Files
Odin/src/exact_value.cpp

1023 lines
26 KiB
C++

#include <math.h>
gb_global BlockingMutex hash_exact_value_mutex;
struct Ast;
struct HashKey;
struct Type;
struct Entity;
bool are_types_identical(Type *x, Type *y);
struct Complex128 {
f64 real, imag;
};
struct Quaternion256 {
f64 imag, jmag, kmag, real;
};
Quaternion256 quaternion256_inverse(Quaternion256 x) {
f64 invmag2 = 1.0 / (x.real*x.real + x.imag*x.imag + x.jmag*x.jmag + x.kmag*x.kmag);
x.real = +x.real * invmag2;
x.imag = -x.imag * invmag2;
x.jmag = -x.jmag * invmag2;
x.kmag = -x.kmag * invmag2;
return x;
}
enum ExactValueKind {
ExactValue_Invalid = 0,
ExactValue_Bool = 1,
ExactValue_String = 2,
ExactValue_Integer = 3,
ExactValue_Float = 4,
ExactValue_Complex = 5,
ExactValue_Quaternion = 6,
ExactValue_Pointer = 7,
ExactValue_Compound = 8, // TODO(bill): Is this good enough?
ExactValue_Procedure = 9, // TODO(bill): Is this good enough?
ExactValue_Typeid = 10,
ExactValue_Count,
};
struct ExactValue {
ExactValueKind kind;
union {
bool value_bool;
String value_string;
BigInt value_integer;
f64 value_float;
i64 value_pointer; // NOTE(bill): This must be an integer and not a pointer
Complex128 *value_complex;
Quaternion256 *value_quaternion;
Ast * value_compound;
Ast * value_procedure;
Type * value_typeid;
};
};
gb_global ExactValue const empty_exact_value = {};
uintptr hash_exact_value(ExactValue v) {
mutex_lock(&hash_exact_value_mutex);
defer (mutex_unlock(&hash_exact_value_mutex));
switch (v.kind) {
case ExactValue_Invalid:
return 0;
case ExactValue_Bool:
return gb_fnv32a(&v.value_bool, gb_size_of(v.value_bool));
case ExactValue_String:
return ptr_map_hash_key(string_intern(v.value_string));
case ExactValue_Integer:
{
u32 key = gb_fnv32a(v.value_integer.dp, gb_size_of(*v.value_integer.dp) * v.value_integer.used);
u8 last = (u8)v.value_integer.sign;
return (key ^ last) * 0x01000193;
}
case ExactValue_Float:
return gb_fnv32a(&v.value_float, gb_size_of(v.value_float));
case ExactValue_Pointer:
return ptr_map_hash_key(v.value_pointer);
case ExactValue_Complex:
return gb_fnv32a(v.value_complex, gb_size_of(Complex128));
case ExactValue_Quaternion:
return gb_fnv32a(v.value_quaternion, gb_size_of(Quaternion256));
case ExactValue_Compound:
return ptr_map_hash_key(v.value_compound);
case ExactValue_Procedure:
return ptr_map_hash_key(v.value_procedure);
case ExactValue_Typeid:
return ptr_map_hash_key(v.value_typeid);
}
return gb_fnv32a(&v, gb_size_of(ExactValue));
}
ExactValue exact_value_compound(Ast *node) {
ExactValue result = {ExactValue_Compound};
result.value_compound = node;
return result;
}
ExactValue exact_value_bool(bool b) {
ExactValue result = {ExactValue_Bool};
result.value_bool = (b != 0);
return result;
}
ExactValue exact_value_string(String string) {
// TODO(bill): Allow for numbers with underscores in them
ExactValue result = {ExactValue_String};
result.value_string = string;
return result;
}
ExactValue exact_value_i64(i64 i) {
ExactValue result = {ExactValue_Integer};
big_int_from_i64(&result.value_integer, i);
return result;
}
ExactValue exact_value_u64(u64 i) {
ExactValue result = {ExactValue_Integer};
big_int_from_u64(&result.value_integer, i);
return result;
}
ExactValue exact_value_float(f64 f) {
ExactValue result = {ExactValue_Float};
result.value_float = f;
return result;
}
ExactValue exact_value_complex(f64 real, f64 imag) {
ExactValue result = {ExactValue_Complex};
result.value_complex = gb_alloc_item(permanent_allocator(), Complex128);
result.value_complex->real = real;
result.value_complex->imag = imag;
return result;
}
ExactValue exact_value_quaternion(f64 real, f64 imag, f64 jmag, f64 kmag) {
ExactValue result = {ExactValue_Quaternion};
result.value_quaternion = gb_alloc_item(permanent_allocator(), Quaternion256);
result.value_quaternion->real = real;
result.value_quaternion->imag = imag;
result.value_quaternion->jmag = jmag;
result.value_quaternion->kmag = kmag;
return result;
}
ExactValue exact_value_pointer(i64 ptr) {
ExactValue result = {ExactValue_Pointer};
result.value_pointer = ptr;
return result;
}
ExactValue exact_value_procedure(Ast *node) {
ExactValue result = {ExactValue_Procedure};
result.value_procedure = node;
return result;
}
ExactValue exact_value_typeid(Type *type) {
ExactValue result = {ExactValue_Typeid};
result.value_typeid = type;
return result;
}
ExactValue exact_value_integer_from_string(String const &string) {
ExactValue result = {ExactValue_Integer};
bool success;
big_int_from_string(&result.value_integer, string, &success);
if (!success) {
result = {ExactValue_Invalid};
}
return result;
}
f64 float_from_string(String string) {
isize i = 0;
u8 *str = string.text;
isize len = string.len;
f64 sign = 1.0;
if (str[i] == '-') {
sign = -1.0;
i++;
} else if (*str == '+') {
i++;
}
f64 value = 0.0;
for (; i < len; i++) {
Rune r = cast(Rune)str[i];
if (r == '_') {
continue;
}
i64 v = digit_value(r);
if (v >= 10) {
break;
}
value *= 10.0;
value += v;
}
if (str[i] == '.') {
f64 pow10 = 10.0;
i++;
for (; i < string.len; i++) {
Rune r = cast(Rune)str[i];
if (r == '_') {
continue;
}
i64 v = digit_value(r);
if (v >= 10) {
break;
}
value += v/pow10;
pow10 *= 10.0;
}
}
bool frac = false;
f64 scale = 1.0;
if ((str[i] == 'e') || (str[i] == 'E')) {
i++;
if (str[i] == '-') {
frac = true;
i++;
} else if (str[i] == '+') {
i++;
}
u32 exp = 0;
for (; i < len; i++) {
Rune r = cast(Rune)str[i];
if (r == '_') {
continue;
}
u32 d = cast(u32)digit_value(r);
if (d >= 10) {
break;
}
exp = exp * 10 + d;
}
if (exp > 308) exp = 308;
while (exp >= 50) { scale *= 1e50; exp -= 50; }
while (exp >= 8) { scale *= 1e8; exp -= 8; }
while (exp > 0) { scale *= 10.0; exp -= 1; }
}
return sign * (frac ? (value / scale) : (value * scale));
}
ExactValue exact_value_float_from_string(String string) {
if (string.len > 2 && string[0] == '0' && string[1] == 'h') {
isize digit_count = 0;
for (isize i = 2; i < string.len; i++) {
if (string[i] != '_') {
digit_count += 1;
}
}
u64 u = u64_from_string(string);
if (digit_count == 4) {
u16 x = cast(u16)u;
f32 f = f16_to_f32(x);
return exact_value_float(cast(f64)f);
} else if (digit_count == 8) {
u32 x = cast(u32)u;
f32 f = bit_cast<f32>(x);
return exact_value_float(cast(f64)f);
} else if (digit_count == 16) {
f64 f = bit_cast<f64>(u);
return exact_value_float(f);
} else {
GB_PANIC("Invalid hexadecimal float, expected 8 or 16 digits, got %td", digit_count);
}
}
if (!string_contains_char(string, '.') && !string_contains_char(string, '-')) {
// NOTE(bill): treat as integer
return exact_value_integer_from_string(string);
}
f64 f = float_from_string(string);
return exact_value_float(f);
}
ExactValue exact_value_from_basic_literal(TokenKind kind, String const &string) {
switch (kind) {
case Token_String: return exact_value_string(string);
case Token_Integer: return exact_value_integer_from_string(string);
case Token_Float: return exact_value_float_from_string(string);
case Token_Imag: {
String str = string;
Rune last_rune = cast(Rune)str[str.len-1];
str.len--; // Ignore the 'i|j|k'
f64 imag = float_from_string(str);
switch (last_rune) {
case 'i': return exact_value_complex(0, imag);
case 'j': return exact_value_quaternion(0, 0, imag, 0);
case 'k': return exact_value_quaternion(0, 0, 0, imag);
default: GB_PANIC("Invalid imaginary basic literal");
}
}
case Token_Rune: {
Rune r = GB_RUNE_INVALID;
utf8_decode(string.text, string.len, &r);
return exact_value_i64(r);
}
default:
GB_PANIC("Invalid token for basic literal");
break;
}
ExactValue result = {ExactValue_Invalid};
return result;
}
ExactValue exact_value_to_integer(ExactValue v) {
switch (v.kind) {
case ExactValue_Bool: {
i64 i = 0;
if (v.value_bool) {
i = 1;
}
return exact_value_i64(i);
}
case ExactValue_Integer:
return v;
case ExactValue_Float: {
i64 i = cast(i64)v.value_float;
f64 f = cast(f64)i;
if (f == v.value_float) {
return exact_value_i64(i);
}
break;
}
case ExactValue_Pointer:
return exact_value_i64(cast(i64)cast(intptr)v.value_pointer);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_to_float(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_float(big_int_to_f64(&v.value_integer));
case ExactValue_Float:
return v;
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_to_complex(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_complex(big_int_to_f64(&v.value_integer), 0);
case ExactValue_Float:
return exact_value_complex(v.value_float, 0);
case ExactValue_Complex:
return v;
// case ExactValue_Quaternion:
// return exact_value_complex(v.value_quaternion.real, v.value_quaternion.imag);
}
ExactValue r = {ExactValue_Invalid};
v.value_complex = gb_alloc_item(permanent_allocator(), Complex128);
return r;
}
ExactValue exact_value_to_quaternion(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_quaternion(big_int_to_f64(&v.value_integer), 0, 0, 0);
case ExactValue_Float:
return exact_value_quaternion(v.value_float, 0, 0, 0);
case ExactValue_Complex:
return exact_value_quaternion(v.value_complex->real, v.value_complex->imag, 0, 0);
case ExactValue_Quaternion:
return v;
}
ExactValue r = {ExactValue_Invalid};
v.value_quaternion = gb_alloc_item(permanent_allocator(), Quaternion256);
return r;
}
ExactValue exact_value_real(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
return v;
case ExactValue_Complex:
return exact_value_float(v.value_complex->real);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion->real);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_imag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
return exact_value_i64(0);
case ExactValue_Complex:
return exact_value_float(v.value_complex->imag);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion->imag);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_jmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
case ExactValue_Complex:
return exact_value_i64(0);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion->jmag);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_kmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
case ExactValue_Complex:
return exact_value_i64(0);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion->kmag);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_make_imag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_complex(0, exact_value_to_float(v).value_float);
case ExactValue_Float:
return exact_value_complex(0, v.value_float);
default:
GB_PANIC("Expected an integer or float type for 'exact_value_make_imag'");
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_make_jmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_quaternion(0, 0, exact_value_to_float(v).value_float, 0);
case ExactValue_Float:
return exact_value_quaternion(0, 0, v.value_float, 0);
default:
GB_PANIC("Expected an integer or float type for 'exact_value_make_imag'");
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_make_kmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_quaternion(0, 0, 0, exact_value_to_float(v).value_float);
case ExactValue_Float:
return exact_value_quaternion(0, 0, 0, v.value_float);
default:
GB_PANIC("Expected an integer or float type for 'exact_value_make_imag'");
}
ExactValue r = {ExactValue_Invalid};
return r;
}
i64 exact_value_to_i64(ExactValue v) {
v = exact_value_to_integer(v);
if (v.kind == ExactValue_Integer) {
return big_int_to_i64(&v.value_integer);
}
return 0;
}
u64 exact_value_to_u64(ExactValue v) {
v = exact_value_to_integer(v);
if (v.kind == ExactValue_Integer) {
return big_int_to_u64(&v.value_integer);
}
return 0;
}
f64 exact_value_to_f64(ExactValue v) {
v = exact_value_to_float(v);
if (v.kind == ExactValue_Float) {
return v.value_float;
}
return 0.0;
}
ExactValue exact_unary_operator_value(TokenKind op, ExactValue v, i32 precision, bool is_unsigned) {
switch (op) {
case Token_Add: {
switch (v.kind) {
case ExactValue_Invalid:
case ExactValue_Integer:
case ExactValue_Float:
case ExactValue_Complex:
case ExactValue_Quaternion:
return v;
}
break;
}
case Token_Sub: {
switch (v.kind) {
case ExactValue_Invalid:
return v;
case ExactValue_Integer: {
ExactValue i = {ExactValue_Integer};
big_int_neg(&i.value_integer, &v.value_integer);
return i;
}
case ExactValue_Float: {
ExactValue i = v;
i.value_float = -i.value_float;
return i;
}
case ExactValue_Complex: {
f64 real = v.value_complex->real;
f64 imag = v.value_complex->imag;
return exact_value_complex(-real, -imag);
}
case ExactValue_Quaternion: {
f64 real = v.value_quaternion->real;
f64 imag = v.value_quaternion->imag;
f64 jmag = v.value_quaternion->jmag;
f64 kmag = v.value_quaternion->kmag;
return exact_value_quaternion(-real, -imag, -jmag, -kmag);
}
}
break;
}
case Token_Xor: {
switch (v.kind) {
case ExactValue_Invalid:
return v;
case ExactValue_Integer: {
GB_ASSERT(precision != 0);
ExactValue i = {ExactValue_Integer};
big_int_not(&i.value_integer, &v.value_integer, precision, !is_unsigned);
return i;
}
default:
goto failure;
}
}
case Token_Not: {
switch (v.kind) {
case ExactValue_Invalid: return v;
case ExactValue_Bool:
return exact_value_bool(!v.value_bool);
}
break;
}
}
failure:
GB_PANIC("Invalid unary operation, %.*s", LIT(token_strings[op]));
ExactValue error_value = {};
return error_value;
}
// NOTE(bill): Make sure things are evaluated in correct order
i32 exact_value_order(ExactValue const &v) {
switch (v.kind) {
case ExactValue_Invalid:
case ExactValue_Compound:
return 0;
case ExactValue_Bool:
case ExactValue_String:
return 1;
case ExactValue_Integer:
return 2;
case ExactValue_Float:
return 3;
case ExactValue_Complex:
return 4;
case ExactValue_Quaternion:
return 5;
case ExactValue_Pointer:
return 6;
case ExactValue_Procedure:
return 7;
default:
GB_PANIC("How'd you get here? Invalid Value.kind %d", v.kind);
return -1;
}
}
void match_exact_values(ExactValue *x, ExactValue *y) {
if (exact_value_order(*y) < exact_value_order(*x)) {
match_exact_values(y, x);
return;
}
switch (x->kind) {
case ExactValue_Invalid:
*y = *x;
return;
case ExactValue_Bool:
case ExactValue_String:
case ExactValue_Quaternion:
case ExactValue_Pointer:
case ExactValue_Procedure:
case ExactValue_Typeid:
return;
case ExactValue_Integer:
switch (y->kind) {
case ExactValue_Integer:
return;
case ExactValue_Float:
// TODO(bill): Is this good enough?
*x = exact_value_float(big_int_to_f64(&x->value_integer));
return;
case ExactValue_Complex:
*x = exact_value_complex(big_int_to_f64(&x->value_integer), 0);
return;
case ExactValue_Quaternion:
*x = exact_value_quaternion(big_int_to_f64(&x->value_integer), 0, 0, 0);
return;
}
break;
case ExactValue_Float:
switch (y->kind) {
case ExactValue_Float:
return;
case ExactValue_Complex:
*x = exact_value_to_complex(*x);
return;
case ExactValue_Quaternion:
*x = exact_value_to_quaternion(*x);
return;
}
break;
case ExactValue_Complex:
switch (y->kind) {
case ExactValue_Complex:
return;
case ExactValue_Quaternion:
*x = exact_value_to_quaternion(*x);
return;
}
break;
}
compiler_error("match_exact_values: How'd you get here? Invalid ExactValueKind %d", x->kind);
}
// TODO(bill): Allow for pointer arithmetic? Or are pointer slices good enough?
ExactValue exact_binary_operator_value(TokenKind op, ExactValue x, ExactValue y) {
match_exact_values(&x, &y);
switch (x.kind) {
case ExactValue_Invalid:
return x;
case ExactValue_Bool:
switch (op) {
case Token_CmpAnd: return exact_value_bool(x.value_bool && y.value_bool);
case Token_CmpOr: return exact_value_bool(x.value_bool || y.value_bool);
case Token_And: return exact_value_bool(x.value_bool & y.value_bool);
case Token_Or: return exact_value_bool(x.value_bool | y.value_bool);
case Token_AndNot: return exact_value_bool(x.value_bool & !y.value_bool);
case Token_Xor: return exact_value_bool((x.value_bool && !y.value_bool) || (!x.value_bool && y.value_bool));
default: goto error;
}
break;
case ExactValue_Integer: {
BigInt const *a = &x.value_integer;
BigInt const *b = &y.value_integer;
BigInt c = {};
switch (op) {
case Token_Add: big_int_add(&c, a, b); break;
case Token_Sub: big_int_sub(&c, a, b); break;
case Token_Mul: big_int_mul(&c, a, b); break;
case Token_Quo: return exact_value_float(fmod(big_int_to_f64(a), big_int_to_f64(b)));
case Token_QuoEq: big_int_quo(&c, a, b); break; // NOTE(bill): Integer division
case Token_Mod: big_int_rem(&c, a, b); break;
case Token_ModMod: big_int_euclidean_mod(&c, a, b); break;
case Token_And: big_int_and(&c, a, b); break;
case Token_Or: big_int_or(&c, a, b); break;
case Token_Xor: big_int_xor(&c, a, b); break;
case Token_AndNot: big_int_and_not(&c, a, b); break;
case Token_Shl: big_int_shl(&c, a, b); break;
case Token_Shr: big_int_shr(&c, a, b); break;
default: goto error;
}
ExactValue res = {ExactValue_Integer};
res.value_integer = c;
return res;
}
case ExactValue_Float: {
f64 a = x.value_float;
f64 b = y.value_float;
switch (op) {
case Token_Add: return exact_value_float(a + b);
case Token_Sub: return exact_value_float(a - b);
case Token_Mul: return exact_value_float(a * b);
case Token_Quo: return exact_value_float(a / b);
default: goto error;
}
break;
}
case ExactValue_Complex: {
y = exact_value_to_complex(y);
f64 a = x.value_complex->real;
f64 b = x.value_complex->imag;
f64 c = y.value_complex->real;
f64 d = y.value_complex->imag;
f64 real = 0;
f64 imag = 0;
switch (op) {
case Token_Add:
real = a + c;
imag = b + d;
break;
case Token_Sub:
real = a - c;
imag = b - d;
break;
case Token_Mul:
real = (a*c - b*d);
imag = (b*c + a*d);
break;
case Token_Quo: {
f64 s = c*c + d*d;
real = (a*c + b*d)/s;
imag = (b*c - a*d)/s;
break;
}
default: goto error;
}
return exact_value_complex(real, imag);
break;
}
case ExactValue_Quaternion: {
y = exact_value_to_quaternion(y);
f64 xr = x.value_quaternion->real;
f64 xi = x.value_quaternion->imag;
f64 xj = x.value_quaternion->jmag;
f64 xk = x.value_quaternion->kmag;
f64 yr = y.value_quaternion->real;
f64 yi = y.value_quaternion->imag;
f64 yj = y.value_quaternion->jmag;
f64 yk = y.value_quaternion->kmag;
f64 real = 0;
f64 imag = 0;
f64 jmag = 0;
f64 kmag = 0;
switch (op) {
case Token_Add:
real = xr + yr;
imag = xi + yi;
jmag = xj + yj;
kmag = xk + yk;
break;
case Token_Sub:
real = xr - yr;
imag = xi - yi;
jmag = xj - yj;
kmag = xk - yk;
break;
case Token_Mul:
imag = xr * yi + xi * yr + xj * yk - xk * yj;
jmag = xr * yj - xi * yk + xj * yr + xk * yi;
kmag = xr * yk + xi * yj - xj * yi + xk * yr;
real = xr * yr - xi * yi - xj * yj - xk * yk;
break;
case Token_Quo: {
f64 invmag2 = 1.0 / (yr*yr + yi*yi + yj*yj + yk*yk);
imag = (xr * -yi + xi * +yr + xj * -yk - xk * -yj) * invmag2;
jmag = (xr * -yj - xi * -yk + xj * +yr + xk * -yi) * invmag2;
kmag = (xr * -yk + xi * -yj - xj * -yi + xk * +yr) * invmag2;
real = (xr * +yr - xi * -yi - xj * -yj - xk * -yk) * invmag2;
break;
}
default: goto error;
}
return exact_value_quaternion(real, imag, jmag, kmag);
break;
}
case ExactValue_String: {
if (op != Token_Add) goto error;
// NOTE(bill): How do you minimize this over allocation?
String sx = x.value_string;
String sy = y.value_string;
isize len = sx.len+sy.len;
u8 *data = gb_alloc_array(permanent_allocator(), u8, len);
gb_memmove(data, sx.text, sx.len);
gb_memmove(data+sx.len, sy.text, sy.len);
return exact_value_string(make_string(data, len));
break;
}
}
error:; // NOTE(bill): MSVC accepts this??? apparently you cannot declare variables immediately after labels...
return empty_exact_value;
}
gb_inline ExactValue exact_value_add(ExactValue const &x, ExactValue const &y) {
return exact_binary_operator_value(Token_Add, x, y);
}
gb_inline ExactValue exact_value_sub(ExactValue const &x, ExactValue const &y) {
return exact_binary_operator_value(Token_Sub, x, y);
}
gb_inline ExactValue exact_value_mul(ExactValue const &x, ExactValue const &y) {
return exact_binary_operator_value(Token_Mul, x, y);
}
gb_inline ExactValue exact_value_quo(ExactValue const &x, ExactValue const &y) {
return exact_binary_operator_value(Token_Quo, x, y);
}
gb_inline ExactValue exact_value_shift(TokenKind op, ExactValue const &x, ExactValue const &y) {
return exact_binary_operator_value(op, x, y);
}
gb_inline ExactValue exact_value_increment_one(ExactValue const &x) {
return exact_binary_operator_value(Token_Add, x, exact_value_i64(1));
}
i32 cmp_f64(f64 a, f64 b) {
return (a > b) - (a < b);
}
bool compare_exact_values(TokenKind op, ExactValue x, ExactValue y) {
match_exact_values(&x, &y);
switch (x.kind) {
case ExactValue_Invalid:
return false;
case ExactValue_Bool:
switch (op) {
case Token_CmpEq: return x.value_bool == y.value_bool;
case Token_NotEq: return x.value_bool != y.value_bool;
}
break;
case ExactValue_Integer: {
i32 cmp = big_int_cmp(&x.value_integer, &y.value_integer);
switch (op) {
case Token_CmpEq: return cmp == 0;
case Token_NotEq: return cmp != 0;
case Token_Lt: return cmp < 0;
case Token_LtEq: return cmp <= 0;
case Token_Gt: return cmp > 0;
case Token_GtEq: return cmp >= 0;
}
break;
}
case ExactValue_Float: {
f64 a = x.value_float;
f64 b = y.value_float;
switch (op) {
case Token_CmpEq: return cmp_f64(a, b) == 0;
case Token_NotEq: return cmp_f64(a, b) != 0;
case Token_Lt: return cmp_f64(a, b) < 0;
case Token_LtEq: return cmp_f64(a, b) <= 0;
case Token_Gt: return cmp_f64(a, b) > 0;
case Token_GtEq: return cmp_f64(a, b) >= 0;
}
break;
}
case ExactValue_Complex: {
f64 a = x.value_complex->real;
f64 b = x.value_complex->imag;
f64 c = y.value_complex->real;
f64 d = y.value_complex->imag;
switch (op) {
case Token_CmpEq: return cmp_f64(a, c) == 0 && cmp_f64(b, d) == 0;
case Token_NotEq: return cmp_f64(a, c) != 0 || cmp_f64(b, d) != 0;
}
break;
}
case ExactValue_String: {
String a = x.value_string;
String b = y.value_string;
// TODO(bill): gb_memcompare is used because the strings are UTF-8
switch (op) {
case Token_CmpEq: return a == b;
case Token_NotEq: return a != b;
case Token_Lt: return a < b;
case Token_LtEq: return a <= b;
case Token_Gt: return a > b;
case Token_GtEq: return a >= b;
}
break;
}
case ExactValue_Pointer: {
switch (op) {
case Token_CmpEq: return x.value_pointer == y.value_pointer;
case Token_NotEq: return x.value_pointer != y.value_pointer;
case Token_Lt: return x.value_pointer < y.value_pointer;
case Token_LtEq: return x.value_pointer <= y.value_pointer;
case Token_Gt: return x.value_pointer > y.value_pointer;
case Token_GtEq: return x.value_pointer >= y.value_pointer;
}
}
case ExactValue_Typeid:
switch (op) {
case Token_CmpEq: return x.value_typeid == y.value_typeid;
case Token_NotEq: return x.value_typeid != y.value_typeid;
}
break;
case ExactValue_Procedure:
switch (op) {
case Token_CmpEq: return x.value_typeid == y.value_typeid;
case Token_NotEq: return x.value_typeid != y.value_typeid;
}
break;
}
GB_PANIC("Invalid comparison");
return false;
}
Entity *strip_entity_wrapping(Ast *expr);
Entity *strip_entity_wrapping(Entity *e);
gbString write_expr_to_string(gbString str, Ast *node, bool shorthand);
gbString write_exact_value_to_string(gbString str, ExactValue const &v, isize string_limit=36) {
switch (v.kind) {
case ExactValue_Invalid:
return str;
case ExactValue_Bool:
return gb_string_appendc(str, v.value_bool ? "true" : "false");
case ExactValue_String: {
String s = quote_to_ascii(heap_allocator(), v.value_string);
string_limit = gb_max(string_limit, 36);
if (s.len <= string_limit) {
str = gb_string_append_length(str, s.text, s.len);
} else {
isize n = string_limit/5;
str = gb_string_append_length(str, s.text, n);
str = gb_string_append_fmt(str, "\"..%lld chars..\"", s.len-(2*n));
str = gb_string_append_length(str, s.text+s.len-n, n);
}
gb_free(heap_allocator(), s.text);
return str;
}
case ExactValue_Integer: {
String s = big_int_to_string(heap_allocator(), &v.value_integer);
str = gb_string_append_length(str, s.text, s.len);
gb_free(heap_allocator(), s.text);
return str;
}
case ExactValue_Float:
return gb_string_append_fmt(str, "%f", v.value_float);
case ExactValue_Complex:
return gb_string_append_fmt(str, "%f+%fi", v.value_complex->real, v.value_complex->imag);
case ExactValue_Quaternion:
return gb_string_append_fmt(str, "%f+%fi+%fj+%fk", v.value_quaternion->real, v.value_quaternion->imag, v.value_quaternion->jmag, v.value_quaternion->kmag);
case ExactValue_Pointer:
return str;
case ExactValue_Compound:
return write_expr_to_string(str, v.value_compound, false);
case ExactValue_Procedure:
return write_expr_to_string(str, v.value_procedure, false);
}
return str;
};
gbString exact_value_to_string(ExactValue const &v, isize string_limit=36) {
return write_exact_value_to_string(gb_string_make(heap_allocator(), ""), v, string_limit);
}