Files
Odin/src/check_expr.cpp
2017-07-29 14:23:34 +01:00

8567 lines
234 KiB
C++

enum CallArgumentError {
CallArgumentError_None,
CallArgumentError_NoneProcedureType,
CallArgumentError_WrongTypes,
CallArgumentError_NonVariadicExpand,
CallArgumentError_VariadicTuple,
CallArgumentError_MultipleVariadicExpand,
CallArgumentError_ArgumentCount,
CallArgumentError_TooFewArguments,
CallArgumentError_TooManyArguments,
CallArgumentError_InvalidFieldValue,
CallArgumentError_ParameterNotFound,
CallArgumentError_ParameterMissing,
CallArgumentError_DuplicateParameter,
CallArgumentError_NoneConstantParameter,
};
enum CallArgumentErrorMode {
CallArgumentMode_NoErrors,
CallArgumentMode_ShowErrors,
};
struct CallArgumentData {
Entity *gen_entity;
i64 score;
Type * result_type;
};
struct PolyProcData {
Entity * gen_entity;
ProcedureInfo proc_info;
};
#define CALL_ARGUMENT_CHECKER(name) CallArgumentError name(Checker *c, AstNode *call, Type *proc_type, Entity *entity, Array<Operand> operands, CallArgumentErrorMode show_error_mode, CallArgumentData *data)
typedef CALL_ARGUMENT_CHECKER(CallArgumentCheckerType);
void check_expr (Checker *c, Operand *operand, AstNode *expression);
void check_multi_expr (Checker *c, Operand *operand, AstNode *expression);
void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = nullptr);
ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint);
void check_expr_with_type_hint (Checker *c, Operand *o, AstNode *e, Type *t);
Type * check_type (Checker *c, AstNode *expression, Type *named_type = nullptr);
void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def);
Entity * check_selector (Checker *c, Operand *operand, AstNode *node, Type *type_hint);
void check_not_tuple (Checker *c, Operand *operand);
void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level);
gbString expr_to_string (AstNode *expression);
void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type);
void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type);
void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body);
void update_expr_type (Checker *c, AstNode *e, Type *type, bool final);
bool check_is_terminating (AstNode *node);
bool check_has_break (AstNode *stmt, bool implicit);
void check_stmt (Checker *c, AstNode *node, u32 flags);
void check_stmt_list (Checker *c, Array<AstNode *> stmts, u32 flags);
void check_init_constant (Checker *c, Entity *e, Operand *operand);
bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value);
bool check_procedure_type (Checker *c, Type *type, AstNode *proc_type_node, Array<Operand> *operands = nullptr);
CallArgumentData check_call_arguments (Checker *c, Operand *operand, Type *proc_type, AstNode *call);
Type * check_init_variable (Checker *c, Entity *e, Operand *operand, String context_name);
void error_operand_not_expression(Operand *o) {
if (o->mode == Addressing_Type) {
gbString err = expr_to_string(o->expr);
error(o->expr, "`%s` is not an expression but a type", err);
gb_string_free(err);
o->mode = Addressing_Invalid;
}
}
void error_operand_no_value(Operand *o) {
if (o->mode == Addressing_NoValue) {
gbString err = expr_to_string(o->expr);
error(o->expr, "`%s` used as value", err);
gb_string_free(err);
o->mode = Addressing_Invalid;
}
}
void check_scope_decls(Checker *c, Array<AstNode *> nodes, isize reserve_size) {
Scope *s = c->context.scope;
GB_ASSERT(!s->is_file);
check_collect_entities(c, nodes, false);
for_array(i, s->elements.entries) {
Entity *e = s->elements.entries[i].value;
switch (e->kind) {
case Entity_Constant:
case Entity_TypeName:
case Entity_Procedure:
break;
default:
continue;
}
DeclInfo *d = decl_info_of_entity(&c->info, e);
if (d != nullptr) {
check_entity_decl(c, e, d, nullptr);
}
}
for_array(i, s->elements.entries) {
Entity *e = s->elements.entries[i].value;
if (e->kind != Entity_Procedure) {
continue;
}
check_procedure_overloading(c, e);
}
}
bool check_is_assignable_to_using_subtype(Type *src, Type *dst) {
bool src_is_ptr = false;
Type *prev_src = src;
src = type_deref(src);
src_is_ptr = src != prev_src;
src = base_type(src);
if (!is_type_struct(src)) {
return false;
}
for_array(i, src->Struct.fields) {
Entity *f = src->Struct.fields[i];
if (f->kind != Entity_Variable || (f->flags&EntityFlag_Using) == 0) {
continue;
}
if (are_types_identical(f->type, dst)) {
return true;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(f->type, type_deref(dst))) {
return true;
}
}
bool ok = check_is_assignable_to_using_subtype(f->type, dst);
if (ok) {
return true;
}
}
return false;
}
bool find_or_generate_polymorphic_procedure(Checker *c, Entity *base_entity, Type *type,
Array<Operand> *param_operands, PolyProcData *poly_proc_data) {
///////////////////////////////////////////////////////////////////////////////
// //
// TODO CLEANUP(bill): This procedure is very messy and hacky. Clean this!!! //
// //
///////////////////////////////////////////////////////////////////////////////
if (base_entity == nullptr) {
return false;
}
if (!is_type_proc(base_entity->type)) {
return false;
}
String name = base_entity->token.string;
Type *src = base_type(base_entity->type);
Type *dst = nullptr;
if (type != nullptr) dst = base_type(type);
if (param_operands == nullptr) {
GB_ASSERT(dst != nullptr);
}
if (param_operands != nullptr) {
GB_ASSERT(dst == nullptr);
}
if (!src->Proc.is_polymorphic || src->Proc.is_poly_specialized) {
return false;
}
if (dst != nullptr) {
if (dst->Proc.is_polymorphic) {
return false;
}
if (dst->Proc.param_count != src->Proc.param_count ||
dst->Proc.result_count != src->Proc.result_count) {
return false;
}
}
DeclInfo *old_decl = decl_info_of_entity(&c->info, base_entity);
if (old_decl == nullptr) {
return false;
}
gbAllocator a = heap_allocator();
Array<Operand> operands = {};
if (param_operands) {
operands = *param_operands;
} else {
array_init(&operands, a, dst->Proc.param_count);
for (isize i = 0; i < dst->Proc.param_count; i++) {
Entity *param = dst->Proc.params->Tuple.variables[i];
Operand o = {Addressing_Value};
o.type = param->type;
array_add(&operands, o);
}
}
defer (if (param_operands == nullptr) {
array_free(&operands);
});
CheckerContext prev_context = c->context;
defer (c->context = prev_context);
Scope *scope = make_scope(base_entity->scope, a);
scope->is_proc = true;
c->context.scope = scope;
c->context.allow_polymorphic_types = true;
if (c->context.polymorphic_scope == nullptr) {
c->context.polymorphic_scope = scope;
}
if (param_operands == nullptr) {
// c->context.no_polymorphic_errors = false;
}
bool generate_type_again = c->context.no_polymorphic_errors;
auto *pt = &src->Proc;
// NOTE(bill): This is slightly memory leaking if the type already exists
// Maybe it's better to check with the previous types first?
Type *final_proc_type = make_type_proc(c->allocator, scope, nullptr, 0, nullptr, 0, false, pt->calling_convention);
bool success = check_procedure_type(c, final_proc_type, pt->node, &operands);
if (!success) {
return false;
}
auto *found_gen_procs = map_get(&c->info.gen_procs, hash_pointer(base_entity->identifier));
if (found_gen_procs) {
auto procs = *found_gen_procs;
for_array(i, procs) {
Entity *other = procs[i];
Type *pt = base_type(other->type);
if (are_types_identical(pt, final_proc_type)) {
if (poly_proc_data) {
poly_proc_data->gen_entity = other;
}
return true;
}
}
}
if (generate_type_again) {
// LEAK TODO(bill): This is technically a memory leak as it has to generate the type twice
bool prev_no_polymorphic_errors = c->context.no_polymorphic_errors;
defer (c->context.no_polymorphic_errors = prev_no_polymorphic_errors);
c->context.no_polymorphic_errors = false;
// NOTE(bill): Reset scope from the failed procedure type
scope_reset(scope);
success = check_procedure_type(c, final_proc_type, pt->node, &operands);
if (!success) {
return false;
}
if (found_gen_procs) {
auto procs = *found_gen_procs;
for_array(i, procs) {
Entity *other = procs[i];
Type *pt = base_type(other->type);
if (are_types_identical(pt, final_proc_type)) {
if (poly_proc_data) {
poly_proc_data->gen_entity = other;
}
return true;
}
}
}
}
AstNode *proc_lit = clone_ast_node(a, old_decl->proc_lit);
ast_node(pl, ProcLit, proc_lit);
// NOTE(bill): Associate the scope declared above withinth this procedure declaration's type
add_scope(c, pl->type, final_proc_type->Proc.scope);
final_proc_type->Proc.is_poly_specialized = true;
final_proc_type->Proc.is_polymorphic = true;
u64 tags = base_entity->Procedure.tags;
AstNode *ident = clone_ast_node(a, base_entity->identifier);
Token token = ident->Ident.token;
DeclInfo *d = make_declaration_info(c->allocator, scope, old_decl->parent);
d->gen_proc_type = final_proc_type;
d->type_expr = pl->type;
d->proc_lit = proc_lit;
Entity *entity = make_entity_procedure(c->allocator, nullptr, token, final_proc_type, tags);
entity->identifier = ident;
add_entity_and_decl_info(c, ident, entity, d);
// NOTE(bill): Set the scope afterwards as this is not real overloading
entity->scope = scope->parent;
AstFile *file = nullptr;
{
Scope *s = entity->scope;
while (s != nullptr && s->file == nullptr) {
s = s->parent;
}
file = s->file;
}
ProcedureInfo proc_info = {};
proc_info.file = file;
proc_info.token = token;
proc_info.decl = d;
proc_info.type = final_proc_type;
proc_info.body = pl->body;
proc_info.tags = tags;
proc_info.generated_from_polymorphic = true;
if (found_gen_procs) {
array_add(found_gen_procs, entity);
} else {
Array<Entity *> array = {};
array_init(&array, heap_allocator());
array_add(&array, entity);
map_set(&c->info.gen_procs, hash_pointer(base_entity->identifier), array);
}
GB_ASSERT(entity != nullptr);
if (poly_proc_data) {
poly_proc_data->gen_entity = entity;
poly_proc_data->proc_info = proc_info;
}
// NOTE(bill): Check the newly generated procedure body
check_procedure_later(c, proc_info);
return true;
}
bool check_polymorphic_procedure_assignment(Checker *c, Operand *operand, Type *type, PolyProcData *poly_proc_data) {
if (operand->expr == nullptr) return false;
Entity *base_entity = entity_of_ident(&c->info, operand->expr);
if (base_entity == nullptr) return false;
return find_or_generate_polymorphic_procedure(c, base_entity, type, nullptr, poly_proc_data);
}
bool find_or_generate_polymorphic_procedure_from_parameters(Checker *c, Entity *base_entity, Array<Operand> *operands, PolyProcData *poly_proc_data) {
return find_or_generate_polymorphic_procedure(c, base_entity, nullptr, operands, poly_proc_data);
}
bool check_type_specialization_to(Checker *c, Type *specialization, Type *type, bool compound, bool modify_type);
bool is_polymorphic_type_assignable(Checker *c, Type *poly, Type *source, bool compound, bool modify_type);
i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) {
if (operand->mode == Addressing_Invalid ||
type == t_invalid) {
return 0;
}
if (operand->mode == Addressing_Builtin) {
return -1;
}
if (operand->mode == Addressing_Type) {
return -1;
}
Type *s = operand->type;
if (are_types_identical(s, type)) {
return 0;
}
Type *src = base_type(s);
Type *dst = base_type(type);
if (is_type_untyped_undef(src)) {
if (type_has_undef(dst)) {
return 1;
}
return -1;
}
if (is_type_untyped_nil(src)) {
if (type_has_nil(dst)) {
return 1;
}
return -1;
}
if (is_type_untyped(src)) {
if (is_type_any(dst)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return 10;
}
if (dst->kind == Type_Basic) {
if (operand->mode == Addressing_Constant) {
if (check_representable_as_constant(c, operand->value, dst, nullptr)) {
if (is_type_typed(dst) && src->kind == Type_Basic) {
switch (src->Basic.kind) {
case Basic_UntypedRune:
if (is_type_integer(dst) || is_type_rune(dst)) {
return 1;
}
break;
case Basic_UntypedInteger:
if (is_type_integer(dst) || is_type_rune(dst)) {
return 1;
}
break;
case Basic_UntypedFloat:
if (is_type_float(dst)) {
return 1;
}
break;
case Basic_UntypedComplex:
if (is_type_complex(dst)) {
return 1;
}
break;
}
}
return 2;
}
return -1;
}
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedRune) {
if (is_type_integer(dst) || is_type_rune(dst)) {
if (is_type_typed(type)) {
return 2;
}
return 1;
}
return -1;
}
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) {
if (is_type_boolean(dst)) {
if (is_type_typed(type)) {
return 2;
}
return 1;
}
return -1;
}
}
}
#if 0
if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) {
return 1;
}
#endif
if (is_type_bit_field_value(operand->type) && is_type_integer(type)) {
Type *bfv = base_type(operand->type);
i32 bits = bfv->BitFieldValue.bits;
i32 size = next_pow2((bits+7)/8);
i32 dst_size = type_size_of(c->allocator, type);
i32 diff = gb_abs(dst_size - size);
// TODO(bill): figure out a decent rule here
return 1;
}
if (check_is_assignable_to_using_subtype(operand->type, type)) {
return 4;
}
// ^T <- rawptr
#if 0
// TODO(bill): Should C-style (not C++) pointer cast be allowed?
if (is_type_pointer(dst) && is_type_rawptr(src)) {
return true;
}
#endif
#if 1
// TODO(bill): Should I allow this implicit conversion at all?!
// rawptr <- ^T
if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) {
return 5;
}
#endif
if (is_type_polymorphic(dst) && !is_type_polymorphic(src)) {
bool modify_type = !c->context.no_polymorphic_errors;
if (is_polymorphic_type_assignable(c, type, s, false, modify_type)) {
return 2;
}
}
if (is_type_union(dst)) {
for_array(i, dst->Union.variants) {
Type *vt = dst->Union.variants[i];
if (are_types_identical(vt, s)) {
return 1;
}
}
}
if (is_type_proc(dst)) {
if (are_types_identical(src, dst)) {
return 3;
}
PolyProcData poly_proc_data = {};
if (check_polymorphic_procedure_assignment(c, operand, type, &poly_proc_data)) {
add_entity_use(c, operand->expr, poly_proc_data.gen_entity);
return 4;
}
}
if (is_type_vector(dst)) {
Type *elem = base_vector_type(dst);
i64 distance = check_distance_between_types(c, operand, elem);
if (distance >= 0) {
return distance + 5;
}
}
if (is_type_any(dst)) {
if (!is_type_polymorphic(src)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return 10;
}
}
return -1;
}
i64 assign_score_function(i64 distance) {
// TODO(bill): A decent score function
return gb_max(1000000 - distance*distance, 0);
}
bool check_is_assignable_to_with_score(Checker *c, Operand *operand, Type *type, i64 *score_) {
i64 score = 0;
i64 distance = check_distance_between_types(c, operand, type);
bool ok = distance >= 0;
if (ok) {
score = assign_score_function(distance);
}
if (score_) *score_ = score;
return ok;
}
bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) {
i64 score = 0;
return check_is_assignable_to_with_score(c, operand, type, &score);
}
// NOTE(bill): `content_name` is for debugging and error messages
void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) {
check_not_tuple(c, operand);
if (operand->mode == Addressing_Invalid) {
return;
}
#if 0
if (operand->mode == Addressing_Type) {
Type *t = base_type(type);
if (t->kind == Type_Pointer &&
t->Pointer.elem == t_type_info) {
add_type_info_type(c, type);
return;
}
}
#endif
if (is_type_untyped(operand->type)) {
Type *target_type = type;
if (type == nullptr || is_type_any(type)) {
if (type == nullptr && is_type_untyped_nil(operand->type)) {
error(operand->expr, "Use of untyped nil in %.*s", LIT(context_name));
operand->mode = Addressing_Invalid;
return;
}
if (type == nullptr && is_type_untyped_undef(operand->type)) {
error(operand->expr, "Use of --- in %.*s", LIT(context_name));
operand->mode = Addressing_Invalid;
return;
}
target_type = default_type(operand->type);
if (type != nullptr && !is_type_any(type)) {
GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type));
}
add_type_info_type(c, type);
add_type_info_type(c, target_type);
}
if (target_type != nullptr && is_type_vector(target_type)) {
// NOTE(bill): continue to below
} else {
convert_to_typed(c, operand, target_type, 0);
if (operand->mode == Addressing_Invalid) {
return;
}
}
}
if (type == nullptr) {
return;
}
if (operand->mode == Addressing_Overload) {
// GB_PANIC("HERE!\n");
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
Entity **procs = operand->overload_entities;
isize overload_count = operand->overload_count;
bool good = false;
// NOTE(bill): These should be done
for (isize i = 0; i < overload_count; i++) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(c, &x, type)) {
Entity *e = procs[i];
add_entity_use(c, operand->expr, e);
good = true;
break;
}
}
if (!good) {
gbString expr_str = expr_to_string(operand->expr);
gbString op_type_str = type_to_string(operand->type);
gbString type_str = type_to_string(type);
defer (gb_string_free(type_str));
defer (gb_string_free(op_type_str));
defer (gb_string_free(expr_str));
// TODO(bill): is this a good enough error message?
error(operand->expr,
"Cannot assign overloaded procedure `%s` to `%s` in %.*s",
expr_str,
op_type_str,
LIT(context_name));
operand->mode = Addressing_Invalid;
}
return;
}
if (!check_is_assignable_to(c, operand, type)) {
gbString expr_str = expr_to_string(operand->expr);
gbString op_type_str = type_to_string(operand->type);
gbString type_str = type_to_string(type);
defer (gb_string_free(type_str));
defer (gb_string_free(op_type_str));
defer (gb_string_free(expr_str));
switch (operand->mode) {
case Addressing_Builtin:
// TODO(bill): Actually allow built in procedures to be passed around and thus be created on use
error(operand->expr,
"Cannot assign built-in procedure `%s` in %.*s",
expr_str,
LIT(context_name));
break;
case Addressing_Type:
error(operand->expr,
"Cannot assign `%s` which is a type in %.*s",
op_type_str,
LIT(context_name));
break;
default:
// TODO(bill): is this a good enough error message?
error(operand->expr,
"Cannot assign value `%s` of type `%s` to `%s` in %.*s",
expr_str,
op_type_str,
type_str,
LIT(context_name));
break;
}
operand->mode = Addressing_Invalid;
return;
}
}
void populate_using_entity_map(Checker *c, AstNode *node, Type *t, Map<Entity *> *entity_map) {
t = base_type(type_deref(t));
gbString str = nullptr;
defer (gb_string_free(str));
if (node != nullptr) {
str = expr_to_string(node);
}
if (t->kind == Type_Struct) {
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
String name = f->token.string;
HashKey key = hash_string(name);
Entity **found = map_get(entity_map, key);
if (found != nullptr) {
Entity *e = *found;
// TODO(bill): Better type error
if (str != nullptr) {
error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str);
} else {
error(e->token, "`%.*s` is already declared`", LIT(name));
}
} else {
map_set(entity_map, key, f);
add_entity(c, c->context.scope, nullptr, f);
if (f->flags & EntityFlag_Using) {
populate_using_entity_map(c, node, f->type, entity_map);
}
}
}
}
}
void check_struct_field_decl(Checker *c, AstNode *decl, Array<Entity *> *fields, Map<Entity *> *entity_map, AstNode *struct_node, String context, bool allow_default_values) {
GB_ASSERT(fields != nullptr);
if (decl->kind == AstNode_WhenStmt) {
ast_node(ws, WhenStmt, decl);
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, ws->cond);
if (operand.mode != Addressing_Constant || !is_type_boolean(operand.type)) {
error(ws->cond, "Non-constant boolean `when` condition");
return;
}
if (ws->body == nullptr || ws->body->kind != AstNode_BlockStmt) {
error(ws->cond, "Invalid body for `when` statement");
return;
}
if (operand.value.kind == ExactValue_Bool &&
operand.value.value_bool) {
for_array(i, ws->body->BlockStmt.stmts) {
AstNode *stmt = ws->body->BlockStmt.stmts[i];
check_struct_field_decl(c, stmt, fields, entity_map, struct_node, context, allow_default_values);
}
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case AstNode_BlockStmt:
for_array(i, ws->else_stmt->BlockStmt.stmts) {
AstNode *stmt = ws->else_stmt->BlockStmt.stmts[i];
check_struct_field_decl(c, stmt, fields, entity_map, struct_node, context, allow_default_values);
}
break;
case AstNode_WhenStmt:
check_struct_field_decl(c, ws->else_stmt, fields, entity_map, struct_node, context, allow_default_values);
break;
default:
error(ws->else_stmt, "Invalid `else` statement in `when` statement");
break;
}
}
}
if (decl->kind != AstNode_ValueDecl) {
return;
}
ast_node(vd, ValueDecl, decl);
if (!vd->is_mutable) return;
bool is_using = (vd->flags&VarDeclFlag_using) != 0;
if (is_using && vd->names.count > 1) {
error(vd->names[0], "Cannot apply `using` to more than one of the same type");
is_using = false;
}
bool arity_ok = check_arity_match(c, vd);
if (vd->values.count > 0 && !allow_default_values) {
error(vd->values[0], "Default values are not allowed within a %.*s", LIT(context));
}
Type *type = nullptr;
if (vd->type != nullptr) {
type = check_type(c, vd->type);
} else if (!allow_default_values) {
error(vd->names[0], "Expected a type for this field");
type = t_invalid;
}
if (type != nullptr) {
if (is_type_empty_union(type)) {
error(vd->names[0], "An empty union cannot be used as a field type in %.*s", LIT(context));
type = t_invalid;
}
if (!c->context.allow_polymorphic_types && is_type_polymorphic(base_type(type))) {
error(vd->names[0], "Invalid use of a polymorphic type in %.*s", LIT(context));
type = t_invalid;
}
}
Array<Operand> default_values = {};
defer (array_free(&default_values));
if (vd->values.count > 0 && allow_default_values) {
array_init(&default_values, heap_allocator(), 2*vd->values.count);
Type *type_hint = nullptr;
if (type != t_invalid && type != nullptr) {
type_hint = type;
}
for_array(i, vd->values) {
AstNode *v = vd->values[i];
Operand o = {};
check_expr_base(c, &o, v, type_hint);
check_not_tuple(c, &o);
if (o.mode == Addressing_NoValue) {
error_operand_no_value(&o);
} else {
if (o.mode == Addressing_Value && o.type->kind == Type_Tuple) {
// NOTE(bill): Tuples are not first class thus never named
for_array(index, o.type->Tuple.variables) {
Operand single = {Addressing_Value};
single.type = o.type->Tuple.variables[index]->type;
single.expr = v;
array_add(&default_values, single);
}
} else {
array_add(&default_values, o);
}
}
}
}
isize name_field_index = 0;
for_array(name_index, vd->names) {
AstNode *name = vd->names[name_index];
if (!ast_node_expect(name, AstNode_Ident)) {
return;
}
Token name_token = name->Ident.token;
Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, is_using, cast(i32)fields->count);
e->identifier = name;
if (name_field_index < default_values.count) {
Operand a = default_values[name_field_index];
Operand b = default_values[name_field_index];
check_init_variable(c, e, &b, str_lit("struct field assignment"));
if (is_operand_nil(a)) {
e->Variable.default_is_nil = true;
} else if (is_operand_undef(a)) {
e->Variable.default_is_undef = true;
} else if (b.mode != Addressing_Constant) {
error(b.expr, "Default field value must be a constant");
} else if (is_type_any(e->type) || is_type_union(e->type)) {
gbString str = type_to_string(e->type);
error(b.expr, "A struct field of type `%s` cannot have a default value", str);
gb_string_free(str);
} else {
e->Variable.default_value = b.value;
}
name_field_index++;
}
GB_ASSERT(e->type != nullptr);
GB_ASSERT(is_type_typed(e->type));
if (is_blank_ident(name_token)) {
array_add(fields, e);
} else {
HashKey key = hash_string(name_token.string);
Entity **found = map_get(entity_map, key);
if (found != nullptr) {
Entity *e = *found;
// NOTE(bill): Scope checking already checks the declaration but in many cases, this can happen so why not?
// This may be a little janky but it's not really that much of a problem
error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string));
error(e->token, "\tpreviously declared");
} else {
map_set(entity_map, key, e);
array_add(fields, e);
add_entity(c, c->context.scope, name, e);
}
add_entity_use(c, name, e);
}
}
Entity *using_index_expr = nullptr;
if (is_using && fields->count > 0) {
Type *first_type = (*fields)[fields->count-1]->type;
Type *t = base_type(type_deref(first_type));
if (!is_type_struct(t) && !is_type_raw_union(t) && !is_type_bit_field(t) &&
vd->names.count >= 1 &&
vd->names[0]->kind == AstNode_Ident) {
Token name_token = vd->names[0]->Ident.token;
if (is_type_indexable(t)) {
bool ok = true;
for_array(emi, entity_map->entries) {
Entity *e = entity_map->entries[emi].value;
if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) {
if (is_type_indexable(e->type)) {
if (e->identifier != vd->names[0]) {
ok = false;
using_index_expr = e;
break;
}
}
}
}
if (ok) {
using_index_expr = (*fields)[fields->count-1];
} else {
(*fields)[fields->count-1]->flags &= ~EntityFlag_Using;
error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string));
}
} else {
gbString type_str = type_to_string(first_type);
error(name_token, "`using` cannot be applied to the field `%.*s` of type `%s`", LIT(name_token.string), type_str);
gb_string_free(type_str);
return;
}
}
populate_using_entity_map(c, struct_node, type, entity_map);
}
}
// Returns filled field_count
Array<Entity *> check_fields(Checker *c, AstNode *node, Array<AstNode *> decls,
isize init_field_capacity, String context) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
Array<Entity *> fields = {};
array_init(&fields, heap_allocator(), init_field_capacity);
Map<Entity *> entity_map = {};
map_init_with_reserve(&entity_map, c->tmp_allocator, 2*init_field_capacity);
if (node != nullptr) {
GB_ASSERT(node->kind != AstNode_UnionType);
}
check_collect_entities(c, decls, false);
for_array(i, c->context.scope->elements.entries) {
Entity *e = c->context.scope->elements.entries[i].value;
DeclInfo *d = nullptr;
switch (e->kind) {
default: continue;
case Entity_Constant:
case Entity_TypeName:
d = decl_info_of_entity(&c->info, e);
if (d != nullptr) {
check_entity_decl(c, e, d, nullptr);
}
break;
}
}
for_array(decl_index, decls) {
check_struct_field_decl(c, decls[decl_index], &fields, &entity_map, node, context, context == "struct");
}
return fields;
}
// TODO(bill): Cleanup struct field reordering
// TODO(bill): Inline sorting procedure?
gb_global gbAllocator __checker_allocator = {};
GB_COMPARE_PROC(cmp_reorder_struct_fields) {
// Rule:
// `using` over non-`using`
// Biggest to smallest alignment
// if same alignment: biggest to smallest size
// if same size: order by source order
Entity *x = *(Entity **)a;
Entity *y = *(Entity **)b;
GB_ASSERT(x != nullptr);
GB_ASSERT(y != nullptr);
GB_ASSERT(x->kind == Entity_Variable);
GB_ASSERT(y->kind == Entity_Variable);
bool xu = (x->flags & EntityFlag_Using) != 0;
bool yu = (y->flags & EntityFlag_Using) != 0;
i64 xa = type_align_of(__checker_allocator, x->type);
i64 ya = type_align_of(__checker_allocator, y->type);
i64 xs = type_size_of(__checker_allocator, x->type);
i64 ys = type_size_of(__checker_allocator, y->type);
if (xu != yu) {
return xu ? -1 : +1;
}
if (xa != ya) {
return xa > ya ? -1 : xa < ya;
}
if (xs != ys) {
return xs > ys ? -1 : xs < ys;
}
i32 diff = x->Variable.field_index - y->Variable.field_index;
return diff < 0 ? -1 : diff > 0;
}
Entity *make_names_field_for_struct(Checker *c, Scope *scope) {
Entity *e = make_entity_field(c->allocator, scope,
make_token_ident(str_lit("names")), t_string_slice, false, 0);
e->Variable.is_immutable = true;
e->flags |= EntityFlag_TypeField;
return e;
}
void check_struct_type(Checker *c, Type *struct_type, AstNode *node, Array<Operand> *poly_operands) {
GB_ASSERT(is_type_struct(struct_type));
ast_node(st, StructType, node);
String context = str_lit("struct");
isize min_field_count = 0;
for_array(field_index, st->fields) {
AstNode *field = st->fields[field_index];
switch (field->kind) {
case_ast_node(f, ValueDecl, field);
min_field_count += f->names.count;
case_end;
}
}
struct_type->Struct.names = make_names_field_for_struct(c, c->context.scope);
if (st->is_raw_union) {
struct_type->Struct.is_raw_union = true;
context = str_lit("struct #raw_union");
}
Type *polymorphic_params = nullptr;
bool is_polymorphic = false;
bool can_check_fields = true;
bool is_poly_specialized = false;
if (st->polymorphic_params != nullptr) {
ast_node(field_list, FieldList, st->polymorphic_params);
Array<AstNode *> params = field_list->list;
if (params.count != 0) {
isize variable_count = 0;
for_array(i, params) {
AstNode *field = params[i];
if (ast_node_expect(field, AstNode_Field)) {
ast_node(f, Field, field);
variable_count += gb_max(f->names.count, 1);
}
}
Array<Entity *> entities = {};
array_init(&entities, c->allocator, variable_count);
for_array(i, params) {
AstNode *param = params[i];
if (param->kind != AstNode_Field) {
continue;
}
ast_node(p, Field, param);
AstNode *type_expr = p->type;
Type *type = nullptr;
bool is_type_param = false;
bool is_type_polymorphic_type = false;
if (type_expr == nullptr) {
error(param, "Expected a type for this parameter");
continue;
}
if (type_expr->kind == AstNode_Ellipsis) {
type_expr = type_expr->Ellipsis.expr;
error(param, "A polymorphic parameter cannot be variadic");
}
if (type_expr->kind == AstNode_TypeType) {
is_type_param = true;
Type *specialization = nullptr;
if (type_expr->TypeType.specialization != nullptr) {
AstNode *s = type_expr->TypeType.specialization;
specialization = check_type(c, s);
if (false && !is_type_polymorphic_struct(specialization)) {
gbString str = type_to_string(specialization);
defer (gb_string_free(str));
error(s, "Expected a polymorphic struct, got %s", str);
specialization = nullptr;
}
}
type = make_type_generic(c->allocator, 0, str_lit(""), specialization);
} else {
type = check_type(c, type_expr);
if (is_type_polymorphic(type)) {
is_type_polymorphic_type = true;
}
}
if (type == nullptr) {
error(params[i], "Invalid parameter type");
type = t_invalid;
}
if (is_type_untyped(type)) {
if (is_type_untyped_undef(type)) {
error(params[i], "Cannot determine parameter type from ---");
} else {
error(params[i], "Cannot determine parameter type from a nil");
}
type = t_invalid;
}
if (is_type_polymorphic_type) {
gbString str = type_to_string(type);
error(params[i], "Parameter types cannot be polymorphic, got %s", str);
gb_string_free(str);
type = t_invalid;
}
if (!is_type_param && !is_type_constant_type(type)) {
gbString str = type_to_string(type);
error(params[i], "A parameter must be a valid constant type, got %s", str);
gb_string_free(str);
}
Scope *scope = c->context.scope;
for_array(j, p->names) {
AstNode *name = p->names[j];
if (!ast_node_expect(name, AstNode_Ident)) {
continue;
}
Entity *e = nullptr;
Token token = name->Ident.token;
if (poly_operands != nullptr) {
Operand operand = (*poly_operands)[entities.count];
if (is_type_param) {
GB_ASSERT(operand.mode == Addressing_Type ||
operand.mode == Addressing_Invalid);
if (is_type_polymorphic(base_type(operand.type))) {
is_polymorphic = true;
can_check_fields = false;
}
e = make_entity_type_name(c->allocator, scope, token, operand.type);
e->TypeName.is_type_alias = true;
} else {
GB_ASSERT(operand.mode == Addressing_Constant);
e = make_entity_constant(c->allocator, scope, token, operand.type, operand.value);
}
} else {
if (is_type_param) {
e = make_entity_type_name(c->allocator, scope, token, type);
e->TypeName.is_type_alias = true;
} else {
e = make_entity_constant(c->allocator, scope, token, type, empty_exact_value);
}
}
add_entity(c, scope, name, e);
array_add(&entities, e);
}
}
if (entities.count > 0) {
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = entities;
polymorphic_params = tuple;
}
}
}
if (!is_polymorphic) {
is_polymorphic = polymorphic_params != nullptr && poly_operands == nullptr;
}
if (poly_operands != nullptr) {
is_poly_specialized = true;
for (isize i = 0; i < poly_operands->count; i++) {
Operand o = (*poly_operands)[i];
if (is_type_polymorphic(o.type)) {
is_poly_specialized = false;
break;
}
}
}
Array<Entity *> fields = {};
if (!is_polymorphic) {
fields = check_fields(c, node, st->fields, min_field_count, context);
}
struct_type->Struct.scope = c->context.scope;
struct_type->Struct.is_packed = st->is_packed;
struct_type->Struct.is_ordered = st->is_ordered;
struct_type->Struct.fields = fields;
struct_type->Struct.fields_in_src_order = fields;
struct_type->Struct.polymorphic_params = polymorphic_params;
struct_type->Struct.is_polymorphic = is_polymorphic;
struct_type->Struct.is_poly_specialized = is_poly_specialized;
if (!struct_type->Struct.is_raw_union) {
type_set_offsets(c->allocator, struct_type);
if (!struct_type->failure && !st->is_packed && !st->is_ordered) {
struct_type->failure = false;
struct_type->Struct.are_offsets_set = false;
gb_zero_item(&struct_type->Struct.offsets);
// NOTE(bill): Reorder fields for reduced size/performance
Array<Entity *> reordered_fields = {};
array_init_count(&reordered_fields, c->allocator, fields.count);
for_array(i, reordered_fields) {
reordered_fields[i] = struct_type->Struct.fields_in_src_order[i];
}
// NOTE(bill): Hacky thing
// TODO(bill): Probably make an inline sorting procedure rather than use global variables
__checker_allocator = c->allocator;
// NOTE(bill): compound literal order must match source not layout
gb_sort_array(reordered_fields.data, fields.count, cmp_reorder_struct_fields);
for_array(i, fields) {
reordered_fields[i]->Variable.field_index = i;
}
struct_type->Struct.fields = reordered_fields;
}
type_set_offsets(c->allocator, struct_type);
}
if (st->align != nullptr) {
if (st->is_packed) {
syntax_error(st->align, "`#align` cannot be applied with `#packed`");
return;
}
Operand o = {};
check_expr(c, &o, st->align);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error(st->align, "#align must be a constant");
}
return;
}
Type *type = base_type(o.type);
if (is_type_untyped(type) || is_type_integer(type)) {
if (o.value.kind == ExactValue_Integer) {
i64 align = i128_to_i64(o.value.value_integer);
if (align < 1 || !gb_is_power_of_two(align)) {
error(st->align, "#align must be a power of 2, got %lld", align);
return;
}
// NOTE(bill): Success!!!
i64 custom_align = gb_clamp(align, 1, build_context.max_align);
if (custom_align < align) {
warning(st->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align);
}
struct_type->Struct.custom_align = custom_align;
return;
}
}
error(st->align, "#align must be an integer");
return;
}
}
void check_union_type(Checker *c, Type *named_type, Type *union_type, AstNode *node) {
GB_ASSERT(is_type_union(union_type));
ast_node(ut, UnionType, node);
isize variant_count = ut->variants.count;
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
Entity *using_index_expr = nullptr;
Array<Type *> variants = {};
array_init(&variants, c->allocator, variant_count);
union_type->Union.scope = c->context.scope;
for_array(i, ut->variants) {
AstNode *node = ut->variants[i];
Type *t = check_type(c, node);
if (t != nullptr && t != t_invalid) {
bool ok = true;
t = default_type(t);
if (is_type_untyped(t) || is_type_empty_union(t)) {
ok = false;
gbString str = type_to_string(t);
error(node, "Invalid variant type in union `%s`", str);
gb_string_free(str);
} else {
for_array(j, variants) {
if (are_types_identical(t, variants[j])) {
ok = false;
gbString str = type_to_string(t);
error(node, "Duplicate variant type `%s`", str);
gb_string_free(str);
break;
}
}
}
if (ok) {
array_add(&variants, t);
}
}
}
union_type->Union.variants = variants;
if (ut->align != nullptr) {
Operand o = {};
check_expr(c, &o, ut->align);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error(ut->align, "#align must be a constant");
}
return;
}
Type *type = base_type(o.type);
if (is_type_untyped(type) || is_type_integer(type)) {
if (o.value.kind == ExactValue_Integer) {
i64 align = i128_to_i64(o.value.value_integer);
if (align < 1 || !gb_is_power_of_two(align)) {
error(ut->align, "#align must be a power of 2, got %lld", align);
return;
}
// NOTE(bill): Success!!!
i64 custom_align = gb_clamp(align, 1, build_context.max_align);
if (custom_align < align) {
warning(ut->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align);
}
if (variants.count == 0) {
error(ut->align, "An empty union cannot have a custom alignment");
} else {
union_type->Union.custom_align = custom_align;
}
return;
}
}
error(ut->align, "#align must be an integer");
return;
}
}
// void check_raw_union_type(Checker *c, Type *union_type, AstNode *node) {
// GB_ASSERT(node->kind == AstNode_RawUnionType);
// GB_ASSERT(is_type_raw_union(union_type));
// ast_node(ut, RawUnionType, node);
// isize min_field_count = 0;
// for_array(i, ut->fields) {
// AstNode *field = ut->fields[i];
// switch (field->kind) {
// case_ast_node(f, ValueDecl, field);
// min_field_count += f->names.count;
// case_end;
// }
// }
// union_type->Struct.names = make_names_field_for_struct(c, c->context.scope);
// auto fields = check_fields(c, node, ut->fields, min_field_count, str_lit("raw_union"));
// union_type->Struct.scope = c->context.scope;
// union_type->Struct.fields = fields.data;
// union_type->Struct.field_count = fields.count;
// }
void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) {
ast_node(et, EnumType, node);
GB_ASSERT(is_type_enum(enum_type));
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
Type *base_type = t_int;
if (et->base_type != nullptr) {
base_type = check_type(c, et->base_type);
}
if (base_type == nullptr || !(is_type_integer(base_type) || is_type_float(base_type))) {
error(node, "Base type for enumeration must be numeric");
return;
}
if (is_type_enum(base_type)) {
error(node, "Base type for enumeration cannot be another enumeration");
return;
}
// NOTE(bill): Must be up here for the `check_init_constant` system
enum_type->Enum.base_type = base_type;
Map<Entity *> entity_map = {}; // Key: String
map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(et->fields.count));
Array<Entity *> fields = {};
array_init(&fields, c->allocator, et->fields.count);
Type *constant_type = enum_type;
if (named_type != nullptr) {
constant_type = named_type;
}
ExactValue iota = exact_value_i64(-1);
ExactValue min_value = exact_value_i64(0);
ExactValue max_value = exact_value_i64(0);
for_array(i, et->fields) {
AstNode *field = et->fields[i];
AstNode *ident = nullptr;
AstNode *init = nullptr;
if (field->kind == AstNode_FieldValue) {
ast_node(fv, FieldValue, field);
if (fv->field == nullptr || fv->field->kind != AstNode_Ident) {
error(field, "An enum field's name must be an identifier");
continue;
}
ident = fv->field;
init = fv->value;
} else if (field->kind == AstNode_Ident) {
ident = field;
} else {
error(field, "An enum field's name must be an identifier");
continue;
}
String name = ident->Ident.token.string;
if (init != nullptr) {
Operand o = {};
check_expr(c, &o, init);
if (o.mode != Addressing_Constant) {
error(init, "Enumeration value must be a constant");
o.mode = Addressing_Invalid;
}
if (o.mode != Addressing_Invalid) {
check_assignment(c, &o, constant_type, str_lit("enumeration"));
}
if (o.mode != Addressing_Invalid) {
iota = o.value;
} else {
iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1));
}
} else {
iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1));
}
// NOTE(bill): Skip blank identifiers
if (is_blank_ident(name)) {
continue;
} else if (name == "count") {
error(field, "`count` is a reserved identifier for enumerations");
continue;
} else if (name == "min_value") {
error(field, "`min_value` is a reserved identifier for enumerations");
continue;
} else if (name == "max_value") {
error(field, "`max_value` is a reserved identifier for enumerations");
continue;
} else if (name == "names") {
error(field, "`names` is a reserved identifier for enumerations");
continue;
}/* else if (name == "base_type") {
error(field, "`base_type` is a reserved identifier for enumerations");
continue;
} */
if (compare_exact_values(Token_Gt, min_value, iota)) {
min_value = iota;
}
if (compare_exact_values(Token_Lt, max_value, iota)) {
max_value = iota;
}
Entity *e = make_entity_constant(c->allocator, c->context.scope, ident->Ident.token, constant_type, iota);
e->identifier = ident;
e->flags |= EntityFlag_Visited;
HashKey key = hash_string(name);
if (map_get(&entity_map, key) != nullptr) {
error(ident, "`%.*s` is already declared in this enumeration", LIT(name));
} else {
map_set(&entity_map, key, e);
add_entity(c, c->context.scope, nullptr, e);
array_add(&fields, e);
add_entity_use(c, field, e);
}
}
GB_ASSERT(fields.count <= et->fields.count);
enum_type->Enum.fields = fields.data;
enum_type->Enum.field_count = fields.count;
enum_type->Enum.count = make_entity_constant(c->allocator, c->context.scope,
make_token_ident(str_lit("count")), t_int, exact_value_i64(fields.count));
enum_type->Enum.min_value = make_entity_constant(c->allocator, c->context.scope,
make_token_ident(str_lit("min_value")), constant_type, min_value);
enum_type->Enum.max_value = make_entity_constant(c->allocator, c->context.scope,
make_token_ident(str_lit("max_value")), constant_type, max_value);
enum_type->Enum.names = make_names_field_for_struct(c, c->context.scope);
}
void check_bit_field_type(Checker *c, Type *bit_field_type, Type *named_type, AstNode *node) {
ast_node(bft, BitFieldType, node);
GB_ASSERT(is_type_bit_field(bit_field_type));
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
Map<Entity *> entity_map = {}; // Key: String
map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(bft->fields.count));
isize field_count = 0;
Entity **fields = gb_alloc_array(c->allocator, Entity *, bft->fields.count);
u32 * sizes = gb_alloc_array(c->allocator, u32, bft->fields.count);
u32 * offsets = gb_alloc_array(c->allocator, u32, bft->fields.count);
u32 curr_offset = 0;
for_array(i, bft->fields) {
AstNode *field = bft->fields[i];
GB_ASSERT(field->kind == AstNode_FieldValue);
AstNode *ident = field->FieldValue.field;
AstNode *value = field->FieldValue.value;
if (ident->kind != AstNode_Ident) {
error(field, "A bit field value's name must be an identifier");
continue;
}
String name = ident->Ident.token.string;
Operand o = {};
check_expr(c, &o, value);
if (o.mode != Addressing_Constant) {
error(value, "Bit field bit size must be a constant");
continue;
}
ExactValue v = exact_value_to_integer(o.value);
if (v.kind != ExactValue_Integer) {
error(value, "Bit field bit size must be a constant integer");
continue;
}
i64 bits = i128_to_i64(v.value_integer);
if (bits < 0 || bits > 128) {
error(value, "Bit field's bit size must be within the range 1..<128, got %lld", cast(long long)bits);
continue;
}
Type *value_type = make_type_bit_field_value(c->allocator, bits);
Entity *e = make_entity_variable(c->allocator, bit_field_type->BitField.scope, ident->Ident.token, value_type, false);
e->identifier = ident;
e->flags |= EntityFlag_BitFieldValue;
HashKey key = hash_string(name);
if (!is_blank_ident(name) &&
map_get(&entity_map, key) != nullptr) {
error(ident, "`%.*s` is already declared in this bit field", LIT(name));
} else {
map_set(&entity_map, key, e);
add_entity(c, c->context.scope, nullptr, e);
add_entity_use(c, field, e);
fields [field_count] = e;
offsets[field_count] = curr_offset;
sizes [field_count] = bits;
field_count++;
curr_offset += bits;
}
}
GB_ASSERT(field_count <= bft->fields.count);
bit_field_type->BitField.fields = fields;
bit_field_type->BitField.field_count = field_count;
bit_field_type->BitField.sizes = sizes;
bit_field_type->BitField.offsets = offsets;
if (bft->align != nullptr) {
Operand o = {};
check_expr(c, &o, bft->align);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error(bft->align, "#align must be a constant");
}
return;
}
Type *type = base_type(o.type);
if (is_type_untyped(type) || is_type_integer(type)) {
if (o.value.kind == ExactValue_Integer) {
i64 align = i128_to_i64(o.value.value_integer);
if (align < 1 || !gb_is_power_of_two(align)) {
error(bft->align, "#align must be a power of 2, got %lld", align);
return;
}
// NOTE(bill): Success!!!
i64 custom_align = gb_clamp(align, 1, build_context.max_align);
if (custom_align < align) {
warning(bft->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align);
}
bit_field_type->BitField.custom_align = custom_align;
return;
}
}
error(bft->align, "#align must be an integer");
return;
}
}
bool check_type_specialization_to(Checker *c, Type *specialization, Type *type, bool compound, bool modify_type) {
if (type == nullptr ||
type == t_invalid) {
return true;
}
Type *t = base_type(type);
Type *s = base_type(specialization);
if (t->kind != s->kind) {
return false;
}
// gb_printf_err("#1 %s %s\n", type_to_string(type), type_to_string(specialization));
if (t->kind == Type_Struct) {
if (t->Struct.polymorphic_parent == specialization) {
return true;
}
if (t->Struct.polymorphic_parent == s->Struct.polymorphic_parent &&
s->Struct.polymorphic_params != nullptr &&
t->Struct.polymorphic_params != nullptr) {
TypeTuple *s_tuple = &s->Struct.polymorphic_params->Tuple;
TypeTuple *t_tuple = &t->Struct.polymorphic_params->Tuple;
GB_ASSERT(t_tuple->variables.count == s_tuple->variables.count);
for_array(i, s_tuple->variables) {
Entity *s_e = s_tuple->variables[i];
Entity *t_e = t_tuple->variables[i];
Type *st = s_e->type;
Type *tt = t_e->type;
bool ok = is_polymorphic_type_assignable(c, st, tt, true, modify_type);
}
if (modify_type) {
// NOTE(bill): This is needed in order to change the actual type but still have the types defined within it
gb_memmove(specialization, type, gb_size_of(Type));
}
return true;
}
}
if (specialization->kind == Type_Named &&
type->kind != Type_Named) {
return false;
}
if (is_polymorphic_type_assignable(c, base_type(specialization), base_type(type), compound, modify_type)) {
return true;
}
return false;
}
bool is_polymorphic_type_assignable(Checker *c, Type *poly, Type *source, bool compound, bool modify_type) {
Operand o = {Addressing_Value};
o.type = source;
switch (poly->kind) {
case Type_Basic:
if (compound) return are_types_identical(poly, source);
return check_is_assignable_to(c, &o, poly);
case Type_Named: {
if (check_type_specialization_to(c, poly, source, compound, modify_type)) {
return true;
}
if (compound) return are_types_identical(poly, source);
return check_is_assignable_to(c, &o, poly);
}
case Type_Generic: {
if (poly->Generic.specialized != nullptr) {
Type *s = poly->Generic.specialized;
if (!check_type_specialization_to(c, s, source, compound, modify_type)) {
return false;
}
}
if (modify_type) {
Type *ds = default_type(source);
gb_memmove(poly, ds, gb_size_of(Type));
}
return true;
}
case Type_Pointer:
if (source->kind == Type_Pointer) {
return is_polymorphic_type_assignable(c, poly->Pointer.elem, source->Pointer.elem, true, modify_type);
}
return false;
case Type_Array:
if (source->kind == Type_Array &&
poly->Array.count == source->Array.count) {
return is_polymorphic_type_assignable(c, poly->Array.elem, source->Array.elem, true, modify_type);
}
return false;
case Type_DynamicArray:
if (source->kind == Type_DynamicArray) {
return is_polymorphic_type_assignable(c, poly->DynamicArray.elem, source->DynamicArray.elem, true, modify_type);
}
return false;
case Type_Vector:
if (source->kind == Type_Vector &&
poly->Vector.count == source->Vector.count) {
return is_polymorphic_type_assignable(c, poly->Vector.elem, source->Vector.elem, true, modify_type);
}
return false;
case Type_Slice:
if (source->kind == Type_Slice) {
return is_polymorphic_type_assignable(c, poly->Slice.elem, source->Slice.elem, true, modify_type);
}
return false;
case Type_Enum:
return false;
case Type_Union:
if (source->kind == Type_Union) {
TypeUnion *x = &poly->Union;
TypeUnion *y = &source->Union;
if (x->variants.count != y->variants.count) {
return false;
}
for_array(i, x->variants) {
Type *a = x->variants[i];
Type *b = y->variants[i];
bool ok = is_polymorphic_type_assignable(c, a, b, false, modify_type);
if (!ok) return false;
}
return true;
}
return false;
case Type_Struct:
if (source->kind == Type_Struct) {
// return check_is_assignable_to(c, &o, poly);
}
return false;
case Type_Tuple:
GB_PANIC("This should never happen");
return false;
case Type_Proc:
if (source->kind == Type_Proc) {
// return check_is_assignable_to(c, &o, poly);
// TODO(bill): Polymorphic type assignment
#if 1
TypeProc *x = &poly->Proc;
TypeProc *y = &source->Proc;
if (x->calling_convention != y->calling_convention) {
return false;
}
if (x->c_vararg != y->c_vararg) {
return false;
}
if (x->variadic != y->variadic) {
return false;
}
if (x->param_count != y->param_count) {
return false;
}
if (x->result_count != y->result_count) {
return false;
}
for (isize i = 0; i < x->param_count; i++) {
Entity *a = x->params->Tuple.variables[i];
Entity *b = y->params->Tuple.variables[i];
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
if (!ok) return false;
}
for (isize i = 0; i < x->result_count; i++) {
Entity *a = x->results->Tuple.variables[i];
Entity *b = y->results->Tuple.variables[i];
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
if (!ok) return false;
}
// TODO(bill): Polymorphic type assignment
return true;
#endif
}
return false;
case Type_Map:
if (source->kind == Type_Map) {
bool key = is_polymorphic_type_assignable(c, poly->Map.key, source->Map.key, true, modify_type);
bool value = is_polymorphic_type_assignable(c, poly->Map.value, source->Map.value, true, modify_type);
return key || value;
}
return false;
}
return false;
}
Type *determine_type_from_polymorphic(Checker *c, Type *poly_type, Operand operand) {
bool modify_type = !c->context.no_polymorphic_errors;
if (!is_operand_value(operand)) {
if (modify_type) {
error(operand.expr, "Cannot determine polymorphic type from parameter");
}
return t_invalid;
}
if (is_polymorphic_type_assignable(c, poly_type, operand.type, false, modify_type)) {
return poly_type;
}
if (modify_type) {
gbString pts = type_to_string(poly_type);
gbString ots = type_to_string(operand.type);
defer (gb_string_free(pts));
defer (gb_string_free(ots));
error(operand.expr, "Cannot determine polymorphic type from parameter: `%s` to `%s`", ots, pts);
}
return t_invalid;
}
Type *check_get_params(Checker *c, Scope *scope, AstNode *_params, bool *is_variadic_, bool *success_, isize *specialization_count_, Array<Operand> *operands) {
if (_params == nullptr) {
return nullptr;
}
bool allow_polymorphic_types = c->context.allow_polymorphic_types;
bool success = true;
ast_node(field_list, FieldList, _params);
Array<AstNode *> params = field_list->list;
if (params.count == 0) {
if (success_) *success_ = success;
return nullptr;
}
isize variable_count = 0;
for_array(i, params) {
AstNode *field = params[i];
if (ast_node_expect(field, AstNode_Field)) {
ast_node(f, Field, field);
variable_count += gb_max(f->names.count, 1);
}
}
isize min_variable_count = variable_count;
for (isize i = params.count-1; i >= 0; i--) {
AstNode *field = params[i];
if (field->kind == AstNode_Field) {
ast_node(f, Field, field);
if (f->default_value == nullptr) {
break;
}
min_variable_count--;
}
}
if (operands != nullptr) {
GB_ASSERT_MSG(operands->count >= min_variable_count, "%td vs %td", operands->count, variable_count);
}
bool is_variadic = false;
bool is_c_vararg = false;
Array<Entity *> variables = {};
array_init(&variables, c->allocator, variable_count);
for_array(i, params) {
AstNode *param = params[i];
if (param->kind != AstNode_Field) {
continue;
}
ast_node(p, Field, param);
AstNode *type_expr = p->type;
Type *type = nullptr;
AstNode *default_value = unparen_expr(p->default_value);
ExactValue value = {};
bool default_is_nil = false;
bool default_is_location = false;
bool is_type_param = false;
bool is_type_polymorphic_type = false;
bool detemine_type_from_operand = false;
Type *specialization = nullptr;
if (type_expr == nullptr) {
if (default_value->kind == AstNode_BasicDirective &&
default_value->BasicDirective.name == "caller_location") {
init_preload(c);
default_is_location = true;
type = t_source_code_location;
} else {
Operand o = {};
check_expr_or_type(c, &o, default_value);
if (is_operand_nil(o)) {
default_is_nil = true;
} else if (o.mode != Addressing_Constant) {
error(default_value, "Default parameter must be a constant");
} else {
value = o.value;
}
type = default_type(o.type);
}
} else {
if (type_expr->kind == AstNode_Ellipsis) {
type_expr = type_expr->Ellipsis.expr;
if (i+1 == params.count) {
is_variadic = true;
} else {
error(param, "Invalid AST: Invalid variadic parameter");
success = false;
}
}
if (type_expr->kind == AstNode_TypeType) {
ast_node(tt, TypeType, type_expr);
is_type_param = true;
specialization = check_type(c, tt->specialization);
if (specialization == t_invalid){
specialization = nullptr;
}
if (specialization) {
if (!is_type_polymorphic(specialization)) {
gbString str = type_to_string(specialization);
error(tt->specialization, "Type specialization requires a polymorphic type, got %s", str);
gb_string_free(str);
}
}
if (operands != nullptr) {
detemine_type_from_operand = true;
type = t_invalid;
} else {
type = make_type_generic(c->allocator, 0, str_lit(""), specialization);
}
} else {
bool prev = c->context.allow_polymorphic_types;
if (operands != nullptr) {
c->context.allow_polymorphic_types = true;
}
type = check_type(c, type_expr);
c->context.allow_polymorphic_types = prev;
if (is_type_polymorphic(type)) {
is_type_polymorphic_type = true;
}
}
if (default_value != nullptr) {
if (type_expr->kind == AstNode_TypeType) {
error(default_value, "A type parameter may not have a default value");
} else {
Operand o = {};
if (default_value->kind == AstNode_BasicDirective &&
default_value->BasicDirective.name == "caller_location") {
init_preload(c);
default_is_location = true;
o.type = t_source_code_location;
o.mode = Addressing_Value;
} else {
check_expr_with_type_hint(c, &o, default_value, type);
if (is_operand_nil(o)) {
default_is_nil = true;
} else if (o.mode != Addressing_Constant) {
error(default_value, "Default parameter must be a constant");
} else {
value = o.value;
}
}
check_is_assignable_to(c, &o, type);
}
}
}
if (type == nullptr) {
error(params[i], "Invalid parameter type");
type = t_invalid;
}
if (is_type_untyped(type)) {
if (is_type_untyped_undef(type)) {
error(params[i], "Cannot determine parameter type from ---");
} else {
error(params[i], "Cannot determine parameter type from a nil");
}
type = t_invalid;
}
if (is_type_empty_union(type)) {
gbString str = type_to_string(type);
error(params[i], "Invalid use of an empty union `%s`", str);
gb_string_free(str);
type = t_invalid;
}
if (p->flags&FieldFlag_c_vararg) {
if (p->type == nullptr ||
p->type->kind != AstNode_Ellipsis) {
error(params[i], "`#c_vararg` can only be applied to variadic type fields");
p->flags &= ~FieldFlag_c_vararg; // Remove the flag
} else {
is_c_vararg = true;
}
}
for_array(j, p->names) {
AstNode *name = p->names[j];
if (!ast_node_expect(name, AstNode_Ident)) {
continue;
}
Entity *param = nullptr;
if (is_type_param) {
if (operands != nullptr) {
Operand o = (*operands)[variables.count];
if (o.mode == Addressing_Type) {
type = o.type;
} else {
if (!c->context.no_polymorphic_errors) {
error(o.expr, "Expected a type to assign to the type parameter");
}
success = false;
type = t_invalid;
}
if (is_type_polymorphic(type)) {
gbString str = type_to_string(type);
error(o.expr, "Cannot pass polymorphic type as a parameter, got `%s`", str);
gb_string_free(str);
success = false;
type = t_invalid;
}
bool modify_type = !c->context.no_polymorphic_errors;
if (specialization != nullptr && !check_type_specialization_to(c, specialization, type, false, modify_type)) {
if (!c->context.no_polymorphic_errors) {
gbString t = type_to_string(type);
gbString s = type_to_string(specialization);
error(o.expr, "Cannot convert type `%s` to the specialization `%s`", t, s);
gb_string_free(s);
gb_string_free(t);
}
success = false;
type = t_invalid;
}
}
param = make_entity_type_name(c->allocator, scope, name->Ident.token, type);
param->TypeName.is_type_alias = true;
} else {
if (operands != nullptr && is_type_polymorphic_type) {
Operand op = (*operands)[variables.count];
type = determine_type_from_polymorphic(c, type, op);
if (type == t_invalid) {
success = false;
}
}
if (p->flags&FieldFlag_no_alias) {
if (!is_type_pointer(type)) {
error(params[i], "`#no_alias` can only be applied to fields of pointer type");
p->flags &= ~FieldFlag_no_alias; // Remove the flag
}
}
param = make_entity_param(c->allocator, scope, name->Ident.token, type,
(p->flags&FieldFlag_using) != 0, false);
param->Variable.default_value = value;
param->Variable.default_is_nil = default_is_nil;
param->Variable.default_is_location = default_is_location;
}
if (p->flags&FieldFlag_no_alias) {
param->flags |= EntityFlag_NoAlias;
}
add_entity(c, scope, name, param);
array_add(&variables, param);
}
}
if (is_variadic) {
GB_ASSERT(params.count > 0);
// NOTE(bill): Change last variadic parameter to be a slice
// Custom Calling convention for variadic parameters
Entity *end = variables[variable_count-1];
end->type = make_type_slice(c->allocator, end->type);
end->flags |= EntityFlag_Ellipsis;
if (is_c_vararg) {
end->flags |= EntityFlag_CVarArg;
}
}
isize specialization_count = 0;
if (scope != nullptr) {
for_array(i, scope->elements.entries) {
Entity *e = scope->elements.entries[i].value;
if (e->kind == Type_Named) {
Type *t = e->type;
if (t->kind == Type_Generic &&
t->Generic.specialized != nullptr) {
specialization_count += 1;
}
}
}
}
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = variables;
if (success_) *success_ = success;
if (specialization_count_) *specialization_count_ = specialization_count;
if (is_variadic_) *is_variadic_ = is_variadic;
return tuple;
}
Type *check_get_results(Checker *c, Scope *scope, AstNode *_results) {
if (_results == nullptr) {
return nullptr;
}
ast_node(field_list, FieldList, _results);
Array<AstNode *> results = field_list->list;
if (results.count == 0) {
return nullptr;
}
Type *tuple = make_type_tuple(c->allocator);
isize variable_count = 0;
for_array(i, results) {
AstNode *field = results[i];
if (ast_node_expect(field, AstNode_Field)) {
ast_node(f, Field, field);
variable_count += gb_max(f->names.count, 1);
}
}
Array<Entity *> variables = {};
array_init(&variables, c->allocator, variable_count);
for_array(i, results) {
ast_node(field, Field, results[i]);
AstNode *default_value = unparen_expr(field->default_value);
ExactValue value = {};
bool default_is_nil = false;
Type *type = nullptr;
if (field->type == nullptr) {
Operand o = {};
check_expr(c, &o, default_value);
if (is_operand_nil(o)) {
default_is_nil = true;
} else if (o.mode != Addressing_Constant) {
error(default_value, "Default parameter must be a constant");
} else {
value = o.value;
}
type = default_type(o.type);
} else {
type = check_type(c, field->type);
if (default_value != nullptr) {
Operand o = {};
check_expr_with_type_hint(c, &o, default_value, type);
if (is_operand_nil(o)) {
default_is_nil = true;
} else if (o.mode != Addressing_Constant) {
error(default_value, "Default parameter must be a constant");
} else {
value = o.value;
}
check_is_assignable_to(c, &o, type);
}
}
if (type == nullptr) {
error(results[i], "Invalid parameter type");
type = t_invalid;
}
if (is_type_untyped(type)) {
error(results[i], "Cannot determine parameter type from a nil");
type = t_invalid;
}
if (field->names.count == 0) {
Token token = ast_node_token(field->type);
token.string = str_lit("");
Entity *param = make_entity_param(c->allocator, scope, token, type, false, false);
param->Variable.default_value = value;
param->Variable.default_is_nil = default_is_nil;
array_add(&variables, param);
} else {
for_array(j, field->names) {
Token token = ast_node_token(results[i]);
if (field->type != nullptr) {
token = ast_node_token(field->type);
}
token.string = str_lit("");
AstNode *name = field->names[j];
if (name->kind != AstNode_Ident) {
error(name, "Expected an identifer for as the field name");
} else {
token = name->Ident.token;
}
Entity *param = make_entity_param(c->allocator, scope, token, type, false, false);
param->Variable.default_value = value;
param->Variable.default_is_nil = default_is_nil;
array_add(&variables, param);
}
}
}
for_array(i, variables) {
String x = variables[i]->token.string;
if (x.len == 0 || is_blank_ident(x)) {
continue;
}
for (isize j = i+1; j < variables.count; j++) {
String y = variables[j]->token.string;
if (y.len == 0 || is_blank_ident(y)) {
continue;
}
if (x == y) {
error(variables[j]->token, "Duplicate return value name `%.*s`", LIT(y));
}
}
}
tuple->Tuple.variables = variables;
return tuple;
}
Type *type_to_abi_compat_param_type(gbAllocator a, Type *original_type) {
Type *new_type = original_type;
if (build_context.ODIN_ARCH == "x86") {
return new_type;
}
if (build_context.ODIN_OS == "windows") {
// NOTE(bill): Changing the passing parameter value type is to match C's ABI
// IMPORTANT TODO(bill): This only matches the ABI on MSVC at the moment
// SEE: https://msdn.microsoft.com/en-us/library/zthk2dkh.aspx
Type *bt = core_type(original_type);
switch (bt->kind) {
// Okay to pass by value (usually)
// Especially the only Odin types
case Type_Basic: {
i64 sz = bt->Basic.size;
if (sz > 8 && build_context.word_size < 8) {
new_type = make_type_pointer(a, original_type);
}
} break;
case Type_Pointer: break;
case Type_Proc: break; // NOTE(bill): Just a pointer
// Odin only types
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
break;
// Odin specific
case Type_Array:
case Type_Vector:
// Could be in C too
case Type_Struct: {
i64 align = type_align_of(a, original_type);
i64 size = type_size_of(a, original_type);
switch (8*size) {
case 8: new_type = t_u8; break;
case 16: new_type = t_u16; break;
case 32: new_type = t_u32; break;
case 64: new_type = t_u64; break;
default:
new_type = make_type_pointer(a, original_type);
break;
}
} break;
}
} else if (build_context.ODIN_OS == "linux" ||
build_context.ODIN_OS == "osx") {
Type *bt = core_type(original_type);
switch (bt->kind) {
// Okay to pass by value (usually)
// Especially the only Odin types
case Type_Basic: {
i64 sz = bt->Basic.size;
if (sz > 8 && build_context.word_size < 8) {
new_type = make_type_pointer(a, original_type);
}
} break;
case Type_Pointer: break;
case Type_Proc: break; // NOTE(bill): Just a pointer
// Odin only types
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
break;
// Odin specific
case Type_Array:
case Type_Vector:
// Could be in C too
case Type_Struct: {
i64 align = type_align_of(a, original_type);
i64 size = type_size_of(a, original_type);
if (8*size > 16) {
new_type = make_type_pointer(a, original_type);
}
} break;
}
} else {
// IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for
// their architectures
}
return new_type;
}
Type *reduce_tuple_to_single_type(Type *original_type) {
if (original_type != nullptr) {
Type *t = core_type(original_type);
if (t->kind == Type_Tuple && t->Tuple.variables.count == 1) {
return t->Tuple.variables[0]->type;
}
}
return original_type;
}
Type *type_to_abi_compat_result_type(gbAllocator a, Type *original_type) {
Type *new_type = original_type;
if (new_type == nullptr) {
return nullptr;
}
GB_ASSERT(is_type_tuple(original_type));
if (build_context.ODIN_OS == "windows") {
Type *bt = core_type(reduce_tuple_to_single_type(original_type));
// NOTE(bill): This is just reversed engineered from LLVM IR output
switch (bt->kind) {
// Okay to pass by value
// Especially the only Odin types
case Type_Pointer: break;
case Type_Proc: break; // NOTE(bill): Just a pointer
case Type_Basic: break;
default: {
i64 align = type_align_of(a, original_type);
i64 size = type_size_of(a, original_type);
switch (8*size) {
#if 1
case 8: new_type = t_u8; break;
case 16: new_type = t_u16; break;
case 32: new_type = t_u32; break;
case 64: new_type = t_u64; break;
#endif
}
} break;
}
} else if (build_context.ODIN_OS == "linux") {
} else {
// IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for
// their architectures
}
if (new_type != original_type) {
Type *tuple = make_type_tuple(a);
Array<Entity *> variables = {};
array_init(&variables, a, 1);
array_add(&variables, make_entity_param(a, original_type->Tuple.variables[0]->scope, empty_token, new_type, false, false));
tuple->Tuple.variables = variables;
new_type = tuple;
}
// return reduce_tuple_to_single_type(new_type);
return new_type;
}
bool abi_compat_return_by_value(gbAllocator a, ProcCallingConvention cc, Type *abi_return_type) {
if (abi_return_type == nullptr) {
return false;
}
switch (cc) {
case ProcCC_Odin:
case ProcCC_Contextless:
return false;
}
if (build_context.ODIN_OS == "windows") {
i64 size = 8*type_size_of(a, abi_return_type);
switch (size) {
case 0:
case 8:
case 16:
case 32:
case 64:
return false;
default:
return true;
}
}
return false;
}
// NOTE(bill): `operands` is for generating non generic procedure type
bool check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node, Array<Operand> *operands) {
ast_node(pt, ProcType, proc_type_node);
if (c->context.polymorphic_scope == nullptr && c->context.allow_polymorphic_types) {
c->context.polymorphic_scope = c->context.scope;
}
bool variadic = false;
bool success = true;
isize specialization_count = 0;
Type *params = check_get_params(c, c->context.scope, pt->params, &variadic, &success, &specialization_count, operands);
Type *results = check_get_results(c, c->context.scope, pt->results);
isize param_count = 0;
isize result_count = 0;
if (params) param_count = params ->Tuple.variables.count;
if (results) result_count = results->Tuple.variables.count;
type->Proc.node = proc_type_node;
type->Proc.scope = c->context.scope;
type->Proc.params = params;
type->Proc.param_count = param_count;
type->Proc.results = results;
type->Proc.result_count = result_count;
type->Proc.variadic = variadic;
type->Proc.calling_convention = pt->calling_convention;
type->Proc.is_polymorphic = pt->generic;
type->Proc.specialization_count = specialization_count;
if (param_count > 0) {
Entity *end = params->Tuple.variables[param_count-1];
if (end->flags&EntityFlag_CVarArg) {
if (pt->calling_convention == ProcCC_Odin) {
error(end->token, "Odin calling convention does not support #c_vararg");
} else if (pt->calling_convention == ProcCC_Contextless) {
error(end->token, "Odin's contextless calling convention does not support #c_vararg");
} else if (pt->calling_convention == ProcCC_Fast) {
error(end->token, "Fast calling convention does not support #c_vararg");
} else {
type->Proc.c_vararg = true;
}
}
}
bool is_polymorphic = false;
for (isize i = 0; i < param_count; i++) {
Entity *e = params->Tuple.variables[i];
if (e->kind != Entity_Variable) {
is_polymorphic = true;
break;
} else if (is_type_polymorphic(e->type)) {
is_polymorphic = true;
break;
}
}
type->Proc.is_polymorphic = is_polymorphic;
type->Proc.abi_compat_params = gb_alloc_array(c->allocator, Type *, param_count);
for (isize i = 0; i < param_count; i++) {
Entity *e = type->Proc.params->Tuple.variables[i];
if (e->kind == Entity_Variable) {
Type *original_type = e->type;
Type *new_type = type_to_abi_compat_param_type(c->allocator, original_type);
type->Proc.abi_compat_params[i] = new_type;
}
}
// NOTE(bill): The types are the same
type->Proc.abi_compat_result_type = type_to_abi_compat_result_type(c->allocator, type->Proc.results);
type->Proc.return_by_pointer = abi_compat_return_by_value(c->allocator, pt->calling_convention, type->Proc.abi_compat_result_type);
return success;
}
Entity *check_ident(Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint, bool allow_import_name) {
GB_ASSERT(n->kind == AstNode_Ident);
o->mode = Addressing_Invalid;
o->expr = n;
String name = n->Ident.token.string;
Entity *e = scope_lookup_entity(c->context.scope, name);
if (e == nullptr) {
if (is_blank_ident(name)) {
error(n, "`_` cannot be used as a value type");
} else {
error(n, "Undeclared name: %.*s", LIT(name));
}
o->type = t_invalid;
o->mode = Addressing_Invalid;
if (named_type != nullptr) {
set_base_type(named_type, t_invalid);
}
return nullptr;
}
if (e->parent_proc_decl != nullptr &&
e->parent_proc_decl != c->context.curr_proc_decl) {
if (e->kind == Entity_Variable) {
error(n, "Nested procedures do not capture its parent's variables: %.*s", LIT(name));
return nullptr;
} else if (e->kind == Entity_Label) {
error(n, "Nested procedures do not capture its parent's labels: %.*s", LIT(name));
return nullptr;
}
}
bool is_overloaded = false;
isize overload_count = 0;
bool is_alias = false;
while (e->kind == Entity_Alias) {
GB_ASSERT(e->Alias.base != nullptr);
e = e->Alias.base;
is_alias = true;
}
HashKey key = hash_string(e->token.string);
if (e->kind == Entity_Procedure) {
// NOTE(bill): Overloads are only allowed with the same scope
Scope *s = e->scope;
overload_count = multi_map_count(&s->elements, key);
if (overload_count > 1) {
is_overloaded = true;
}
}
if (is_overloaded) {
Scope *s = e->scope;
bool skip = false;
Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count);
multi_map_get_all(&s->elements, key, procs);
if (type_hint != nullptr) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
// NOTE(bill): These should be done
for (isize i = 0; i < overload_count; i++) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(c, &x, type_hint)) {
e = procs[i];
add_entity_use(c, n, e);
skip = true;
break;
}
}
}
if (!skip) {
o->mode = Addressing_Overload;
o->type = t_invalid;
o->overload_count = overload_count;
o->overload_entities = procs;
return nullptr;
}
gb_free(heap_allocator(), procs);
}
add_entity_use(c, n, e);
check_entity_decl(c, e, nullptr, named_type);
if (e->type == nullptr) {
compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name));
// return nullptr;
}
e->flags |= EntityFlag_Used;
Type *type = e->type;
switch (e->kind) {
case Entity_Constant:
if (type == t_invalid) {
o->type = t_invalid;
return e;
}
o->value = e->Constant.value;
if (o->value.kind == ExactValue_Invalid) {
return e;
}
o->mode = Addressing_Constant;
break;
case Entity_Variable:
e->flags |= EntityFlag_Used;
if (type == t_invalid) {
o->type = t_invalid;
return e;
}
o->mode = Addressing_Variable;
if (e->flags & EntityFlag_Value) {
o->mode = Addressing_Value;
}
if (e->Variable.is_immutable) {
o->mode = Addressing_Immutable;
}
break;
case Entity_Procedure:
o->mode = Addressing_Value;
break;
case Entity_Builtin:
o->builtin_id = cast(BuiltinProcId)e->Builtin.id;
o->mode = Addressing_Builtin;
break;
case Entity_TypeName:
o->mode = Addressing_Type;
break;
case Entity_ImportName:
if (!allow_import_name) {
error(n, "Use of import `%.*s` not in selector", LIT(name));
}
return e;
case Entity_LibraryName:
error(n, "Use of library `%.*s` not in foreign block", LIT(name));
return e;
case Entity_Label:
o->mode = Addressing_NoValue;
break;
case Entity_Nil:
o->mode = Addressing_Value;
break;
default:
compiler_error("Unknown EntityKind %.*s", LIT(entity_strings[e->kind]));
break;
}
o->type = type;
return e;
}
i64 check_array_or_map_count(Checker *c, AstNode *e, bool is_map) {
if (e == nullptr) {
return 0;
}
Operand o = {};
if (e->kind == AstNode_UnaryExpr &&
e->UnaryExpr.op.kind == Token_Ellipsis) {
return -1;
}
check_expr(c, &o, e);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
if (is_map) {
error(e, "Fixed map count must be a constant");
} else {
error(e, "Array count must be a constant");
}
}
return 0;
}
Type *type = base_type(o.type);
if (is_type_untyped(type) || is_type_integer(type)) {
if (o.value.kind == ExactValue_Integer) {
i64 count = i128_to_i64(o.value.value_integer);
if (is_map) {
if (count > 0) {
return count;
}
error(e, "Invalid fixed map count");
} else {
if (count >= 0) {
return count;
}
error(e, "Invalid negative array count %lld", cast(long long)count);
}
return 0;
}
}
if (is_map) {
error(e, "Fixed map count must be an integer");
} else {
error(e, "Array count must be an integer");
}
return 0;
}
Type *make_optional_ok_type(gbAllocator a, Type *value) {
bool typed = true;
Type *t = make_type_tuple(a);
array_init(&t->Tuple.variables, a, 2);
array_add (&t->Tuple.variables, make_entity_field(a, nullptr, blank_token, value, false, 0));
array_add (&t->Tuple.variables, make_entity_field(a, nullptr, blank_token, typed ? t_bool : t_untyped_bool, false, 1));
return t;
}
void generate_map_entry_type(gbAllocator a, Type *type) {
GB_ASSERT(type->kind == Type_Map);
if (type->Map.entry_type != nullptr) return;
// NOTE(bill): The preload types may have not been set yet
GB_ASSERT(t_map_key != nullptr);
Type *entry_type = make_type_struct(a);
/*
struct {
hash: Map_Key,
next: int,
key: Key_Type,
value: Value_Type,
}
*/
AstNode *dummy_node = gb_alloc_item(a, AstNode);
dummy_node->kind = AstNode_Invalid;
Scope *s = make_scope(universal_scope, a);
isize field_count = 3;
Array<Entity *> fields = {};
array_init(&fields, a, 3);
array_add(&fields, make_entity_field(a, s, make_token_ident(str_lit("key")), t_map_key, false, 0));
array_add(&fields, make_entity_field(a, s, make_token_ident(str_lit("next")), t_int, false, 1));
array_add(&fields, make_entity_field(a, s, make_token_ident(str_lit("value")), type->Map.value, false, 2));
entry_type->Struct.fields = fields;
entry_type->Struct.fields_in_src_order = fields;
// type_set_offsets(a, entry_type);
type->Map.entry_type = entry_type;
}
void generate_map_internal_types(gbAllocator a, Type *type) {
GB_ASSERT(type->kind == Type_Map);
if (type->Map.generated_struct_type != nullptr) return;
generate_map_entry_type(a, type);
Type *key = type->Map.key;
Type *value = type->Map.value;
GB_ASSERT(key != nullptr);
GB_ASSERT(value != nullptr);
Type *generated_struct_type = make_type_struct(a);
/*
struct {
hashes: [dynamic]int;
entries; [dynamic]EntryType;
}
*/
AstNode *dummy_node = gb_alloc_item(a, AstNode);
dummy_node->kind = AstNode_Invalid;
Scope *s = make_scope(universal_scope, a);
Type *hashes_type = make_type_dynamic_array(a, t_int);
Type *entries_type = make_type_dynamic_array(a, type->Map.entry_type);
Array<Entity *> fields = {};
array_init(&fields, a, 2);
array_add(&fields, make_entity_field(a, s, make_token_ident(str_lit("hashes")), hashes_type, false, 0));
array_add(&fields, make_entity_field(a, s, make_token_ident(str_lit("entries")), entries_type, false, 1));
generated_struct_type->Struct.fields = fields;
generated_struct_type->Struct.fields_in_src_order = fields;
type_set_offsets(a, generated_struct_type);
type->Map.generated_struct_type = generated_struct_type;
type->Map.lookup_result_type = make_optional_ok_type(a, value);
}
void check_map_type(Checker *c, Type *type, AstNode *node) {
GB_ASSERT(type->kind == Type_Map);
ast_node(mt, MapType, node);
i64 count = check_array_or_map_count(c, mt->count, true);
Type *key = check_type(c, mt->key);
Type *value = check_type(c, mt->value);
if (!is_type_valid_for_keys(key)) {
if (is_type_boolean(key)) {
error(node, "A boolean cannot be used as a key for a map, use an array instead for this case");
} else {
gbString str = type_to_string(key);
error(node, "Invalid type of a key for a map, got `%s`", str);
gb_string_free(str);
}
}
if (count > 0) {
count = 0;
error(node, "Fixed map types are not yet implemented");
}
type->Map.count = count;
type->Map.key = key;
type->Map.value = value;
init_preload(c);
generate_map_internal_types(c->allocator, type);
// error(node, "`map` types are not yet implemented");
}
bool check_type_internal(Checker *c, AstNode *e, Type **type, Type *named_type) {
GB_ASSERT_NOT_NULL(type);
if (e == nullptr) {
*type = t_invalid;
return true;
}
switch (e->kind) {
case_ast_node(i, Ident, e);
Operand o = {};
check_ident(c, &o, e, named_type, nullptr, false);
switch (o.mode) {
case Addressing_Invalid:
break;
case Addressing_Type: {
*type = o.type;
return true;
} break;
case Addressing_NoValue: {
gbString err_str = expr_to_string(e);
error(e, "`%s` used as a type", err_str);
gb_string_free(err_str);
} break;
default: {
gbString err_str = expr_to_string(e);
error(e, "`%s` used as a type when not a type", err_str);
gb_string_free(err_str);
} break;
}
case_end;
case_ast_node(ht, HelperType, e);
return check_type_internal(c, ht->type, type, named_type);
case_end;
case_ast_node(pt, PolyType, e);
AstNode *ident = pt->type;
if (ident->kind != AstNode_Ident) {
error(ident, "Expected an identifier after the $");
*type = t_invalid;
return false;
}
Token token = ident->Ident.token;
Type *specific = nullptr;
if (pt->specialization != nullptr) {
AstNode *s = pt->specialization;
specific = check_type(c, s);
if (false && !is_type_polymorphic_struct(specific)) {
gbString str = type_to_string(specific);
error(s, "Expected a polymorphic struct, got %s", str);
gb_string_free(str);
specific = nullptr;
}
}
Type *t = make_type_generic(c->allocator, 0, token.string, specific);
if (c->context.allow_polymorphic_types) {
Scope *ps = c->context.polymorphic_scope;
Scope *s = c->context.scope;
Scope *entity_scope = s;
if (ps != nullptr && ps != s) {
GB_ASSERT(is_scope_an_ancestor(ps, s) >= 0);
entity_scope = ps;
}
Entity *e = make_entity_type_name(c->allocator, entity_scope, token, t);
e->TypeName.is_type_alias = true;
add_entity(c, ps, ident, e);
add_entity(c, s, ident, e);
} else {
error(ident, "Invalid use of a polymorphic type `$%.*s`", LIT(token.string));
*type = t_invalid;
return false;
}
*type = t;
return true;
case_end;
case_ast_node(se, SelectorExpr, e);
Operand o = {};
check_selector(c, &o, e, nullptr);
switch (o.mode) {
case Addressing_Invalid:
break;
case Addressing_Type:
GB_ASSERT(o.type != nullptr);
*type = o.type;
return true;
case Addressing_NoValue: {
gbString err_str = expr_to_string(e);
error(e, "`%s` used as a type", err_str);
gb_string_free(err_str);
} break;
default: {
gbString err_str = expr_to_string(e);
error(e, "`%s` is not a type", err_str);
gb_string_free(err_str);
} break;
}
case_end;
case_ast_node(pe, ParenExpr, e);
*type = check_type(c, pe->expr, named_type);
return true;
case_end;
case_ast_node(ue, UnaryExpr, e);
if (ue->op.kind == Token_Pointer) {
*type = make_type_pointer(c->allocator, check_type(c, ue->expr));
return true;
} /* else if (ue->op.kind == Token_Maybe) {
*type = make_type_maybe(c->allocator, check_type(c, ue->expr));
return true;
} */
case_end;
case_ast_node(pt, PointerType, e);
Type *elem = check_type(c, pt->type);
i64 esz = type_size_of(c->allocator, elem);
*type = make_type_pointer(c->allocator, elem);
return true;
case_end;
case_ast_node(at, ArrayType, e);
if (at->count != nullptr) {
Type *elem = check_type(c, at->elem, nullptr);
i64 count = check_array_or_map_count(c, at->count, false);
if (count < 0) {
error(at->count, "... can only be used in conjuction with compound literals");
count = 0;
}
*type = make_type_array(c->allocator, elem, count);
} else {
Type *elem = check_type(c, at->elem);
*type = make_type_slice(c->allocator, elem);
}
return true;
case_end;
case_ast_node(dat, DynamicArrayType, e);
Type *elem = check_type(c, dat->elem);
*type = make_type_dynamic_array(c->allocator, elem);
return true;
case_end;
case_ast_node(vt, VectorType, e);
Type *elem = check_type(c, vt->elem);
Type *be = base_type(elem);
i64 count = check_array_or_map_count(c, vt->count, false);
if (is_type_vector(be) || (!is_type_boolean(be) && !is_type_numeric(be) && be->kind != Type_Generic)) {
gbString err_str = type_to_string(elem);
error(vt->elem, "Vector element type must be numerical or a boolean, got `%s`", err_str);
gb_string_free(err_str);
}
*type = make_type_vector(c->allocator, elem, count);
return true;
case_end;
case_ast_node(st, StructType, e);
*type = make_type_struct(c->allocator);
set_base_type(named_type, *type);
check_open_scope(c, e);
check_struct_type(c, *type, e, nullptr);
check_close_scope(c);
(*type)->Struct.node = e;
return true;
case_end;
case_ast_node(ut, UnionType, e);
*type = make_type_union(c->allocator);
set_base_type(named_type, *type);
check_open_scope(c, e);
check_union_type(c, named_type, *type, e);
check_close_scope(c);
(*type)->Union.node = e;
return true;
case_end;
case_ast_node(et, EnumType, e);
*type = make_type_enum(c->allocator);
set_base_type(named_type, *type);
check_open_scope(c, e);
check_enum_type(c, *type, named_type, e);
check_close_scope(c);
(*type)->Enum.node = e;
return true;
case_end;
case_ast_node(et, BitFieldType, e);
*type = make_type_bit_field(c->allocator);
set_base_type(named_type, *type);
check_open_scope(c, e);
check_bit_field_type(c, *type, named_type, e);
check_close_scope(c);
return true;
case_end;
case_ast_node(pt, ProcType, e);
*type = alloc_type(c->allocator, Type_Proc);
set_base_type(named_type, *type);
check_open_scope(c, e);
check_procedure_type(c, *type, e);
check_close_scope(c);
return true;
case_end;
case_ast_node(mt, MapType, e);
*type = alloc_type(c->allocator, Type_Map);
set_base_type(named_type, *type);
check_map_type(c, *type, e);
return true;
case_end;
case_ast_node(ce, CallExpr, e);
Operand o = {};
check_expr_or_type(c, &o, e);
if (o.mode == Addressing_Type) {
*type = o.type;
return true;
}
case_end;
case_ast_node(te, TernaryExpr, e);
Operand o = {};
check_expr_or_type(c, &o, e);
if (o.mode == Addressing_Type) {
*type = o.type;
return true;
}
case_end;
}
*type = t_invalid;
return false;
}
Type *check_type(Checker *c, AstNode *e, Type *named_type) {
Type *type = nullptr;
bool ok = check_type_internal(c, e, &type, named_type);
if (!ok) {
gbString err_str = expr_to_string(e);
error(e, "`%s` is not a type", err_str);
gb_string_free(err_str);
type = t_invalid;
}
if (type == nullptr) {
type = t_invalid;
}
if (type->kind == Type_Named) {
if (type->Named.base == nullptr) {
gbString name = type_to_string(type);
error(e, "Invalid type definition of %s", name);
gb_string_free(name);
type->Named.base = t_invalid;
}
}
#if 0
if (!c->context.allow_polymorphic_types && is_type_polymorphic(type)) {
gbString str = type_to_string(type);
error(e, "Invalid use of a polymorphic type `%s`", str);
gb_string_free(str);
type = t_invalid;
}
#endif
if (is_type_typed(type)) {
add_type_and_value(&c->info, e, Addressing_Type, type, empty_exact_value);
} else {
gbString name = type_to_string(type);
error(e, "Invalid type definition of %s", name);
gb_string_free(name);
type = t_invalid;
}
set_base_type(named_type, type);
return type;
}
bool check_unary_op(Checker *c, Operand *o, Token op) {
if (o->type == nullptr) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Expression has no value `%s`", str);
gb_string_free(str);
return false;
}
// TODO(bill): Handle errors correctly
Type *type = base_type(base_vector_type(o->type));
gbString str = nullptr;
switch (op.kind) {
case Token_Add:
case Token_Sub:
if (!is_type_numeric(type)) {
str = expr_to_string(o->expr);
error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str);
gb_string_free(str);
}
break;
case Token_Xor:
if (!is_type_integer(type) && !is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string));
}
break;
case Token_Not:
if (!is_type_boolean(type)) {
str = expr_to_string(o->expr);
error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string));
gb_string_free(str);
}
break;
default:
error(op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
bool check_binary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = base_type(base_vector_type(o->type));
switch (op.kind) {
case Token_Sub:
case Token_SubEq:
if (!is_type_numeric(type) && !is_type_pointer(type)) {
error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string));
return false;
}
if (is_type_pointer(type)) {
o->type = t_int;
}
if (base_type(type) == t_rawptr) {
gbString str = type_to_string(type);
error(o->expr, "Invalid pointer type for pointer arithmetic: `%s`", str);
gb_string_free(str);
return false;
}
break;
case Token_Mul:
case Token_Quo:
case Token_AddEq:
case Token_MulEq:
case Token_QuoEq:
if (!is_type_numeric(type)) {
error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_Add:
if (is_type_string(type)) {
if (o->mode == Addressing_Constant) {
return true;
}
error(op, "String concatenation is only allowed with constant strings");
return false;
} else if (!is_type_numeric(type)) {
error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_And:
case Token_Or:
case Token_AndEq:
case Token_OrEq:
case Token_Xor:
case Token_XorEq:
if (!is_type_integer(type) && !is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string));
return false;
}
break;
case Token_Mod:
case Token_ModMod:
case Token_AndNot:
case Token_ModEq:
case Token_ModModEq:
case Token_AndNotEq:
if (!is_type_integer(type)) {
error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
return false;
}
break;
case Token_CmpAnd:
case Token_CmpOr:
case Token_CmpAndEq:
case Token_CmpOrEq:
if (!is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string));
return false;
}
break;
default:
error(op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) {
if (in_value.kind == ExactValue_Invalid) {
// NOTE(bill): There's already been an error
return true;
}
type = core_type(type);
if (is_type_boolean(type)) {
return in_value.kind == ExactValue_Bool;
} else if (is_type_string(type)) {
return in_value.kind == ExactValue_String;
} else if (is_type_integer(type) || is_type_rune(type)) {
ExactValue v = exact_value_to_integer(in_value);
if (v.kind != ExactValue_Integer) {
return false;
}
if (out_value) *out_value = v;
if (is_type_untyped(type)) {
return true;
}
i128 i = v.value_integer;
u128 u = *cast(u128 *)&i;
i64 s = 8*type_size_of(c->allocator, type);
u128 umax = U128_NEG_ONE;
if (s < 128) {
umax = u128_sub(u128_shl(U128_ONE, s), U128_ONE);
} else {
// IMPORTANT TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit floats
s = 128;
}
i128 imax = i128_shl(I128_ONE, s-1ll);
switch (type->Basic.kind) {
case Basic_rune:
case Basic_i8:
case Basic_i16:
case Basic_i32:
case Basic_i64:
case Basic_i128:
case Basic_int:
return i128_le(i128_neg(imax), i) && i128_le(i, i128_sub(imax, I128_ONE));
case Basic_u8:
case Basic_u16:
case Basic_u32:
case Basic_u64:
case Basic_u128:
case Basic_uint:
return !(u128_lt(u, U128_ZERO) || u128_gt(u, umax));
case Basic_UntypedInteger:
return true;
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
}
} else if (is_type_float(type)) {
ExactValue v = exact_value_to_float(in_value);
if (v.kind != ExactValue_Float) {
return false;
}
if (out_value) *out_value = v;
switch (type->Basic.kind) {
// case Basic_f16:
case Basic_f32:
case Basic_f64:
return true;
case Basic_UntypedFloat:
return true;
}
} else if (is_type_complex(type)) {
ExactValue v = exact_value_to_complex(in_value);
if (v.kind != ExactValue_Complex) {
return false;
}
switch (type->Basic.kind) {
case Basic_complex64:
case Basic_complex128: {
ExactValue real = exact_value_real(v);
ExactValue imag = exact_value_imag(v);
if (real.kind != ExactValue_Invalid &&
imag.kind != ExactValue_Invalid) {
if (out_value) *out_value = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag));
return true;
}
} break;
case Basic_UntypedComplex:
return true;
}
return false;
} else if (is_type_pointer(type)) {
if (in_value.kind == ExactValue_Pointer) {
return true;
}
if (in_value.kind == ExactValue_Integer) {
return false;
// return true;
}
if (out_value) *out_value = in_value;
}
return false;
}
void check_is_expressible(Checker *c, Operand *o, Type *type) {
GB_ASSERT(is_type_constant_type(type));
GB_ASSERT(o->mode == Addressing_Constant);
if (!check_representable_as_constant(c, o->value, type, &o->value)) {
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
if (is_type_numeric(o->type) && is_type_numeric(type)) {
if (!is_type_integer(o->type) && is_type_integer(type)) {
error(o->expr, "`%s` truncated to `%s`", a, b);
} else {
char buf[127] = {};
String str = {};
i128 i = o->value.value_integer;
if (is_type_unsigned(o->type)) {
str = u128_to_string(*cast(u128 *)&i, buf, gb_size_of(buf));
} else {
str = i128_to_string(i, buf, gb_size_of(buf));
}
error(o->expr, "`%s = %.*s` overflows `%s`", a, LIT(str), b);
}
} else {
error(o->expr, "Cannot convert `%s` to `%s`", a, b);
}
gb_string_free(b);
gb_string_free(a);
o->mode = Addressing_Invalid;
}
}
bool check_is_expr_vector_index(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_IndexExpr) {
ast_node(ie, IndexExpr, expr);
Type *t = type_deref(type_of_expr(&c->info, ie->expr));
if (t != nullptr) {
return is_type_vector(t);
}
}
return false;
}
bool check_is_vector_elem(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_SelectorExpr) {
ast_node(se, SelectorExpr, expr);
Type *t = type_deref(type_of_expr(&c->info, se->expr));
if (t != nullptr && is_type_vector(t)) {
return true;
}
}
return false;
}
bool check_is_not_addressable(Checker *c, Operand *o) {
if (o->mode != Addressing_Variable) {
return true;
}
if (is_type_bit_field_value(o->type)) {
return true;
}
if (check_is_expr_vector_index(c, o->expr)) {
return true;
}
if (check_is_vector_elem(c, o->expr)) {
return true;
}
return false;
}
void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) {
switch (op.kind) {
case Token_And: { // Pointer address
if (o->mode == Addressing_Type) {
o->type = make_type_pointer(c->allocator, o->type);
return;
}
if (check_is_not_addressable(c, o)) {
if (ast_node_expect(node, AstNode_UnaryExpr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
error(op, "Cannot take the pointer address of `%s`", str);
gb_string_free(str);
}
o->mode = Addressing_Invalid;
return;
}
o->mode = Addressing_Value;
o->type = make_type_pointer(c->allocator, o->type);
return;
}
}
if (!check_unary_op(c, o, op)) {
o->mode = Addressing_Invalid;
return;
}
if (o->mode == Addressing_Constant && !is_type_vector(o->type)) {
Type *type = base_type(o->type);
if (!is_type_constant_type(o->type)) {
gbString xt = type_to_string(o->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
o->mode = Addressing_Invalid;
return;
}
i32 precision = 0;
if (is_type_unsigned(type)) {
precision = cast(i32)(8 * type_size_of(c->allocator, type));
}
o->value = exact_unary_operator_value(op.kind, o->value, precision);
if (is_type_typed(type)) {
if (node != nullptr) {
o->expr = node;
}
check_is_expressible(c, o, type);
}
return;
}
o->mode = Addressing_Value;
}
void check_comparison(Checker *c, Operand *x, Operand *y, TokenKind op) {
if (x->mode == Addressing_Type && y->mode == Addressing_Type) {
bool comp = are_types_identical(x->type, y->type);
switch (op) {
case Token_CmpEq: comp = comp; break;
case Token_NotEq: comp = !comp; break;
}
x->mode = Addressing_Constant;
x->type = t_untyped_bool;
x->value = exact_value_bool(comp);
return;
}
gbString err_str = nullptr;
defer (if (err_str != nullptr) {
gb_string_free(err_str);
});
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
if (check_is_assignable_to(c, x, y->type) ||
check_is_assignable_to(c, y, x->type)) {
Type *err_type = x->type;
bool defined = false;
switch (op) {
case Token_CmpEq:
case Token_NotEq:
defined = is_type_comparable(x->type) ||
(is_operand_nil(*x) && type_has_nil(y->type)) ||
(is_operand_nil(*y) && type_has_nil(x->type));
break;
case Token_Lt:
case Token_Gt:
case Token_LtEq:
case Token_GtEq: {
defined = is_type_ordered(x->type);
} break;
}
if (!defined) {
if (x->type == err_type && is_operand_nil(*x)) {
err_type = y->type;
}
gbString type_string = type_to_string(err_type);
err_str = gb_string_make(c->tmp_allocator,
gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(token_strings[op]), type_string));
gb_string_free(type_string);
}
} else {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
err_str = gb_string_make(c->tmp_allocator,
gb_bprintf("mismatched types `%s` and `%s`", xt, yt));
gb_string_free(yt);
gb_string_free(xt);
}
if (err_str != nullptr) {
error(x->expr, "Cannot compare expression, %s", err_str);
x->type = t_untyped_bool;
} else {
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
} else {
x->mode = Addressing_Value;
update_expr_type(c, x->expr, default_type(x->type), true);
update_expr_type(c, y->expr, default_type(y->type), true);
}
if (is_type_vector(base_type(y->type))) {
x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count);
} else {
x->type = t_untyped_bool;
}
}
}
void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
ExactValue x_val = {};
if (x->mode == Addressing_Constant) {
x_val = exact_value_to_integer(x->value);
}
bool x_is_untyped = is_type_untyped(x->type);
if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
gbString err_str = expr_to_string(x->expr);
error(node, "Shifted operand `%s` must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_unsigned(y->type)) {
} else if (is_type_untyped(y->type)) {
convert_to_typed(c, y, t_untyped_integer, 0);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
} else {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount `%s` must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (x->mode == Addressing_Constant) {
if (y->mode == Addressing_Constant) {
ExactValue y_val = exact_value_to_integer(y->value);
if (y_val.kind != ExactValue_Integer) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount `%s` must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
i64 amount = i128_to_i64(y_val.value_integer);
if (amount > 128) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount too large: `%s`", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (!is_type_integer(x->type)) {
// NOTE(bill): It could be an untyped float but still representable
// as an integer
x->type = t_untyped_integer;
}
x->value = exact_value_shift(be->op.kind, x_val, exact_value_i64(amount));
if (is_type_typed(x->type)) {
check_is_expressible(c, x, base_type(x->type));
}
return;
}
TokenPos pos = ast_node_token(x->expr).pos;
if (x_is_untyped) {
ExprInfo *info = check_get_expr_info(&c->info, x->expr);
if (info != nullptr) {
info->is_lhs = true;
}
x->mode = Addressing_Value;
// x->value = x_val;
return;
}
}
if (y->mode == Addressing_Constant && i128_lt(y->value.value_integer, I128_ZERO)) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift amount cannot be negative: `%s`", err_str);
gb_string_free(err_str);
}
if (!is_type_integer(x->type)) {
gbString err_str = expr_to_string(y->expr);
error(node, "Shift operand `%s` must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
x->mode = Addressing_Value;
}
String check_down_cast_name(Type *dst_, Type *src_) {
String result = {};
Type *dst = type_deref(dst_);
Type *src = type_deref(src_);
Type *dst_s = base_type(dst);
GB_ASSERT(dst_s->kind == Type_Struct);
for_array(i, dst_s->Struct.fields) {
Entity *f = dst_s->Struct.fields[i];
GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field);
if (f->flags & EntityFlag_Using) {
if (are_types_identical(f->type, src_)) {
return f->token.string;
}
if (are_types_identical(type_deref(f->type), src_)) {
return f->token.string;
}
if (!is_type_pointer(f->type)) {
result = check_down_cast_name(f->type, src_);
if (result.len > 0) {
return result;
}
}
}
}
return result;
}
Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
GB_ASSERT(is_type_pointer(ptr->type));
GB_ASSERT(is_type_integer(offset->type));
GB_ASSERT(op == Token_Add || op == Token_Sub);
Operand operand = {};
operand.mode = Addressing_Value;
operand.type = ptr->type;
operand.expr = node;
if (base_type(ptr->type) == t_rawptr) {
gbString str = type_to_string(ptr->type);
error(node, "Invalid pointer type for pointer arithmetic: `%s`", str);
gb_string_free(str);
operand.mode = Addressing_Invalid;
return operand;
}
Type *base_ptr = base_type(ptr->type); GB_ASSERT(base_ptr->kind == Type_Pointer);
Type *elem = base_ptr->Pointer.elem;
i64 elem_size = type_size_of(c->allocator, elem);
if (elem_size <= 0) {
gbString str = type_to_string(elem);
error(node, "Size of pointer's element type `%s` is zero and cannot be used for pointer arithmetic", str);
gb_string_free(str);
operand.mode = Addressing_Invalid;
return operand;
}
if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) {
i64 ptr_val = ptr->value.value_pointer;
i64 offset_val = i128_to_i64(exact_value_to_integer(offset->value).value_integer);
i64 new_ptr_val = ptr_val;
if (op == Token_Add) {
new_ptr_val += elem_size*offset_val;
} else {
new_ptr_val -= elem_size*offset_val;
}
operand.mode = Addressing_Constant;
operand.value = exact_value_pointer(new_ptr_val);
}
return operand;
}
bool check_is_castable_to(Checker *c, Operand *operand, Type *y) {
if (check_is_assignable_to(c, operand, y)) {
return true;
}
Type *x = operand->type;
Type *src = core_type(x);
Type *dst = core_type(y);
if (are_types_identical(src, dst)) {
return true;
}
if (dst->kind == Type_Array && src->kind == Type_Array) {
if (are_types_identical(dst->Array.elem, src->Array.elem)) {
return dst->Array.count == src->Array.count;
}
}
if (dst->kind == Type_Slice && src->kind == Type_Slice) {
return are_types_identical(dst->Slice.elem, src->Slice.elem);
}
// Cast between booleans and integers
if (is_type_boolean(src) || is_type_integer(src)) {
if (is_type_boolean(dst) || is_type_integer(dst)) {
return true;
}
}
// Cast between numbers
if (is_type_integer(src) || is_type_float(src)) {
if (is_type_integer(dst) || is_type_float(dst)) {
return true;
}
}
if (is_type_integer(src) && is_type_rune(dst)) {
return true;
}
if (is_type_rune(src) && is_type_integer(dst)) {
return true;
}
if (is_type_complex(src) && is_type_complex(dst)) {
return true;
}
if (is_type_bit_field_value(src) && is_type_integer(dst)) {
return true;
}
if (is_type_bit_field_value(src) && is_type_boolean(dst)) {
return src->BitFieldValue.bits == 1;
}
// Cast between pointers
if (is_type_pointer(src) && is_type_pointer(dst)) {
#if 0
Type *s = base_type(type_deref(src));
if (is_type_union(s)) {
// NOTE(bill): Should the error be here?!
// NOTE(bill): This error should suppress the next casting error as it's at the same position
gbString xs = type_to_string(x);
gbString ys = type_to_string(y);
error(operand->expr, "Cannot cast from a union pointer `%s` to `%s`, try using `union_cast` or cast to a `rawptr`", xs, ys);
gb_string_free(ys);
gb_string_free(xs);
return false;
}
#endif
return true;
}
// (u)int <-> rawptr
if (is_type_int_or_uint(src) && is_type_rawptr(dst)) {
return true;
}
if (is_type_rawptr(src) && is_type_int_or_uint(dst)) {
return true;
}
// []byte/[]u8 <-> string
if (is_type_u8_slice(src) && is_type_string(dst)) {
return true;
}
if (is_type_string(src) && is_type_u8_slice(dst)) {
// if (is_type_typed(src)) {
return true;
// }
}
// proc <-> proc
if (is_type_proc(src) && is_type_proc(dst)) {
return true;
}
// proc -> rawptr
if (is_type_proc(src) && is_type_rawptr(dst)) {
return true;
}
// rawptr -> proc
if (is_type_rawptr(src) && is_type_proc(dst)) {
return true;
}
return false;
}
void check_cast(Checker *c, Operand *x, Type *type) {
bool is_const_expr = x->mode == Addressing_Constant;
bool can_convert = false;
Type *bt = base_type(type);
if (is_const_expr && is_type_constant_type(bt)) {
if (core_type(bt)->kind == Type_Basic) {
if (check_representable_as_constant(c, x->value, bt, &x->value)) {
can_convert = true;
} else if (is_type_pointer(type) && check_is_castable_to(c, x, type)) {
can_convert = true;
}
}
} else if (check_is_castable_to(c, x, type)) {
if (x->mode != Addressing_Constant) {
x->mode = Addressing_Value;
} else if (is_type_slice(type) && is_type_string(x->type)) {
x->mode = Addressing_Value;
} else if (!is_type_vector(x->type) && is_type_vector(type)) {
x->mode = Addressing_Value;
}
can_convert = true;
}
if (!can_convert) {
gbString expr_str = expr_to_string(x->expr);
gbString to_type = type_to_string(type);
gbString from_type = type_to_string(x->type);
error(x->expr, "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type);
gb_string_free(from_type);
gb_string_free(to_type);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
Type *final_type = type;
if (is_const_expr && !is_type_constant_type(type)) {
final_type = default_type(x->type);
}
update_expr_type(c, x->expr, final_type, true);
}
x->type = type;
}
bool check_binary_vector_expr(Checker *c, Token op, Operand *x, Operand *y) {
if (is_type_vector(x->type) && !is_type_vector(y->type)) {
if (check_is_assignable_to(c, y, x->type)) {
if (check_binary_op(c, x, op)) {
return true;
}
}
}
return false;
}
void check_binary_expr(Checker *c, Operand *x, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
Operand y_ = {}, *y = &y_;
ast_node(be, BinaryExpr, node);
Token op = be->op;
switch (op.kind) {
case Token_CmpEq:
case Token_NotEq: {
// NOTE(bill): Allow comparisons between types
check_expr_or_type(c, x, be->left);
check_expr_or_type(c, y, be->right);
bool xt = x->mode == Addressing_Type;
bool yt = y->mode == Addressing_Type;
// If only one is a type, this is an error
if (xt ^ yt) {
GB_ASSERT(xt != yt);
if (xt) error_operand_not_expression(x);
if (yt) error_operand_not_expression(y);
}
} break;
default:
check_expr(c, x, be->left);
check_expr(c, y, be->right);
break;
}
if (x->mode == Addressing_Invalid) {
return;
}
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
x->expr = y->expr;
return;
}
if (token_is_shift(op.kind)) {
check_shift(c, x, y, node);
return;
}
if (op.kind == Token_Add || op.kind == Token_Sub) {
if (is_type_pointer(x->type) && is_type_integer(y->type)) {
*x = check_ptr_addition(c, op.kind, x, y, node);
return;
} else if (is_type_integer(x->type) && is_type_pointer(y->type)) {
if (op.kind == Token_Sub) {
gbString lhs = expr_to_string(x->expr);
gbString rhs = expr_to_string(y->expr);
error(node, "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs);
gb_string_free(rhs);
gb_string_free(lhs);
x->mode = Addressing_Invalid;
return;
}
*x = check_ptr_addition(c, op.kind, y, x, node);
return;
}
}
convert_to_typed(c, x, y->type, 0);
if (x->mode == Addressing_Invalid) {
return;
}
convert_to_typed(c, y, x->type, 0);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
if (token_is_comparison(op.kind)) {
check_comparison(c, x, y, op.kind);
return;
}
if (check_binary_vector_expr(c, op, x, y)) {
x->mode = Addressing_Value;
x->type = x->type;
return;
}
if (check_binary_vector_expr(c, op, y, x)) {
x->mode = Addressing_Value;
x->type = y->type;
return;
}
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", expr_str, xt, yt);
gb_string_free(expr_str);
gb_string_free(yt);
gb_string_free(xt);
}
x->mode = Addressing_Invalid;
return;
}
if (!check_binary_op(c, x, op)) {
x->mode = Addressing_Invalid;
return;
}
switch (op.kind) {
case Token_Quo:
case Token_Mod:
case Token_ModMod:
case Token_QuoEq:
case Token_ModEq:
case Token_ModModEq:
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
y->mode == Addressing_Constant) {
bool fail = false;
switch (y->value.kind) {
case ExactValue_Integer:
if (i128_eq(y->value.value_integer, I128_ZERO)) {
fail = true;
}
break;
case ExactValue_Float:
if (y->value.value_float == 0.0) {
fail = true;
}
break;
}
if (fail) {
error(y->expr, "Division by zero not allowed");
x->mode = Addressing_Invalid;
return;
}
}
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
ExactValue a = x->value;
ExactValue b = y->value;
Type *type = base_type(x->type);
if (is_type_pointer(type)) {
GB_ASSERT(op.kind == Token_Sub);
i64 bytes = a.value_pointer - b.value_pointer;
i64 diff = bytes/type_size_of(c->allocator, type);
x->value = exact_value_pointer(diff);
return;
}
if (!is_type_constant_type(type)) {
gbString xt = type_to_string(x->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
x->mode = Addressing_Invalid;
return;
}
if (op.kind == Token_Quo && is_type_integer(type)) {
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
}
x->value = exact_binary_operator_value(op.kind, a, b);
if (is_type_typed(type)) {
if (node != nullptr) {
x->expr = node;
}
check_is_expressible(c, x, type);
}
return;
} else if (is_type_string(x->type)) {
error(node, "String concatenation is only allowed with constant strings");
x->mode = Addressing_Invalid;
return;
}
x->mode = Addressing_Value;
}
void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) {
ExprInfo *found = check_get_expr_info(&c->info, e);
if (found == nullptr) {
return;
}
ExprInfo old = *found;
switch (e->kind) {
case_ast_node(ue, UnaryExpr, e);
if (old.value.kind != ExactValue_Invalid) {
// NOTE(bill): if `e` is constant, the operands will be constant too.
// They don't need to be updated as they will be updated later and
// checked at the end of general checking stage.
break;
}
update_expr_type(c, ue->expr, type, final);
case_end;
case_ast_node(be, BinaryExpr, e);
if (old.value.kind != ExactValue_Invalid) {
// See above note in UnaryExpr case
break;
}
if (token_is_comparison(be->op.kind)) {
// NOTE(bill): Do nothing as the types are fine
} else if (token_is_shift(be->op.kind)) {
update_expr_type(c, be->left, type, final);
} else {
update_expr_type(c, be->left, type, final);
update_expr_type(c, be->right, type, final);
}
case_end;
case_ast_node(pe, ParenExpr, e);
update_expr_type(c, pe->expr, type, final);
case_end;
}
if (!final && is_type_untyped(type)) {
old.type = base_type(type);
check_set_expr_info(&c->info, e, old);
return;
}
// We need to remove it and then give it a new one
check_remove_expr_info(&c->info, e);
if (old.is_lhs && !is_type_integer(type)) {
gbString expr_str = expr_to_string(e);
gbString type_str = type_to_string(type);
error(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
gb_string_free(type_str);
gb_string_free(expr_str);
return;
}
add_type_and_value(&c->info, e, old.mode, type, old.value);
}
void update_expr_value(Checker *c, AstNode *e, ExactValue value) {
ExprInfo *found = check_get_expr_info(&c->info, e);
if (found) {
found->value = value;
}
}
void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) {
gbString expr_str = expr_to_string(operand->expr);
gbString type_str = type_to_string(target_type);
char *extra_text = "";
if (operand->mode == Addressing_Constant) {
if (i128_eq(operand->value.value_integer, I128_ZERO)) {
if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
extra_text = " - Did you want `nil`?";
}
}
}
error(operand->expr, "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text);
gb_string_free(type_str);
gb_string_free(expr_str);
operand->mode = Addressing_Invalid;
}
ExactValue convert_exact_value_for_type(ExactValue v, Type *type) {
Type *t = core_type(type);
if (is_type_boolean(t)) {
// v = exact_value_to_boolean(v);
} else if (is_type_float(t)) {
v = exact_value_to_float(v);
} else if (is_type_integer(t)) {
v = exact_value_to_integer(v);
} else if (is_type_pointer(t)) {
v = exact_value_to_integer(v);
} else if (is_type_complex(t)) {
v = exact_value_to_complex(v);
}
return v;
}
// NOTE(bill): Set initial level to 0
void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) {
GB_ASSERT_NOT_NULL(target_type);
if (operand->mode == Addressing_Invalid ||
operand->mode == Addressing_Type ||
is_type_typed(operand->type) ||
target_type == t_invalid) {
return;
}
if (is_type_untyped(target_type)) {
GB_ASSERT(operand->type->kind == Type_Basic);
GB_ASSERT(target_type->kind == Type_Basic);
BasicKind x_kind = operand->type->Basic.kind;
BasicKind y_kind = target_type->Basic.kind;
if (is_type_numeric(operand->type) && is_type_numeric(target_type)) {
if (x_kind < y_kind) {
operand->type = target_type;
update_expr_type(c, operand->expr, target_type, false);
}
} else if (x_kind != y_kind) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
return;
}
Type *t = core_type(target_type);
switch (t->kind) {
case Type_Basic:
if (operand->mode == Addressing_Constant) {
check_is_expressible(c, operand, t);
if (operand->mode == Addressing_Invalid) {
return;
}
update_expr_value(c, operand->expr, operand->value);
} else {
switch (operand->type->Basic.kind) {
case Basic_UntypedBool:
if (!is_type_boolean(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedInteger:
case Basic_UntypedFloat:
case Basic_UntypedComplex:
case Basic_UntypedRune:
if (!is_type_numeric(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedNil:
if (is_type_any(target_type)) {
target_type = t_untyped_nil;
} else if (!type_has_nil(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
}
break;
case Type_Vector: {
Type *elem = base_vector_type(t);
if (check_is_assignable_to(c, operand, elem)) {
operand->mode = Addressing_Value;
} else {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
} break;
case Type_Union:
if (!is_operand_nil(*operand) && !is_operand_undef(*operand)) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
isize count = t->Union.variants.count;
i64 *scores = gb_alloc_array(c->tmp_allocator, i64, count);
i32 success_count = 0;
i32 first_success_index = -1;
for_array(i, t->Union.variants) {
Type *vt = t->Union.variants[i];
i64 score = 0;
if (check_is_assignable_to_with_score(c, operand, vt, &score)) {
scores[i] = score;
success_count += 1;
if (first_success_index < 0) {
first_success_index = i;
}
}
}
gbString type_str = type_to_string(target_type);
defer (gb_string_free(type_str));
if (success_count == 1) {
operand->mode = Addressing_Value;
operand->type = t->Union.variants[first_success_index];
target_type = t->Union.variants[first_success_index];
break;
} else if (success_count > 1) {
GB_ASSERT(first_success_index >= 0);
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
gb_printf_err("Ambiguous type conversion to `%s`, which variant did you mean:\n\t", type_str);
i32 j = 0;
for (i32 i = first_success_index; i < count; i++) {
if (scores[i] == 0) continue;
if (j > 0 && success_count > 2) gb_printf_err(", ");
if (j == success_count-1) {
if (success_count == 2) gb_printf_err(" ");
gb_printf_err("or ");
}
gbString str = type_to_string(t->Union.variants[i]);
gb_printf_err("`%s`", str);
gb_string_free(str);
j++;
}
gb_printf_err("\n\n");
return;
} else if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) {
target_type = t_untyped_undef;
} else if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
if (count > 0) {
gb_printf_err("`%s` is a union which only excepts the following types:\n", type_str);
gb_printf_err("\t");
for (i32 i = 0; i < count; i++) {
Type *v = t->Union.variants[i];
if (i > 0 && count > 2) gb_printf_err(", ");
if (i == count-1) {
if (count == 2) gb_printf_err(" ");
gb_printf_err("or ");
}
gbString str = type_to_string(v);
gb_printf_err("`%s`", str);
gb_string_free(str);
}
gb_printf_err("\n\n");
}
return;
}
}
/* fallthrough */
default:
if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) {
target_type = t_untyped_undef;
} else if (is_type_untyped_nil(operand->type) && type_has_nil(target_type)) {
target_type = t_untyped_nil;
} else {
operand->mode = Addressing_Invalid;
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
operand->type = target_type;
update_expr_type(c, operand->expr, target_type, true);
}
bool check_index_value(Checker *c, bool open_range, AstNode *index_value, i64 max_count, i64 *value) {
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, index_value);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
convert_to_typed(c, &operand, t_int, 0);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
if (!is_type_integer(operand.type)) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr, "Index `%s` must be an integer", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (operand.mode == Addressing_Constant &&
(c->context.stmt_state_flags & StmtStateFlag_no_bounds_check) == 0) {
i64 i = i128_to_i64(exact_value_to_integer(operand.value).value_integer);
if (i < 0) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr, "Index `%s` cannot be a negative value", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (max_count >= 0) { // NOTE(bill): Do array bound checking
if (value) *value = i;
bool out_of_bounds = false;
if (open_range) {
out_of_bounds = i >= max_count;
} else {
out_of_bounds = i > max_count;
}
if (out_of_bounds) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr, "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count);
gb_string_free(expr_str);
return false;
}
return true;
}
}
// NOTE(bill): It's alright :D
if (value) *value = -1;
return true;
}
isize entity_overload_count(Scope *s, String name) {
Entity *e = scope_lookup_entity(s, name);
if (e == nullptr) {
return 0;
}
if (e->kind == Entity_Procedure) {
// NOTE(bill): Overloads are only allowed with the same scope
return multi_map_count(&s->elements, hash_string(e->token.string));
}
return 1;
}
bool check_is_field_exported(Checker *c, Entity *field) {
if (field == nullptr) {
// NOTE(bill): Just incase
return true;
}
if (field->kind != Entity_Variable) {
return true;
}
Scope *file_scope = field->scope;
if (file_scope == nullptr) {
return true;
}
while (!file_scope->is_file) {
file_scope = file_scope->parent;
}
if (!is_entity_exported(field) && file_scope != c->context.file_scope) {
return false;
}
return true;
}
Entity *check_selector(Checker *c, Operand *operand, AstNode *node, Type *type_hint) {
ast_node(se, SelectorExpr, node);
bool check_op_expr = true;
Entity *expr_entity = nullptr;
Entity *entity = nullptr;
Selection sel = {}; // NOTE(bill): Not used if it's an import name
operand->expr = node;
AstNode *op_expr = se->expr;
AstNode *selector = unparen_expr(se->selector);
if (selector == nullptr) {
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (selector->kind != AstNode_Ident && selector->kind != AstNode_BasicLit) {
// if (selector->kind != AstNode_Ident) {
error(selector, "Illegal selector kind: `%.*s`", LIT(ast_node_strings[selector->kind]));
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (op_expr->kind == AstNode_Ident) {
String op_name = op_expr->Ident.token.string;
Entity *e = scope_lookup_entity(c->context.scope, op_name);
bool is_alias = false;
while (e != nullptr && e->kind == Entity_Alias) {
GB_ASSERT(e->Alias.base != nullptr);
e = e->Alias.base;
is_alias = true;
}
add_entity_use(c, op_expr, e);
expr_entity = e;
Entity *original_e = e;
if (e != nullptr && e->kind == Entity_ImportName && selector->kind == AstNode_Ident) {
// IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
// It pretty much needs to be in this order and this way
// If you can clean this up, please do but be really careful
String import_name = op_name;
Scope *import_scope = e->ImportName.scope;
String entity_name = selector->Ident.token.string;
check_op_expr = false;
entity = scope_lookup_entity(import_scope, entity_name);
bool is_declared = entity != nullptr;
if (is_declared) {
if (entity->kind == Entity_Builtin) {
// NOTE(bill): Builtin's are in the universe scope which is part of every scopes hierarchy
// This means that we should just ignore the found result through it
is_declared = false;
} else if (entity->scope->is_global && !import_scope->is_global) {
is_declared = false;
}
}
if (!is_declared) {
error(op_expr, "`%.*s` is not declared by `%.*s`", LIT(entity_name), LIT(import_name));
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
bool is_alias = false;
while (entity->kind == Entity_Alias) {
GB_ASSERT(e->Alias.base != nullptr);
entity = entity->Alias.base;
is_alias = true;
}
check_entity_decl(c, entity, nullptr, nullptr);
GB_ASSERT(entity->type != nullptr);
if (is_alias) {
// TODO(bill): Which scope do you search for for an alias?
// import_scope = entity->scope;
entity_name = entity->token.string;
}
isize overload_count = entity_overload_count(import_scope, entity_name);
bool is_overloaded = overload_count > 1;
bool implicit_is_found = is_entity_implicitly_imported(e, entity);
bool is_not_exported = !is_entity_exported(entity);
if (entity->kind == Entity_ImportName) {
is_not_exported = true;
} else if (!implicit_is_found) {
is_not_exported = false;
}
if (is_not_exported) {
gbString sel_str = expr_to_string(selector);
error(op_expr, "`%s` is not exported by `%.*s`", sel_str, LIT(import_name));
gb_string_free(sel_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (is_overloaded) {
HashKey key = hash_string(entity_name);
bool skip = false;
Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count);
multi_map_get_all(&import_scope->elements, key, procs);
for (isize i = 0; i < overload_count; i++) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
// NOTE(bill): Check to see if it's imported
if (map_get(&import_scope->implicit, hash_entity(procs[i]))) {
gb_swap(Entity *, procs[i], procs[overload_count-1]);
overload_count--;
i--; // NOTE(bill): Counteract the post event
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (type_hint != nullptr) {
if (check_is_assignable_to(c, &x, type_hint)) {
entity = procs[i];
skip = true;
break;
}
}
}
if (overload_count > 0 && !skip) {
operand->mode = Addressing_Overload;
operand->type = t_invalid;
operand->expr = node;
operand->overload_count = overload_count;
operand->overload_entities = procs;
return procs[0];
}
}
}
}
if (check_op_expr) {
check_expr_base(c, operand, op_expr, nullptr);
if (operand->mode == Addressing_Invalid) {
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
}
if (entity == nullptr && selector->kind == AstNode_Ident) {
String field_name = selector->Ident.token.string;
sel = lookup_field(c->allocator, operand->type, field_name, operand->mode == Addressing_Type);
if (operand->mode != Addressing_Type && !check_is_field_exported(c, sel.entity)) {
error(op_expr, "`%.*s` is an unexported field", LIT(field_name));
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
entity = sel.entity;
// NOTE(bill): Add type info needed for fields like `names`
if (entity != nullptr && (entity->flags&EntityFlag_TypeField)) {
add_type_info_type(c, operand->type);
}
}
if (entity == nullptr && selector->kind == AstNode_BasicLit) {
if (is_type_struct(operand->type) || is_type_tuple(operand->type)) {
Type *type = base_type(operand->type);
Operand o = {};
check_expr(c, &o, selector);
if (o.mode != Addressing_Constant ||
!is_type_integer(o.type)) {
error(op_expr, "Indexed based selectors must be a constant integer %s");
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
i64 index = i128_to_i64(o.value.value_integer);
if (index < 0) {
error(o.expr, "Index %lld cannot be a negative value", index);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
i64 max_count = 0;
switch (type->kind) {
case Type_Struct: max_count = type->Struct.fields.count; break;
case Type_Tuple: max_count = type->Tuple.variables.count; break;
}
if (index >= max_count) {
error(o.expr, "Index %lld is out of bounds range 0..<%lld", index, max_count);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
sel = lookup_field_from_index(heap_allocator(), type, index);
entity = sel.entity;
GB_ASSERT(entity != nullptr);
} else {
error(op_expr, "Indexed based selectors may only be used on structs or tuples");
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
}
if (entity == nullptr &&
operand->type != nullptr && is_type_untyped(operand->type) && is_type_string(operand->type)) {
String s = operand->value.value_string;
operand->mode = Addressing_Constant;
operand->value = exact_value_i64(s.len);
operand->type = t_untyped_integer;
return nullptr;
}
if (entity == nullptr) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error(op_expr, "`%s` of type `%s` has no field `%s`", op_str, type_str, sel_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
if (expr_entity != nullptr && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error(op_expr, "Cannot access non-constant field `%s` from `%s`", sel_str, op_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return nullptr;
}
add_entity_use(c, selector, entity);
switch (entity->kind) {
case Entity_Constant:
operand->mode = Addressing_Constant;
operand->value = entity->Constant.value;
break;
case Entity_Variable:
// TODO(bill): Is this the rule I need?
if (operand->mode == Addressing_Immutable) {
// Okay
} else if (sel.indirect || operand->mode != Addressing_Value) {
operand->mode = Addressing_Variable;
} else {
operand->mode = Addressing_Value;
}
break;
case Entity_TypeName:
operand->mode = Addressing_Type;
break;
case Entity_Procedure:
operand->mode = Addressing_Value;
break;
case Entity_Builtin:
operand->mode = Addressing_Builtin;
operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id;
break;
// NOTE(bill): These cases should never be hit but are here for sanity reasons
case Entity_Nil:
operand->mode = Addressing_Value;
break;
}
operand->type = entity->type;
operand->expr = node;
return entity;
}
bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
BuiltinProc *bp = &builtin_procs[id];
{
char *err = nullptr;
if (ce->args.count < bp->arg_count) {
err = "Too few";
} else if (ce->args.count > bp->arg_count && !bp->variadic) {
err = "Too many";
}
if (err != nullptr) {
gbString expr = expr_to_string(ce->proc);
error(ce->close, "%s arguments for `%s`, expected %td, got %td",
err, expr,
bp->arg_count, ce->args.count);
gb_string_free(expr);
return false;
}
}
if (ce->args.count > 0) {
if (ce->args[0]->kind == AstNode_FieldValue) {
error(call, "`field = value` calling is not allowed on built-in procedures");
return false;
}
}
bool vari_expand = (ce->ellipsis.pos.line != 0);
// if (vari_expand && id != BuiltinProc_append) {
// error(ce->ellipsis, "Invalid use of `...` with built-in procedure `append`");
// return false;
// }
switch (id) {
// case BuiltinProc_new:
case BuiltinProc_make:
case BuiltinProc_size_of:
case BuiltinProc_align_of:
case BuiltinProc_offset_of:
case BuiltinProc_type_info_of:
case BuiltinProc_transmute:
// NOTE(bill): The first arg may be a Type, this will be checked case by case
break;
default:
if (ce->args.count > 0) {
check_multi_expr(c, operand, ce->args[0]);
}
break;
}
switch (id) {
default:
GB_PANIC("Implement built-in procedure: %.*s", LIT(builtin_procs[id].name));
break;
case BuiltinProc_DIRECTIVE: {
ast_node(bd, BasicDirective, ce->proc);
String name = bd->name;
GB_ASSERT(name == "location");
if (ce->args.count > 1) {
error(ce->args[0], "`#location` expects either 0 or 1 arguments, got %td", ce->args.count);
}
if (ce->args.count > 0) {
AstNode *arg = ce->args[0];
Entity *e = nullptr;
Operand o = {};
if (arg->kind == AstNode_Ident) {
e = check_ident(c, &o, arg, nullptr, nullptr, true);
} else if (arg->kind == AstNode_SelectorExpr) {
e = check_selector(c, &o, arg, nullptr);
}
if (e == nullptr) {
error(ce->args[0], "`#location` expected a valid entity name");
}
}
operand->type = t_source_code_location;
operand->mode = Addressing_Value;
} break;
case BuiltinProc_len:
case BuiltinProc_cap: {
// proc len(Type) -> int
// proc cap(Type) -> int
Type *op_type = type_deref(operand->type);
Type *type = t_int;
AddressingMode mode = Addressing_Invalid;
ExactValue value = {};
if (is_type_string(op_type) && id == BuiltinProc_len) {
if (operand->mode == Addressing_Constant) {
mode = Addressing_Constant;
String str = operand->value.value_string;
value = exact_value_i64(str.len);
type = t_untyped_integer;
} else {
mode = Addressing_Value;
}
} else if (is_type_array(op_type)) {
Type *at = core_type(op_type);
mode = Addressing_Constant;
value = exact_value_i64(at->Array.count);
type = t_untyped_integer;
} else if (is_type_vector(op_type) && id == BuiltinProc_len) {
Type *at = core_type(op_type);
mode = Addressing_Constant;
value = exact_value_i64(at->Vector.count);
type = t_untyped_integer;
} else if (is_type_slice(op_type)) {
mode = Addressing_Value;
} else if (is_type_dynamic_array(op_type)) {
mode = Addressing_Value;
} else if (is_type_map(op_type)) {
mode = Addressing_Value;
}
if (mode == Addressing_Invalid) {
String name = builtin_procs[id].name;
gbString t = type_to_string(operand->type);
error(call, "`%.*s` is not supported for `%s`", LIT(name), t);
return false;
}
operand->mode = mode;
operand->value = value;
operand->type = type;
} break;
#if 0
case BuiltinProc_new: {
// proc new(Type) -> ^Type
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
error(ce->args[0], "Expected a type for `new`");
return false;
}
operand->mode = Addressing_Value;
operand->type = make_type_pointer(c->allocator, type);
} break;
#endif
#if 0
case BuiltinProc_new_slice: {
// proc new_slice(Type, len: int) -> []Type
// proc new_slice(Type, len, cap: int) -> []Type
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
error(ce->args[0], "Expected a type for `new_slice`");
return false;
}
isize arg_count = ce->args.count;
if (arg_count < 2 || 3 < arg_count) {
error(ce->args[0], "`new_slice` expects 2 or 3 arguments, found %td", arg_count);
// NOTE(bill): Return the correct type to reduce errors
} else {
// If any are constant
i64 sizes[2] = {};
isize size_count = 0;
for (isize i = 1; i < arg_count; i++) {
i64 val = 0;
bool ok = check_index_value(c, ce->args[i], -1, &val);
if (ok && val >= 0) {
GB_ASSERT(size_count < gb_count_of(sizes));
sizes[size_count++] = val;
}
}
if (size_count == 2 && sizes[0] > sizes[1]) {
error(ce->args[1], "`new_slice` count and capacity are swapped");
// No need quit
}
}
operand->mode = Addressing_Value;
operand->type = make_type_slice(c->allocator, type);
} break;
#endif
case BuiltinProc_make: {
// proc make(Type, len: int) -> Type
// proc make(Type, len, cap: int) -> Type
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
error(ce->args[0], "Expected a type for `make`");
return false;
}
isize min_args = 0;
isize max_args = 1;
if (is_type_slice(type)) {
min_args = 2;
max_args = 3;
} else if (is_type_dynamic_map(type)) {
min_args = 1;
max_args = 2;
} else if (is_type_dynamic_array(type)) {
min_args = 1;
max_args = 3;
} else {
gbString str = type_to_string(type);
error(call, "Cannot `make` %s; type must be a slice, map, or dynamic array", str);
gb_string_free(str);
return false;
}
isize arg_count = ce->args.count;
if (arg_count < min_args || max_args < arg_count) {
error(ce->args[0], "`make` expects %td or %d argument, found %td", min_args, max_args, arg_count);
return false;
}
// If any are constant
i64 sizes[4] = {};
isize size_count = 0;
for (isize i = 1; i < arg_count; i++) {
i64 val = 0;
bool ok = check_index_value(c, false, ce->args[i], -1, &val);
if (ok && val >= 0) {
GB_ASSERT(size_count < gb_count_of(sizes));
sizes[size_count++] = val;
}
}
if (size_count == 2 && sizes[0] > sizes[1]) {
error(ce->args[1], "`make` count and capacity are swapped");
// No need quit
}
operand->mode = Addressing_Value;
operand->type = type;
} break;
#if 0
case BuiltinProc_free: {
// proc free(^Type)
// proc free([]Type)
// proc free(string)
// proc free(map[K]T)
Type *type = operand->type;
bool ok = false;
if (is_type_pointer(type)) {
ok = true;
} else if (is_type_slice(type)) {
ok = true;
} else if (is_type_string(type)) {
ok = true;
} else if (is_type_dynamic_array(type)) {
ok = true;
} else if (is_type_dynamic_map(type)) {
ok = true;
}
if (!ok) {
gbString type_str = type_to_string(type);
error(operand->expr, "Invalid type for `free`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_NoValue;
} break;
#endif
#if 0
case BuiltinProc_reserve: {
// proc reserve([dynamic]Type, count: int) {
// proc reserve(map[Key]Type, count: int) {
Type *type = operand->type;
if (!is_type_dynamic_array(type) && !is_type_dynamic_map(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Expected a dynamic array or dynamic map, got `%s`", str);
gb_string_free(str);
return false;
}
AstNode *capacity = ce->args[1];
Operand op = {};
check_expr(c, &op, capacity);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *arg_type = base_type(op.type);
if (!is_type_integer(arg_type)) {
error(operand->expr, "`reserve` capacities must be an integer");
return false;
}
operand->type = nullptr;
operand->mode = Addressing_NoValue;
} break;
#endif
#if 0
case BuiltinProc_clear: {
Type *type = operand->type;
bool is_pointer = is_type_pointer(type);
type = base_type(type_deref(type));
if (!is_type_dynamic_array(type) && !is_type_map(type) && !is_type_slice(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Invalid type for `clear`, got `%s`", str);
gb_string_free(str);
return false;
}
operand->type = nullptr;
operand->mode = Addressing_NoValue;
} break;
#endif
#if 0
case BuiltinProc_append: {
// proc append([dynamic]Type, item: ..Type)
// proc append([]Type, item: ..Type)
Operand prev_operand = *operand;
Type *type = operand->type;
bool is_pointer = is_type_pointer(type);
type = base_type(type_deref(type));
if (!is_type_dynamic_array(type) && !is_type_slice(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Expected a slice or dynamic array, got `%s`", str);
gb_string_free(str);
return false;
}
bool is_addressable = operand->mode == Addressing_Variable;
if (is_pointer) {
is_addressable = true;
}
if (!is_addressable) {
error(operand->expr, "`append` can only operate on addressable values");
return false;
}
Type *elem = nullptr;
if (is_type_dynamic_array(type)) {
elem = type->DynamicArray.elem;
} else {
elem = type->Slice.elem;
}
Type *slice_elem = make_type_slice(c->allocator, elem);
Type *proc_type_params = make_type_tuple(c->allocator);
proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2);
proc_type_params->Tuple.variable_count = 2;
proc_type_params->Tuple.variables[0] = make_entity_param(c->allocator, nullptr, blank_token, operand->type, false, false);
proc_type_params->Tuple.variables[1] = make_entity_param(c->allocator, nullptr, blank_token, slice_elem, false, false);
Type *proc_type = make_type_proc(c->allocator, nullptr, proc_type_params, 2, nullptr, false, true, ProcCC_Odin);
check_call_arguments(c, &prev_operand, proc_type, call);
if (prev_operand.mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Value;
operand->type = t_int;
} break;
#endif
#if 0
case BuiltinProc_delete: {
// proc delete(map[Key]Value, key: Key)
Type *type = operand->type;
if (!is_type_map(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Expected a map, got `%s`", str);
gb_string_free(str);
return false;
}
Type *key = base_type(type)->Map.key;
Operand x = {Addressing_Invalid};
AstNode *key_node = ce->args[1];
Operand op = {};
check_expr(c, &op, key_node);
if (op.mode == Addressing_Invalid) {
return false;
}
if (!check_is_assignable_to(c, &op, key)) {
gbString kt = type_to_string(key);
gbString ot = type_to_string(op.type);
error(operand->expr, "Expected a key of type `%s`, got `%s`", key, ot);
gb_string_free(ot);
gb_string_free(kt);
return false;
}
operand->mode = Addressing_NoValue;
} break;
#endif
case BuiltinProc_size_of: {
// proc size_of(Type or expr) -> untyped int
Operand o = {};
check_expr_or_type(c, &o, ce->args[0]);
if (o.mode == Addressing_Invalid) {
return false;
}
Type *t = o.type;
if (t == nullptr || t == t_invalid) {
error(ce->args[0], "Invalid argument for `size_of`");
return false;
}
t = default_type(t);
operand->mode = Addressing_Constant;
operand->value = exact_value_i64(type_size_of(c->allocator, t));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_align_of: {
// proc align_of(Type or expr) -> untyped int
Operand o = {};
check_expr_or_type(c, &o, ce->args[0]);
if (o.mode == Addressing_Invalid) {
return false;
}
Type *t = o.type;
if (t == nullptr || t == t_invalid) {
error(ce->args[0], "Invalid argument for `align_of`");
return false;
}
t = default_type(t);
operand->mode = Addressing_Constant;
operand->value = exact_value_i64(type_align_of(c->allocator, t));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_offset_of: {
// proc offset_of(Type, field) -> untyped int
Operand op = {};
Type *bt = check_type(c, ce->args[0]);
Type *type = base_type(bt);
if (type == nullptr || type == t_invalid) {
error(ce->args[0], "Expected a type for `offset_of`");
return false;
}
AstNode *field_arg = unparen_expr(ce->args[1]);
if (field_arg == nullptr ||
field_arg->kind != AstNode_Ident) {
error(field_arg, "Expected an identifier for field argument");
return false;
}
if (is_type_array(type) || is_type_vector(type)) {
error(field_arg, "Invalid type for `offset_of`");
return false;
}
ast_node(arg, Ident, field_arg);
Selection sel = lookup_field(c->allocator, type, arg->token.string, operand->mode == Addressing_Type);
if (sel.entity == nullptr) {
gbString type_str = type_to_string(bt);
error(ce->args[0],
"`%s` has no field named `%.*s`", type_str, LIT(arg->token.string));
gb_string_free(type_str);
return false;
}
if (sel.indirect) {
gbString type_str = type_to_string(bt);
error(ce->args[0],
"Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->token.string), type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_Constant;
operand->value = exact_value_i64(type_offset_of_from_selection(c->allocator, type, sel));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_type_of:
// proc type_of(val: Type) -> type(Type)
check_assignment(c, operand, nullptr, str_lit("argument of `type_of`"));
if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) {
return false;
}
if (operand->type == nullptr || operand->type == t_invalid) {
error(operand->expr, "Invalid argument to `type_of`");
return false;
}
if (is_type_polymorphic(operand->type)) {
error(operand->expr, "`type_of` of polymorphic type cannot be determined");
return false;
}
operand->mode = Addressing_Type;
break;
case BuiltinProc_type_info_of: {
// proc type_info_of(Type) -> ^Type_Info
if (c->context.scope->is_global) {
compiler_error("`type_info_of` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
}
// NOTE(bill): The type information may not be setup yet
init_preload(c);
AstNode *expr = ce->args[0];
Operand o = {};
check_expr_or_type(c, &o, ce->args[0]);
if (o.mode == Addressing_Invalid) {
return false;
}
Type *t = o.type;
if (t == nullptr || t == t_invalid || is_type_polymorphic(operand->type)) {
error(ce->args[0], "Invalid argument for `type_info_of`");
return false;
}
t = default_type(t);
add_type_info_type(c, t);
operand->mode = Addressing_Value;
operand->type = t_type_info_ptr;
} break;
case BuiltinProc_compile_assert:
// proc compile_assert(cond: bool) -> bool
if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) {
gbString str = expr_to_string(ce->args[0]);
error(call, "`%s` is not a constant boolean", str);
gb_string_free(str);
return false;
}
if (!operand->value.value_bool) {
gbString str = expr_to_string(ce->args[0]);
error(call, "Compile time assertion: `%s`", str);
gb_string_free(str);
}
operand->mode = Addressing_Constant;
operand->type = t_untyped_bool;
break;
case BuiltinProc_swizzle: {
// proc swizzle(v: {N}T, T..) -> {M}T
Type *vector_type = base_type(operand->type);
if (!is_type_vector(vector_type)) {
gbString type_str = type_to_string(operand->type);
error(call,
"You can only `swizzle` a vector, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
isize max_count = vector_type->Vector.count;
i128 max_count128 = i128_from_i64(max_count);
isize arg_count = 0;
for_array(i, ce->args) {
if (i == 0) {
continue;
}
AstNode *arg = ce->args[i];
Operand op = {};
check_expr(c, &op, arg);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *arg_type = base_type(op.type);
if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) {
error(op.expr, "Indices to `swizzle` must be constant integers");
return false;
}
if (i128_lt(op.value.value_integer, I128_ZERO)) {
error(op.expr, "Negative `swizzle` index");
return false;
}
if (i128_le(max_count128, op.value.value_integer)) {
error(op.expr, "`swizzle` index exceeds vector length");
return false;
}
arg_count++;
}
if (arg_count > max_count) {
error(call, "Too many `swizzle` indices, %td > %td", arg_count, max_count);
return false;
}
Type *elem_type = vector_type->Vector.elem;
operand->type = make_type_vector(c->allocator, elem_type, arg_count);
operand->mode = Addressing_Value;
} break;
case BuiltinProc_complex: {
// proc complex(real, imag: float_type) -> complex_type
Operand x = *operand;
Operand y = {};
// NOTE(bill): Invalid will be the default till fixed
operand->type = t_invalid;
operand->mode = Addressing_Invalid;
check_expr(c, &y, ce->args[1]);
if (y.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) return false;
convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) return false;
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant) {
if (is_type_numeric(x.type) && exact_value_imag(x.value).value_float == 0) {
x.type = t_untyped_float;
}
if (is_type_numeric(y.type) && exact_value_imag(y.value).value_float == 0) {
y.type = t_untyped_float;
}
}
if (!are_types_identical(x.type, y.type)) {
gbString tx = type_to_string(x.type);
gbString ty = type_to_string(y.type);
error(call, "Mismatched types to `complex`, `%s` vs `%s`", tx, ty);
gb_string_free(ty);
gb_string_free(tx);
return false;
}
if (!is_type_float(x.type)) {
gbString s = type_to_string(x.type);
error(call, "Arguments have type `%s`, expected a floating point", s);
gb_string_free(s);
return false;
}
if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) {
operand->value = exact_binary_operator_value(Token_Add, x.value, y.value);
operand->mode = Addressing_Constant;
} else {
operand->mode = Addressing_Value;
}
BasicKind kind = core_type(x.type)->Basic.kind;
switch (kind) {
// case Basic_f16: operand->type = t_complex32; break;
case Basic_f32: operand->type = t_complex64; break;
case Basic_f64: operand->type = t_complex128; break;
case Basic_UntypedFloat: operand->type = t_untyped_complex; break;
default: GB_PANIC("Invalid type"); break;
}
} break;
case BuiltinProc_real:
case BuiltinProc_imag: {
// proc real(x: type) -> float_type
// proc imag(x: type) -> float_type
Operand *x = operand;
if (is_type_untyped(x->type)) {
if (x->mode == Addressing_Constant) {
if (is_type_numeric(x->type)) {
x->type = t_untyped_complex;
}
} else {
convert_to_typed(c, x, t_complex128, 0);
if (x->mode == Addressing_Invalid) {
return false;
}
}
}
if (!is_type_complex(x->type)) {
gbString s = type_to_string(x->type);
error(call, "Argument has type `%s`, expected a complex type", s);
gb_string_free(s);
return false;
}
if (x->mode == Addressing_Constant) {
switch (id) {
case BuiltinProc_real: x->value = exact_value_real(x->value); break;
case BuiltinProc_imag: x->value = exact_value_imag(x->value); break;
}
} else {
x->mode = Addressing_Value;
}
BasicKind kind = core_type(x->type)->Basic.kind;
switch (kind) {
case Basic_complex64: x->type = t_f32; break;
case Basic_complex128: x->type = t_f64; break;
case Basic_UntypedComplex: x->type = t_untyped_float; break;
default: GB_PANIC("Invalid type"); break;
}
} break;
case BuiltinProc_conj: {
// proc conj(x: type) -> type
Operand *x = operand;
if (is_type_complex(x->type)) {
if (x->mode == Addressing_Constant) {
ExactValue v = exact_value_to_complex(x->value);
f64 r = v.value_complex.real;
f64 i = v.value_complex.imag;
x->value = exact_value_complex(r, i);
x->mode = Addressing_Constant;
} else {
x->mode = Addressing_Value;
}
} else {
gbString s = type_to_string(x->type);
error(call, "Expected a complex or quaternion, got `%s`", s);
gb_string_free(s);
return false;
}
} break;
#if 0
case BuiltinProc_slice_ptr: {
// proc slice_ptr(a: ^T, len: int) -> []T
// proc slice_ptr(a: ^T, len, cap: int) -> []T
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a pointer to `slice_ptr`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
if (ptr_type == t_rawptr) {
error(call, "`rawptr` cannot have pointer arithmetic");
return false;
}
isize arg_count = ce->args.count;
if (arg_count < 2 || 3 < arg_count) {
error(ce->args[0], "`slice_ptr` expects 2 or 3 arguments, found %td", arg_count);
// NOTE(bill): Return the correct type to reduce errors
} else {
// If any are constant
i64 sizes[2] = {};
isize size_count = 0;
for (isize i = 1; i < arg_count; i++) {
i64 val = 0;
bool ok = check_index_value(c, false, ce->args[i], -1, &val);
if (ok && val >= 0) {
GB_ASSERT(size_count < gb_count_of(sizes));
sizes[size_count++] = val;
}
}
if (size_count == 2 && sizes[0] > sizes[1]) {
error(ce->args[1], "`slice_ptr` count and capacity are swapped");
// No need quit
}
}
operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem);
operand->mode = Addressing_Value;
} break;
case BuiltinProc_slice_to_bytes: {
// proc slice_to_bytes(a: []T) -> []u8
Type *slice_type = base_type(operand->type);
if (!is_type_slice(slice_type)) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a slice type, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
operand->type = t_u8_slice;
operand->mode = Addressing_Value;
} break;
#endif
case BuiltinProc_expand_to_tuple: {
Type *type = base_type(operand->type);
if (!is_type_struct(type) &
!is_type_union(type)) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a struct or union type, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
gbAllocator a = c->allocator;
Type *tuple = make_type_tuple(a);
i32 variable_count = type->Struct.fields.count;
array_init_count(&tuple->Tuple.variables, a, variable_count);
// TODO(bill): Should I copy each of the entities or is this good enough?
gb_memcopy_array(tuple->Tuple.variables.data, type->Struct.fields_in_src_order.data, variable_count);
operand->type = tuple;
operand->mode = Addressing_Value;
} break;
case BuiltinProc_min: {
// proc min(a, b: ordered) -> ordered
Type *type = base_type(operand->type);
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a ordered numeric type to `min`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
AstNode *other_arg = ce->args[1];
Operand a = *operand;
Operand b = {};
check_expr(c, &b, other_arg);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error(call,
"Expected a ordered numeric type to `min`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (a.mode == Addressing_Constant &&
b.mode == Addressing_Constant) {
ExactValue x = a.value;
ExactValue y = b.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Lt, x, y)) {
operand->value = x;
operand->type = a.type;
} else {
operand->value = y;
operand->type = b.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &a, b.type, 0);
if (a.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &b, a.type, 0);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(a.type, b.type)) {
gbString type_a = type_to_string(a.type);
gbString type_b = type_to_string(b.type);
error(call,
"Mismatched types to `min`, `%s` vs `%s`",
type_a, type_b);
gb_string_free(type_b);
gb_string_free(type_a);
return false;
}
}
} break;
case BuiltinProc_max: {
// proc min(a, b: ordered) -> ordered
Type *type = base_type(operand->type);
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error(call,
"Expected a ordered numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *other_arg = ce->args[1];
Operand a = *operand;
Operand b = {};
check_expr(c, &b, other_arg);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error(call,
"Expected a ordered numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (a.mode == Addressing_Constant &&
b.mode == Addressing_Constant) {
ExactValue x = a.value;
ExactValue y = b.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Gt, x, y)) {
operand->value = x;
operand->type = a.type;
} else {
operand->value = y;
operand->type = b.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &a, b.type, 0);
if (a.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &b, a.type, 0);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(a.type, b.type)) {
gbString type_a = type_to_string(a.type);
gbString type_b = type_to_string(b.type);
error(call,
"Mismatched types to `max`, `%s` vs `%s`",
type_a, type_b);
gb_string_free(type_b);
gb_string_free(type_a);
return false;
}
}
} break;
case BuiltinProc_abs: {
// proc abs(n: numeric) -> numeric
if (!is_type_numeric(operand->type) && !is_type_vector(operand->type)) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a numeric type to `abs`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
if (operand->mode == Addressing_Constant) {
switch (operand->value.kind) {
case ExactValue_Integer:
operand->value.value_integer = i128_abs(operand->value.value_integer);
break;
case ExactValue_Float:
operand->value.value_float = gb_abs(operand->value.value_float);
break;
case ExactValue_Complex: {
f64 r = operand->value.value_complex.real;
f64 i = operand->value.value_complex.imag;
operand->value = exact_value_float(gb_sqrt(r*r + i*i));
} break;
default:
GB_PANIC("Invalid numeric constant");
break;
}
} else {
operand->mode = Addressing_Value;
}
if (is_type_complex(operand->type)) {
operand->type = base_complex_elem_type(operand->type);
}
GB_ASSERT(!is_type_complex(operand->type));
} break;
case BuiltinProc_clamp: {
// proc clamp(a, min, max: ordered) -> ordered
Type *type = base_type(operand->type);
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
AstNode *min_arg = ce->args[1];
AstNode *max_arg = ce->args[2];
Operand x = *operand;
Operand y = {};
Operand z = {};
check_expr(c, &y, min_arg);
if (y.mode == Addressing_Invalid) {
return false;
}
if (!is_type_ordered(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
gbString type_str = type_to_string(y.type);
error(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
check_expr(c, &z, max_arg);
if (z.mode == Addressing_Invalid) {
return false;
}
if (!is_type_ordered(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
gbString type_str = type_to_string(z.type);
error(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant &&
z.mode == Addressing_Constant) {
ExactValue a = x.value;
ExactValue b = y.value;
ExactValue c = z.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Lt, a, b)) {
operand->value = b;
operand->type = y.type;
} else if (compare_exact_values(Token_Gt, a, c)) {
operand->value = c;
operand->type = z.type;
} else {
operand->value = a;
operand->type = x.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &x, y.type, 0);
if (x.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &y, x.type, 0);
if (y.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &x, z.type, 0);
if (x.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &z, x.type, 0);
if (z.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &y, z.type, 0);
if (y.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &z, y.type, 0);
if (z.mode == Addressing_Invalid) { return false; }
if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) {
gbString type_x = type_to_string(x.type);
gbString type_y = type_to_string(y.type);
gbString type_z = type_to_string(z.type);
error(call,
"Mismatched types to `clamp`, `%s`, `%s`, `%s`",
type_x, type_y, type_z);
gb_string_free(type_z);
gb_string_free(type_y);
gb_string_free(type_x);
return false;
}
}
} break;
case BuiltinProc_transmute: {
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *t = op.type;
if ((op.mode != Addressing_Type && t == nullptr) || t == t_invalid) {
error(ce->args[0], "Expected a type for `transmute`");
return false;
}
AstNode *expr = ce->args[1];
Operand *o = operand;
check_expr(c, o, expr);
if (o->mode == Addressing_Invalid) {
return false;
}
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = expr;
return false;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = expr;
return false;
}
i64 srcz = type_size_of(c->allocator, o->type);
i64 dstz = type_size_of(c->allocator, t);
if (srcz != dstz) {
gbString expr_str = expr_to_string(o->expr);
gbString type_str = type_to_string(t);
error(o->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
gb_string_free(type_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = expr;
return false;
}
o->mode = Addressing_Value;
o->type = t;
} break;
}
return true;
}
struct ValidProcAndScore {
isize index;
i64 score;
};
int valid_proc_and_score_cmp(void const *a, void const *b) {
i64 si = (cast(ValidProcAndScore const *)a)->score;
i64 sj = (cast(ValidProcAndScore const *)b)->score;
return sj < si ? -1 : sj > si;
}
bool check_unpack_arguments(Checker *c, isize lhs_count, Array<Operand> *operands, Array<AstNode *> rhs, bool allow_ok) {
bool optional_ok = false;
for_array(i, rhs) {
Operand o = {};
check_expr_base(c, &o, rhs[i], nullptr);
if (o.mode == Addressing_NoValue) {
error_operand_no_value(&o);
o.mode = Addressing_Invalid;
}
// check_multi_expr(c, &o, rhs[i]);
if (o.type == nullptr || o.type->kind != Type_Tuple) {
if (allow_ok && lhs_count == 2 && rhs.count == 1 &&
(o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk)) {
Type *tuple = make_optional_ok_type(c->allocator, o.type);
add_type_and_value(&c->info, o.expr, o.mode, tuple, o.value);
Operand val = o;
Operand ok = o;
val.mode = Addressing_Value;
ok.mode = Addressing_Value;
ok.type = t_bool;
array_add(operands, val);
array_add(operands, ok);
optional_ok = true;
} else {
array_add(operands, o);
}
} else {
TypeTuple *tuple = &o.type->Tuple;
for_array(j, tuple->variables) {
o.type = tuple->variables[j]->type;
array_add(operands, o);
}
}
}
return optional_ok;
}
CALL_ARGUMENT_CHECKER(check_call_arguments_internal) {
ast_node(ce, CallExpr, call);
GB_ASSERT(is_type_proc(proc_type));
proc_type = base_type(proc_type);
TypeProc *pt = &proc_type->Proc;
isize param_count = 0;
isize param_count_excluding_defaults = 0;
bool variadic = pt->variadic;
bool vari_expand = (ce->ellipsis.pos.line != 0);
i64 score = 0;
bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
TypeTuple *param_tuple = nullptr;
if (pt->params != nullptr) {
param_tuple = &pt->params->Tuple;
param_count = param_tuple->variables.count;
if (variadic) {
param_count--;
}
}
param_count_excluding_defaults = param_count;
if (param_tuple != nullptr) {
for (isize i = param_count-1; i >= 0; i--) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_TypeName) {
break;
}
GB_ASSERT(e->kind == Entity_Variable);
if (e->Variable.default_value.kind != ExactValue_Invalid ||
e->Variable.default_is_nil ||
e->Variable.default_is_location) {
param_count_excluding_defaults--;
continue;
}
break;
}
}
CallArgumentError err = CallArgumentError_None;
Type *final_proc_type = proc_type;
Entity *gen_entity = nullptr;
if (vari_expand && !variadic) {
if (show_error) {
error(ce->ellipsis,
"Cannot use `...` in call to a non-variadic procedure: `%.*s`",
LIT(ce->proc->Ident.token.string));
}
err = CallArgumentError_NonVariadicExpand;
} else if (vari_expand && pt->c_vararg) {
if (show_error) {
error(ce->ellipsis,
"Cannot use `...` in call to a `#c_vararg` variadic procedure: `%.*s`",
LIT(ce->proc->Ident.token.string));
}
err = CallArgumentError_NonVariadicExpand;
} else if (operands.count == 0 && param_count_excluding_defaults == 0) {
err = CallArgumentError_None;
} else {
i32 error_code = 0;
if (operands.count < param_count_excluding_defaults) {
error_code = -1;
} else if (!variadic && operands.count > param_count) {
error_code = +1;
}
if (error_code != 0) {
err = CallArgumentError_TooManyArguments;
char *err_fmt = "Too many arguments for `%s`, expected %td arguments";
if (error_code < 0) {
err = CallArgumentError_TooFewArguments;
err_fmt = "Too few arguments for `%s`, expected %td arguments";
}
if (show_error) {
gbString proc_str = expr_to_string(ce->proc);
error(call, err_fmt, proc_str, param_count_excluding_defaults);
gb_string_free(proc_str);
}
} else {
// NOTE(bill): Generate the procedure type for this generic instance
PolyProcData poly_proc_data = {};
if (pt->is_polymorphic && !pt->is_poly_specialized) {
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &operands, &poly_proc_data)) {
gen_entity = poly_proc_data.gen_entity;
GB_ASSERT(is_type_proc(gen_entity->type));
final_proc_type = gen_entity->type;
}
}
GB_ASSERT(is_type_proc(final_proc_type));
TypeProc *pt = &final_proc_type->Proc;
GB_ASSERT(pt->params != nullptr);
auto sig_params = pt->params->Tuple.variables;
isize operand_index = 0;
isize max_operand_count = gb_min(param_count, operands.count);
for (; operand_index < max_operand_count; operand_index++) {
Entity *e = sig_params[operand_index];
Type *t = e->type;
Operand o = operands[operand_index];
if (e->kind == Entity_TypeName) {
// GB_ASSERT(!variadic);
if (o.mode == Addressing_Invalid) {
continue;
} else if (o.mode != Addressing_Type) {
if (show_error) {
error(o.expr, "Expected a type for the argument `%.*s`", LIT(e->token.string));
}
err = CallArgumentError_WrongTypes;
}
if (are_types_identical(e->type, o.type)) {
score += assign_score_function(1);
} else {
score += assign_score_function(10);
}
continue;
}
if (variadic) {
o = operands[operand_index];
}
i64 s = 0;
if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
err = CallArgumentError_WrongTypes;
}
score += s;
}
if (variadic) {
bool variadic_expand = false;
Type *slice = sig_params[param_count]->type;
GB_ASSERT(is_type_slice(slice));
Type *elem = base_type(slice)->Slice.elem;
Type *t = elem;
for (; operand_index < operands.count; operand_index++) {
Operand o = operands[operand_index];
if (vari_expand) {
variadic_expand = true;
t = slice;
if (operand_index != param_count) {
if (show_error) {
error(o.expr, "`...` in a variadic procedure can only have one variadic argument at the end");
}
if (data) {
data->score = score;
data->result_type = final_proc_type->Proc.results;
data->gen_entity = gen_entity;
}
return CallArgumentError_MultipleVariadicExpand;
}
}
i64 s = 0;
if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
if (show_error) {
check_assignment(c, &o, t, str_lit("argument"));
}
err = CallArgumentError_WrongTypes;
}
score += s;
}
}
}
}
if (data) {
data->score = score;
data->result_type = final_proc_type->Proc.results;
data->gen_entity = gen_entity;
}
return err;
}
bool is_call_expr_field_value(AstNodeCallExpr *ce) {
GB_ASSERT(ce != nullptr);
if (ce->args.count == 0) {
return false;
}
return ce->args[0]->kind == AstNode_FieldValue;
}
isize lookup_procedure_parameter(TypeProc *pt, String parameter_name) {
isize param_count = pt->param_count;
for (isize i = 0; i < param_count; i++) {
Entity *e = pt->params->Tuple.variables[i];
String name = e->token.string;
if (is_blank_ident(name)) {
continue;
}
if (name == parameter_name) {
return i;
}
}
return -1;
}
isize lookup_procedure_result(TypeProc *pt, String result_name) {
isize result_count = pt->result_count;
for (isize i = 0; i < result_count; i++) {
Entity *e = pt->results->Tuple.variables[i];
String name = e->token.string;
if (is_blank_ident(name)) {
continue;
}
if (name == result_name) {
return i;
}
}
return -1;
}
CALL_ARGUMENT_CHECKER(check_named_call_arguments) {
ast_node(ce, CallExpr, call);
GB_ASSERT(is_type_proc(proc_type));
TypeProc *pt = &base_type(proc_type)->Proc;
i64 score = 0;
bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
CallArgumentError err = CallArgumentError_None;
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
defer (gb_temp_arena_memory_end(tmp));
isize param_count = pt->param_count;
bool *visited = gb_alloc_array(c->tmp_allocator, bool, param_count);
Array<Operand> ordered_operands = {};
array_init_count(&ordered_operands, c->tmp_allocator, param_count);
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
if (fv->field->kind != AstNode_Ident) {
if (show_error) {
gbString expr_str = expr_to_string(fv->field);
error(arg, "Invalid parameter name `%s` in procedure call", expr_str);
gb_string_free(expr_str);
}
err = CallArgumentError_InvalidFieldValue;
continue;
}
String name = fv->field->Ident.token.string;
isize index = lookup_procedure_parameter(pt, name);
if (index < 0) {
if (show_error) {
error(arg, "No parameter named `%.*s` for this procedure type", LIT(name));
}
err = CallArgumentError_ParameterNotFound;
continue;
}
if (visited[index]) {
if (show_error) {
error(arg, "Duplicate parameter `%.*s` in procedure call", LIT(name));
}
err = CallArgumentError_DuplicateParameter;
continue;
}
visited[index] = true;
ordered_operands[index] = operands[i];
}
// NOTE(bill): Check for default values and missing parameters
isize param_count_to_check = param_count;
if (pt->variadic) {
param_count_to_check--;
}
for (isize i = 0; i < param_count_to_check; i++) {
if (!visited[i]) {
Entity *e = pt->params->Tuple.variables[i];
if (is_blank_ident(e->token)) {
continue;
}
if (e->kind == Entity_Variable) {
if (e->Variable.default_value.kind != ExactValue_Invalid) {
score += assign_score_function(1);
continue;
} else if (e->Variable.default_is_nil) {
score += assign_score_function(1);
continue;
}
}
if (show_error) {
if (e->kind == Entity_TypeName) {
error(call, "Type parameter `%.*s` is missing in procedure call",
LIT(e->token.string));
} else {
gbString str = type_to_string(e->type);
error(call, "Parameter `%.*s` of type `%s` is missing in procedure call",
LIT(e->token.string), str);
gb_string_free(str);
}
}
err = CallArgumentError_ParameterMissing;
}
}
Entity *gen_entity = nullptr;
if (pt->is_polymorphic && !pt->is_poly_specialized && err == CallArgumentError_None) {
PolyProcData poly_proc_data = {};
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &ordered_operands, &poly_proc_data)) {
gen_entity = poly_proc_data.gen_entity;
Type *gept = base_type(gen_entity->type);
GB_ASSERT(is_type_proc(gept));
pt = &gept->Proc;
}
}
for (isize i = 0; i < param_count; i++) {
Operand *o = &ordered_operands[i];
if (o->mode == Addressing_Invalid) {
continue;
}
Entity *e = pt->params->Tuple.variables[i];
if (e->kind == Entity_TypeName) {
GB_ASSERT(pt->is_polymorphic);
if (o->mode != Addressing_Type) {
if (show_error) {
error(o->expr, "Expected a type for the argument `%.*s`", LIT(e->token.string));
}
err = CallArgumentError_WrongTypes;
}
if (are_types_identical(e->type, o->type)) {
score += assign_score_function(1);
} else {
score += assign_score_function(10);
}
} else {
i64 s = 0;
if (!check_is_assignable_to_with_score(c, o, e->type, &s)) {
if (show_error) {
check_assignment(c, o, e->type, str_lit("procedure argument"));
}
err = CallArgumentError_WrongTypes;
}
score += s;
}
}
if (data) {
data->score = score;
data->result_type = pt->results;
data->gen_entity = gen_entity;
}
return err;
}
CallArgumentData check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) {
ast_node(ce, CallExpr, call);
CallArgumentCheckerType *call_checker = check_call_arguments_internal;
Array<Operand> operands = {};
defer (array_free(&operands));
Type *result_type = t_invalid;
if (is_call_expr_field_value(ce)) {
call_checker = check_named_call_arguments;
array_init_count(&operands, heap_allocator(), ce->args.count);
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
check_expr_or_type(c, &operands[i], fv->value);
}
bool vari_expand = (ce->ellipsis.pos.line != 0);
if (vari_expand) {
// error(ce->ellipsis, "Invalid use of `...` with `field = value` call`");
}
} else {
array_init(&operands, heap_allocator(), 2*ce->args.count);
check_unpack_arguments(c, -1, &operands, ce->args, false);
}
if (operand->mode == Addressing_Overload) {
GB_ASSERT(operand->overload_entities != nullptr &&
operand->overload_count > 0);
isize overload_count = operand->overload_count;
Entity ** procs = operand->overload_entities;
ValidProcAndScore *valids = gb_alloc_array(heap_allocator(), ValidProcAndScore, overload_count);
isize valid_count = 0;
defer (gb_free(heap_allocator(), procs));
defer (gb_free(heap_allocator(), valids));
String name = procs[0]->token.string;
for (isize i = 0; i < overload_count; i++) {
Entity *e = procs[i];
GB_ASSERT(e->token.string == name);
DeclInfo *d = decl_info_of_entity(&c->info, e);
GB_ASSERT(d != nullptr);
check_entity_decl(c, e, d, nullptr);
}
for (isize i = 0; i < overload_count; i++) {
Entity *p = procs[i];
Type *pt = base_type(p->type);
if (pt != nullptr && is_type_proc(pt)) {
CallArgumentError err = CallArgumentError_None;
CallArgumentData data = {};
CheckerContext prev_context = c->context;
defer (c->context = prev_context);
c->context.no_polymorphic_errors = true;
c->context.allow_polymorphic_types = is_type_polymorphic(pt);
err = call_checker(c, call, pt, p, operands, CallArgumentMode_NoErrors, &data);
if (err == CallArgumentError_None) {
valids[valid_count].index = i;
valids[valid_count].score = data.score;
valid_count++;
}
}
}
if (valid_count > 1) {
gb_sort_array(valids, valid_count, valid_proc_and_score_cmp);
i64 best_score = valids[0].score;
Entity *best_entity = procs[valids[0].index];
for (isize i = 1; i < valid_count; i++) {
if (best_score > valids[i].score) {
valid_count = i;
break;
}
if (best_entity == procs[valids[i].index]) {
valid_count = i;
break;
}
best_score = valids[i].score;
}
}
if (valid_count == 0) {
error(operand->expr, "No overloads or ambiguous call for `%.*s` that match with the given arguments", LIT(name));
gb_printf_err("\tGiven argument types -> (");
for_array(i, operands) {
Operand o = operands[i];
if (i > 0) gb_printf_err(", ");
gbString type = type_to_string(o.type);
defer (gb_string_free(type));
gb_printf_err("%s", type);
}
gb_printf_err(")\n");
if (overload_count > 0) {
gb_printf_err("Did you mean to use one of the following:\n");
}
for (isize i = 0; i < overload_count; i++) {
Entity *proc = procs[i];
TokenPos pos = proc->token.pos;
Type *t = base_type(proc->type);
if (t == t_invalid) continue;
GB_ASSERT(t->kind == Type_Proc);
gbString pt;
if (t->Proc.node != nullptr) {
pt = expr_to_string(t->Proc.node);
} else {
pt = type_to_string(t);
}
gb_printf_err("\t%.*s :: %s at %.*s(%td:%td) with score %lld\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score);
// gb_printf_err("\t%.*s :: %s at %.*s(%td:%td)\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column);
gb_string_free(pt);
}
if (overload_count > 0) {
gb_printf_err("\n");
}
result_type = t_invalid;
} else if (valid_count > 1) {
error(operand->expr, "Ambiguous procedure call `%.*s` tha match with the given arguments", LIT(name));
gb_printf_err("\tGiven argument types -> (");
for_array(i, operands) {
Operand o = operands[i];
if (i > 0) gb_printf_err(", ");
gbString type = type_to_string(o.type);
defer (gb_string_free(type));
gb_printf_err("%s", type);
}
gb_printf_err(")\n");
for (isize i = 0; i < valid_count; i++) {
Entity *proc = procs[valids[i].index];
TokenPos pos = proc->token.pos;
Type *t = base_type(proc->type); GB_ASSERT(t->kind == Type_Proc);
gbString pt;
if (t->Proc.node != nullptr) {
pt = expr_to_string(t->Proc.node);
} else {
pt = type_to_string(t);
}
// gb_printf_err("\t%.*s :: %s at %.*s(%td:%td) with score %lld\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score);
gb_printf_err("\t%.*s :: %s at %.*s(%td:%td)\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column);
gb_string_free(pt);
}
result_type = t_invalid;
} else {
AstNode *ident = operand->expr;
while (ident->kind == AstNode_SelectorExpr) {
AstNode *s = ident->SelectorExpr.selector;
ident = s;
}
Entity *e = procs[valids[0].index];
proc_type = e->type;
CallArgumentData data = {};
CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data);
if (data.gen_entity != nullptr) {
add_entity_use(c, ident, data.gen_entity);
} else {
add_entity_use(c, ident, e);
}
return data;
}
} else {
AstNode *ident = operand->expr;
while (ident->kind == AstNode_SelectorExpr) {
AstNode *s = ident->SelectorExpr.selector;
ident = s;
}
Entity *e = entity_of_ident(&c->info, ident);
CallArgumentData data = {};
CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data);
if (data.gen_entity != nullptr) {
add_entity_use(c, ident, data.gen_entity);
} else {
add_entity_use(c, ident, e);
}
return data;
}
CallArgumentData data = {};
data.result_type = t_invalid;
return data;
}
Entity *find_using_index_expr(Type *t) {
t = base_type(t);
if (t->kind != Type_Struct) {
return nullptr;
}
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
if (f->kind == Entity_Variable &&
(f->flags & EntityFlag_Field) != 0 &&
(f->flags & EntityFlag_Using) != 0) {
if (is_type_indexable(f->type)) {
return f;
}
Entity *res = find_using_index_expr(f->type);
if (res != nullptr) {
return res;
}
}
}
return nullptr;
}
isize lookup_polymorphic_struct_parameter(TypeStruct *st, String parameter_name) {
if (!st->is_polymorphic) return -1;
TypeTuple *params = &st->polymorphic_params->Tuple;
for_array(i, params->variables) {
Entity *e = params->variables[i];
String name = e->token.string;
if (is_blank_ident(name)) {
continue;
}
if (name == parameter_name) {
return i;
}
}
return -1;
}
CallArgumentError check_polymorphic_struct_type(Checker *c, Operand *operand, AstNode *call) {
ast_node(ce, CallExpr, call);
Type *original_type = operand->type;
Type *struct_type = base_type(operand->type);
GB_ASSERT(struct_type->kind == Type_Struct);
TypeStruct *st = &struct_type->Struct;
GB_ASSERT(st->is_polymorphic);
bool show_error = true;
Array<Operand> operands = {};
defer (array_free(&operands));
bool named_fields = false;
if (is_call_expr_field_value(ce)) {
named_fields = true;
array_init_count(&operands, heap_allocator(), ce->args.count);
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
check_expr_or_type(c, &operands[i], fv->value);
}
bool vari_expand = (ce->ellipsis.pos.line != 0);
if (vari_expand) {
error(ce->ellipsis, "Invalid use of `...` in a polymorphic type call`");
}
} else {
array_init(&operands, heap_allocator(), 2*ce->args.count);
check_unpack_arguments(c, -1, &operands, ce->args, false);
}
CallArgumentError err = CallArgumentError_None;
TypeTuple *tuple = &st->polymorphic_params->Tuple;
isize param_count = tuple->variables.count;
Array<Operand> ordered_operands = operands;
if (named_fields) {
bool *visited = gb_alloc_array(c->allocator, bool, param_count);
array_init_count(&ordered_operands, c->tmp_allocator, param_count);
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
ast_node(fv, FieldValue, arg);
if (fv->field->kind != AstNode_Ident) {
if (show_error) {
gbString expr_str = expr_to_string(fv->field);
error(arg, "Invalid parameter name `%s` in polymorphic type call", expr_str);
gb_string_free(expr_str);
}
err = CallArgumentError_InvalidFieldValue;
continue;
}
String name = fv->field->Ident.token.string;
isize index = lookup_polymorphic_struct_parameter(st, name);
if (index < 0) {
if (show_error) {
error(arg, "No parameter named `%.*s` for this polymorphic type", LIT(name));
}
err = CallArgumentError_ParameterNotFound;
continue;
}
if (visited[index]) {
if (show_error) {
error(arg, "Duplicate parameter `%.*s` in polymorphic type", LIT(name));
}
err = CallArgumentError_DuplicateParameter;
continue;
}
visited[index] = true;
ordered_operands[index] = operands[i];
}
for (isize i = 0; i < param_count; i++) {
if (!visited[i]) {
Entity *e = tuple->variables[i];
if (is_blank_ident(e->token)) {
continue;
}
if (show_error) {
if (e->kind == Entity_TypeName) {
error(call, "Type parameter `%.*s` is missing in polymorphic type call",
LIT(e->token.string));
} else {
gbString str = type_to_string(e->type);
error(call, "Parameter `%.*s` of type `%s` is missing in polymorphic type call",
LIT(e->token.string), str);
gb_string_free(str);
}
}
err = CallArgumentError_ParameterMissing;
}
}
}
if (err != 0) {
operand->mode = Addressing_Invalid;
return err;
}
i64 score = 0;
for (isize i = 0; i < param_count; i++) {
Operand *o = &ordered_operands[i];
if (o->mode == Addressing_Invalid) {
continue;
}
Entity *e = tuple->variables[i];
if (e->kind == Entity_TypeName) {
if (o->mode != Addressing_Type) {
if (show_error) {
error(o->expr, "Expected a type for the argument `%.*s`", LIT(e->token.string));
}
err = CallArgumentError_WrongTypes;
}
if (are_types_identical(e->type, o->type)) {
score += assign_score_function(1);
} else {
score += assign_score_function(10);
}
} else {
i64 s = 0;
if (!check_is_assignable_to_with_score(c, o, e->type, &s)) {
if (show_error) {
check_assignment(c, o, e->type, str_lit("polymorphic type argument"));
}
err = CallArgumentError_WrongTypes;
}
o->type = e->type;
if (o->mode != Addressing_Constant) {
if (show_error) {
error(o->expr, "Expected a constant value for this polymorphic type argument");
}
err = CallArgumentError_NoneConstantParameter;
}
score += s;
}
}
if (param_count < ordered_operands.count) {
error(call, "Too many polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
err = CallArgumentError_TooManyArguments;
} else if (param_count > ordered_operands.count) {
error(call, "Too few polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
err = CallArgumentError_TooFewArguments;
}
if (err != 0) {
return err;
}
{
// TODO(bill): Check for previous types
gbAllocator a = c->allocator;
auto *found_gen_types = map_get(&c->info.gen_types, hash_pointer(original_type));
if (found_gen_types != nullptr) {
for_array(i, *found_gen_types) {
Entity *e = (*found_gen_types)[i];
Type *t = base_type(e->type);
TypeTuple *tuple = &t->Struct.polymorphic_params->Tuple;
bool ok = true;
GB_ASSERT(param_count == tuple->variables.count);
for (isize j = 0; j < param_count; j++) {
Entity *p = tuple->variables[j];
Operand o = ordered_operands[j];
if (p->kind == Entity_TypeName) {
if (is_type_polymorphic(o.type)) {
// NOTE(bill): Do not add polymorphic version to the gen_types
ok = false;
}
if (!are_types_identical(o.type, p->type)) {
ok = false;
}
} else if (p->kind == Entity_Constant) {
if (!are_types_identical(o.type, p->type)) {
ok = false;
}
if (!compare_exact_values(Token_CmpEq, o.value, p->Constant.value)) {
ok = false;
}
} else {
GB_PANIC("Unknown entity kind");
}
}
if (ok) {
operand->mode = Addressing_Type;
operand->type = e->type;
return err;
}
}
}
String generated_name = make_string_c(expr_to_string(call));
Type *named_type = make_type_named(a, generated_name, nullptr, nullptr);
Type *struct_type = make_type_struct(a);
AstNode *node = clone_ast_node(a, st->node);
set_base_type(named_type, struct_type);
check_open_scope(c, node);
check_struct_type(c, struct_type, node, &ordered_operands);
check_close_scope(c);
struct_type->Struct.node = node;
struct_type->Struct.polymorphic_parent = original_type;
Entity *e = nullptr;
{
Token token = ast_node_token(node);
token.kind = Token_String;
token.string = generated_name;
AstNode *node = gb_alloc_item(a, AstNode);
node->kind = AstNode_Ident;
node->Ident.token = token;
e = make_entity_type_name(a, st->scope->parent, token, named_type);
add_entity(c, st->scope->parent, node, e);
add_entity_use(c, node, e);
}
named_type->Named.type_name = e;
if (!struct_type->Struct.is_polymorphic) {
if (found_gen_types) {
array_add(found_gen_types, e);
} else {
Array<Entity *> array = {};
array_init(&array, heap_allocator());
array_add(&array, e);
map_set(&c->info.gen_types, hash_pointer(original_type), array);
}
}
operand->mode = Addressing_Type;
operand->type = named_type;
}
return err;
}
ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) {
ast_node(ce, CallExpr, call);
if (ce->proc != nullptr &&
ce->proc->kind == AstNode_BasicDirective) {
ast_node(bd, BasicDirective, ce->proc);
String name = bd->name;
GB_ASSERT(name == "location");
operand->mode = Addressing_Builtin;
operand->builtin_id = BuiltinProc_DIRECTIVE;
operand->expr = ce->proc;
operand->type = t_invalid;
add_type_and_value(&c->info, ce->proc, operand->mode, operand->type, operand->value);
} else {
check_expr_or_type(c, operand, ce->proc);
}
if (ce->args.count > 0) {
bool fail = false;
bool first_is_field_value = (ce->args[0]->kind == AstNode_FieldValue);
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
bool mix = false;
if (first_is_field_value) {
mix = arg->kind != AstNode_FieldValue;
} else {
mix = arg->kind == AstNode_FieldValue;
}
if (mix) {
error(arg, "Mixture of `field = value` and value elements in a procedure all is not allowed");
fail = true;
}
}
if (fail) {
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
}
if (operand->mode == Addressing_Invalid) {
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
if (arg->kind == AstNode_FieldValue) {
arg = arg->FieldValue.value;
}
check_expr_base(c, operand, arg, nullptr);
}
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
if (operand->mode == Addressing_Type) {
Type *t = operand->type;
if (is_type_polymorphic_struct(t)) {
auto err = check_polymorphic_struct_type(c, operand, call);
if (err == 0) {
AstNode *ident = operand->expr;
while (ident->kind == AstNode_SelectorExpr) {
AstNode *s = ident->SelectorExpr.selector;
ident = s;
}
add_entity_use(c, ident, entity_of_ident(&c->info, ident));
add_type_and_value(&c->info, call, Addressing_Type, operand->type, empty_exact_value);
} else {
operand->mode = Addressing_Invalid;
operand->type = t_invalid;
}
} else {
gbString str = type_to_string(t);
defer (gb_string_free(str));
operand->mode = Addressing_Invalid;
isize arg_count = ce->args.count;
switch (arg_count) {
case 0: error(call, "Missing argument in conversion to `%s`", str); break;
default: error(call, "Too many arguments in conversion to `%s`", str); break;
case 1: {
AstNode *arg = ce->args[0];
if (arg->kind == AstNode_FieldValue) {
error(call, "`field = value` cannot be used in a type conversion");
arg = arg->FieldValue.value;
// NOTE(bill): Carry on the cast regardless
}
check_expr(c, operand, arg);
if (operand->mode != Addressing_Invalid) {
check_cast(c, operand, t);
}
} break;
}
}
return Expr_Expr;
}
if (operand->mode == Addressing_Builtin) {
i32 id = operand->builtin_id;
if (!check_builtin_procedure(c, operand, call, id)) {
operand->mode = Addressing_Invalid;
}
operand->expr = call;
return builtin_procs[id].kind;
}
Type *proc_type = base_type(operand->type);
if (operand->mode != Addressing_Overload) {
bool valid_type = (proc_type != nullptr) && is_type_proc(proc_type);
bool valid_mode = is_operand_value(*operand);
if (!valid_type || !valid_mode) {
AstNode *e = operand->expr;
gbString str = expr_to_string(e);
gbString type_str = type_to_string(operand->type);
error(e, "Cannot call a non-procedure: `%s` of type `%s`", str, type_str);
gb_string_free(type_str);
gb_string_free(str);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
}
CallArgumentData data = check_call_arguments(c, operand, proc_type, call);
Type *result_type = data.result_type;
gb_zero_item(operand);
operand->expr = call;
if (result_type == t_invalid) {
operand->mode = Addressing_Invalid;
operand->type = t_invalid;
return Expr_Stmt;
}
Type *pt = base_type(proc_type);
if (result_type == nullptr) {
operand->mode = Addressing_NoValue;
} else {
GB_ASSERT(is_type_tuple(result_type));
switch (result_type->Tuple.variables.count) {
case 0:
operand->mode = Addressing_NoValue;
break;
case 1:
operand->mode = Addressing_Value;
operand->type = result_type->Tuple.variables[0]->type;
break;
default:
operand->mode = Addressing_Value;
operand->type = result_type;
break;
}
}
operand->expr = call;
return Expr_Expr;
}
void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) {
check_expr_base(c, o, e, t);
check_not_tuple(c, o);
char *err_str = nullptr;
switch (o->mode) {
case Addressing_NoValue:
err_str = "used as a value";
break;
case Addressing_Type:
err_str = "is not an expression";
break;
case Addressing_Builtin:
err_str = "must be called";
break;
}
if (err_str != nullptr) {
gbString str = expr_to_string(e);
error(e, "`%s` %s", str, err_str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
}
void check_set_mode_with_indirection(Operand *o, bool indirection) {
if (o->mode != Addressing_Immutable) {
if (indirection) {
o->mode = Addressing_Variable;
} else if (o->mode != Addressing_Variable &&
o->mode != Addressing_Constant) {
o->mode = Addressing_Value;
}
}
}
bool check_set_index_data(Operand *o, Type *type, bool indirection, i64 *max_count) {
Type *t = base_type(type_deref(type));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
if (o->mode == Addressing_Constant) {
*max_count = o->value.value_string.len;
}
check_set_mode_with_indirection(o, indirection);
o->type = t_u8;
return true;
}
break;
case Type_Array:
*max_count = t->Array.count;
check_set_mode_with_indirection(o, indirection);
o->type = t->Array.elem;
return true;
case Type_Vector:
*max_count = t->Vector.count;
check_set_mode_with_indirection(o, indirection);
o->type = t->Vector.elem;
return true;
case Type_Slice:
o->type = t->Slice.elem;
if (o->mode != Addressing_Immutable) {
o->mode = Addressing_Variable;
}
return true;
case Type_DynamicArray:
o->type = t->DynamicArray.elem;
check_set_mode_with_indirection(o, indirection);
return true;
}
return false;
}
ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExprKind kind = Expr_Stmt;
o->mode = Addressing_Invalid;
o->type = t_invalid;
switch (node->kind) {
default:
return kind;
case_ast_node(be, BadExpr, node)
return kind;
case_end;
case_ast_node(i, Implicit, node)
switch (i->kind) {
case Token_context:
if (c->context.proc_name.len == 0) {
error(node, "`context` is only allowed within procedures");
return kind;
}
init_preload(c);
o->mode = Addressing_Value;
o->type = t_context;
break;
case Token_size_of:
o->mode = Addressing_Builtin;
o->builtin_id = BuiltinProc_size_of;
break;
case Token_align_of:
o->mode = Addressing_Builtin;
o->builtin_id = BuiltinProc_align_of;
break;
case Token_offset_of:
o->mode = Addressing_Builtin;
o->builtin_id = BuiltinProc_offset_of;
break;
case Token_type_of:
o->mode = Addressing_Builtin;
o->builtin_id = BuiltinProc_type_of;
break;
case Token_type_info_of:
o->mode = Addressing_Builtin;
o->builtin_id = BuiltinProc_type_info_of;
break;
default:
error(node, "Illegal implicit name `%.*s`", LIT(i->string));
return kind;
}
case_end;
case_ast_node(i, Ident, node);
check_ident(c, o, node, nullptr, type_hint, false);
case_end;
case_ast_node(u, Undef, node);
o->mode = Addressing_Value;
o->type = t_untyped_undef;
case_end;
case_ast_node(bl, BasicLit, node);
Type *t = t_invalid;
switch (bl->kind) {
case Token_Integer: t = t_untyped_integer; break;
case Token_Float: t = t_untyped_float; break;
case Token_String: t = t_untyped_string; break;
case Token_Rune: t = t_untyped_rune; break;
case Token_Imag: {
String s = bl->string;
Rune r = s[s.len-1];
switch (r) {
case 'i': t = t_untyped_complex; break;
}
} break;
default: GB_PANIC("Unknown literal"); break;
}
o->mode = Addressing_Constant;
o->type = t;
o->value = exact_value_from_basic_literal(*bl);
case_end;
case_ast_node(bd, BasicDirective, node);
if (bd->name == "file") {
o->type = t_untyped_string;
o->value = exact_value_string(bd->token.pos.file);
} else if (bd->name == "line") {
o->type = t_untyped_integer;
o->value = exact_value_i64(bd->token.pos.line);
} else if (bd->name == "procedure") {
if (c->proc_stack.count == 0) {
error(node, "#procedure may only be used within procedures");
o->type = t_untyped_string;
o->value = exact_value_string(str_lit(""));
} else {
o->type = t_untyped_string;
o->value = exact_value_string(c->context.proc_name);
}
} else if (bd->name == "caller_location") {
init_preload(c);
error(node, "#caller_location may only be used as a default argument parameter");
o->type = t_source_code_location;
o->mode = Addressing_Value;
} else {
GB_PANIC("Unknown basic directive");
}
o->mode = Addressing_Constant;
case_end;
case_ast_node(pl, ProcLit, node);
CheckerContext prev_context = c->context;
DeclInfo *decl = nullptr;
Type *type = alloc_type(c->allocator, Type_Proc);
check_open_scope(c, pl->type);
{
decl = make_declaration_info(c->allocator, c->context.scope, c->context.decl);
decl->proc_lit = node;
c->context.decl = decl;
if (pl->tags != 0) {
error(node, "A procedure literal cannot have tags");
pl->tags = 0; // TODO(bill): Should I zero this?!
}
check_procedure_type(c, type, pl->type);
if (!is_type_proc(type)) {
gbString str = expr_to_string(node);
error(node, "Invalid procedure literal `%s`", str);
gb_string_free(str);
check_close_scope(c);
return kind;
}
if (pl->body == nullptr) {
error(node, "A procedure literal must have a body");
return kind;
}
check_procedure_later(c, c->curr_ast_file, empty_token, decl, type, pl->body, pl->tags);
}
check_close_scope(c);
c->context = prev_context;
o->mode = Addressing_Value;
o->type = type;
case_end;
case_ast_node(te, TernaryExpr, node);
Operand cond = {Addressing_Invalid};
check_expr(c, &cond, te->cond);
if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) {
error(te->cond, "Non-boolean condition in if expression");
}
Operand x = {Addressing_Invalid};
Operand y = {Addressing_Invalid};
check_expr_or_type(c, &x, te->x, type_hint);
if (te->y != nullptr) {
check_expr_or_type(c, &y, te->y, type_hint);
} else {
error(node, "A ternary expression must have an else clause");
return kind;
}
if (x.type == nullptr || x.type == t_invalid ||
y.type == nullptr || y.type == t_invalid) {
return kind;
}
if (x.mode == Addressing_Type && y.mode == Addressing_Type &&
cond.mode == Addressing_Constant && is_type_boolean(cond.type)) {
o->mode = Addressing_Type;
if (cond.value.value_bool) {
o->type = x.type;
o->expr = x.expr;
} else {
o->type = y.type;
o->expr = y.expr;
}
return Expr_Expr;
}
convert_to_typed(c, &x, y.type, 0);
if (x.mode == Addressing_Invalid) {
return kind;
}
convert_to_typed(c, &y, x.type, 0);
if (y.mode == Addressing_Invalid) {
x.mode = Addressing_Invalid;
return kind;
}
if (!are_types_identical(x.type, y.type)) {
gbString its = type_to_string(x.type);
gbString ets = type_to_string(y.type);
error(node, "Mismatched types in ternary expression, %s vs %s", its, ets);
gb_string_free(ets);
gb_string_free(its);
return kind;
}
o->type = x.type;
o->mode = Addressing_Value;
if (cond.mode == Addressing_Constant && is_type_boolean(cond.type) &&
x.mode == Addressing_Constant &&
y.mode == Addressing_Constant) {
o->mode = Addressing_Constant;
if (cond.value.value_bool) {
o->value = x.value;
} else {
o->value = y.value;
}
}
case_end;
case_ast_node(cl, CompoundLit, node);
Type *type = type_hint;
bool is_to_be_determined_array_count = false;
bool is_constant = true;
if (cl->type != nullptr) {
type = nullptr;
// [..]Type
if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != nullptr) {
AstNode *count = cl->type->ArrayType.count;
if (count->kind == AstNode_UnaryExpr &&
count->UnaryExpr.op.kind == Token_Ellipsis) {
type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1);
is_to_be_determined_array_count = true;
}
}
if (type == nullptr) {
type = check_type(c, cl->type);
}
}
if (type == nullptr) {
error(node, "Missing type in compound literal");
return kind;
}
Type *t = base_type(type);
if (is_type_polymorphic(t)) {
gbString str = type_to_string(type);
error(node, "Cannot use a polymorphic type for a compound literal, got `%s`", str);
o->expr = node;
o->type = type;
gb_string_free(str);
return kind;
}
switch (t->kind) {
case Type_Struct: {
if (is_type_union(t)) {
is_constant = false;
}
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
if (!is_type_struct(t)) {
if (cl->elems.count != 0) {
gbString type_str = type_to_string(type);
error(node, "Illegal compound literal type `%s`", type_str);
gb_string_free(type_str);
}
break;
}
{ // Checker values
isize field_count = t->Struct.fields.count;
isize min_field_count = t->Struct.fields.count;
for (isize i = min_field_count-1; i >= 0; i--) {
Entity *e = t->Struct.fields_in_src_order[i];
GB_ASSERT(e->kind == Entity_Variable);
if (e->Variable.default_is_nil) {
min_field_count--;
} else if (e->Variable.default_is_undef) {
min_field_count--;
} else if (e->Variable.default_value.kind != ExactValue_Invalid) {
min_field_count--;
} else {
break;
}
}
if (cl->elems[0]->kind == AstNode_FieldValue) {
bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count);
for_array(i, cl->elems) {
AstNode *elem = cl->elems[i];
if (elem->kind != AstNode_FieldValue) {
error(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != AstNode_Ident) {
gbString expr_str = expr_to_string(fv->field);
error(elem, "Invalid field name `%s` in structure literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
bool is_unknown = sel.entity == nullptr;
if (is_unknown) {
error(elem, "Unknown field `%.*s` in structure literal", LIT(name));
continue;
}
if (!is_unknown && !check_is_field_exported(c, sel.entity)) {
error(elem, "Cannot assign to an unexported field `%.*s` in structure literal", LIT(name));
continue;
}
if (sel.index.count > 1) {
error(elem, "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name));
continue;
}
Entity *field = t->Struct.fields[sel.index[0]];
add_entity_use(c, fv->field, field);
if (fields_visited[sel.index[0]]) {
error(elem, "Duplicate field `%.*s` in structure literal", LIT(name));
continue;
}
fields_visited[sel.index[0]] = true;
check_expr(c, o, fv->value);
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) {
is_constant = false;
}
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, field->type, str_lit("structure literal"));
}
} else {
bool all_fields_are_blank = true;
for_array(i, t->Struct.fields_in_src_order) {
Entity *field = t->Struct.fields_in_src_order[i];
if (!is_blank_ident(field->token)) {
all_fields_are_blank = false;
break;
}
}
for_array(index, cl->elems) {
AstNode *elem = cl->elems[index];
if (elem->kind == AstNode_FieldValue) {
error(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
if (index >= field_count) {
error(o->expr, "Too many values in structure literal, expected %td, got %td", field_count, cl->elems.count);
break;
}
Entity *field = t->Struct.fields_in_src_order[index];
if (!all_fields_are_blank && is_blank_ident(field->token)) {
// NOTE(bill): Ignore blank identifiers
continue;
}
check_expr(c, o, elem);
if (!check_is_field_exported(c, field)) {
gbString t = type_to_string(type);
error(o->expr, "Implicit assignment to an unexported field `%.*s` in `%s` literal",
LIT(field->token.string), t);
gb_string_free(t);
continue;
}
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) {
is_constant = false;
}
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, field->type, str_lit("structure literal"));
}
if (cl->elems.count < field_count) {
if (min_field_count < field_count) {
if (cl->elems.count < min_field_count) {
error(cl->close, "Too few values in structure literal, expected at least %td, got %td", min_field_count, cl->elems.count);
}
} else {
error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
}
} break;
case Type_Slice:
case Type_Array:
case Type_Vector:
case Type_DynamicArray:
{
Type *elem_type = nullptr;
String context_name = {};
i64 max_type_count = -1;
if (t->kind == Type_Slice) {
elem_type = t->Slice.elem;
context_name = str_lit("slice literal");
} else if (t->kind == Type_Vector) {
elem_type = t->Vector.elem;
context_name = str_lit("vector literal");
max_type_count = t->Vector.count;
} else if (t->kind == Type_Array) {
elem_type = t->Array.elem;
context_name = str_lit("array literal");
max_type_count = t->Array.count;
} else if (t->kind == Type_DynamicArray) {
elem_type = t->DynamicArray.elem;
context_name = str_lit("dynamic array literal");
is_constant = false;
} else {
GB_PANIC("unreachable");
}
i64 max = 0;
isize index = 0;
isize elem_count = cl->elems.count;
if (is_type_any(base_type(elem_type))) {
is_constant = false;
}
for (; index < elem_count; index++) {
GB_ASSERT(cl->elems.data != nullptr);
AstNode *e = cl->elems[index];
if (e == nullptr) {
error(node, "Invalid literal element");
continue;
}
if (e->kind == AstNode_FieldValue) {
error(e, "`field = value` is only allowed in struct literals");
continue;
}
if (0 <= max_type_count && max_type_count <= index) {
error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
}
Operand operand = {};
check_expr_with_type_hint(c, &operand, e, elem_type);
check_assignment(c, &operand, elem_type, context_name);
if (is_constant) {
is_constant = operand.mode == Addressing_Constant;
}
}
if (max < index) {
max = index;
}
if (t->kind == Type_Vector) {
if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) {
error(cl->elems[0], "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index);
}
}
if (t->kind == Type_Array && is_to_be_determined_array_count) {
t->Array.count = max;
}
} break;
case Type_Basic: {
if (!is_type_any(t)) {
if (cl->elems.count != 0) {
error(node, "Illegal compound literal");
}
break;
}
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
{ // Checker values
Type *field_types[2] = {t_rawptr, t_type_info_ptr};
isize field_count = 2;
if (cl->elems[0]->kind == AstNode_FieldValue) {
bool fields_visited[2] = {};
for_array(i, cl->elems) {
AstNode *elem = cl->elems[i];
if (elem->kind != AstNode_FieldValue) {
error(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != AstNode_Ident) {
gbString expr_str = expr_to_string(fv->field);
error(elem, "Invalid field name `%s` in `any` literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.token.string;
Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
if (sel.entity == nullptr) {
error(elem, "Unknown field `%.*s` in `any` literal", LIT(name));
continue;
}
isize index = sel.index[0];
if (fields_visited[index]) {
error(elem, "Duplicate field `%.*s` in `any` literal", LIT(name));
continue;
}
fields_visited[index] = true;
check_expr(c, o, fv->value);
// NOTE(bill): `any` literals can never be constant
is_constant = false;
check_assignment(c, o, field_types[index], str_lit("`any` literal"));
}
} else {
for_array(index, cl->elems) {
AstNode *elem = cl->elems[index];
if (elem->kind == AstNode_FieldValue) {
error(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed");
continue;
}
check_expr(c, o, elem);
if (index >= field_count) {
error(o->expr, "Too many values in `any` literal, expected %td", field_count);
break;
}
// NOTE(bill): `any` literals can never be constant
is_constant = false;
check_assignment(c, o, field_types[index], str_lit("`any` literal"));
}
if (cl->elems.count < field_count) {
error(cl->close, "Too few values in `any` literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
} break;
case Type_Map: {
if (cl->elems.count == 0) {
break;
}
is_constant = false;
{ // Checker values
for_array(i, cl->elems) {
AstNode *elem = cl->elems[i];
if (elem->kind != AstNode_FieldValue) {
error(elem, "Only `field = value` elements are allowed in a map literal");
continue;
}
ast_node(fv, FieldValue, elem);
check_expr_with_type_hint(c, o, fv->field, t->Map.key);
check_assignment(c, o, t->Map.key, str_lit("map literal"));
if (o->mode == Addressing_Invalid) {
continue;
}
check_expr_with_type_hint(c, o, fv->value, t->Map.value);
check_assignment(c, o, t->Map.value, str_lit("map literal"));
}
}
} break;
default: {
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
gbString str = type_to_string(type);
error(node, "Invalid compound literal type `%s`", str);
gb_string_free(str);
return kind;
} break;
}
if (is_constant) {
o->mode = Addressing_Constant;
o->value = exact_value_compound(node);
} else {
o->mode = Addressing_Value;
}
o->type = type;
case_end;
case_ast_node(pe, ParenExpr, node);
kind = check_expr_base(c, o, pe->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(te, TagExpr, node);
String name = te->name.string;
error(node, "Unknown tag expression, #%.*s", LIT(name));
if (te->expr) {
kind = check_expr_base(c, o, te->expr, type_hint);
}
o->expr = node;
case_end;
case_ast_node(re, RunExpr, node);
// TODO(bill): Tag expressions
kind = check_expr_base(c, o, re->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(ta, TypeAssertion, node);
check_expr(c, o, ta->expr);
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
Type *t = check_type(c, ta->type);
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "A type assertion cannot be applied to a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "A type assertion cannot be applied to an untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
bool src_is_ptr = is_type_pointer(o->type);
Type *src = type_deref(o->type);
Type *dst = t;
Type *bsrc = base_type(src);
Type *bdst = base_type(dst);
if (is_type_union(src)) {
bool ok = false;
for_array(i, bsrc->Union.variants) {
Type *vt = bsrc->Union.variants[i];
if (are_types_identical(vt, dst)) {
ok = true;
break;
}
}
if (!ok) {
gbString expr_str = expr_to_string(o->expr);
gbString dst_type_str = type_to_string(t);
defer (gb_string_free(expr_str));
defer (gb_string_free(dst_type_str));
if (bsrc->Union.variants.count == 0) {
error(o->expr, "Cannot type assert `%s` to `%s` as this is an empty union", expr_str, dst_type_str);
} else {
error(o->expr, "Cannot type assert `%s` to `%s` as it is not a variant of that union", expr_str, dst_type_str);
}
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
add_type_info_type(c, o->type);
add_type_info_type(c, t);
o->type = t;
o->mode = Addressing_OptionalOk;
} else if (is_type_any(src)) {
o->type = t;
o->mode = Addressing_OptionalOk;
add_type_info_type(c, o->type);
add_type_info_type(c, t);
} else {
gbString str = type_to_string(o->type);
error(o->expr, "Type assertions can only operate on unions and `any`, got %s", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
case_end;
case_ast_node(tc, TypeCast, node);
check_expr_or_type(c, o, tc->type);
if (o->mode != Addressing_Type) {
gbString str = expr_to_string(tc->type);
error(tc->type, "Expected a type, got %s", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
Type *type = o->type;
check_expr_base(c, o, tc->expr, type);
if (o->mode != Addressing_Invalid) {
check_cast(c, o, type);
}
return Expr_Expr;
case_end;
case_ast_node(ue, UnaryExpr, node);
check_expr_base(c, o, ue->expr, type_hint);
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
check_unary_expr(c, o, ue->op, node);
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
case_end;
case_ast_node(be, BinaryExpr, node);
check_binary_expr(c, o, node);
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
case_end;
case_ast_node(se, SelectorExpr, node);
check_selector(c, o, node, type_hint);
case_end;
case_ast_node(ie, IndexExpr, node);
check_expr(c, o, ie->expr);
if (o->mode == Addressing_Invalid) {
o->expr = node;
return kind;
}
Type *t = base_type(type_deref(o->type));
bool is_ptr = is_type_pointer(o->type);
bool is_const = o->mode == Addressing_Constant;
if (is_type_map(t)) {
Operand key = {};
check_expr(c, &key, ie->index);
check_assignment(c, &key, t->Map.key, str_lit("map index"));
if (key.mode == Addressing_Invalid) {
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
o->mode = Addressing_MapIndex;
o->type = t->Map.value;
o->expr = node;
return Expr_Expr;
}
i64 max_count = -1;
bool valid = check_set_index_data(o, t, is_ptr, &max_count);
if (is_const) {
valid = false;
}
if (!valid && t->kind == Type_Struct) {
Entity *found = find_using_index_expr(t);
if (found != nullptr) {
valid = check_set_index_data(o, found->type, is_type_pointer(found->type), &max_count);
}
}
if (!valid) {
gbString str = expr_to_string(o->expr);
gbString type_str = type_to_string(o->type);
defer (gb_string_free(str));
defer (gb_string_free(type_str));
if (is_const) {
error(o->expr, "Cannot index a constant `%s`", str);
} else {
error(o->expr, "Cannot index `%s` of type `%s`", str, type_str);
}
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (ie->index == nullptr) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Missing index for `%s`", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
i64 index = 0;
bool ok = check_index_value(c, false, ie->index, max_count, &index);
case_end;
case_ast_node(se, SliceExpr, node);
check_expr(c, o, se->expr);
if (o->mode == Addressing_Invalid) {
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
bool valid = false;
i64 max_count = -1;
Type *t = base_type(type_deref(o->type));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
if (se->index3) {
error(node, "3-index slice on a string in not needed");
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
valid = true;
if (o->mode == Addressing_Constant) {
max_count = o->value.value_string.len;
}
o->type = t_string;
}
break;
case Type_Array:
valid = true;
max_count = t->Array.count;
if (o->mode != Addressing_Variable) {
gbString str = expr_to_string(node);
error(node, "Cannot slice array `%s`, value is not addressable", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
o->type = make_type_slice(c->allocator, t->Array.elem);
break;
case Type_Slice:
valid = true;
o->type = type_deref(o->type);
break;
case Type_DynamicArray:
valid = true;
o->type = make_type_slice(c->allocator, t->DynamicArray.elem);
break;
}
if (!valid) {
gbString str = expr_to_string(o->expr);
error(o->expr, "Cannot slice `%s`", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (o->mode != Addressing_Immutable) {
o->mode = Addressing_Value;
}
if (se->low == nullptr && se->high != nullptr) {
// error(se->interval0, "1st index is required if a 2nd index is specified");
// It is okay to continue as it will assume the 1st index is zero
}
if (se->index3 && (se->high == nullptr || se->max == nullptr)) {
error(se->close, "2nd and 3rd indices are required in a 3-index slice");
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
if (se->index3 && se->interval0.kind != se->interval1.kind) {
error(se->close, "The interval separators for in a 3-index slice must be the same");
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
TokenKind interval_kind = se->interval0.kind;
i64 indices[3] = {};
AstNode *nodes[3] = {se->low, se->high, se->max};
for (isize i = 0; i < gb_count_of(nodes); i++) {
i64 index = max_count;
if (nodes[i] != nullptr) {
i64 capacity = -1;
if (max_count >= 0) {
capacity = max_count;
}
i64 j = 0;
if (check_index_value(c, interval_kind == Token_Ellipsis, nodes[i], capacity, &j)) {
index = j;
}
} else if (i == 0) {
index = 0;
}
indices[i] = index;
}
for (isize i = 0; i < gb_count_of(indices); i++) {
i64 a = indices[i];
for (isize j = i+1; j < gb_count_of(indices); j++) {
i64 b = indices[j];
if (a > b && b >= 0) {
error(se->close, "Invalid slice indices: [%td > %td]", a, b);
}
}
}
case_end;
case_ast_node(ce, CallExpr, node);
return check_call_expr(c, o, node);
case_end;
case_ast_node(ce, MacroCallExpr, node);
error(node, "Macro calls are not yet supported");
return kind;
case_end;
case_ast_node(de, DerefExpr, node);
check_expr_or_type(c, o, de->expr);
if (o->mode == Addressing_Invalid) {
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
} else {
Type *t = base_type(o->type);
if (t->kind == Type_Pointer && !is_type_empty_union(t->Pointer.elem)) {
if (o->mode != Addressing_Immutable) {
o->mode = Addressing_Variable;
}
o->type = t->Pointer.elem;
} else {
gbString str = expr_to_string(o->expr);
error(o->expr, "Cannot dereference `%s`", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
}
case_end;
case AstNode_TypeType:
case AstNode_PolyType:
case AstNode_ProcType:
case AstNode_PointerType:
case AstNode_ArrayType:
case AstNode_DynamicArrayType:
case AstNode_VectorType:
case AstNode_StructType:
case AstNode_UnionType:
// case AstNode_RawUnionType:
case AstNode_EnumType:
case AstNode_MapType:
o->mode = Addressing_Type;
o->type = check_type(c, node);
break;
}
kind = Expr_Expr;
o->expr = node;
return kind;
}
ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExprKind kind = check_expr_base_internal(c, o, node, type_hint);
Type *type = nullptr;
ExactValue value = {ExactValue_Invalid};
switch (o->mode) {
case Addressing_Invalid:
type = t_invalid;
break;
case Addressing_NoValue:
type = nullptr;
break;
case Addressing_Constant:
type = o->type;
value = o->value;
break;
default:
type = o->type;
break;
}
if (type != nullptr && is_type_untyped(type)) {
add_untyped(&c->info, node, false, o->mode, type, value);
} else {
add_type_and_value(&c->info, node, o->mode, type, value);
}
return kind;
}
void check_multi_expr(Checker *c, Operand *o, AstNode *e) {
check_expr_base(c, o, e, nullptr);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
error_operand_no_value(o);
break;
case Addressing_Type:
error_operand_not_expression(o);
break;
}
o->mode = Addressing_Invalid;
}
void check_not_tuple(Checker *c, Operand *o) {
if (o->mode == Addressing_Value) {
// NOTE(bill): Tuples are not first class thus never named
if (o->type->kind == Type_Tuple) {
isize count = o->type->Tuple.variables.count;
GB_ASSERT(count != 1);
error(o->expr,
"%td-valued tuple found where single value expected", count);
o->mode = Addressing_Invalid;
}
}
}
void check_expr(Checker *c, Operand *o, AstNode *e) {
check_multi_expr(c, o, e);
check_not_tuple(c, o);
}
void check_expr_or_type(Checker *c, Operand *o, AstNode *e, Type *type_hint) {
check_expr_base(c, o, e, type_hint);
check_not_tuple(c, o);
error_operand_no_value(o);
}
gbString write_expr_to_string(gbString str, AstNode *node);
gbString write_struct_fields_to_string(gbString str, Array<AstNode *> params) {
for_array(i, params) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, params[i]);
}
return str;
}
gbString string_append_string(gbString str, String string) {
if (string.len > 0) {
return gb_string_append_length(str, &string[0], string.len);
}
return str;
}
gbString string_append_token(gbString str, Token token) {
return string_append_string(str, token.string);
}
gbString write_expr_to_string(gbString str, AstNode *node) {
if (node == nullptr)
return str;
if (is_ast_node_stmt(node)) {
GB_ASSERT("stmt passed to write_expr_to_string");
}
switch (node->kind) {
default:
str = gb_string_appendc(str, "(BadExpr)");
break;
case_ast_node(i, Ident, node);
str = string_append_token(str, i->token);
case_end;
case_ast_node(i, Implicit, node);
str = string_append_token(str, *i);
case_end;
case_ast_node(bl, BasicLit, node);
str = string_append_token(str, *bl);
case_end;
case_ast_node(bd, BasicDirective, node);
str = gb_string_append_rune(str, '#');
str = string_append_string(str, bd->name);
case_end;
case_ast_node(ud, Undef, node);
str = gb_string_appendc(str, "---");
case_end;
case_ast_node(pl, ProcLit, node);
str = write_expr_to_string(str, pl->type);
case_end;
case_ast_node(cl, CompoundLit, node);
str = write_expr_to_string(str, cl->type);
str = gb_string_append_rune(str, '{');
for_array(i, cl->elems) {
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, cl->elems[i]);
}
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(te, TagExpr, node);
str = gb_string_append_rune(str, '#');
str = string_append_token(str, te->name);
str = write_expr_to_string(str, te->expr);
case_end;
case_ast_node(ue, UnaryExpr, node);
str = string_append_token(str, ue->op);
str = write_expr_to_string(str, ue->expr);
case_end;
case_ast_node(de, DerefExpr, node);
str = write_expr_to_string(str, de->expr);
str = gb_string_append_rune(str, '^');
case_end;
case_ast_node(be, BinaryExpr, node);
str = write_expr_to_string(str, be->left);
str = gb_string_append_rune(str, ' ');
str = string_append_token(str, be->op);
str = gb_string_append_rune(str, ' ');
str = write_expr_to_string(str, be->right);
case_end;
case_ast_node(te, TernaryExpr, node);
str = write_expr_to_string(str, te->cond);
str = gb_string_appendc(str, " ? ");
str = write_expr_to_string(str, te->x);
str = gb_string_appendc(str, " : ");
str = write_expr_to_string(str, te->y);
case_end;
case_ast_node(pe, ParenExpr, node);
str = gb_string_append_rune(str, '(');
str = write_expr_to_string(str, pe->expr);
str = gb_string_append_rune(str, ')');
case_end;
case_ast_node(se, SelectorExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_append_rune(str, '.');
str = write_expr_to_string(str, se->selector);
case_end;
case_ast_node(ta, TypeAssertion, node);
str = write_expr_to_string(str, ta->expr);
str = gb_string_appendc(str, ".(");
str = write_expr_to_string(str, ta->type);
str = gb_string_append_rune(str, ')');
case_end;
case_ast_node(tc, TypeCast, node);
str = gb_string_appendc(str, "cast(");
str = write_expr_to_string(str, tc->type);
str = gb_string_append_rune(str, ')');
str = write_expr_to_string(str, tc->expr);
case_end;
case_ast_node(ie, IndexExpr, node);
str = write_expr_to_string(str, ie->expr);
str = gb_string_append_rune(str, '[');
str = write_expr_to_string(str, ie->index);
str = gb_string_append_rune(str, ']');
case_end;
case_ast_node(se, SliceExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_append_rune(str, '[');
str = write_expr_to_string(str, se->low);
str = gb_string_appendc(str, "..");
str = write_expr_to_string(str, se->high);
if (se->index3) {
str = gb_string_appendc(str, "..");
str = write_expr_to_string(str, se->max);
}
str = gb_string_append_rune(str, ']');
case_end;
case_ast_node(e, Ellipsis, node);
str = gb_string_appendc(str, "...");
str = write_expr_to_string(str, e->expr);
case_end;
case_ast_node(fv, FieldValue, node);
str = write_expr_to_string(str, fv->field);
str = gb_string_appendc(str, " = ");
str = write_expr_to_string(str, fv->value);
case_end;
case_ast_node(ht, HelperType, node);
str = gb_string_appendc(str, "#type ");
str = write_expr_to_string(str, ht->type);
case_end;
case_ast_node(pt, PolyType, node);
str = gb_string_append_rune(str, '$');
str = write_expr_to_string(str, pt->type);
if (pt->specialization != nullptr) {
str = gb_string_append_rune(str, '/');
str = write_expr_to_string(str, pt->specialization);
}
case_end;
case_ast_node(pt, PointerType, node);
str = gb_string_append_rune(str, '^');
str = write_expr_to_string(str, pt->type);
case_end;
case_ast_node(at, ArrayType, node);
str = gb_string_append_rune(str, '[');
if (at->count != nullptr &&
at->count->kind == AstNode_UnaryExpr &&
at->count->UnaryExpr.op.kind == Token_Ellipsis) {
str = gb_string_appendc(str, "...");
} else {
str = write_expr_to_string(str, at->count);
}
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, at->elem);
case_end;
case_ast_node(at, DynamicArrayType, node);
str = gb_string_appendc(str, "[dynamic]");
str = write_expr_to_string(str, at->elem);
case_end;
case_ast_node(vt, VectorType, node);
str = gb_string_appendc(str, "[vector ");
str = write_expr_to_string(str, vt->count);
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, vt->elem);
case_end;
case_ast_node(mt, MapType, node);
str = gb_string_appendc(str, "map[");
str = write_expr_to_string(str, mt->key);
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, mt->value);
case_end;
case_ast_node(f, Field, node);
if (f->flags&FieldFlag_using) {
str = gb_string_appendc(str, "using ");
}
if (f->flags&FieldFlag_no_alias) {
str = gb_string_appendc(str, "#no_alias ");
}
if (f->flags&FieldFlag_c_vararg) {
str = gb_string_appendc(str, "#c_vararg ");
}
for_array(i, f->names) {
AstNode *name = f->names[i];
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, name);
}
if (f->names.count > 0) {
if (f->type == nullptr && f->default_value != nullptr) {
str = gb_string_append_rune(str, ' ');
}
str = gb_string_appendc(str, ":");
}
if (f->type != nullptr) {
str = gb_string_append_rune(str, ' ');
str = write_expr_to_string(str, f->type);
}
if (f->default_value != nullptr) {
if (f->type != nullptr) {
str = gb_string_append_rune(str, ' ');
}
str = gb_string_appendc(str, "= ");
str = write_expr_to_string(str, f->default_value);
}
case_end;
case_ast_node(f, FieldList, node);
bool has_name = false;
for_array(i, f->list) {
ast_node(field, Field, f->list[i]);
if (field->names.count > 1) {
has_name = true;
break;
}
if (field->names.count == 0) {
continue;
}
if (!is_blank_ident(field->names[0])) {
has_name = true;
break;
}
}
for_array(i, f->list) {
if (i > 0) str = gb_string_appendc(str, ", ");
if (has_name) {
str = write_expr_to_string(str, f->list[i]);
} else {
ast_node(field, Field, f->list[i]);
if (field->flags&FieldFlag_using) {
str = gb_string_appendc(str, "using ");
}
if (field->flags&FieldFlag_no_alias) {
str = gb_string_appendc(str, "#no_alias ");
}
if (field->flags&FieldFlag_c_vararg) {
str = gb_string_appendc(str, "#c_vararg ");
}
str = write_expr_to_string(str, field->type);
}
}
case_end;
case_ast_node(f, UnionField, node);
str = write_expr_to_string(str, f->name);
str = gb_string_append_rune(str, '{');
str = write_expr_to_string(str, f->list);
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(ce, CallExpr, node);
str = write_expr_to_string(str, ce->proc);
str = gb_string_appendc(str, "(");
for_array(i, ce->args) {
AstNode *arg = ce->args[i];
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, arg);
}
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(tt, TypeType, node);
str = gb_string_appendc(str, "type");
if (tt->specialization) {
str = gb_string_appendc(str, "/");
str = write_expr_to_string(str, tt->specialization);
}
case_end;
case_ast_node(pt, ProcType, node);
str = gb_string_appendc(str, "proc(");
str = write_expr_to_string(str, pt->params);
str = gb_string_appendc(str, ")");
if (pt->results != nullptr) {
str = gb_string_appendc(str, " -> ");
str = write_expr_to_string(str, pt->results);
}
case_end;
case_ast_node(st, StructType, node);
str = gb_string_appendc(str, "struct ");
if (st->is_packed) str = gb_string_appendc(str, "#packed ");
if (st->is_ordered) str = gb_string_appendc(str, "#ordered ");
if (st->is_raw_union) str = gb_string_appendc(str, "#raw_union ");
str = gb_string_append_rune(str, '{');
str = write_struct_fields_to_string(str, st->fields);
str = gb_string_append_rune(str, '}');
case_end;
// case_ast_node(st, RawUnionType, node);
// str = gb_string_appendc(str, "raw_union ");
// str = gb_string_append_rune(str, '{');
// str = write_struct_fields_to_string(str, st->fields);
// str = gb_string_append_rune(str, '}');
// case_end;
case_ast_node(st, UnionType, node);
str = gb_string_appendc(str, "union ");
str = gb_string_append_rune(str, '{');
str = write_struct_fields_to_string(str, st->variants);
str = gb_string_append_rune(str, '}');
case_end;
case_ast_node(et, EnumType, node);
str = gb_string_appendc(str, "enum ");
if (et->base_type != nullptr) {
str = write_expr_to_string(str, et->base_type);
str = gb_string_append_rune(str, ' ');
}
str = gb_string_append_rune(str, '{');
for_array(i, et->fields) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, et->fields[i]);
}
str = gb_string_append_rune(str, '}');
case_end;
}
return str;
}
gbString expr_to_string(AstNode *expression) {
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression);
}