Files
Odin/core/container/queue/queue.odin

239 lines
6.1 KiB
Odin

package container_queue
import "core:builtin"
import "core:runtime"
_ :: runtime
// Dynamically resizable double-ended queue/ring-buffer
Queue :: struct($T: typeid) {
data: [dynamic]T,
len: uint,
offset: uint,
}
DEFAULT_CAPACITY :: 16
// Procedure to initialize a queue
init :: proc(q: ^$Q/Queue($T), capacity := DEFAULT_CAPACITY, allocator := context.allocator) -> runtime.Allocator_Error {
if q.data.allocator.procedure == nil {
q.data.allocator = allocator
}
clear(q)
return reserve(q, capacity)
}
// Procedure to initialize a queue from a fixed backing slice
init_from_slice :: proc(q: ^$Q/Queue($T), backing: []T) -> bool {
clear(q)
q.data = transmute([dynamic]T)runtime.Raw_Dynamic_Array{
data = raw_data(backing),
len = builtin.len(backing),
cap = builtin.len(backing),
allocator = {procedure=runtime.nil_allocator_proc, data=nil},
}
return true
}
// Procedure to destroy a queue
destroy :: proc(q: ^$Q/Queue($T)) {
delete(q.data)
}
// The length of the queue
len :: proc(q: $Q/Queue($T)) -> int {
return int(q.len)
}
// The current capacity of the queue
cap :: proc(q: $Q/Queue($T)) -> int {
return builtin.len(q.data)
}
// Remaining space in the queue (cap-len)
space :: proc(q: $Q/Queue($T)) -> int {
return builtin.len(q.data) - int(q.len)
}
// Reserve enough space for at least the specified capacity
reserve :: proc(q: ^$Q/Queue($T), capacity: int) -> runtime.Allocator_Error {
if capacity > space(q^) {
return _grow(q, uint(capacity))
}
return nil
}
get :: proc(q: ^$Q/Queue($T), #any_int i: int, loc := #caller_location) -> T {
runtime.bounds_check_error_loc(loc, i, builtin.len(q.data))
idx := (uint(i)+q.offset)%builtin.len(q.data)
return q.data[idx]
}
front :: proc(q: ^$Q/Queue($T)) -> T {
return q.data[q.offset]
}
front_ptr :: proc(q: ^$Q/Queue($T)) -> ^T {
return &q.data[q.offset]
}
back :: proc(q: ^$Q/Queue($T)) -> T {
idx := (q.offset+uint(q.len))%builtin.len(q.data)
return q.data[idx]
}
back_ptr :: proc(q: ^$Q/Queue($T)) -> ^T {
idx := (q.offset+uint(q.len))%builtin.len(q.data)
return &q.data[idx]
}
set :: proc(q: ^$Q/Queue($T), #any_int i: int, val: T, loc := #caller_location) {
runtime.bounds_check_error_loc(loc, i, builtin.len(q.data))
idx := (uint(i)+q.offset)%builtin.len(q.data)
q.data[idx] = val
}
get_ptr :: proc(q: ^$Q/Queue($T), #any_int i: int, loc := #caller_location) -> ^T {
runtime.bounds_check_error_loc(loc, i, builtin.len(q.data))
idx := (uint(i)+q.offset)%builtin.len(q.data)
return &q.data[idx]
}
peek_front :: proc(q: ^$Q/Queue($T), loc := #caller_location) -> ^T {
runtime.bounds_check_error_loc(loc, 0, builtin.len(q.data))
idx := q.offset%builtin.len(q.data)
return &q.data[idx]
}
peek_back :: proc(q: ^$Q/Queue($T), loc := #caller_location) -> ^T {
runtime.bounds_check_error_loc(loc, int(q.len - 1), builtin.len(q.data))
idx := (uint(q.len - 1)+q.offset)%builtin.len(q.data)
return &q.data[idx]
}
// Push an element to the back of the queue
push_back :: proc(q: ^$Q/Queue($T), elem: T) -> (ok: bool, err: runtime.Allocator_Error) {
if space(q^) == 0 {
_grow(q) or_return
}
idx := (q.offset+uint(q.len))%builtin.len(q.data)
q.data[idx] = elem
q.len += 1
return true, nil
}
// Push an element to the front of the queue
push_front :: proc(q: ^$Q/Queue($T), elem: T) -> (ok: bool, err: runtime.Allocator_Error) {
if space(q^) == 0 {
_grow(q) or_return
}
q.offset = uint(q.offset - 1 + builtin.len(q.data)) % builtin.len(q.data)
q.len += 1
q.data[q.offset] = elem
return true, nil
}
// Pop an element from the back of the queue
pop_back :: proc(q: ^$Q/Queue($T), loc := #caller_location) -> (elem: T) {
assert(condition=q.len > 0, loc=loc)
q.len -= 1
idx := (q.offset+uint(q.len))%builtin.len(q.data)
elem = q.data[idx]
return
}
// Safely pop an element from the back of the queue
pop_back_safe :: proc(q: ^$Q/Queue($T)) -> (elem: T, ok: bool) {
if q.len > 0 {
q.len -= 1
idx := (q.offset+uint(q.len))%builtin.len(q.data)
elem = q.data[idx]
ok = true
}
return
}
// Pop an element from the front of the queue
pop_front :: proc(q: ^$Q/Queue($T), loc := #caller_location) -> (elem: T) {
assert(condition=q.len > 0, loc=loc)
elem = q.data[q.offset]
q.offset = (q.offset+1)%builtin.len(q.data)
q.len -= 1
return
}
// Safely pop an element from the front of the queue
pop_front_safe :: proc(q: ^$Q/Queue($T)) -> (elem: T, ok: bool) {
if q.len > 0 {
elem = q.data[q.offset]
q.offset = (q.offset+1)%builtin.len(q.data)
q.len -= 1
ok = true
}
return
}
// Push multiple elements to the front of the queue
push_back_elems :: proc(q: ^$Q/Queue($T), elems: ..T) -> (ok: bool, err: runtime.Allocator_Error) {
n := uint(builtin.len(elems))
if space(q^) < int(n) {
_grow(q, q.len + n) or_return
}
sz := uint(builtin.len(q.data))
insert_from := (q.offset + q.len) % sz
insert_to := n
if insert_from + insert_to > sz {
insert_to = sz - insert_from
}
copy(q.data[insert_from:], elems[:insert_to])
copy(q.data[:insert_from], elems[insert_to:])
q.len += n
return true, nil
}
// Consume `n` elements from the front of the queue
consume_front :: proc(q: ^$Q/Queue($T), n: int, loc := #caller_location) {
assert(condition=int(q.len) >= n, loc=loc)
if n > 0 {
nu := uint(n)
q.offset = (q.offset + nu) % builtin.len(q.data)
q.len -= nu
}
}
// Consume `n` elements from the back of the queue
consume_back :: proc(q: ^$Q/Queue($T), n: int, loc := #caller_location) {
assert(condition=int(q.len) >= n, loc=loc)
if n > 0 {
q.len -= uint(n)
}
}
append_elem :: push_back
append_elems :: push_back_elems
push :: proc{push_back, push_back_elems}
append :: proc{push_back, push_back_elems}
// Clear the contents of the queue
clear :: proc(q: ^$Q/Queue($T)) {
q.len = 0
q.offset = 0
}
// Internal growinh procedure
_grow :: proc(q: ^$Q/Queue($T), min_capacity: uint = 0) -> runtime.Allocator_Error {
new_capacity := max(min_capacity, uint(8), uint(builtin.len(q.data))*2)
n := uint(builtin.len(q.data))
builtin.resize(&q.data, int(new_capacity)) or_return
if q.offset + q.len > n {
diff := n - q.offset
copy(q.data[new_capacity-diff:], q.data[q.offset:][:diff])
q.offset += new_capacity - n
}
return nil
}