailing_zeros
count_leading_zeros :: intrinsics.count_leading_zeros
reverse_bits :: intrinsics.reverse_bits
byte_swap :: intrinsics.byte_swap
overflowing_add :: intrinsics.overflow_add
overflowing_sub :: intrinsics.overflow_sub
overflowing_mul :: intrinsics.overflow_mul
log2 :: proc(x: $T) -> T where intrinsics.type_is_integer(T), intrinsics.type_is_unsigned(T) {
return (8*size_of(T)-1) - count_leading_zeros(x)
}
rotate_left8 :: proc(x: u8, k: int) -> u8 {
n :: 8
s := uint(k) & (n-1)
return x <<s | x>>(n-s)
}
rotate_left16 :: proc(x: u16, k: int) -> u16 {
n :: 16
s := uint(k) & (n-1)
return x <<s | x>>(n-s)
}
rotate_left32 :: proc(x: u32, k: int) -> u32 {
n :: 32
s := uint(k) & (n-1)
return x <<s | x>>(n-s)
}
rotate_left64 :: proc(x: u64, k: int) -> u64 {
n :: 64
s := uint(k) & (n-1)
return x <<s | x>>(n-s)
}
rotate_left :: proc(x: uint, k: int) -> uint {
n :: 8*size_of(uint)
s := uint(k) & (n-1)
return x <<s | x>>(n-s)
}
from_be_u8 :: proc(i: u8) -> u8 { return i }
from_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
from_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
from_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
from_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
from_le_u8 :: proc(i: u8) -> u8 { return i }
from_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
from_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
from_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
from_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
to_be_u8 :: proc(i: u8) -> u8 { return i }
to_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
to_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
to_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
to_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i } else { return byte_swap(i) } }
to_le_u8 :: proc(i: u8) -> u8 { return i }
to_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
to_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
to_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
to_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i } else { return byte_swap(i) } }
len_u8 :: proc(x: u8) -> int {
return int(len_u8_table[x])
}
len_u16 :: proc(x: u16) -> (n: int) {
x := x
if x >= 1<<8 {
x >>= 8
n = 8
}
return n + int(len_u8_table[x])
}
len_u32 :: proc(x: u32) -> (n: int) {
x := x
if x >= 1<<16 {
x >>= 16
n = 16
}
if x >= 1<<8 {
x >>= 8
n += 8
}
return n + int(len_u8_table[x])
}
len_u64 :: proc(x: u64) -> (n: int) {
x := x
if x >= 1<<32 {
x >>= 32
n = 32
}
if x >= 1<<16 {
x >>= 16
n += 16
}
if x >= 1<<8 {
x >>= 8
n += 8
}
return n + int(len_u8_table[x])
}
len_uint :: proc(x: uint) -> (n: int) {
when size_of(uint) == size_of(u64) {
return len_u64(u64(x))
} else {
return len_u32(u32(x))
}
}
// returns the minimum number of bits required to represent x
len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint}
add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) {
yc := y + carry
sum = x + yc
if sum < x || yc < y {
carry_out = 1
}
return
}
add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) {
yc := y + carry
sum = x + yc
if sum < x || yc < y {
carry_out = 1
}
return
}
add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) {
yc := y + carry
sum = x + yc
if sum < x || yc < y {
carry_out = 1
}
return
}
add :: proc{add_u32, add_u64, add_uint}
sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) {
yb := y + borrow
diff = x - yb
if diff > x || yb < y {
borrow_out = 1
}
return
}
sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) {
yb := y + borrow
diff = x - yb
if diff > x || yb < y {
borrow_out = 1
}
return
}
sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) {
yb := y + borrow
diff = x - yb
if diff > x || yb < y {
borrow_out = 1
}
return
}
sub :: proc{sub_u32, sub_u64, sub_uint}
mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) {
z := u64(x) * u64(y)
hi, lo = u32(z>>32), u32(z)
return
}
mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) {
mask :: 1<<32 - 1
x0, x1 := x & mask, x >> 32
y0, y1 := y & mask, y >> 32
w0 := x0 * y0
t := x1*y0 + w0>>32
w1, w2 := t & mask, t >> 32
w1 += x0 * y1
hi = x1*y1 + w2 + w1>>32
lo = x * y
return
}
mul_uint :: proc(x, y: uint) -> (hi, lo: uint) {
when size_of(uint) == size_of(u32) {
a, b := mul_u32(u32(x), u32(y))
} else {
#assert(size_of(uint) == size_of(u64))
a, b := mul_u64(u64(x), u64(y))
}
return uint(a), uint(b)
}
mul :: proc{mul_u32, mul_u64, mul_uint}
div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) {
assert(y != 0 && y <= hi)
z := u64(hi)<<32 | u64(lo)
quo, rem = u32(z/u64(y)), u32(z%u64(y))
return
}
div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) {
y := y
two32 :: 1 << 32
mask32 :: two32 - 1
if y == 0 {
panic("divide error")
}
if y <= hi {
panic("overflow error")
}
s := uint(count_leading_zeros(y))
y <<= s
yn1 := y >> 32
yn0 := y & mask32
un32 := hi<<s | lo>>(64-s)
un10 := lo << s
un1 := un10 >> 32
un0 := un10 & mask32
q1 := un32 / yn1
rhat := un32 - q1*yn1
for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
q1 -= 1
rhat += yn1
if rhat >= two32 {
break
}
}
un21 := un32*two32 + un1 - q1*y
q0 := un21 / yn1
rhat = un21 - q0*yn1
for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
q0 -= 1
rhat += yn1
if rhat >= two32 {
break
}
}
return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
}
div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) {
when size_of(uint) == size_of(u32) {
a, b := div_u32(u32(hi), u32(lo), u32(y))
} else {
#assert(size_of(uint) == size_of(u64))
a, b := div_u64(u64(hi), u64(lo), u64(y))
}
return uint(a), uint(b)
}
div :: proc{div_u32, div_u64, div_uint}
is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_i16 :: proc(i: i16) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_u32 :: proc(i: u32) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_i32 :: proc(i: i32) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_u64 :: proc(i: u64) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_i64 :: proc(i: i64) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_uint :: proc(i: uint) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two_int :: proc(i: int) -> bool { return i > 0 && (i & (i-1)) == 0 }
is_power_of_two :: proc{
is_power_of_two_u8, is_power_of_two_i8,
is_power_of_two_u16, is_power_of_two_i16,
is_power_of_two_u32, is_power_of_two_i32,
is_power_of_two_u64, is_power_of_two_i64,
is_power_of_two_uint, is_power_of_two_int,
}
@private
len_u8_table := [256]u8{
0 = 0,
1 = 1,
2..<4 = 2,
4..<8 = 3,
8..<16 = 4,
16..<32 = 5,
32..<64 = 6,
64..<128 = 7,
128..<256 = 8,
}
bitfield_extract_u8 :: proc(value: u8, offset, bits: uint) -> u8 { return (value >> offset) & u8(1<<bits - 1) }
bitfield_extract_u16 :: proc(value: u16, offset, bits: uint) -> u16 { return (value >> offset) & u16(1<<bits - 1) }
bitfield_extract_u32 :: proc(value: u32, offset, bits: uint) -> u32 { return (value >> offset) & u32(1<<bits - 1) }
bitfield_extract_u64 :: proc(value: u64, offset, bits: uint) -> u64 { return (value >> offset) & u64(1<<bits - 1) }
bitfield_extract_u128 :: proc(value: u128, offset, bits: uint) -> u128 { return (value >> offset) & u128(1<<bits - 1) }
bitfield_extract_uint :: proc(value: uint, offset, bits: uint) -> uint { return (value >> offset) & uint(1<<bits - 1) }
bitfield_extract_i8 :: proc(value: i8, offset, bits: uint) -> i8 {
v := (u8(value) >> offset) & u8(1<<bits - 1)
m := u8(1<<(bits-1))
r := (v~m) - m
return i8(r)
}
bitfield_extract_i16 :: proc(value: i16, offset, bits: uint) -> i16 {
v := (u16(value) >> offset) & u16(1<<bits - 1)
m := u16(1<<(bits-1))
r := (v~m) - m
return i16(r)
}
bitfield_extract_i32 :: proc(value: i32, offset, bits: uint) -> i32 {
v := (u32(value) >> offset) & u32(1<<bits - 1)
m := u32(1<<(bits-1))
r := (v~m) - m
return i32(r)
}
bitfield_extract_i64 :: proc(value: i64, offset, bits: uint) -> i64 {
v := (u64(value) >> offset) & u64(1<<bits - 1)
m := u64(1<<(bits-1))
r := (v~m) - m
return i64(r)
}
bitfield_extract_i128 :: proc(value: i128, offset, bits: uint) -> i128 {
v := (u128(value) >> offset) & u128(1<<bits - 1)
m := u128(1<<(bits-1))
r := (v~m) - m
return i128(r)
}
bitfield_extract_int :: proc(value: int, offset, bits: uint) -> int {
v := (uint(value) >> offset) & uint(1<<bits - 1)
m := uint(1<<(bits-1))
r := (v~m) - m
return int(r)
}
bitfield_extract :: proc{
bitfield_extract_u8,
bitfield_extract_u16,
bitfield_extract_u32,
bitfield_extract_u64,
bitfield_extract_u128,
bitfield_extract_uint,
bitfield_extract_i8,
bitfield_extract_i16,
bitfield_extract_i32,
bitfield_extract_i64,
bitfield_extract_i128,
bitfield_extract_int,
}
bitfield_insert_u8 :: proc(base, insert: u8, offset, bits: uint) -> u8 {
mask := u8(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_u16 :: proc(base, insert: u16, offset, bits: uint) -> u16 {
mask := u16(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_u32 :: proc(base, insert: u32, offset, bits: uint) -> u32 {
mask := u32(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_u64 :: proc(base, insert: u64, offset, bits: uint) -> u64 {
mask := u64(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_u128 :: proc(base, insert: u128, offset, bits: uint) -> u128 {
mask := u128(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_uint :: proc(base, insert: uint, offset, bits: uint) -> uint {
mask := uint(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_i8 :: proc(base, insert: i8, offset, bits: uint) -> i8 {
mask := i8(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_i16 :: proc(base, insert: i16, offset, bits: uint) -> i16 {
mask := i16(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_i32 :: proc(base, insert: i32, offset, bits: uint) -> i32 {
mask := i32(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_i64 :: proc(base, insert: i64, offset, bits: uint) -> i64 {
mask := i64(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_i128 :: proc(base, insert: i128, offset, bits: uint) -> i128 {
mask := i128(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert_int :: proc(base, insert: int, offset, bits: uint) -> int {
mask := int(1<<bits - 1)
return (base &~ (mask<<offset)) | ((insert&mask) << offset)
}
bitfield_insert :: proc{
bitfield_insert_u8,
bitfield_insert_u16,
bitfield_insert_u32,
bitfield_insert_u64,
bitfield_insert_u128,
bitfield_insert_uint,
bitfield_insert_i8,
bitfield_insert_i16,
bitfield_insert_i32,
bitfield_insert_i64,
bitfield_insert_i128,
bitfield_insert_int,
}