Files
Odin/src/check_stmt.cpp
gingerBill 7853a1db1c Fix #5228
2025-05-29 16:35:28 +01:00

2943 lines
82 KiB
C++

gb_internal bool is_diverging_expr(Ast *expr) {
expr = unparen_expr(expr);
if (expr->kind != Ast_CallExpr) {
return false;
}
if (expr->CallExpr.proc->kind == Ast_BasicDirective) {
String name = expr->CallExpr.proc->BasicDirective.name.string;
return name == "panic";
}
Ast *proc = unparen_expr(expr->CallExpr.proc);
TypeAndValue tv = proc->tav;
if (tv.mode == Addressing_Builtin) {
Entity *e = entity_of_node(proc);
BuiltinProcId id = BuiltinProc_Invalid;
if (e != nullptr) {
id = cast(BuiltinProcId)e->Builtin.id;
} else {
id = BuiltinProc_DIRECTIVE;
}
return builtin_procs[id].diverging;
}
Type *t = tv.type;
t = base_type(t);
return t != nullptr && t->kind == Type_Proc && t->Proc.diverging;
}
gb_internal bool is_diverging_stmt(Ast *stmt) {
if (stmt->kind != Ast_ExprStmt) {
return false;
}
return is_diverging_expr(stmt->ExprStmt.expr);
}
gb_internal bool contains_deferred_call(Ast *node) {
if (node->viral_state_flags & ViralStateFlag_ContainsDeferredProcedure) {
return true;
}
switch (node->kind) {
case Ast_ExprStmt:
return contains_deferred_call(node->ExprStmt.expr);
case Ast_AssignStmt:
for_array(i, node->AssignStmt.rhs) {
if (contains_deferred_call(node->AssignStmt.rhs[i])) {
return true;
}
}
for_array(i, node->AssignStmt.lhs) {
if (contains_deferred_call(node->AssignStmt.lhs[i])) {
return true;
}
}
break;
case Ast_ValueDecl:
for_array(i, node->ValueDecl.values) {
if (contains_deferred_call(node->ValueDecl.values[i])) {
return true;
}
}
break;
}
return false;
}
gb_internal void check_stmt_list(CheckerContext *ctx, Slice<Ast *> const &stmts, u32 flags) {
if (stmts.count == 0) {
return;
}
if (flags&Stmt_CheckScopeDecls) {
check_scope_decls(ctx, stmts, cast(isize)(1.2*stmts.count));
}
bool ft_ok = (flags & Stmt_FallthroughAllowed) != 0;
flags &= ~Stmt_FallthroughAllowed;
isize max = stmts.count;
for (isize i = stmts.count-1; i >= 0; i--) {
if (stmts[i]->kind != Ast_EmptyStmt) {
break;
}
max--;
}
isize max_non_constant_declaration = stmts.count;
for (isize i = stmts.count-1; i >= 0; i--) {
if (stmts[i]->kind == Ast_EmptyStmt) {
// Okay
} else if (stmts[i]->kind == Ast_ValueDecl && !stmts[i]->ValueDecl.is_mutable) {
// Okay
} else {
break;
}
max_non_constant_declaration--;
}
for (isize i = 0; i < max; i++) {
Ast *n = stmts[i];
if (n->kind == Ast_EmptyStmt) {
continue;
}
u32 new_flags = flags;
if (ft_ok && i+1 == max) {
new_flags |= Stmt_FallthroughAllowed;
}
u32 prev_stmt_flags = ctx->stmt_flags;
ctx->stmt_flags = new_flags;
check_stmt(ctx, n, new_flags);
ctx->stmt_flags = prev_stmt_flags;
if (i+1 < max_non_constant_declaration) {
switch (n->kind) {
case Ast_ReturnStmt:
error(n, "Statements after this 'return' are never executed");
break;
case Ast_BranchStmt:
error(n, "Statements after this '%.*s' are never executed", LIT(n->BranchStmt.token.string));
break;
case Ast_ExprStmt:
if (is_diverging_stmt(n)) {
error(n, "Statements after a diverging procedure call are never executed");
}
break;
}
} else if (i+1 == max_non_constant_declaration) {
if (is_diverging_stmt(n)) {
for (isize j = 0; j < i; j++) {
Ast *stmt = stmts[j];
if (stmt->kind == Ast_ValueDecl && !stmt->ValueDecl.is_mutable) {
} else if (stmt->kind == Ast_DeferStmt) {
error(stmt, "Unreachable defer statement due to diverging procedure call at the end of the current scope");
} else if (contains_deferred_call(stmt)) {
error(stmt, "Unreachable deferred procedure call due to a diverging procedure call at the end of the current scope");
}
}
}
}
}
}
gb_internal bool check_is_terminating_list(Slice<Ast *> const &stmts, String const &label) {
// Iterate backwards
for (isize n = stmts.count-1; n >= 0; n--) {
Ast *stmt = stmts[n];
if (stmt->kind == Ast_EmptyStmt) {
// Okay
} else if (stmt->kind == Ast_ValueDecl && !stmt->ValueDecl.is_mutable) {
// Okay
} else if (is_diverging_stmt(stmt)) {
return true;
} else {
return check_is_terminating(stmt, label);
}
}
return false;
}
gb_internal bool check_has_break_list(Slice<Ast *> const &stmts, String const &label, bool implicit) {
for (Ast *stmt : stmts) {
if (check_has_break(stmt, label, implicit)) {
return true;
}
}
return false;
}
gb_internal bool check_has_break_expr(Ast * expr, String const &label) {
if (expr && expr->viral_state_flags & ViralStateFlag_ContainsOrBreak) {
return true;
}
return false;
}
gb_internal bool check_has_break_expr_list(Slice<Ast *> const &exprs, String const &label) {
for (Ast *expr : exprs) {
if (check_has_break_expr(expr, label)) {
return true;
}
}
return false;
}
gb_internal bool check_has_break(Ast *stmt, String const &label, bool implicit) {
switch (stmt->kind) {
case Ast_BranchStmt:
if (stmt->BranchStmt.token.kind == Token_break) {
if (stmt->BranchStmt.label == nullptr) {
return implicit;
}
if (stmt->BranchStmt.label->kind == Ast_Ident &&
stmt->BranchStmt.label->Ident.token.string == label) {
return true;
}
}
break;
case Ast_DeferStmt:
return check_has_break(stmt->DeferStmt.stmt, label, implicit);
case Ast_BlockStmt:
return check_has_break_list(stmt->BlockStmt.stmts, label, implicit);
case Ast_IfStmt:
if (stmt->IfStmt.init && check_has_break(stmt->IfStmt.init, label, implicit)) {
return true;
}
if (stmt->IfStmt.cond && check_has_break_expr(stmt->IfStmt.cond, label)) {
return true;
}
if (check_has_break(stmt->IfStmt.body, label, implicit) ||
(stmt->IfStmt.else_stmt != nullptr && check_has_break(stmt->IfStmt.else_stmt, label, implicit))) {
return true;
}
break;
case Ast_CaseClause:
return check_has_break_list(stmt->CaseClause.stmts, label, implicit);
case Ast_SwitchStmt:
if (stmt->SwitchStmt.init && check_has_break_expr(stmt->SwitchStmt.init, label)) {
return true;
}
if (label != "" && check_has_break(stmt->SwitchStmt.body, label, false)) {
return true;
}
break;
case Ast_TypeSwitchStmt:
if (label != "" && check_has_break(stmt->TypeSwitchStmt.body, label, false)) {
return true;
}
break;
case Ast_ForStmt:
if (stmt->ForStmt.init && check_has_break(stmt->ForStmt.init, label, implicit)) {
return true;
}
if (stmt->ForStmt.cond && check_has_break_expr(stmt->ForStmt.cond, label)) {
return true;
}
if (stmt->ForStmt.post && check_has_break(stmt->ForStmt.post, label, implicit)) {
return true;
}
if (label != "" && check_has_break(stmt->ForStmt.body, label, false)) {
return true;
}
break;
case Ast_RangeStmt:
if (label != "" && check_has_break(stmt->RangeStmt.body, label, false)) {
return true;
}
break;
case Ast_ExprStmt:
if (stmt->ExprStmt.expr->viral_state_flags & ViralStateFlag_ContainsOrBreak) {
return true;
}
break;
case Ast_ValueDecl:
if (stmt->ValueDecl.is_mutable && check_has_break_expr_list(stmt->ValueDecl.values, label)) {
return true;
}
break;
case Ast_AssignStmt:
if (check_has_break_expr_list(stmt->AssignStmt.lhs, label)) {
return true;
}
if (check_has_break_expr_list(stmt->AssignStmt.rhs, label)) {
return true;
}
break;
}
return false;
}
String label_string(Ast *node) {
GB_ASSERT(node != nullptr);
if (node->kind == Ast_Ident) {
return node->Ident.token.string;
} else if (node->kind == Ast_Label) {
return label_string(node->Label.name);
}
GB_ASSERT("INVALID LABEL");
return {};
}
// NOTE(bill): The last expression has to be a 'return' statement
// TODO(bill): This is a mild hack and should be probably handled properly
gb_internal bool check_is_terminating(Ast *node, String const &label) {
switch (node->kind) {
case_ast_node(rs, ReturnStmt, node);
return true;
case_end;
case_ast_node(bs, BlockStmt, node);
if (check_is_terminating_list(bs->stmts, label)) {
if (bs->label != nullptr) {
return check_is_terminating_list(bs->stmts, label_string(bs->label));
}
return true;
}
case_end;
case_ast_node(es, ExprStmt, node);
return check_is_terminating(unparen_expr(es->expr), label);
case_end;
case_ast_node(vd, ValueDecl, node);
return check_has_break_expr_list(vd->values, label);
case_end;
case_ast_node(as, AssignStmt, node);
return check_has_break_expr_list(as->lhs, label) ||
check_has_break_expr_list(as->rhs, label);
case_end;
case_ast_node(bs, BranchStmt, node);
return bs->token.kind == Token_fallthrough;
case_end;
case_ast_node(is, IfStmt, node);
if (is->else_stmt != nullptr) {
if (check_is_terminating(is->body, label) &&
check_is_terminating(is->else_stmt, label)) {
return true;
}
}
case_end;
case_ast_node(ws, WhenStmt, node);
// TODO(bill): Is this logic correct for when statements?
auto const &tv = ws->cond->tav;
if (tv.mode != Addressing_Constant) {
// NOTE(bill): Check the things regardless as a bug occurred earlier
if (ws->else_stmt != nullptr) {
if (check_is_terminating(ws->body, label) &&
check_is_terminating(ws->else_stmt, label)) {
return true;
}
}
return false;
}
if (tv.value.kind == ExactValue_Bool) {
if (tv.value.value_bool) {
return check_is_terminating(ws->body, label);
} else {
if (ws->else_stmt == nullptr) {
return false;
}
return check_is_terminating(ws->else_stmt, label);
}
}
case_end;
case_ast_node(fs, ForStmt, node);
if (fs->cond == nullptr && !check_has_break(fs->body, label, true)) {
if (fs->label) {
return !check_has_break(fs->body, label_string(fs->label), false);
}
return true;
}
case_end;
case_ast_node(rs, UnrollRangeStmt, node);
return false;
case_end;
case_ast_node(rs, RangeStmt, node);
return false;
case_end;
case_ast_node(ss, SwitchStmt, node);
bool has_default = false;
for_array(i, ss->body->BlockStmt.stmts) {
Ast *clause = ss->body->BlockStmt.stmts[i];
ast_node(cc, CaseClause, clause);
if (cc->list.count == 0) {
has_default = true;
}
if (!check_is_terminating_list(cc->stmts, label) ||
check_has_break_list(cc->stmts, label, true)) {
return false;
}
}
return has_default;
case_end;
case_ast_node(ss, TypeSwitchStmt, node);
bool has_default = false;
for_array(i, ss->body->BlockStmt.stmts) {
Ast *clause = ss->body->BlockStmt.stmts[i];
ast_node(cc, CaseClause, clause);
if (cc->list.count == 0) {
has_default = true;
}
if (!check_is_terminating_list(cc->stmts, label) ||
check_has_break_list(cc->stmts, label, true)) {
return false;
}
}
return has_default;
case_end;
}
return false;
}
gb_internal Type *check_assignment_variable(CheckerContext *ctx, Operand *lhs, Operand *rhs) {
if (rhs->mode == Addressing_Invalid) {
return nullptr;
}
if (rhs->type == t_invalid &&
rhs->mode != Addressing_ProcGroup &&
rhs->mode != Addressing_Builtin) {
return nullptr;
}
Ast *node = unparen_expr(lhs->expr);
check_no_copy_assignment(*rhs, str_lit("assignment"));
// NOTE(bill): Ignore assignments to '_'
if (is_blank_ident(node)) {
check_assignment(ctx, rhs, nullptr, str_lit("assignment to '_' identifier"));
if (rhs->mode == Addressing_Invalid) {
return nullptr;
}
return rhs->type;
}
Entity *e = nullptr;
bool used = false;
if (lhs->mode == Addressing_Invalid ||
(lhs->type == t_invalid &&
lhs->mode != Addressing_ProcGroup &&
lhs->mode != Addressing_Builtin)) {
return nullptr;
}
if (rhs->mode == Addressing_ProcGroup) {
Array<Entity *> procs = proc_group_entities(ctx, *rhs);
GB_ASSERT(procs.count > 0);
// NOTE(bill): These should be done
for_array(i, procs) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(ctx, &x, lhs->type)) {
e = procs[i];
add_entity_use(ctx, rhs->expr, e);
break;
}
}
if (e != nullptr) {
rhs->mode = Addressing_Value;
rhs->type = e->type;
rhs->proc_group = nullptr;
}
} else {
Ast *ident_node = nullptr;
if (node->kind == Ast_Ident) {
ident_node = node;
} else if (node->kind == Ast_IndexExpr && node->IndexExpr.expr->kind == Ast_Ident) {
ident_node = node->IndexExpr.expr;
}
if (ident_node != nullptr) {
ast_node(i, Ident, ident_node);
e = scope_lookup(ctx->scope, i->token.string);
if (e != nullptr && e->kind == Entity_Variable) {
used = (e->flags & EntityFlag_Used) != 0; // NOTE(bill): Make backup just in case
}
}
}
if (e != nullptr && used) {
e->flags |= EntityFlag_Used;
}
Type *assignment_type = lhs->type;
if (rhs->mode == Addressing_Type && is_type_polymorphic(rhs->type)) {
gbString t = type_to_string(rhs->type);
error(rhs->expr, "Invalid use of a non-specialized polymorphic type '%s'", t);
gb_string_free(t);
}
switch (lhs->mode) {
case Addressing_Invalid:
return nullptr;
case Addressing_Variable:
if (e && e->kind == Entity_Variable && e->Variable.is_rodata) {
error(lhs->expr, "Assignment to variable '%.*s' marked as @(rodata) is not allowed", LIT(e->token.string));
}
break;
case Addressing_MapIndex: {
Ast *ln = unparen_expr(lhs->expr);
if (ln->kind == Ast_IndexExpr) {
Ast *x = ln->IndexExpr.expr;
TypeAndValue tav = x->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
if (tav.mode != Addressing_Variable) {
if (!is_type_pointer(tav.type)) {
gbString str = expr_to_string(lhs->expr);
error(lhs->expr, "Cannot assign to the value of a map '%s'", str);
gb_string_free(str);
return nullptr;
}
}
}
break;
}
case Addressing_Context:
break;
case Addressing_SoaVariable:
break;
case Addressing_SwizzleVariable:
break;
default: {
if (lhs->expr->kind == Ast_SelectorExpr) {
// NOTE(bill): Extra error checks
Operand op_c = {Addressing_Invalid};
ast_node(se, SelectorExpr, lhs->expr);
check_expr(ctx, &op_c, se->expr);
if (op_c.mode == Addressing_MapIndex) {
gbString str = expr_to_string(lhs->expr);
error(lhs->expr, "Cannot assign to struct field '%s' in map", str);
gb_string_free(str);
return nullptr;
}
}
Entity *e = entity_of_node(lhs->expr);
Entity *original_e = e;
Ast *name = unparen_expr(lhs->expr);
while (name->kind == Ast_SelectorExpr) {
name = name->SelectorExpr.expr;
e = entity_of_node(name);
}
if (e == nullptr) {
e = original_e;
}
gbString str = expr_to_string(lhs->expr);
if (e != nullptr && e->flags & EntityFlag_Param) {
ERROR_BLOCK();
if (e->flags & EntityFlag_Using) {
error(lhs->expr, "Cannot assign to '%s' which is from a 'using' procedure parameter", str);
} else {
error(lhs->expr, "Cannot assign to '%s' which is a procedure parameter", str);
}
if (is_type_pointer(e->type)) {
error_line("\tSuggestion: Did you mean to shadow it? '%.*s := %.*s'?\n", LIT(e->token.string), LIT(e->token.string));
} else {
error_line("\tSuggestion: Did you mean to pass '%.*s' by pointer?\n", LIT(e->token.string));
}
show_error_on_line(e->token.pos, token_pos_end(e->token));
} else {
ERROR_BLOCK();
error(lhs->expr, "Cannot assign to '%s'", str);
if (e && e->flags & EntityFlag_ForValue) {
isize offset = show_error_on_line(e->token.pos, token_pos_end(e->token));
if (offset < 0) {
if (is_type_map(e->type)) {
error_line("\tSuggestion: Did you mean? 'for key, &%.*s in ...'\n", LIT(e->token.string));
} else {
error_line("\tSuggestion: Did you mean? 'for &%.*s in ...'\n", LIT(e->token.string));
}
} else {
error_line("\t");
for (isize i = 0; i < offset-1; i++) {
error_line(" ");
}
error_line("'%.*s' is immutable, declare it as '&%.*s' to make it mutable\n", LIT(e->token.string), LIT(e->token.string));
}
} else if (e && e->flags & EntityFlag_SwitchValue) {
isize offset = show_error_on_line(e->token.pos, token_pos_end(e->token));
if (offset < 0) {
error_line("\tSuggestion: Did you mean? 'switch &%.*s in ...'\n", LIT(e->token.string));
} else {
error_line("\t");
for (isize i = 0; i < offset-1; i++) {
error_line(" ");
}
error_line("'%.*s' is immutable, declare it as '&%.*s' to make it mutable\n", LIT(e->token.string), LIT(e->token.string));
}
}
}
gb_string_free(str);
break;
}
}
Entity *lhs_e = entity_of_node(lhs->expr);
u8 prev_bit_field_bit_size = ctx->bit_field_bit_size;
if (lhs_e && lhs_e->kind == Entity_Variable && lhs_e->Variable.bit_field_bit_size) {
// HACK NOTE(bill): This is a bit of a hack, but it will work fine for this use case
ctx->bit_field_bit_size = lhs_e->Variable.bit_field_bit_size;
}
check_assignment(ctx, rhs, assignment_type, str_lit("assignment"));
ctx->bit_field_bit_size = prev_bit_field_bit_size;
if (rhs->mode == Addressing_Invalid) {
return nullptr;
}
return rhs->type;
}
gb_internal void check_stmt_internal(CheckerContext *ctx, Ast *node, u32 flags);
gb_internal void check_stmt(CheckerContext *ctx, Ast *node, u32 flags) {
u32 prev_state_flags = ctx->state_flags;
if (node->state_flags != 0) {
u32 in = node->state_flags;
u32 out = ctx->state_flags;
if (in & StateFlag_no_bounds_check) {
out |= StateFlag_no_bounds_check;
out &= ~StateFlag_bounds_check;
} else if (in & StateFlag_bounds_check) {
out |= StateFlag_bounds_check;
out &= ~StateFlag_no_bounds_check;
}
if (in & StateFlag_no_type_assert) {
out |= StateFlag_no_type_assert;
out &= ~StateFlag_type_assert;
} else if (in & StateFlag_type_assert) {
out |= StateFlag_type_assert;
out &= ~StateFlag_no_type_assert;
}
ctx->state_flags = out;
}
check_stmt_internal(ctx, node, flags);
ctx->state_flags = prev_state_flags;
}
gb_internal void check_when_stmt(CheckerContext *ctx, AstWhenStmt *ws, u32 flags) {
Operand operand = {Addressing_Invalid};
check_expr(ctx, &operand, ws->cond);
if (operand.mode != Addressing_Constant || !is_type_boolean(operand.type)) {
error(ws->cond, "Non-constant boolean 'when' condition");
return;
}
if (ws->body == nullptr || ws->body->kind != Ast_BlockStmt) {
error(ws->cond, "Invalid body for 'when' statement");
return;
}
if (operand.value.kind == ExactValue_Bool &&
operand.value.value_bool) {
check_stmt_list(ctx, ws->body->BlockStmt.stmts, flags);
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case Ast_BlockStmt:
check_stmt_list(ctx, ws->else_stmt->BlockStmt.stmts, flags);
break;
case Ast_WhenStmt:
check_when_stmt(ctx, &ws->else_stmt->WhenStmt, flags);
break;
default:
error(ws->else_stmt, "Invalid 'else' statement in 'when' statement");
break;
}
}
}
gb_internal void check_label(CheckerContext *ctx, Ast *label, Ast *parent) {
if (label == nullptr) {
return;
}
ast_node(l, Label, label);
if (l->name->kind != Ast_Ident) {
error(l->name, "A label's name must be an identifier");
return;
}
String name = l->name->Ident.token.string;
if (is_blank_ident(name)) {
error(l->name, "A label's name cannot be a blank identifier");
return;
}
if (ctx->curr_proc_decl == nullptr) {
error(l->name, "A label is only allowed within a procedure");
return;
}
GB_ASSERT(ctx->decl != nullptr);
bool ok = true;
for_array(i, ctx->decl->labels) {
BlockLabel bl = ctx->decl->labels[i];
if (bl.name == name) {
error(label, "Duplicate label with the name '%.*s'", LIT(name));
ok = false;
break;
}
}
Entity *e = alloc_entity_label(ctx->scope, l->name->Ident.token, t_invalid, label, parent);
add_entity(ctx, ctx->scope, l->name, e);
e->parent_proc_decl = ctx->curr_proc_decl;
if (ok) {
BlockLabel bl = {name, label};
array_add(&ctx->decl->labels, bl);
}
}
// Returns 'true' for 'continue', 'false' for 'return'
gb_internal bool check_using_stmt_entity(CheckerContext *ctx, AstUsingStmt *us, Ast *expr, bool is_selector, Entity *e) {
if (e == nullptr) {
if (is_blank_ident(expr)) {
error(us->token, "'using' in a statement is not allowed with the blank identifier '_'");
} else {
error(us->token, "'using' applied to an unknown entity");
}
return true;
}
add_entity_use(ctx, expr, e);
ERROR_BLOCK();
switch (e->kind) {
case Entity_TypeName: {
Type *t = base_type(e->type);
if (t->kind == Type_Enum) {
for_array(i, t->Enum.fields) {
Entity *f = t->Enum.fields[i];
if (!is_entity_exported(f)) continue;
Entity *found = scope_insert(ctx->scope, f);
if (found != nullptr) {
gbString expr_str = expr_to_string(expr);
error(us->token, "Namespace collision while 'using' enum '%s' of: %.*s", expr_str, LIT(found->token.string));
gb_string_free(expr_str);
return false;
}
f->using_parent = e;
}
} else {
error(us->token, "'using' can be only applied to enum type entities");
}
break;
}
case Entity_ImportName: {
Scope *scope = e->ImportName.scope;
rw_mutex_lock(&scope->mutex);
defer (rw_mutex_unlock(&scope->mutex));
for (auto const &entry : scope->elements) {
String name = entry.key;
Entity *decl = entry.value;
if (!is_entity_exported(decl, true)) continue;
Entity *found = scope_insert_with_name(ctx->scope, name, decl);
if (found != nullptr) {
gbString expr_str = expr_to_string(expr);
error(us->token,
"Namespace collision while 'using' import name '%s' of: %.*s\n"
"\tat %s\n"
"\tat %s",
expr_str, LIT(found->token.string),
token_pos_to_string(found->token.pos),
token_pos_to_string(decl->token.pos)
);
gb_string_free(expr_str);
return false;
}
}
break;
}
case Entity_Variable: {
bool is_ptr = is_type_pointer(e->type);
Type *t = base_type(type_deref(e->type));
if (t->kind == Type_Struct) {
wait_signal_until_available(&t->Struct.fields_wait_signal);
Scope *found = t->Struct.scope;
GB_ASSERT(found != nullptr);
for (auto const &entry : found->elements) {
Entity *f = entry.value;
if (f->kind == Entity_Variable) {
Entity *uvar = alloc_entity_using_variable(e, f->token, f->type, expr);
if (!is_ptr && e->flags & EntityFlag_Value) uvar->flags |= EntityFlag_Value;
if (e->flags & EntityFlag_Param) uvar->flags |= EntityFlag_Param;
if (e->flags & EntityFlag_SoaPtrField) uvar->flags |= EntityFlag_SoaPtrField;
Entity *prev = scope_insert(ctx->scope, uvar);
if (prev != nullptr) {
gbString expr_str = expr_to_string(expr);
error(us->token, "Namespace collision while using '%s' of: '%.*s'", expr_str, LIT(prev->token.string));
gb_string_free(expr_str);
return false;
}
}
}
} else {
error(us->token, "'using' can only be applied to variables of type 'struct'");
return false;
}
break;
}
case Entity_Constant:
error(us->token, "'using' cannot be applied to a constant");
break;
case Entity_Procedure:
case Entity_ProcGroup:
case Entity_Builtin:
error(us->token, "'using' cannot be applied to a procedure");
break;
case Entity_Nil:
error(us->token, "'using' cannot be applied to 'nil'");
break;
case Entity_Label:
error(us->token, "'using' cannot be applied to a label");
break;
case Entity_Invalid:
error(us->token, "'using' cannot be applied to an invalid entity");
break;
default:
GB_PANIC("TODO(bill): 'using' other expressions?");
}
return true;
}
gb_internal void error_var_decl_identifier(Ast *name) {
GB_ASSERT(name != nullptr);
GB_ASSERT(name->kind != Ast_Ident);
ERROR_BLOCK();
gbString s = expr_to_string(name);
defer (gb_string_free(s));
error(name, "A variable declaration must be an identifier, got '%s'", s);
if (name->kind == Ast_Implicit) {
String imp = name->Implicit.string;
if (imp == "context") {
error_line("\tSuggestion: '%.*s' is a reserved keyword, would 'ctx' suffice?\n", LIT(imp));
} else {
error_line("\tNote: '%.*s' is a reserved keyword\n", LIT(imp));
}
}
}
gb_internal void check_unroll_range_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(irs, UnrollRangeStmt, node);
check_open_scope(ctx, node);
defer (check_close_scope(ctx));
Type *val0 = nullptr;
Type *val1 = nullptr;
Entity *entities[2] = {};
isize entity_count = 0;
i64 unroll_count = -1;
if (irs->args.count > 0) {
if (irs->args.count > 1) {
error(irs->args[1], "#unroll only supports a single argument for the unroll per loop amount");
}
Ast *arg = irs->args[0];
if (arg->kind == Ast_FieldValue) {
error(arg, "#unroll does not yet support named arguments");
arg = arg->FieldValue.value;
}
Operand x = {};
check_expr(ctx, &x, arg);
if (x.mode != Addressing_Constant || !is_type_integer(x.type)) {
gbString s = expr_to_string(x.expr);
error(x.expr, "Expected a constant integer for #unroll, got '%s'", s);
gb_string_free(s);
} else {
ExactValue value = exact_value_to_integer(x.value);
i64 v = exact_value_to_i64(value);
if (v < 1) {
error(x.expr, "Expected a constant integer >= 1 for #unroll, got %lld", cast(long long)v);
} else {
unroll_count = v;
if (v > 1024) {
error(x.expr, "Too large of a value for #unroll, got %lld, expected <= 1024", cast(long long)v);
}
}
}
}
Ast *expr = unparen_expr(irs->expr);
ExactValue inline_for_depth = exact_value_i64(0);
if (is_ast_range(expr)) {
ast_node(ie, BinaryExpr, expr);
Operand x = {};
Operand y = {};
bool ok = check_range(ctx, expr, true, &x, &y, &inline_for_depth);
if (!ok) {
goto skip_expr;
}
val0 = x.type;
val1 = t_int;
} else {
Operand operand = {Addressing_Invalid};
check_expr_or_type(ctx, &operand, irs->expr);
if (operand.mode == Addressing_Type) {
if (!is_type_enum(operand.type)) {
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over the type '%s'", t);
gb_string_free(t);
goto skip_expr;
} else {
val0 = operand.type;
val1 = t_int;
add_type_info_type(ctx, operand.type);
Type *bt = base_type(operand.type);
inline_for_depth = exact_value_i64(bt->Enum.fields.count);
goto skip_expr;
}
} else if (operand.mode != Addressing_Invalid) {
Type *t = base_type(operand.type);
switch (t->kind) {
case Type_Basic:
if (is_type_string(t) && t->Basic.kind != Basic_cstring) {
val0 = t_rune;
val1 = t_int;
inline_for_depth = exact_value_i64(operand.value.value_string.len);
if (unroll_count > 0) {
error(node, "#unroll(%lld) does not support strings", cast(long long)unroll_count);
}
}
break;
case Type_Array:
val0 = t->Array.elem;
val1 = t_int;
inline_for_depth = unroll_count > 0 ? exact_value_i64(unroll_count) : exact_value_i64(t->Array.count);
break;
case Type_EnumeratedArray:
val0 = t->EnumeratedArray.elem;
val1 = t->EnumeratedArray.index;
if (unroll_count > 0) {
error(node, "#unroll(%lld) does not support enumerated arrays", cast(long long)unroll_count);
}
inline_for_depth = exact_value_i64(t->EnumeratedArray.count);
break;
case Type_Slice:
if (unroll_count > 0) {
val0 = t->Slice.elem;
val1 = t_int;
inline_for_depth = exact_value_i64(unroll_count);
}
break;
case Type_DynamicArray:
if (unroll_count > 0) {
val0 = t->DynamicArray.elem;
val1 = t_int;
inline_for_depth = exact_value_i64(unroll_count);
}
break;
}
}
if (val0 == nullptr) {
gbString s = expr_to_string(operand.expr);
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over '%s' of type '%s' in an '#unroll for' statement", s, t);
gb_string_free(t);
gb_string_free(s);
} else if (operand.mode != Addressing_Constant && unroll_count <= 0) {
error(operand.expr, "An '#unroll for' expression must be known at compile time");
}
}
skip_expr:; // NOTE(zhiayang): again, declaring a variable immediately after a label... weird.
Ast * lhs[2] = {irs->val0, irs->val1};
Type *rhs[2] = {val0, val1};
for (isize i = 0; i < 2; i++) {
if (lhs[i] == nullptr) {
continue;
}
Ast * name = lhs[i];
Type *type = rhs[i];
Entity *entity = nullptr;
if (name->kind == Ast_Ident) {
Token token = name->Ident.token;
String str = token.string;
Entity *found = nullptr;
if (!is_blank_ident(str)) {
found = scope_lookup_current(ctx->scope, str);
}
if (found == nullptr) {
entity = alloc_entity_variable(ctx->scope, token, type, EntityState_Resolved);
entity->flags |= EntityFlag_Value;
add_entity_definition(&ctx->checker->info, name, entity);
} else {
TokenPos pos = found->token.pos;
error(token,
"Redeclaration of '%.*s' in this scope\n"
"\tat %s", LIT(str), token_pos_to_string(pos));
entity = found;
}
} else {
error_var_decl_identifier(name);
}
if (entity == nullptr) {
entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name));
}
entities[entity_count++] = entity;
if (type == nullptr) {
entity->type = t_invalid;
entity->flags |= EntityFlag_Used;
}
}
for (isize i = 0; i < entity_count; i++) {
add_entity(ctx, ctx->scope, entities[i]->identifier, entities[i]);
}
// NOTE(bill): Minimize the amount of nesting of an '#unroll for'
i64 prev_inline_for_depth = ctx->inline_for_depth;
defer (ctx->inline_for_depth = prev_inline_for_depth);
{
i64 v = exact_value_to_i64(inline_for_depth);
if (v <= 0) {
// Do nothing
} else {
ctx->inline_for_depth = gb_max(ctx->inline_for_depth, 1) * v;
}
if (ctx->inline_for_depth >= MAX_INLINE_FOR_DEPTH && prev_inline_for_depth < MAX_INLINE_FOR_DEPTH) {
ERROR_BLOCK();
if (prev_inline_for_depth > 0) {
error(node, "Nested '#unroll for' loop cannot be inlined as it exceeds the maximum '#unroll for' depth (%lld levels >= %lld maximum levels)", v, MAX_INLINE_FOR_DEPTH);
} else {
error(node, "'#unroll for' loop cannot be inlined as it exceeds the maximum '#unroll for' depth (%lld levels >= %lld maximum levels)", v, MAX_INLINE_FOR_DEPTH);
}
error_line("\tUse a normal 'for' loop instead by removing the 'inline' prefix\n");
ctx->inline_for_depth = MAX_INLINE_FOR_DEPTH;
}
}
check_stmt(ctx, irs->body, mod_flags);
}
gb_internal void check_switch_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(ss, SwitchStmt, node);
Operand x = {};
mod_flags |= Stmt_BreakAllowed | Stmt_FallthroughAllowed;
check_open_scope(ctx, node);
defer (check_close_scope(ctx));
check_label(ctx, ss->label, node);
if (ss->init != nullptr) {
check_stmt(ctx, ss->init, 0);
}
if (ss->tag != nullptr) {
check_expr(ctx, &x, ss->tag);
check_assignment(ctx, &x, nullptr, str_lit("switch expression"));
if (x.type == nullptr) {
return;
}
} else {
x.mode = Addressing_Constant;
x.type = t_bool;
x.value = exact_value_bool(true);
Token token = {};
token.pos = ast_token(ss->body).pos;
token.string = str_lit("true");
x.expr = alloc_ast_node(nullptr, Ast_Ident);
x.expr->Ident.token = token;
}
// NOTE(bill): Check for multiple defaults
Ast *first_default = nullptr;
ast_node(bs, BlockStmt, ss->body);
for_array(i, bs->stmts) {
Ast *stmt = bs->stmts[i];
Ast *default_stmt = nullptr;
if (stmt->kind == Ast_CaseClause) {
ast_node(cc, CaseClause, stmt);
if (cc->list.count == 0) {
default_stmt = stmt;
}
} else {
error(stmt, "Invalid AST - expected case clause");
}
if (default_stmt != nullptr) {
if (first_default != nullptr) {
TokenPos pos = ast_token(first_default).pos;
error(stmt,
"multiple default clauses\n"
"\tfirst at %s", token_pos_to_string(pos));
} else {
first_default = default_stmt;
}
}
}
bool is_partial = ss->partial;
if (is_partial) {
if (!is_type_enum(x.type)) {
error(x.expr, "#partial switch statement can be only used with an enum type");
}
}
SeenMap seen = {}; // NOTE(bill): Multimap, Key: ExactValue
defer (map_destroy(&seen));
for (Ast *stmt : bs->stmts) {
if (stmt->kind != Ast_CaseClause) {
// NOTE(bill): error handled by above multiple default checker
continue;
}
ast_node(cc, CaseClause, stmt);
for (Ast *expr : cc->list) {
expr = unparen_expr(expr);
if (is_ast_range(expr)) {
ast_node(be, BinaryExpr, expr);
Operand lhs = {};
Operand rhs = {};
check_expr_with_type_hint(ctx, &lhs, be->left, x.type);
if (x.mode == Addressing_Invalid) {
continue;
}
if (lhs.mode == Addressing_Invalid) {
continue;
}
check_expr_with_type_hint(ctx, &rhs, be->right, x.type);
if (rhs.mode == Addressing_Invalid) {
continue;
}
if (!is_type_ordered(x.type)) {
gbString str = type_to_string(x.type);
error(expr, "Unordered type '%s', is invalid for an interval expression", str);
gb_string_free(str);
continue;
}
TokenKind upper_op = Token_Invalid;
switch (be->op.kind) {
case Token_Ellipsis: upper_op = Token_LtEq; break;
case Token_RangeFull: upper_op = Token_LtEq; break;
case Token_RangeHalf: upper_op = Token_Lt; break;
default: GB_PANIC("Invalid range operator"); break;
}
Operand a = lhs;
Operand b = rhs;
check_comparison(ctx, expr, &a, &x, Token_LtEq);
if (a.mode == Addressing_Invalid) {
continue;
}
check_comparison(ctx, expr, &b, &x, upper_op);
if (b.mode == Addressing_Invalid) {
continue;
}
Operand a1 = lhs;
Operand b1 = rhs;
check_comparison(ctx, expr, &a1, &b1, Token_LtEq);
add_to_seen_map(ctx, &seen, upper_op, x, lhs, rhs);
if (is_type_string(x.type)) {
// NOTE(bill): Force dependency for strings here
add_package_dependency(ctx, "runtime", "string_le");
add_package_dependency(ctx, "runtime", "string_lt");
}
} else {
Operand y = {};
if (is_type_typeid(x.type)) {
check_expr_or_type(ctx, &y, expr, x.type);
} else {
check_expr_with_type_hint(ctx, &y, expr, x.type);
}
if (x.mode == Addressing_Invalid ||
y.mode == Addressing_Invalid) {
continue;
}
if (y.mode == Addressing_Type) {
Type *t = y.type;
if (t == nullptr || t == t_invalid || is_type_polymorphic(t)) {
error(y.expr, "Invalid type for case clause");
continue;
}
t = default_type(t);
add_type_info_type(ctx, t);
} else {
convert_to_typed(ctx, &y, x.type);
if (y.mode == Addressing_Invalid) {
continue;
}
// NOTE(bill): the ordering here matters
Operand z = y;
check_comparison(ctx, expr, &z, &x, Token_CmpEq);
if (z.mode == Addressing_Invalid) {
continue;
}
if (y.mode != Addressing_Constant) {
continue;
}
update_untyped_expr_type(ctx, z.expr, x.type, !is_type_untyped(x.type));
add_to_seen_map(ctx, &seen, y);
}
}
}
check_open_scope(ctx, stmt);
check_stmt_list(ctx, cc->stmts, mod_flags);
check_close_scope(ctx);
}
if (!is_partial && is_type_enum(x.type)) {
TEMPORARY_ALLOCATOR_GUARD();
Type *et = base_type(x.type);
GB_ASSERT(is_type_enum(et));
auto fields = et->Enum.fields;
auto unhandled = array_make<Entity *>(temporary_allocator(), 0, fields.count);
for (Entity *f : fields) {
if (f->kind != Entity_Constant) {
continue;
}
ExactValue v = f->Constant.value;
auto found = map_get(&seen, hash_exact_value(v));
if (!found) {
array_add(&unhandled, f);
}
}
if (unhandled.count > 0) {
ERROR_BLOCK();
if (unhandled.count == 1) {
error_no_newline(node, "Unhandled switch case: %.*s", LIT(unhandled[0]->token.string));
} else {
error(node, "Unhandled switch cases:");
for (Entity *f : unhandled) {
error_line("\t%.*s\n", LIT(f->token.string));
}
}
error_line("\tSuggestion: Was '#partial switch' wanted?\n");
}
}
if (build_context.strict_style) {
Token stok = ss->token;
for_array(i, bs->stmts) {
Ast *stmt = bs->stmts[i];
if (stmt->kind != Ast_CaseClause) {
continue;
}
Token ctok = stmt->CaseClause.token;
if (ctok.pos.column > stok.pos.column) {
error(ctok, "With '-strict-style', 'case' statements must share the same column as the 'switch' token");
}
}
}
}
enum TypeSwitchKind {
TypeSwitch_Invalid,
TypeSwitch_Union,
TypeSwitch_Any,
};
gb_internal TypeSwitchKind check_valid_type_switch_type(Type *type) {
type = type_deref(type);
if (is_type_union(type)) {
return TypeSwitch_Union;
}
if (is_type_any(type)) {
return TypeSwitch_Any;
}
return TypeSwitch_Invalid;
}
gb_internal void check_type_switch_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(ss, TypeSwitchStmt, node);
Operand x = {};
mod_flags |= Stmt_BreakAllowed | Stmt_TypeSwitch;
check_open_scope(ctx, node);
defer (check_close_scope(ctx));
check_label(ctx, ss->label, node);
if (ss->tag->kind != Ast_AssignStmt) {
error(ss->tag, "Expected an 'in' assignment for this type switch statement");
return;
}
ast_node(as, AssignStmt, ss->tag);
Token as_token = ast_token(ss->tag);
if (as->lhs.count != 1) {
syntax_error(as_token, "Expected 1 name before 'in'");
return;
}
if (as->rhs.count != 1) {
syntax_error(as_token, "Expected 1 expression after 'in'");
return;
}
bool is_addressed = false;
Ast *lhs = as->lhs[0];
Ast *rhs = as->rhs[0];
if (lhs->kind == Ast_UnaryExpr && lhs->UnaryExpr.op.kind == Token_And) {
is_addressed = true;
lhs = lhs->UnaryExpr.expr;
}
check_expr(ctx, &x, rhs);
check_assignment(ctx, &x, nullptr, str_lit("type switch expression"));
add_type_info_type(ctx, x.type);
TypeSwitchKind switch_kind = check_valid_type_switch_type(x.type);
if (switch_kind == TypeSwitch_Invalid) {
gbString str = type_to_string(x.type);
error(x.expr, "Invalid type for this type switch expression, got '%s'", str);
gb_string_free(str);
return;
}
bool is_partial = ss->partial;
if (is_partial) {
if (switch_kind != TypeSwitch_Union) {
error(node, "#partial switch statement may only be used with a union");
}
}
// NOTE(bill): Check for multiple defaults
Ast *first_default = nullptr;
ast_node(bs, BlockStmt, ss->body);
for (Ast *stmt : bs->stmts) {
Ast *default_stmt = nullptr;
if (stmt->kind == Ast_CaseClause) {
ast_node(cc, CaseClause, stmt);
if (cc->list.count == 0) {
default_stmt = stmt;
}
} else {
error(stmt, "Invalid AST - expected case clause");
}
if (default_stmt != nullptr) {
if (first_default != nullptr) {
TokenPos pos = ast_token(first_default).pos;
error(stmt,
"Multiple default clauses\n"
"\tfirst at %s", token_pos_to_string(pos));
} else {
first_default = default_stmt;
}
}
}
if (lhs->kind != Ast_Ident) {
error(rhs, "Expected an identifier, got '%.*s'", LIT(ast_strings[rhs->kind]));
return;
}
Ast *nil_seen = nullptr;
TypeSet seen = {};
defer (type_set_destroy(&seen));
for (Ast *stmt : bs->stmts) {
if (stmt->kind != Ast_CaseClause) {
// NOTE(bill): error handled by above multiple default checker
continue;
}
ast_node(cc, CaseClause, stmt);
bool saw_nil = false;
// TODO(bill): Make robust
Type *bt = base_type(type_deref(x.type));
Type *case_type = nullptr;
for (Ast *type_expr : cc->list) {
if (type_expr != nullptr) { // Otherwise it's a default expression
Operand y = {};
check_expr_or_type(ctx, &y, type_expr);
if (is_operand_nil(y)) {
if (!type_has_nil(type_deref(x.type))) {
error(type_expr, "'nil' case is not allowed for the type '%s'", type_to_string(type_deref(x.type)));
continue;
}
saw_nil = true;
if (nil_seen) {
ERROR_BLOCK();
error(type_expr, "'nil' case has already been handled previously");
error_line("\t 'nil' was already previously seen at %s", token_pos_to_string(ast_token(nil_seen).pos));
} else {
nil_seen = type_expr;
}
case_type = y.type;
continue;
}
if (y.mode != Addressing_Type) {
gbString str = expr_to_string(type_expr);
error(type_expr, "Expected a type as a case, got %s", str);
gb_string_free(str);
continue;
}
if (switch_kind == TypeSwitch_Union) {
GB_ASSERT(is_type_union(bt));
bool tag_type_found = false;
for (Type *vt : bt->Union.variants) {
if (are_types_identical(vt, y.type)) {
tag_type_found = true;
break;
}
}
if (!tag_type_found) {
gbString type_str = type_to_string(y.type);
error(y.expr, "Unknown variant type, got '%s'", type_str);
gb_string_free(type_str);
continue;
}
case_type = y.type;
add_type_info_type(ctx, y.type);
} else if (switch_kind == TypeSwitch_Any) {
case_type = y.type;
add_type_info_type(ctx, y.type);
} else {
GB_PANIC("Unknown type to type switch statement");
}
if (type_set_update(&seen, y.type)) {
TokenPos pos = cc->token.pos;
gbString expr_str = expr_to_string(y.expr);
error(y.expr,
"Duplicate type case '%s'\n"
"\tprevious type case at %s",
expr_str,
token_pos_to_string(pos));
gb_string_free(expr_str);
break;
}
}
}
bool is_reference = is_addressed;
if (cc->list.count > 1 || saw_nil) {
case_type = nullptr;
}
if (case_type == nullptr) {
case_type = type_deref(x.type);
}
if (switch_kind == TypeSwitch_Any) {
if (!is_type_untyped(case_type)) {
add_type_info_type(ctx, case_type);
}
}
check_open_scope(ctx, stmt);
{
Entity *tag_var = alloc_entity_variable(ctx->scope, lhs->Ident.token, case_type, EntityState_Resolved);
tag_var->flags |= EntityFlag_Used;
tag_var->flags |= EntityFlag_SwitchValue;
if (!is_reference) {
tag_var->flags |= EntityFlag_Value;
}
add_entity(ctx, ctx->scope, lhs, tag_var);
add_entity_use(ctx, lhs, tag_var);
add_implicit_entity(ctx, stmt, tag_var);
}
check_stmt_list(ctx, cc->stmts, mod_flags);
check_close_scope(ctx);
}
if (!is_partial && is_type_union(type_deref(x.type))) {
TEMPORARY_ALLOCATOR_GUARD();
Type *ut = base_type(type_deref(x.type));
GB_ASSERT(is_type_union(ut));
auto variants = ut->Union.variants;
auto unhandled = array_make<Type *>(temporary_allocator(), 0, variants.count);
for (Type *t : variants) {
if (!type_set_exists(&seen, t)) {
array_add(&unhandled, t);
}
}
if (unhandled.count > 0) {
ERROR_BLOCK();
if (unhandled.count == 1) {
gbString s = type_to_string(unhandled[0]);
error_no_newline(node, "Unhandled switch case: %s", s);
gb_string_free(s);
} else {
error_no_newline(node, "Unhandled switch cases:\n");
for (Type *t : unhandled) {
gbString s = type_to_string(t);
error_line("\t%s\n", s);
gb_string_free(s);
}
}
error_line("\n");
error_line("\tSuggestion: Was '#partial switch' wanted?\n");
}
}
}
gb_internal void check_block_stmt_for_errors(CheckerContext *ctx, Ast *body) {
if (body->kind != Ast_BlockStmt) {
return;
}
ast_node(bs, BlockStmt, body);
// NOTE(bill, 2020-09-23): This logic is prevent common erros with block statements
// e.g. if cond { x := 123; } // this is an error
if (bs->scope != nullptr && bs->scope->elements.count > 0) {
if (bs->scope->parent->node != nullptr) {
switch (bs->scope->parent->node->kind) {
case Ast_IfStmt:
case Ast_ForStmt:
case Ast_RangeStmt:
case Ast_UnrollRangeStmt:
case Ast_SwitchStmt:
case Ast_TypeSwitchStmt:
// TODO(bill): Is this a correct checking system?
break;
default:
return;
}
}
isize stmt_count = 0;
Ast *the_stmt = nullptr;
for (Ast *stmt : bs->stmts) {
GB_ASSERT(stmt != nullptr);
switch (stmt->kind) {
case_ast_node(es, EmptyStmt, stmt);
case_end;
case_ast_node(bs, BadStmt, stmt);
case_end;
case_ast_node(bd, BadDecl, stmt);
case_end;
default:
the_stmt = stmt;
stmt_count += 1;
break;
}
}
if (stmt_count == 1) {
if (the_stmt->kind == Ast_ValueDecl) {
for (Ast *name : the_stmt->ValueDecl.names) {
if (name->kind != Ast_Ident) {
continue;
}
String n = name->Ident.token.string;
if (n != "_") {
error(name, "'%.*s' declared but not used", LIT(n));
}
}
}
}
}
}
gb_internal bool all_operands_valid(Array<Operand> const &operands) {
if (any_errors()) {
for (Operand const &o : operands) {
if (o.type == t_invalid) {
return false;
}
}
}
return true;
}
gb_internal bool check_stmt_internal_builtin_proc_id(Ast *expr, BuiltinProcId *id_) {
BuiltinProcId id = BuiltinProc_Invalid;
Entity *e = entity_of_node(expr);
if (e != nullptr && e->kind == Entity_Builtin) {
if (e->Builtin.id && e->Builtin.id != BuiltinProc_DIRECTIVE) {
id = cast(BuiltinProcId)e->Builtin.id;
}
}
if (id_) *id_ = id;
return id != BuiltinProc_Invalid;
}
gb_internal void check_range_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(rs, RangeStmt, node);
TEMPORARY_ALLOCATOR_GUARD();
u32 new_flags = mod_flags | Stmt_BreakAllowed | Stmt_ContinueAllowed;
check_open_scope(ctx, node);
check_label(ctx, rs->label, node);
auto vals = array_make<Type *>(temporary_allocator(), 0, 2);
auto entities = array_make<Entity *>(temporary_allocator(), 0, 2);
bool is_map = false;
bool is_bit_set = false;
bool is_soa = false;
bool is_reverse = rs->reverse;
Ast *expr = unparen_expr(rs->expr);
Operand rhs_operand = {};
bool is_range = false;
bool is_possibly_addressable = true;
isize max_val_count = 2;
if (is_ast_range(expr)) {
ast_node(ie, BinaryExpr, expr);
Operand x = {};
Operand y = {};
is_possibly_addressable = false;
is_range = true;
bool ok = check_range(ctx, expr, true, &x, &y, nullptr);
if (!ok) {
goto skip_expr_range_stmt;
}
array_add(&vals, x.type);
array_add(&vals, t_int);
if (is_reverse) {
error(node, "#reverse for is not supported with ranges, prefer an explicit for loop with init, condition, and post arguments");
}
} else {
Operand operand = {Addressing_Invalid};
check_expr_base(ctx, &operand, expr, nullptr);
error_operand_no_value(&operand);
if (operand.mode == Addressing_Type) {
if (!is_type_enum(operand.type)) {
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over the type '%s'", t);
gb_string_free(t);
goto skip_expr_range_stmt;
} else {
is_possibly_addressable = false;
if (is_reverse) {
error(node, "#reverse for is not supported for enum types");
}
array_add(&vals, operand.type);
array_add(&vals, t_int);
add_type_info_type(ctx, operand.type);
if (build_context.no_rtti) {
error(node, "Iteration over an enum type is not allowed runtime type information (RTTI) has been disallowed");
}
goto skip_expr_range_stmt;
}
} else if (operand.mode != Addressing_Invalid) {
if (operand.mode == Addressing_OptionalOk || operand.mode == Addressing_OptionalOkPtr) {
Ast *expr = unparen_expr(operand.expr);
if (expr->kind != Ast_TypeAssertion) { // Only for procedure calls
Type *end_type = nullptr;
check_promote_optional_ok(ctx, &operand, nullptr, &end_type, false);
if (is_type_boolean(end_type)) {
check_promote_optional_ok(ctx, &operand, nullptr, &end_type, true);
}
}
}
bool is_ptr = is_type_pointer(operand.type);
Type *t = base_type(type_deref(operand.type));
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_string || t->Basic.kind == Basic_UntypedString) {
is_possibly_addressable = false;
array_add(&vals, t_rune);
array_add(&vals, t_int);
if (is_reverse) {
add_package_dependency(ctx, "runtime", "string_decode_last_rune");
} else {
add_package_dependency(ctx, "runtime", "string_decode_rune");
}
}
break;
case Type_BitSet:
array_add(&vals, t->BitSet.elem);
max_val_count = 1;
is_bit_set = true;
is_possibly_addressable = false;
add_type_info_type(ctx, operand.type);
if (build_context.no_rtti && is_type_enum(t->BitSet.elem)) {
error(node, "Iteration over a bit_set of an enum is not allowed runtime type information (RTTI) has been disallowed");
}
if (rs->vals.count == 1 && rs->vals[0] && rs->vals[0]->kind == Ast_Ident) {
String name = rs->vals[0]->Ident.token.string;
Entity *found = scope_lookup(ctx->scope, name);
if (found && are_types_identical(found->type, t->BitSet.elem)) {
ERROR_BLOCK();
gbString s = expr_to_string(expr);
error(rs->vals[0], "'%.*s' shadows a previous declaration which might be ambiguous with 'for (%.*s in %s)'", LIT(name), LIT(name), s);
error_line("\tSuggestion: Use a different identifier if iteration is wanted, or surround in parentheses if a normal for loop is wanted\n");
gb_string_free(s);
}
}
break;
case Type_EnumeratedArray:
is_possibly_addressable = operand.mode == Addressing_Variable || is_ptr;
array_add(&vals, t->EnumeratedArray.elem);
array_add(&vals, t->EnumeratedArray.index);
break;
case Type_Array:
is_possibly_addressable = operand.mode == Addressing_Variable || is_ptr;
array_add(&vals, t->Array.elem);
array_add(&vals, t_int);
break;
case Type_DynamicArray:
is_possibly_addressable = true;
array_add(&vals, t->DynamicArray.elem);
array_add(&vals, t_int);
break;
case Type_Slice:
is_possibly_addressable = true;
array_add(&vals, t->Slice.elem);
array_add(&vals, t_int);
break;
case Type_Map:
is_possibly_addressable = true;
is_map = true;
array_add(&vals, t->Map.key);
array_add(&vals, t->Map.value);
if (is_reverse) {
error(node, "#reverse for is not supported for map types, as maps are unordered");
}
if (rs->vals.count == 1 && rs->vals[0] && rs->vals[0]->kind == Ast_Ident) {
String name = rs->vals[0]->Ident.token.string;
Entity *found = scope_lookup(ctx->scope, name);
if (found && are_types_identical(found->type, t->Map.key)) {
ERROR_BLOCK();
gbString s = expr_to_string(expr);
error(rs->vals[0], "'%.*s' shadows a previous declaration which might be ambiguous with 'for (%.*s in %s)'", LIT(name), LIT(name), s);
error_line("\tSuggestion: Use a different identifier if iteration is wanted, or surround in parentheses if a normal for loop is wanted\n");
gb_string_free(s);
}
}
break;
case Type_Tuple:
{
is_possibly_addressable = false;
isize count = t->Tuple.variables.count;
if (count < 1) {
ERROR_BLOCK();
check_not_tuple(ctx, &operand);
error_line("\tMultiple return valued parameters in a range statement are limited to a minimum of 1 usable values with a trailing boolean for the conditional, got %td\n", count);
break;
}
enum : isize {MAXIMUM_COUNT = 100};
if (count > MAXIMUM_COUNT) {
ERROR_BLOCK();
check_not_tuple(ctx, &operand);
error_line("\tMultiple return valued parameters in a range statement are limited to a maximum of %td usable values with a trailing boolean for the conditional, got %td\n", MAXIMUM_COUNT, count);
break;
}
Type *cond_type = t->Tuple.variables[count-1]->type;
if (!is_type_boolean(cond_type)) {
gbString s = type_to_string(cond_type);
error(operand.expr, "The final type of %td-valued expression must be a boolean, got %s", count, s);
gb_string_free(s);
break;
}
max_val_count = count;
for (Entity *e : t->Tuple.variables) {
array_add(&vals, e->type);
}
bool do_break = false;
for (isize i = rs->vals.count-1; i >= 0; i--) {
if (rs->vals[i] != nullptr && count < i+2) {
gbString s = type_to_string(t);
error(operand.expr, "Expected a %td-valued expression on the rhs, got (%s)", i+2, s);
gb_string_free(s);
do_break = true;
break;
}
}
if (is_reverse) {
error(node, "#reverse for is not supported for multiple return valued parameters");
}
}
break;
case Type_Struct:
if (t->Struct.soa_kind != StructSoa_None) {
if (t->Struct.soa_kind == StructSoa_Fixed) {
is_possibly_addressable = operand.mode == Addressing_Variable || is_ptr;
} else {
is_possibly_addressable = true;
}
is_soa = true;
array_add(&vals, t->Struct.soa_elem);
array_add(&vals, t_int);
}
break;
}
}
if (vals.count == 0 || vals[0] == nullptr) {
gbString s = expr_to_string(operand.expr);
gbString t = type_to_string(operand.type);
defer (gb_string_free(s));
defer (gb_string_free(t));
ERROR_BLOCK();
error(operand.expr, "Cannot iterate over '%s' of type '%s'", s, t);
if (rs->vals.count == 1) {
Type *t = type_deref(operand.type);
if (t != NULL && (is_type_map(t) || is_type_bit_set(t))) {
gbString v = expr_to_string(rs->vals[0]);
defer (gb_string_free(v));
error_line("\tSuggestion: place parentheses around the expression\n");
error_line("\t for (%s in %s) {\n", v, s);
}
}
}
}
skip_expr_range_stmt:; // NOTE(zhiayang): again, declaring a variable immediately after a label... weird.
if (rs->vals.count > max_val_count) {
error(rs->vals[max_val_count], "Expected a maximum of %td identifier%s, got %td", max_val_count, max_val_count == 1 ? "" : "s", rs->vals.count);
}
auto rhs = slice_from_array(vals);
auto lhs = slice_make<Ast *>(temporary_allocator(), rhs.count);
slice_copy(&lhs, rs->vals);
isize addressable_index = cast(isize)is_map;
for_array(i, rhs) {
if (lhs[i] == nullptr) {
continue;
}
Ast * name = lhs[i];
Type *type = rhs[i];
Entity *entity = nullptr;
bool is_addressed = false;
if (name->kind == Ast_UnaryExpr && name->UnaryExpr.op.kind == Token_And) {
is_addressed = true;
name = name->UnaryExpr.expr;
}
if (name->kind == Ast_Ident) {
Token token = name->Ident.token;
String str = token.string;
Entity *found = nullptr;
if (!is_blank_ident(str)) {
found = scope_lookup_current(ctx->scope, str);
}
if (found == nullptr) {
entity = alloc_entity_variable(ctx->scope, token, type, EntityState_Resolved);
if (!is_range) {
entity->flags |= EntityFlag_ForValue;
}
entity->flags |= EntityFlag_Value;
entity->identifier = name;
entity->Variable.for_loop_parent_type = type_of_expr(expr);
if (is_addressed) {
if (is_possibly_addressable && i == addressable_index) {
entity->flags &= ~EntityFlag_Value;
} else {
char const *idx_name = is_map ? "key" : (is_bit_set || i == 0) ? "element" : "index";
error(token, "The %s variable '%.*s' cannot be made addressable", idx_name, LIT(str));
}
}
if (is_soa) {
if (i == 0) {
entity->flags |= EntityFlag_SoaPtrField;
}
}
add_entity_definition(&ctx->checker->info, name, entity);
} else {
TokenPos pos = found->token.pos;
error(token,
"Redeclaration of '%.*s' in this scope\n"
"\tat %s",
LIT(str), token_pos_to_string(pos));
entity = found;
}
} else {
error_var_decl_identifier(name);
}
if (entity == nullptr) {
entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name));
entity->identifier = name; // might not be an identifier
}
array_add(&entities, entity);
if (type == nullptr) {
entity->type = t_invalid;
entity->flags |= EntityFlag_Used;
}
}
for (Entity *e : entities) {
DeclInfo *d = decl_info_of_entity(e);
GB_ASSERT(d == nullptr);
add_entity(ctx, ctx->scope, e->identifier, e);
d = make_decl_info(ctx->scope, ctx->decl);
add_entity_and_decl_info(ctx, e->identifier, e, d);
}
check_stmt(ctx, rs->body, new_flags);
check_close_scope(ctx);
}
gb_internal void check_value_decl_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(vd, ValueDecl, node);
if (!vd->is_mutable) {
// constant value declaration
// NOTE(bill): Check `_` declarations
for (Ast *name : vd->names) {
if (is_blank_ident(name)) {
Entity *e = name->Ident.entity;
DeclInfo *d = decl_info_of_entity(e);
if (d != nullptr) {
check_entity_decl(ctx, e, d, nullptr);
}
}
}
return;
}
Entity **entities = gb_alloc_array(permanent_allocator(), Entity *, vd->names.count);
isize entity_count = 0;
isize new_name_count = 0;
for (Ast *name : vd->names) {
Entity *entity = nullptr;
if (name->kind != Ast_Ident) {
error_var_decl_identifier(name);
} else {
Token token = name->Ident.token;
String str = token.string;
Entity *found = nullptr;
// NOTE(bill): Ignore assignments to '_'
if (!is_blank_ident(str)) {
found = scope_lookup_current(ctx->scope, str);
new_name_count += 1;
}
if (found == nullptr) {
entity = alloc_entity_variable(ctx->scope, token, nullptr);
entity->identifier = name;
Ast *fl = ctx->foreign_context.curr_library;
if (fl != nullptr) {
GB_ASSERT(fl->kind == Ast_Ident);
entity->Variable.is_foreign = true;
entity->Variable.foreign_library_ident = fl;
}
} else {
TokenPos pos = found->token.pos;
error(token,
"Redeclaration of '%.*s' in this scope\n"
"\tat %s",
LIT(str), token_pos_to_string(pos));
entity = found;
}
}
if (entity == nullptr) {
entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name));
}
entity->parent_proc_decl = ctx->curr_proc_decl;
entities[entity_count++] = entity;
if (name->kind == Ast_Ident) {
name->Ident.entity = entity;
}
}
if (new_name_count == 0) {
ERROR_BLOCK();
error(node, "No new declarations on the left hand side");
bool all_underscore = true;
for (Ast *name : vd->names) {
if (name->kind == Ast_Ident) {
if (!is_blank_ident(name)) {
all_underscore = false;
break;
}
} else {
all_underscore = false;
break;
}
}
if (all_underscore) {
error_line("\tSuggestion: Try changing the declaration (:=) to an assignment (=)\n");
}
}
Type *init_type = nullptr;
if (vd->type != nullptr) {
init_type = check_type(ctx, vd->type);
if (init_type == nullptr) {
init_type = t_invalid;
} else if (is_type_polymorphic(base_type(init_type))) {
/* DISABLED: This error seems too aggressive for instantiated generic types.
gbString str = type_to_string(init_type);
error(vd->type, "Invalid use of a polymorphic type '%s' in variable declaration", str);
gb_string_free(str);
init_type = t_invalid;
*/
}
if (init_type == t_invalid && entity_count == 1 && (mod_flags & (Stmt_BreakAllowed|Stmt_FallthroughAllowed))) {
Entity *e = entities[0];
if (e != nullptr && e->token.string == "default") {
warning(e->token, "Did you mean 'case:'?");
}
}
}
// TODO NOTE(bill): This technically checks things multple times
AttributeContext ac = make_attribute_context(ctx->foreign_context.link_prefix, ctx->foreign_context.link_suffix);
check_decl_attributes(ctx, vd->attributes, var_decl_attribute, &ac);
for (isize i = 0; i < entity_count; i++) {
Entity *e = entities[i];
GB_ASSERT(e != nullptr);
if (e->flags & EntityFlag_Visited) {
e->type = t_invalid;
continue;
}
e->flags |= EntityFlag_Visited;
e->state = EntityState_InProgress;
if (e->type == nullptr) {
e->type = init_type;
e->state = EntityState_Resolved;
}
ac.link_name = handle_link_name(ctx, e->token, ac.link_name, ac.link_prefix, ac.link_suffix);
if (ac.link_name.len > 0) {
e->Variable.link_name = ac.link_name;
}
e->flags &= ~EntityFlag_Static;
if (ac.is_static) {
String name = e->token.string;
if (name == "_") {
error(e->token, "The 'static' attribute is not allowed to be applied to '_'");
} else {
e->flags |= EntityFlag_Static;
if (ctx->in_defer) {
error(e->token, "'static' variables cannot be declared within a defer statement");
}
}
}
if (ac.rodata) {
if (ac.is_static) {
e->Variable.is_rodata = true;
} else {
error(e->token, "Only global or @(static) variables can have @(rodata) applied");
}
}
if (ac.thread_local_model != "") {
String name = e->token.string;
if (name == "_") {
error(e->token, "The 'thread_local' attribute is not allowed to be applied to '_'");
} else {
e->flags |= EntityFlag_Static;
if (ctx->in_defer) {
error(e->token, "'thread_local' variables cannot be declared within a defer statement");
}
}
e->Variable.thread_local_model = ac.thread_local_model;
}
if (ac.is_static && ac.thread_local_model != "") {
error(e->token, "The 'static' attribute is not needed if 'thread_local' is applied");
}
}
// NOTE(bill): This is to improve error handling for things like `x: [?]T = {...}`
Ast *prev_type_hint_expr = ctx->type_hint_expr;
ctx->type_hint_expr = vd->type;
check_init_variables(ctx, entities, entity_count, vd->values, str_lit("variable declaration"));
ctx->type_hint_expr = prev_type_hint_expr;
check_arity_match(ctx, vd, false);
for (isize i = 0; i < entity_count; i++) {
Entity *e = entities[i];
if (e->Variable.is_foreign) {
if (vd->values.count > 0) {
error(e->token, "A foreign variable declaration cannot have a default value");
}
String name = e->token.string;
if (e->Variable.link_name.len > 0) {
name = e->Variable.link_name;
}
if (vd->values.count > 0) {
error(e->token, "A foreign variable declaration cannot have a default value");
}
init_entity_foreign_library(ctx, e);
auto *fp = &ctx->checker->info.foreigns;
StringHashKey key = string_hash_string(name);
Entity **found = string_map_get(fp, key);
if (found) {
Entity *f = *found;
TokenPos pos = f->token.pos;
Type *this_type = base_type(e->type);
Type *other_type = base_type(f->type);
if (!signature_parameter_similar_enough(this_type, other_type)) {
error(e->token,
"Foreign entity '%.*s' previously declared elsewhere with a different type\n"
"\tat %s",
LIT(name), token_pos_to_string(pos));
}
} else {
string_map_set(fp, key, e);
}
} else if (e->flags & EntityFlag_Static) {
if (vd->values.count > 0) {
if (entity_count != vd->values.count) {
error(e->token, "A static variable declaration with a default value must be constant");
} else {
Ast *value = vd->values[i];
if (value->tav.mode != Addressing_Constant) {
error(e->token, "A static variable declaration with a default value must be constant");
}
}
}
}
add_entity(ctx, ctx->scope, e->identifier, e);
}
if (vd->is_using != 0) {
Token token = ast_token(node);
if (vd->type != nullptr && entity_count > 1) {
error(token, "'using' can only be applied to one variable of the same type");
// NOTE(bill): `using` will only be applied to a single declaration
}
for (isize entity_index = 0; entity_index < 1; entity_index++) {
Entity *e = entities[entity_index];
if (e == nullptr) {
continue;
}
if (e->kind != Entity_Variable) {
continue;
}
String name = e->token.string;
Type *t = base_type(type_deref(e->type));
if (is_blank_ident(name)) {
error(token, "'using' cannot be applied variable declared as '_'");
} else if (is_type_struct(t) || is_type_raw_union(t)) {
ERROR_BLOCK();
Scope *scope = t->Struct.scope;
GB_ASSERT(scope != nullptr);
for (auto const &entry : scope->elements) {
Entity *f = entry.value;
if (f->kind == Entity_Variable) {
Entity *uvar = alloc_entity_using_variable(e, f->token, f->type, e->identifier);
uvar->flags |= (e->flags & EntityFlag_Value);
Entity *prev = scope_insert(ctx->scope, uvar);
if (prev != nullptr) {
error(token, "Namespace collision while 'using' '%.*s' of: %.*s", LIT(name), LIT(prev->token.string));
return;
}
}
}
add_entity_use(ctx, nullptr, e);
} else {
// NOTE(bill): skip the rest to remove extra errors
error(token, "'using' can only be applied to variables of type struct or raw_union");
return;
}
}
}
}
gb_internal void check_expr_stmt(CheckerContext *ctx, Ast *node) {
ast_node(es, ExprStmt, node);
Operand operand = {Addressing_Invalid};
ExprKind kind = check_expr_base(ctx, &operand, es->expr, nullptr);
switch (operand.mode) {
case Addressing_Type:
{
gbString str = type_to_string(operand.type);
error(node, "'%s' is not an expression but a type and cannot be used as a statement", str);
gb_string_free(str);
break;
}
case Addressing_NoValue:
return;
}
if (kind == Expr_Stmt) {
return;
}
Ast *expr = strip_or_return_expr(operand.expr);
if (expr && expr->kind == Ast_CallExpr) {
BuiltinProcId builtin_id = BuiltinProc_Invalid;
bool do_require = false;
AstCallExpr *ce = &expr->CallExpr;
Type *t = base_type(type_of_expr(ce->proc));
if (t && t->kind == Type_Proc) {
do_require = t->Proc.require_results;
} else if (check_stmt_internal_builtin_proc_id(ce->proc, &builtin_id)) {
auto const &bp = builtin_procs[builtin_id];
do_require = bp.kind == Expr_Expr && !bp.ignore_results;
}
if (do_require) {
gbString expr_str = expr_to_string(ce->proc);
defer (gb_string_free(expr_str));
if (builtin_id) {
String real_name = builtin_procs[builtin_id].name;
if (real_name != make_string(cast(u8 const *)expr_str, gb_string_length(expr_str))) {
error(node, "'%s' ('%.*s.%.*s') requires that its results must be handled", expr_str,
LIT(builtin_proc_pkg_name[builtin_procs[builtin_id].pkg]), LIT(real_name));
return;
}
}
error(node, "'%s' requires that its results must be handled", expr_str);
}
return;
} else if (expr && expr->kind == Ast_SelectorCallExpr) {
BuiltinProcId builtin_id = BuiltinProc_Invalid;
bool do_require = false;
AstSelectorCallExpr *se = &expr->SelectorCallExpr;
ast_node(ce, CallExpr, se->call);
Type *t = base_type(type_of_expr(ce->proc));
if (t == nullptr) {
gbString expr_str = expr_to_string(ce->proc);
error(node, "'%s' is not a value field nor procedure", expr_str);
gb_string_free(expr_str);
return;
}
if (t->kind == Type_Proc) {
do_require = t->Proc.require_results;
} else if (check_stmt_internal_builtin_proc_id(ce->proc, &builtin_id)) {
auto const &bp = builtin_procs[builtin_id];
do_require = bp.kind == Expr_Expr && !bp.ignore_results;
}
if (do_require) {
gbString expr_str = expr_to_string(ce->proc);
error(node, "'%s' requires that its results must be handled", expr_str);
gb_string_free(expr_str);
}
return;
}
ERROR_BLOCK();
gbString expr_str = expr_to_string(operand.expr);
error(node, "Expression is not used: '%s'", expr_str);
gb_string_free(expr_str);
if (operand.expr->kind == Ast_BinaryExpr) {
ast_node(be, BinaryExpr, operand.expr);
if (be->op.kind != Token_CmpEq) {
return;
}
switch (be->left->tav.mode) {
case Addressing_Context:
case Addressing_Variable:
case Addressing_MapIndex:
case Addressing_SoaVariable:
{
gbString lhs = expr_to_string(be->left);
gbString rhs = expr_to_string(be->right);
error_line("\tSuggestion: Did you mean to do an assignment?\n", lhs, rhs);
error_line("\t '%s = %s;'\n", lhs, rhs);
gb_string_free(rhs);
gb_string_free(lhs);
}
break;
}
}
}
gb_internal void check_assign_stmt(CheckerContext *ctx, Ast *node) {
ast_node(as, AssignStmt, node);
if (as->op.kind == Token_Eq) {
// a, b, c = 1, 2, 3; // Multisided
isize lhs_count = as->lhs.count;
if (lhs_count == 0) {
error(as->op, "Missing lhs in assignment statement");
return;
}
TEMPORARY_ALLOCATOR_GUARD();
// NOTE(bill): If there is a bad syntax error, rhs > lhs which would mean there would need to be
// an extra allocation
auto lhs_operands = array_make<Operand>(temporary_allocator(), lhs_count);
auto rhs_operands = array_make<Operand>(temporary_allocator(), 0, 2*lhs_count);
for_array(i, as->lhs) {
if (is_blank_ident(as->lhs[i])) {
Operand *o = &lhs_operands[i];
o->expr = as->lhs[i];
o->mode = Addressing_Value;
} else {
ctx->assignment_lhs_hint = unparen_expr(as->lhs[i]);
check_expr(ctx, &lhs_operands[i], as->lhs[i]);
}
}
ctx->assignment_lhs_hint = nullptr; // Reset the assignment_lhs_hint
check_assignment_arguments(ctx, lhs_operands, &rhs_operands, as->rhs);
auto lhs_to_ignore = array_make<bool>(temporary_allocator(), lhs_count);
isize rhs_count = rhs_operands.count;
isize max = gb_min(lhs_count, rhs_count);
for (isize i = 0; i < max; i++) {
if (lhs_to_ignore[i]) {
continue;
}
check_assignment_variable(ctx, &lhs_operands[i], &rhs_operands[i]);
}
if (lhs_count != rhs_count) {
error(as->lhs[0], "Assignment count mismatch '%td' = '%td'", lhs_count, rhs_count);
}
} else {
// a += 1; // Single-sided
Token op = as->op;
if (as->lhs.count != 1 || as->rhs.count != 1) {
error(op, "Assignment operation '%.*s' requires single-valued expressions", LIT(op.string));
return;
}
if (!gb_is_between(op.kind, Token__AssignOpBegin+1, Token__AssignOpEnd-1)) {
error(op, "Unknown Assignment operation '%.*s'", LIT(op.string));
return;
}
Operand lhs = {Addressing_Invalid};
Operand rhs = {Addressing_Invalid};
Ast *binary_expr = alloc_ast_node(node->file(), Ast_BinaryExpr);
ast_node(be, BinaryExpr, binary_expr);
be->op = op;
be->op.kind = cast(TokenKind)(cast(i32)be->op.kind - (Token_AddEq - Token_Add));
// NOTE(bill): Only use the first one will be used
be->left = as->lhs[0];
be->right = as->rhs[0];
check_expr(ctx, &lhs, as->lhs[0]);
check_binary_expr(ctx, &rhs, binary_expr, nullptr, true);
if (rhs.mode != Addressing_Invalid) {
// NOTE(bill): Only use the first one will be used
check_assignment_variable(ctx, &lhs, &rhs);
}
}
}
gb_internal void check_if_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(is, IfStmt, node);
check_open_scope(ctx, node);
check_label(ctx, is->label, node);
if (is->init != nullptr) {
check_stmt(ctx, is->init, 0);
}
Operand operand = {Addressing_Invalid};
check_expr(ctx, &operand, is->cond);
if (operand.mode != Addressing_Invalid && !is_type_boolean(operand.type)) {
error(is->cond, "Non-boolean condition in 'if' statement");
}
check_stmt(ctx, is->body, mod_flags);
if (is->else_stmt != nullptr) {
switch (is->else_stmt->kind) {
case Ast_IfStmt:
case Ast_BlockStmt:
check_stmt(ctx, is->else_stmt, mod_flags);
break;
default:
error(is->else_stmt, "Invalid 'else' statement in 'if' statement");
break;
}
}
check_close_scope(ctx);
}
gb_internal void check_return_stmt(CheckerContext *ctx, Ast *node) {
ast_node(rs, ReturnStmt, node);
GB_ASSERT(ctx->curr_proc_sig != nullptr);
if (ctx->in_defer) {
error(rs->token, "'return' cannot be used within a defer statement");
return;
}
Type *proc_type = ctx->curr_proc_sig;
GB_ASSERT(proc_type != nullptr);
GB_ASSERT(proc_type->kind == Type_Proc);
TypeProc *pt = &proc_type->Proc;
if (pt->diverging) {
error(rs->token, "Diverging procedures may not return");
return;
}
Entity **result_entities = nullptr;
isize result_count = 0;
bool has_named_results = pt->has_named_results;
if (pt->results) {
result_entities = proc_type->Proc.results->Tuple.variables.data;
result_count = proc_type->Proc.results->Tuple.variables.count;
}
auto operands = array_make<Operand>(heap_allocator(), 0, 2*rs->results.count);
defer (array_free(&operands));
check_unpack_arguments(ctx, result_entities, result_count, &operands, rs->results, UnpackFlag_AllowOk);
if (result_count == 0 && rs->results.count > 0) {
error(rs->results[0], "No return values expected");
} else if (has_named_results && operands.count == 0) {
// Okay
} else if (operands.count != result_count) {
// Ignore error message as it has most likely already been reported
if (all_operands_valid(operands)) {
if (operands.count == 1) {
gbString t = type_to_string(operands[0].type);
error(node, "Expected %td return values, got %td (%s)", result_count, operands.count, t);
gb_string_free(t);
} else {
error(node, "Expected %td return values, got %td", result_count, operands.count);
}
}
} else {
for (isize i = 0; i < result_count; i++) {
Entity *e = pt->results->Tuple.variables[i];
Operand *o = &operands[i];
check_assignment(ctx, o, e->type, str_lit("return statement"));
if (is_type_untyped(o->type)) {
update_untyped_expr_type(ctx, o->expr, e->type, true);
}
}
}
for (Operand &o : operands) {
if (o.expr == nullptr) {
continue;
}
Ast *expr = unparen_expr(o.expr);
while (expr->kind == Ast_CallExpr && expr->CallExpr.proc->tav.mode == Addressing_Type) {
if (expr->CallExpr.args.count != 1) {
break;
}
Ast *arg = expr->CallExpr.args[0];
if (arg->kind == Ast_FieldValue || !are_types_identical(arg->tav.type, expr->tav.type)) {
break;
}
expr = unparen_expr(arg);
}
auto unsafe_return_error = [](Operand const &o, char const *msg, Type *extra_type=nullptr) {
gbString s = expr_to_string(o.expr);
if (extra_type) {
gbString t = type_to_string(extra_type);
error(o.expr, "It is unsafe to return %s ('%s') of type ('%s') from a procedure, as it uses the current stack frame's memory", msg, s, t);
gb_string_free(t);
} else {
error(o.expr, "It is unsafe to return %s ('%s') from a procedure, as it uses the current stack frame's memory", msg, s);
}
gb_string_free(s);
};
// NOTE(bill): This is very basic escape analysis
// This needs to be improved tremendously, and a lot of it done during the
// middle-end (or LLVM side) to improve checks and error messages
if (expr->kind == Ast_CompoundLit && is_type_slice(o.type)) {
ast_node(cl, CompoundLit, expr);
if (cl->elems.count == 0) {
continue;
}
unsafe_return_error(o, "a compound literal of a slice");
} else if (expr->kind == Ast_UnaryExpr && expr->UnaryExpr.op.kind == Token_And) {
Ast *x = unparen_expr(expr->UnaryExpr.expr);
Entity *e = entity_of_node(x);
if (is_entity_local_variable(e)) {
unsafe_return_error(o, "the address of a local variable");
} else if (x->kind == Ast_CompoundLit) {
unsafe_return_error(o, "the address of a compound literal");
} else if (x->kind == Ast_IndexExpr) {
Entity *f = entity_of_node(x->IndexExpr.expr);
if (f && (is_type_array_like(f->type) || is_type_matrix(f->type))) {
if (is_entity_local_variable(f)) {
unsafe_return_error(o, "the address of an indexed variable", f->type);
}
}
} else if (x->kind == Ast_MatrixIndexExpr) {
Entity *f = entity_of_node(x->MatrixIndexExpr.expr);
if (f && (is_type_matrix(f->type) && is_entity_local_variable(f))) {
unsafe_return_error(o, "the address of an indexed variable", f->type);
}
}
} else if (expr->kind == Ast_SliceExpr) {
Ast *x = unparen_expr(expr->SliceExpr.expr);
Entity *e = entity_of_node(x);
if (is_entity_local_variable(e) && is_type_array(e->type)) {
unsafe_return_error(o, "a slice of a local variable");
} else if (x->kind == Ast_CompoundLit) {
unsafe_return_error(o, "a slice of a compound literal");
}
} else if (o.mode == Addressing_Constant && is_type_slice(o.type)) {
ERROR_BLOCK();
unsafe_return_error(o, "a compound literal of a slice");
error_line("\tNote: A constant slice value will use the memory of the current stack frame\n");
}
}
}
gb_internal void check_for_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(fs, ForStmt, node);
mod_flags |= Stmt_BreakAllowed | Stmt_ContinueAllowed;
check_open_scope(ctx, node);
check_label(ctx, fs->label, node);
if (fs->init != nullptr) {
check_stmt(ctx, fs->init, 0);
}
if (fs->cond != nullptr) {
Operand o = {Addressing_Invalid};
check_expr(ctx, &o, fs->cond);
if (o.mode != Addressing_Invalid && !is_type_boolean(o.type)) {
error(fs->cond, "Non-boolean condition in 'for' statement");
} else {
Ast *cond = unparen_expr(o.expr);
if (cond && cond->kind == Ast_BinaryExpr &&
cond->BinaryExpr.left && cond->BinaryExpr.right &&
cond->BinaryExpr.op.kind == Token_GtEq &&
type_of_expr(cond->BinaryExpr.left) != nullptr &&
is_type_unsigned(type_of_expr(cond->BinaryExpr.left)) &&
cond->BinaryExpr.right->tav.value.kind == ExactValue_Integer &&
is_exact_value_zero(cond->BinaryExpr.right->tav.value)) {
warning(cond, "Expression is always true since unsigned numbers are always >= 0");
} else if (cond && cond->kind == Ast_BinaryExpr &&
cond->BinaryExpr.left && cond->BinaryExpr.right &&
cond->BinaryExpr.op.kind == Token_LtEq &&
type_of_expr(cond->BinaryExpr.right) != nullptr &&
is_type_unsigned(type_of_expr(cond->BinaryExpr.right)) &&
cond->BinaryExpr.left->tav.value.kind == ExactValue_Integer &&
is_exact_value_zero(cond->BinaryExpr.left->tav.value)) {
warning(cond, "Expression is always true since unsigned numbers are always >= 0");
}
}
}
if (fs->post != nullptr) {
check_stmt(ctx, fs->post, 0);
if (fs->post->kind != Ast_AssignStmt) {
error(fs->post, "'for' statement post statement must be a simple statement");
}
}
check_stmt(ctx, fs->body, mod_flags);
check_close_scope(ctx);
}
gb_internal void check_stmt_internal(CheckerContext *ctx, Ast *node, u32 flags) {
u32 mod_flags = flags & (~Stmt_FallthroughAllowed);
switch (node->kind) {
case_ast_node(_, EmptyStmt, node); case_end;
case_ast_node(_, BadStmt, node); case_end;
case_ast_node(_, BadDecl, node); case_end;
case_ast_node(es, ExprStmt, node)
check_expr_stmt(ctx, node);
case_end;
case_ast_node(as, AssignStmt, node);
check_assign_stmt(ctx, node);
case_end;
case_ast_node(bs, BlockStmt, node);
check_open_scope(ctx, node);
check_label(ctx, bs->label, node);
check_stmt_list(ctx, bs->stmts, flags);
check_block_stmt_for_errors(ctx, node);
check_close_scope(ctx);
case_end;
case_ast_node(is, IfStmt, node);
check_if_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ws, WhenStmt, node);
check_when_stmt(ctx, ws, flags);
case_end;
case_ast_node(rs, ReturnStmt, node);
check_return_stmt(ctx, node);
case_end;
case_ast_node(fs, ForStmt, node);
check_for_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(rs, RangeStmt, node);
check_range_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(irs, UnrollRangeStmt, node);
check_unroll_range_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ss, SwitchStmt, node);
check_switch_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ss, TypeSwitchStmt, node);
check_type_switch_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ds, DeferStmt, node);
if (is_ast_decl(ds->stmt)) {
error(ds->token, "You cannot defer a declaration");
} else {
bool out_in_defer = ctx->in_defer;
ctx->in_defer = true;
check_stmt(ctx, ds->stmt, 0);
ctx->in_defer = out_in_defer;
if (ctx->decl) {
ctx->decl->defer_used += 1;
}
// NOTE(bill): Handling errors/warnings
Ast *stmt = ds->stmt;
Ast *original_stmt = stmt;
bool is_singular = true;
while (is_singular && stmt->kind == Ast_BlockStmt) {
Ast *inner_stmt = nullptr;
for (Ast *s : stmt->BlockStmt.stmts) {
if (s->kind == Ast_EmptyStmt) {
continue;
}
if (inner_stmt != nullptr) {
is_singular = false;
break;
}
inner_stmt = s;
}
if (inner_stmt != nullptr) {
stmt = inner_stmt;
}
}
if (!is_singular) {
stmt = original_stmt;
}
switch (stmt->kind) {
case_ast_node(as, AssignStmt, stmt);
if (as->op.kind != Token_Eq) {
break;
}
for (Ast *lhs : as->lhs) {
Entity *e = entity_of_node(lhs);
if (e && e->flags & EntityFlag_Result) {
error(lhs, "Assignments to named return values within 'defer' will not affect the value that is returned");
}
}
case_end;
}
}
case_end;
case_ast_node(bs, BranchStmt, node);
Token token = bs->token;
switch (token.kind) {
case Token_break:
if ((flags & Stmt_BreakAllowed) == 0 && bs->label == nullptr) {
error(token, "'break' only allowed in non-inline loops or 'switch' statements");
}
break;
case Token_continue:
if ((flags & Stmt_ContinueAllowed) == 0 && bs->label == nullptr) {
error(token, "'continue' only allowed in non-inline loops");
}
break;
case Token_fallthrough:
if ((flags & Stmt_FallthroughAllowed) == 0) {
if ((flags & Stmt_TypeSwitch) != 0) {
error(token, "'fallthrough' statement not allowed within a type switch statement");
} else {
error(token, "'fallthrough' statement in illegal position, expected at the end of a 'case' block");
}
} else if (bs->label != nullptr) {
error(token, "'fallthrough' cannot have a label");
}
break;
default:
error(token, "Invalid AST: Branch Statement '%.*s'", LIT(token.string));
break;
}
if (bs->label != nullptr) {
if (bs->label->kind != Ast_Ident) {
error(bs->label, "A branch statement's label name must be an identifier");
return;
}
Ast *ident = bs->label;
String name = ident->Ident.token.string;
Operand o = {};
Entity *e = check_ident(ctx, &o, ident, nullptr, nullptr, false);
if (e == nullptr) {
error(ident, "Undeclared label name: %.*s", LIT(name));
return;
}
add_entity_use(ctx, ident, e);
if (e->kind != Entity_Label) {
error(ident, "'%.*s' is not a label", LIT(name));
return;
}
Ast *parent = e->Label.parent;
GB_ASSERT(parent != nullptr);
switch (parent->kind) {
case Ast_BlockStmt:
case Ast_IfStmt:
case Ast_SwitchStmt:
case Ast_TypeSwitchStmt:
if (token.kind != Token_break) {
error(bs->label, "Label '%.*s' can only be used with 'break'", LIT(e->token.string));
}
break;
case Ast_RangeStmt:
case Ast_ForStmt:
if ((token.kind != Token_break) && (token.kind != Token_continue)) {
error(bs->label, "Label '%.*s' can only be used with 'break' and 'continue'", LIT(e->token.string));
}
break;
}
if (ctx->in_defer) {
error(bs->label, "A labelled '%.*s' cannot be used within a 'defer'", LIT(token.string));
}
}
case_end;
case_ast_node(us, UsingStmt, node);
if (us->list.count == 0) {
error(us->token, "Empty 'using' list");
return;
}
if (check_vet_flags(node) & VetFlag_UsingStmt) {
ERROR_BLOCK();
error(node, "'using' as a statement is not allowed when '-vet' or '-vet-using' is applied");
error_line("\t'using' is considered bad practice to use as a statement outside of immediate refactoring\n");
}
for (Ast *expr : us->list) {
expr = unparen_expr(expr);
Entity *e = nullptr;
bool is_selector = false;
Operand o = {};
switch (expr->kind) {
case Ast_Ident:
e = check_ident(ctx, &o, expr, nullptr, nullptr, true);
break;
case Ast_SelectorExpr:
e = check_selector(ctx, &o, expr, nullptr);
is_selector = true;
break;
case Ast_Implicit:
error(us->token, "'using' applied to an implicit value");
continue;
default:
error(us->token, "'using' can only be applied to an entity, got %.*s", LIT(ast_strings[expr->kind]));
continue;
}
if (!check_using_stmt_entity(ctx, us, expr, is_selector, e)) {
return;
}
}
case_end;
case_ast_node(fb, ForeignBlockDecl, node);
Ast *foreign_library = fb->foreign_library;
CheckerContext c = *ctx;
if (foreign_library->kind != Ast_Ident) {
error(foreign_library, "foreign library name must be an identifier");
} else {
c.foreign_context.curr_library = foreign_library;
c.foreign_context.default_cc = ProcCC_CDecl;
}
check_decl_attributes(&c, fb->attributes, foreign_block_decl_attribute, nullptr);
ast_node(block, BlockStmt, fb->body);
for (Ast *decl : block->stmts) {
if (decl->kind == Ast_ValueDecl && decl->ValueDecl.is_mutable) {
check_stmt(&c, decl, flags);
}
}
case_end;
case_ast_node(vd, ValueDecl, node);
check_value_decl_stmt(ctx, node, mod_flags);
case_end;
}
}