Files
Odin/src/checker/expr.cpp
2016-08-22 15:43:13 +01:00

2647 lines
72 KiB
C++

void check_assignment (Checker *c, Operand *operand, Type *type, String context_name);
b32 check_is_assignable_to (Checker *c, Operand *operand, Type *type);
void check_expr (Checker *c, Operand *operand, AstNode *expression);
void check_multi_expr (Checker *c, Operand *operand, AstNode *expression);
void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression);
ExpressionKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = NULL);
Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL);
void check_selector (Checker *c, Operand *operand, AstNode *node);
void check_not_tuple (Checker *c, Operand *operand);
void convert_to_typed (Checker *c, Operand *operand, Type *target_type);
gbString expr_to_string (AstNode *expression);
void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type);
void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body);
void update_expr_type (Checker *c, AstNode *e, Type *type, b32 final);
void check_struct_type(Checker *c, Type *struct_type, AstNode *node) {
GB_ASSERT(node->kind == AstNode_StructType);
GB_ASSERT(struct_type->kind == Type_Structure);
ast_node(st, StructType, node);
Map<Entity *> entity_map = {};
map_init(&entity_map, gb_heap_allocator());
defer (map_destroy(&entity_map));
isize field_count = 0;
for (AstNode *field = st->field_list; field != NULL; field = field->next) {
for (AstNode *name = field->Field.name_list; name != NULL; name = name->next) {
GB_ASSERT(name->kind == AstNode_Ident);
field_count++;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, st->field_count);
isize field_index = 0;
for (AstNode *field = st->field_list; field != NULL; field = field->next) {
ast_node(f, Field, field);
Type *type = check_type(c, f->type);
for (AstNode *name = f->name_list; name != NULL; name = name->next) {
ast_node(i, Ident, name);
Token name_token = i->token;
// TODO(bill): is the curr_scope correct?
Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type);
HashKey key = hash_string(name_token.string);
if (map_get(&entity_map, key)) {
// TODO(bill): Scope checking already checks the declaration
error(&c->error_collector, name_token, "`%.*s` is already declared in this structure", LIT(name_token.string));
} else {
map_set(&entity_map, key, e);
fields[field_index++] = e;
}
add_entity_use(&c->info, name, e);
}
}
struct_type->structure.fields = fields;
struct_type->structure.field_count = field_count;
struct_type->structure.is_packed = st->is_packed;
}
void check_enum_type(Checker *c, Type *enum_type, AstNode *node) {
GB_ASSERT(node->kind == AstNode_EnumType);
GB_ASSERT(enum_type->kind == Type_Enumeration);
ast_node(et, EnumType, node);
Map<Entity *> entity_map = {};
map_init(&entity_map, gb_heap_allocator());
defer (map_destroy(&entity_map));
Type *base_type = t_int;
if (et->base_type != NULL) {
base_type = check_type(c, et->base_type);
}
if (base_type == NULL || !is_type_integer(base_type)) {
error(&c->error_collector, et->token, "Base type for enumeration must be an integer");
return;
} else
if (base_type == NULL) {
base_type = t_int;
}
enum_type->enumeration.base = base_type;
Entity **fields = gb_alloc_array(c->allocator, Entity *, et->field_count);
isize field_index = 0;
ExactValue iota = make_exact_value_integer(-1);
for (AstNode *field = et->field_list; field != NULL; field = field->next) {
ast_node(f, FieldValue, field);
Token name_token = f->field->Ident.token;
Operand o = {};
if (f->value != NULL) {
check_expr(c, &o, f->value);
if (o.mode != Addressing_Constant) {
error(&c->error_collector, ast_node_token(f->value), "Enumeration value must be a constant integer");
o.mode = Addressing_Invalid;
}
if (o.mode != Addressing_Invalid) {
check_assignment(c, &o, base_type, make_string("enumeration"));
}
if (o.mode != Addressing_Invalid) {
iota = o.value;
} else {
Token add_token = {Token_Add};
iota = exact_binary_operator_value(add_token, iota, make_exact_value_integer(1));
}
} else {
Token add_token = {Token_Add};
iota = exact_binary_operator_value(add_token, iota, make_exact_value_integer(1));
}
Entity *e = make_entity_constant(c->allocator, c->context.scope, name_token, enum_type, iota);
HashKey key = hash_string(name_token.string);
if (map_get(&entity_map, key)) {
// TODO(bill): Scope checking already checks the declaration
error(&c->error_collector, name_token, "`%.*s` is already declared in this enumeration", LIT(name_token.string));
} else {
map_set(&entity_map, key, e);
fields[field_index++] = e;
}
add_entity_use(&c->info, f->field, e);
}
enum_type->enumeration.fields = fields;
enum_type->enumeration.field_count = et->field_count;
}
Type *check_get_params(Checker *c, Scope *scope, AstNode *field_list, isize field_count) {
if (field_list == NULL || field_count == 0)
return NULL;
Type *tuple = make_type_tuple(c->allocator);
Entity **variables = gb_alloc_array(c->allocator, Entity *, field_count);
isize variable_index = 0;
for (AstNode *field = field_list; field != NULL; field = field->next) {
ast_node(f, Field, field);
AstNode *type_expr = f->type;
if (type_expr) {
Type *type = check_type(c, type_expr);
for (AstNode *name = f->name_list; name != NULL; name = name->next) {
if (name->kind == AstNode_Ident) {
ast_node(i, Ident, name);
Entity *param = make_entity_param(c->allocator, scope, i->token, type);
add_entity(c, scope, name, param);
variables[variable_index++] = param;
} else {
error(&c->error_collector, ast_node_token(name), "Invalid parameter (invalid AST)");
}
}
}
}
tuple->tuple.variables = variables;
tuple->tuple.variable_count = field_count;
return tuple;
}
Type *check_get_results(Checker *c, Scope *scope, AstNode *list, isize list_count) {
if (list == NULL)
return NULL;
Type *tuple = make_type_tuple(c->allocator);
Entity **variables = gb_alloc_array(c->allocator, Entity *, list_count);
isize variable_index = 0;
for (AstNode *item = list; item != NULL; item = item->next) {
Type *type = check_type(c, item);
Token token = ast_node_token(item);
token.string = make_string(""); // NOTE(bill): results are not named
// TODO(bill): Should I have named results?
Entity *param = make_entity_param(c->allocator, scope, token, type);
// NOTE(bill): No need to record
variables[variable_index++] = param;
}
tuple->tuple.variables = variables;
tuple->tuple.variable_count = list_count;
return tuple;
}
void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) {
ast_node(pt, ProcType, proc_type_node);
isize param_count = pt->param_count;
isize result_count = pt->result_count;
// gb_printf("%td -> %td\n", param_count, result_count);
Type *params = check_get_params(c, c->context.scope, pt->param_list, param_count);
Type *results = check_get_results(c, c->context.scope, pt->result_list, result_count);
type->proc.scope = c->context.scope;
type->proc.params = params;
type->proc.param_count = pt->param_count;
type->proc.results = results;
type->proc.result_count = pt->result_count;
}
void check_identifier(Checker *c, Operand *o, AstNode *n, Type *named_type) {
GB_ASSERT(n->kind == AstNode_Ident);
o->mode = Addressing_Invalid;
o->expr = n;
ast_node(i, Ident, n);
Entity *e = scope_lookup_entity(c->context.scope, i->token.string);
if (e == NULL) {
error(&c->error_collector, i->token,
"Undeclared type or identifier `%.*s`", LIT(i->token.string));
return;
}
add_entity_use(&c->info, n, e);
if (e->type == NULL) {
auto *found = map_get(&c->info.entities, hash_pointer(e));
if (found != NULL) {
check_entity_decl(c, e, *found, named_type);
} else {
GB_PANIC("Internal Compiler Error: DeclInfo not found!");
}
}
if (e->type == NULL) {
GB_PANIC("Compiler error: How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(i->token.string));
return;
}
switch (e->kind) {
case Entity_Constant:
add_declaration_dependency(c, e);
if (e->type == t_invalid)
return;
o->value = e->Constant.value;
GB_ASSERT(o->value.kind != ExactValue_Invalid);
o->mode = Addressing_Constant;
break;
case Entity_Variable:
add_declaration_dependency(c, e);
e->Variable.used = true;
if (e->type == t_invalid)
return;
o->mode = Addressing_Variable;
break;
case Entity_TypeName:
o->mode = Addressing_Type;
break;
case Entity_Procedure:
add_declaration_dependency(c, e);
o->mode = Addressing_Value;
break;
case Entity_Builtin:
o->builtin_id = e->Builtin.id;
o->mode = Addressing_Builtin;
break;
default:
GB_PANIC("Compiler error: Unknown EntityKind");
break;
}
o->type = e->type;
}
i64 check_array_count(Checker *c, AstNode *e) {
if (e) {
Operand o = {};
check_expr(c, &o, e);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error(&c->error_collector, ast_node_token(e), "Array count must be a constant");
}
return 0;
}
if (is_type_untyped(o.type) || is_type_integer(o.type)) {
if (o.value.kind == ExactValue_Integer) {
i64 count = o.value.value_integer;
if (count >= 0)
return count;
error(&c->error_collector, ast_node_token(e), "Invalid array count");
return 0;
}
}
error(&c->error_collector, ast_node_token(e), "Array count must be an integer");
}
return 0;
}
Type *check_type_expr_extra(Checker *c, AstNode *e, Type *named_type) {
gbString err_str = NULL;
defer (gb_string_free(err_str));
switch (e->kind) {
case_ast_node(i, Ident, e);
Operand o = {};
check_identifier(c, &o, e, named_type);
switch (o.mode) {
case Addressing_Type: {
Type *t = o.type;
set_base_type(named_type, t);
return t;
} break;
case Addressing_Invalid:
break;
case Addressing_NoValue:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` used as a type", err_str);
break;
default:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` used as a type when not a type", err_str);
break;
}
case_end;
case_ast_node(pe, ParenExpr, e);
return check_type(c, pe->expr, named_type);
case_end;
case_ast_node(at, ArrayType, e);
if (at->count != NULL) {
Type *t = make_type_array(c->allocator,
check_type(c, at->elem),
check_array_count(c, at->count));
set_base_type(named_type, t);
return t;
} else {
Type *t = make_type_slice(c->allocator, check_type(c, at->elem));
set_base_type(named_type, t);
return t;
}
case_end;
case_ast_node(vt, VectorType, e);
Type *elem = check_type(c, vt->elem);
Type *be = get_base_type(elem);
if (!is_type_vector(be) &&
!(is_type_boolean(be) || is_type_numeric(be))) {
err_str = type_to_string(elem);
error(&c->error_collector, ast_node_token(vt->elem), "Vector element type must be a boolean, numerical, or vector. Got `%s`", err_str);
break;
} else {
i64 count = check_array_count(c, vt->count);
Type *t = make_type_vector(c->allocator, elem, count);
set_base_type(named_type, t);
return t;
}
case_end;
case_ast_node(st, StructType, e);
Type *t = make_type_structure(c->allocator);
set_base_type(named_type, t);
check_struct_type(c, t, e);
return t;
case_end;
case_ast_node(pt, PointerType, e);
Type *t = make_type_pointer(c->allocator, check_type(c, pt->type));
set_base_type(named_type, t);
return t;
case_end;
case_ast_node(pt, ProcType, e);
Type *t = alloc_type(c->allocator, Type_Proc);
set_base_type(named_type, t);
check_open_scope(c, e);
check_procedure_type(c, t, e);
check_close_scope(c);
return t;
case_end;
default:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` is not a type", err_str);
break;
}
Type *t = t_invalid;
set_base_type(named_type, t);
return t;
}
Type *check_type(Checker *c, AstNode *e, Type *named_type) {
ExactValue null_value = {ExactValue_Invalid};
Type *type = NULL;
gbString err_str = NULL;
defer (gb_string_free(err_str));
switch (e->kind) {
case_ast_node(i, Ident, e);
Operand operand = {};
check_identifier(c, &operand, e, named_type);
switch (operand.mode) {
case Addressing_Type: {
type = operand.type;
set_base_type(named_type, type);
goto end;
} break;
case Addressing_Invalid:
break;
case Addressing_NoValue:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` used as a type", err_str);
break;
default:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` used as a type when not a type", err_str);
break;
}
case_end;
case_ast_node(se, SelectorExpr, e);
Operand o = {};
check_selector(c, &o, e);
if (o.mode == Addressing_Type) {
set_base_type(type, o.type);
return o.type;
}
case_end;
case_ast_node(pe, ParenExpr, e);
return check_type(c, pe->expr, named_type);
case_end;
case_ast_node(at, ArrayType, e);
if (at->count != NULL) {
type = make_type_array(c->allocator,
check_type(c, at->elem),
check_array_count(c, at->count));
set_base_type(named_type, type);
} else {
type = make_type_slice(c->allocator, check_type(c, at->elem));
set_base_type(named_type, type);
}
goto end;
case_end;
case_ast_node(vt, VectorType, e);
Type *elem = check_type(c, vt->elem);
Type *be = get_base_type(elem);
i64 count = check_array_count(c, vt->count);
if (!is_type_boolean(be) && !is_type_numeric(be)) {
err_str = type_to_string(elem);
error(&c->error_collector, ast_node_token(vt->elem), "Vector element type must be numerical or a boolean. Got `%s`", err_str);
}
type = make_type_vector(c->allocator, elem, count);
set_base_type(named_type, type);
goto end;
case_end;
case_ast_node(st, StructType, e);
type = make_type_structure(c->allocator);
set_base_type(named_type, type);
check_struct_type(c, type, e);
goto end;
case_end;
case_ast_node(et, EnumType, e);
type = make_type_enumeration(c->allocator);
set_base_type(named_type, type);
check_enum_type(c, type, e);
goto end;
case_end;
case_ast_node(pt, PointerType, e);
type = make_type_pointer(c->allocator, check_type(c, pt->type));
set_base_type(named_type, type);
goto end;
case_end;
case_ast_node(pt, ProcType, e);
type = alloc_type(c->allocator, Type_Proc);
set_base_type(named_type, type);
check_procedure_type(c, type, e);
goto end;
case_end;
default:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` is not a type", err_str);
break;
}
type = t_invalid;
set_base_type(named_type, type);
end:
GB_ASSERT(is_type_typed(type));
add_type_and_value(&c->info, e, Addressing_Type, type, null_value);
return type;
}
b32 check_unary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = get_base_type(base_vector_type(get_base_type(o->type)));
gbString str = NULL;
defer (gb_string_free(str));
switch (op.kind) {
case Token_Add:
case Token_Sub:
if (!is_type_numeric(type)) {
str = expr_to_string(o->expr);
error(&c->error_collector, op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str);
}
break;
case Token_Xor:
if (!is_type_integer(type)) {
error(&c->error_collector, op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
}
break;
case Token_Not:
if (!is_type_boolean(type)) {
str = expr_to_string(o->expr);
error(&c->error_collector, op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string));
}
break;
default:
error(&c->error_collector, op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
b32 check_binary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = get_base_type(base_vector_type(o->type));
switch (op.kind) {
case Token_Add:
case Token_Sub:
case Token_Mul:
case Token_Quo:
case Token_AddEq:
case Token_SubEq:
case Token_MulEq:
case Token_QuoEq:
if (!is_type_numeric(type)) {
error(&c->error_collector, op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_Mod:
case Token_And:
case Token_Or:
case Token_Xor:
case Token_AndNot:
case Token_ModEq:
case Token_AndEq:
case Token_OrEq:
case Token_XorEq:
case Token_AndNotEq:
if (!is_type_integer(type)) {
error(&c->error_collector, op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
return false;
}
break;
case Token_CmpAnd:
case Token_CmpOr:
case Token_CmpAndEq:
case Token_CmpOrEq:
if (!is_type_boolean(type)) {
error(&c->error_collector, op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string));
return false;
}
break;
default:
error(&c->error_collector, op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
b32 check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) {
if (in_value.kind == ExactValue_Invalid)
return true;
if (is_type_boolean(type)) {
return in_value.kind == ExactValue_Bool;
} else if (is_type_string(type)) {
return in_value.kind == ExactValue_String;
} else if (is_type_integer(type)) {
if (in_value.kind != ExactValue_Integer)
return false;
if (out_value) *out_value = in_value;
i64 i = in_value.value_integer;
i64 s = 8*type_size_of(c->sizes, c->allocator, type);
u64 umax = ~0ull;
if (s < 64) {
umax = (1ull << s) - 1ull;
}
i64 imax = (1ll << (s-1ll));
switch (type->basic.kind) {
case Basic_i8:
case Basic_i16:
case Basic_i32:
case Basic_i64:
case Basic_int:
return gb_is_between(i, -imax, imax-1);
case Basic_u8:
case Basic_u16:
case Basic_u32:
case Basic_u64:
case Basic_uint:
return !(i < 0 || cast(u64)i > umax);
case Basic_UntypedInteger:
return true;
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
}
} else if (is_type_float(type)) {
ExactValue v = exact_value_to_float(in_value);
if (v.kind != ExactValue_Float)
return false;
switch (type->basic.kind) {
case Basic_f32:
if (out_value) *out_value = v;
return true;
case Basic_f64:
if (out_value) *out_value = v;
return true;
case Basic_UntypedFloat:
return true;
}
} else if (is_type_pointer(type)) {
if (in_value.kind == ExactValue_Pointer)
return true;
if (in_value.kind == ExactValue_Integer)
return true;
if (out_value) *out_value = in_value;
}
return false;
}
void check_is_expressible(Checker *c, Operand *o, Type *type) {
GB_ASSERT(type->kind == Type_Basic);
GB_ASSERT(o->mode == Addressing_Constant);
if (!check_value_is_expressible(c, o->value, type, &o->value)) {
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
defer (gb_string_free(a));
defer (gb_string_free(b));
if (is_type_numeric(o->type) && is_type_numeric(type)) {
if (!is_type_integer(o->type) && is_type_integer(type)) {
error(&c->error_collector, ast_node_token(o->expr), "`%s` truncated to `%s`", a, b);
} else {
error(&c->error_collector, ast_node_token(o->expr), "`%s = %lld` overflows `%s`", a, o->value.value_integer, b);
}
} else {
error(&c->error_collector, ast_node_token(o->expr), "Cannot convert `%s` to `%s`", a, b);
}
o->mode = Addressing_Invalid;
}
}
b32 check_is_expr_vector_index(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_IndexExpr) {
ast_node(ie, IndexExpr, expr);
Type *t = type_of_expr(&c->info, ie->expr);
if (t != NULL) {
return is_type_vector(get_base_type(t));
}
}
return false;
}
void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) {
if (op.kind == Token_Pointer) { // Pointer address
if (o->mode != Addressing_Variable ||
check_is_expr_vector_index(c, o->expr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
defer (gb_string_free(str));
error(&c->error_collector, op, "Cannot take the pointer address of `%s`", str);
o->mode = Addressing_Invalid;
return;
}
o->mode = Addressing_Value;
o->type = make_type_pointer(c->allocator, o->type);
return;
}
if (!check_unary_op(c, o, op)) {
o->mode = Addressing_Invalid;
return;
}
if (o->mode == Addressing_Constant) {
Type *type = get_base_type(o->type);
GB_ASSERT(type->kind == Type_Basic);
i32 precision = 0;
if (is_type_unsigned(type))
precision = cast(i32)(8 * type_size_of(c->sizes, c->allocator, type));
o->value = exact_unary_operator_value(op, o->value, precision);
if (is_type_typed(type)) {
if (node != NULL)
o->expr = node;
check_is_expressible(c, o, type);
}
return;
}
o->mode = Addressing_Value;
}
void check_comparison(Checker *c, Operand *x, Operand *y, Token op) {
gbString err_str = NULL;
defer ({
if (err_str != NULL)
gb_string_free(err_str);
});
if (check_is_assignable_to(c, x, y->type) ||
check_is_assignable_to(c, y, x->type)) {
b32 defined = false;
switch (op.kind) {
case Token_CmpEq:
case Token_NotEq:
defined = is_type_comparable(get_base_type(x->type));
break;
case Token_Lt:
case Token_Gt:
case Token_LtEq:
case Token_GtEq: {
defined = is_type_ordered(get_base_type(x->type));
} break;
}
if (!defined) {
gbString type_string = type_to_string(x->type);
err_str = gb_string_make(gb_heap_allocator(),
gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(op.string), type_string));
gb_string_free(type_string);
}
} else {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
defer(gb_string_free(xt));
defer(gb_string_free(yt));
err_str = gb_string_make(gb_heap_allocator(),
gb_bprintf("mismatched types `%s` and `%s`", xt, yt));
}
if (err_str != NULL) {
error(&c->error_collector, op, "Cannot compare expression, %s", err_str);
return;
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
x->value = make_exact_value_bool(compare_exact_values(op, x->value, y->value));
} else {
x->mode = Addressing_Value;
update_expr_type(c, x->expr, default_type(x->type), true);
update_expr_type(c, y->expr, default_type(y->type), true);
}
if (is_type_vector(get_base_type(y->type))) {
x->type = make_type_vector(c->allocator, t_bool, get_base_type(y->type)->vector.count);
} else {
x->type = t_untyped_bool;
}
}
void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
ExactValue x_val = {};
if (x->mode == Addressing_Constant) {
x_val = exact_value_to_integer(x->value);
}
b32 x_is_untyped = is_type_untyped(x->type);
if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
gbString err_str = expr_to_string(x->expr);
defer (gb_string_free(err_str));
error(&c->error_collector, ast_node_token(node),
"Shifted operand `%s` must be an integer", err_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_unsigned(y->type)) {
} else if (is_type_untyped(y->type)) {
convert_to_typed(c, y, t_untyped_integer);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
} else {
gbString err_str = expr_to_string(y->expr);
defer (gb_string_free(err_str));
error(&c->error_collector, ast_node_token(node),
"Shift amount `%s` must be an unsigned integer", err_str);
x->mode = Addressing_Invalid;
return;
}
if (x->mode == Addressing_Constant) {
if (y->mode == Addressing_Constant) {
ExactValue y_val = exact_value_to_integer(y->value);
if (y_val.kind != ExactValue_Integer) {
gbString err_str = expr_to_string(y->expr);
defer (gb_string_free(err_str));
error(&c->error_collector, ast_node_token(node),
"Shift amount `%s` must be an unsigned integer", err_str);
x->mode = Addressing_Invalid;
return;
}
u64 amount = cast(u64)y_val.value_integer;
if (amount > 1074) {
gbString err_str = expr_to_string(y->expr);
defer (gb_string_free(err_str));
error(&c->error_collector, ast_node_token(node),
"Shift amount too large: `%s`", err_str);
x->mode = Addressing_Invalid;
return;
}
if (!is_type_integer(x->type)) {
// NOTE(bill): It could be an untyped float but still representable
// as an integer
x->type = t_untyped_integer;
}
x->value = exact_value_shift(be->op, x_val, make_exact_value_integer(amount));
if (is_type_typed(x->type)) {
check_is_expressible(c, x, get_base_type(x->type));
}
return;
}
if (x_is_untyped) {
ExpressionInfo *info = map_get(&c->info.untyped, hash_pointer(x->expr));
if (info != NULL) {
info->is_lhs = true;
}
x->mode = Addressing_Value;
return;
}
}
if (y->mode == Addressing_Constant && y->value.value_integer < 0) {
gbString err_str = expr_to_string(y->expr);
defer (gb_string_free(err_str));
error(&c->error_collector, ast_node_token(node),
"Shift amount cannot be negative: `%s`", err_str);
}
x->mode = Addressing_Value;
}
b32 check_castable_to(Checker *c, Operand *operand, Type *y) {
if (check_is_assignable_to(c, operand, y))
return true;
Type *x = operand->type;
Type *xb = get_enum_base_type(get_base_type(x));
Type *yb = get_enum_base_type(get_base_type(y));
if (are_types_identical(xb, yb))
return true;
// Cast between booleans and integers
if (is_type_boolean(x) || is_type_integer(x)) {
if (is_type_boolean(y) || is_type_integer(y))
return true;
}
// Cast between numbers
if (is_type_integer(x) || is_type_float(x)) {
if (is_type_integer(y) || is_type_float(y))
return true;
}
// Cast between pointers
if (is_type_pointer(x)) {
if (is_type_pointer(y))
return true;
}
// // untyped integers -> pointers
// if (is_type_untyped(xb) && is_type_integer(xb)) {
// if (is_type_pointer(yb))
// return true;
// }
// (u)int <-> pointer
if (is_type_pointer(xb) || (is_type_int_or_uint(xb) && !is_type_untyped(xb))) {
if (is_type_pointer(yb))
return true;
}
if (is_type_pointer(xb)) {
if (is_type_pointer(yb) || (is_type_int_or_uint(yb) && !is_type_untyped(yb)))
return true;
}
// []byte/[]u8 <-> string
if (is_type_u8_slice(xb) && is_type_string(yb)) {
return true;
}
if (is_type_string(xb) && is_type_u8_slice(yb)) {
return true;
}
// proc <-> proc
if (is_type_proc(xb) && is_type_proc(yb)) {
return true;
}
// proc -> rawptr
if (is_type_proc(xb) && is_type_rawptr(yb)) {
return true;
}
return false;
}
void check_binary_expr(Checker *c, Operand *x, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
Operand y_ = {}, *y = &y_;
gbString err_str = NULL;
defer (gb_string_free(err_str));
ast_node(be, BinaryExpr, node);
if (be->op.kind == Token_as) {
check_expr(c, x, be->left);
Type *type = check_type(c, be->right);
if (x->mode == Addressing_Invalid)
return;
b32 is_const_expr = x->mode == Addressing_Constant;
b32 can_convert = false;
Type *base_type = get_base_type(type);
if (is_const_expr && is_type_constant_type(base_type)) {
if (base_type->kind == Type_Basic) {
if (check_value_is_expressible(c, x->value, base_type, &x->value)) {
can_convert = true;
}
}
} else if (check_castable_to(c, x, type)) {
x->mode = Addressing_Value;
can_convert = true;
}
if (!can_convert) {
gbString expr_str = expr_to_string(x->expr);
gbString type_str = type_to_string(type);
defer (gb_string_free(expr_str));
defer (gb_string_free(type_str));
error(&c->error_collector, ast_node_token(x->expr), "Cannot cast `%s` as `%s`", expr_str, type_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
Type *final_type = type;
if (is_const_expr && !is_type_constant_type(type)) {
final_type = default_type(x->type);
}
update_expr_type(c, x->expr, final_type, true);
}
x->type = type;
return;
} else if (be->op.kind == Token_transmute) {
check_expr(c, x, be->left);
Type *type = check_type(c, be->right);
if (x->mode == Addressing_Invalid)
return;
if (x->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(x->expr);
defer (gb_string_free(expr_str));
error(&c->error_collector, ast_node_token(x->expr), "Cannot transmute constant expression: `%s`", expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
gbString expr_str = expr_to_string(x->expr);
defer (gb_string_free(expr_str));
error(&c->error_collector, ast_node_token(x->expr), "Cannot transmute untyped expression: `%s`", expr_str);
x->mode = Addressing_Invalid;
return;
}
i64 otz = type_size_of(c->sizes, c->allocator, x->type);
i64 ttz = type_size_of(c->sizes, c->allocator, type);
if (otz != ttz) {
gbString expr_str = expr_to_string(x->expr);
gbString type_str = type_to_string(type);
defer (gb_string_free(expr_str));
defer (gb_string_free(type_str));
error(&c->error_collector, ast_node_token(x->expr), "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, otz, ttz);
x->mode = Addressing_Invalid;
return;
}
x->type = type;
return;
}
check_expr(c, x, be->left);
check_expr(c, y, be->right);
if (x->mode == Addressing_Invalid) {
return;
}
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
x->expr = y->expr;
return;
}
Token op = be->op;
if (token_is_shift(op)) {
check_shift(c, x, y, node);
return;
}
convert_to_typed(c, x, y->type);
if (x->mode == Addressing_Invalid) return;
convert_to_typed(c, y, x->type);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
if (token_is_comparison(op)) {
check_comparison(c, x, y, op);
return;
}
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
defer (gb_string_free(xt));
defer (gb_string_free(yt));
err_str = expr_to_string(x->expr);
error(&c->error_collector, op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", err_str, xt, yt);
}
x->mode = Addressing_Invalid;
return;
}
if (!check_binary_op(c, x, op)) {
x->mode = Addressing_Invalid;
return;
}
switch (op.kind) {
case Token_Quo:
case Token_Mod:
case Token_QuoEq:
case Token_ModEq:
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
y->mode == Addressing_Constant) {
b32 fail = false;
switch (y->value.kind) {
case ExactValue_Integer:
if (y->value.value_integer == 0)
fail = true;
break;
case ExactValue_Float:
if (y->value.value_float == 0.0)
fail = true;
break;
}
if (fail) {
error(&c->error_collector, ast_node_token(y->expr), "Division by zero not allowed");
x->mode = Addressing_Invalid;
return;
}
}
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
ExactValue a = x->value;
ExactValue b = y->value;
Type *type = get_base_type(x->type);
GB_ASSERT(type->kind == Type_Basic);
if (op.kind == Token_Quo && is_type_integer(type)) {
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
}
x->value = exact_binary_operator_value(op, a, b);
if (is_type_typed(type)) {
if (node != NULL)
x->expr = node;
check_is_expressible(c, x, type);
}
return;
}
x->mode = Addressing_Value;
}
void update_expr_type(Checker *c, AstNode *e, Type *type, b32 final) {
HashKey key = hash_pointer(e);
ExpressionInfo *found = map_get(&c->info.untyped, key);
if (found == NULL)
return;
switch (e->kind) {
case_ast_node(ue, UnaryExpr, e);
if (found->value.kind != ExactValue_Invalid)
break;
update_expr_type(c, ue->expr, type, final);
case_end;
case_ast_node(be, BinaryExpr, e);
if (found->value.kind != ExactValue_Invalid)
break;
if (!token_is_comparison(be->op)) {
if (token_is_shift(be->op)) {
update_expr_type(c, be->left, type, final);
} else {
update_expr_type(c, be->left, type, final);
update_expr_type(c, be->right, type, final);
}
}
case_end;
}
if (!final && is_type_untyped(type)) {
found->type = get_base_type(type);
map_set(&c->info.untyped, key, *found);
} else {
ExpressionInfo old = *found;
map_remove(&c->info.untyped, key);
if (old.is_lhs && !is_type_integer(type)) {
gbString expr_str = expr_to_string(e);
gbString type_str = type_to_string(type);
defer (gb_string_free(expr_str));
defer (gb_string_free(type_str));
error(&c->error_collector, ast_node_token(e), "Shifted operand %s must be an integer, got %s", expr_str, type_str);
return;
}
add_type_and_value(&c->info, e, found->mode, type, found->value);
}
}
void update_expr_value(Checker *c, AstNode *e, ExactValue value) {
ExpressionInfo *found = map_get(&c->info.untyped, hash_pointer(e));
if (found)
found->value = value;
}
void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) {
gbString expr_str = expr_to_string(operand->expr);
gbString type_str = type_to_string(target_type);
char *extra_text = "";
defer (gb_string_free(expr_str));
defer (gb_string_free(type_str));
if (operand->mode == Addressing_Constant) {
if (operand->value.value_integer == 0) {
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
extra_text = " - Did you want `null`?";
}
}
error(&c->error_collector, ast_node_token(operand->expr), "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text);
operand->mode = Addressing_Invalid;
}
void convert_to_typed(Checker *c, Operand *operand, Type *target_type) {
GB_ASSERT_NOT_NULL(target_type);
if (operand->mode == Addressing_Invalid ||
is_type_typed(operand->type) ||
target_type == t_invalid) {
return;
}
if (is_type_untyped(target_type)) {
Type *x = operand->type;
Type *y = target_type;
if (is_type_numeric(x) && is_type_numeric(y)) {
if (x < y) {
operand->type = target_type;
update_expr_type(c, operand->expr, target_type, false);
}
} else if (x != y) {
convert_untyped_error(c, operand, target_type);
}
return;
}
Type *t = get_enum_base_type(get_base_type(target_type));
switch (t->kind) {
case Type_Basic:
if (operand->mode == Addressing_Constant) {
check_is_expressible(c, operand, t);
if (operand->mode == Addressing_Invalid) {
return;
}
update_expr_value(c, operand->expr, operand->value);
} else {
// TODO(bill): Is this really needed?
switch (operand->type->basic.kind) {
case Basic_UntypedBool:
if (!is_type_boolean(target_type)) {
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedInteger:
case Basic_UntypedFloat:
case Basic_UntypedRune:
if (!is_type_numeric(target_type)) {
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
}
break;
case Type_Pointer:
switch (operand->type->basic.kind) {
case Basic_UntypedPointer:
target_type = t_untyped_pointer;
break;
default:
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Type_Proc:
switch (operand->type->basic.kind) {
case Basic_UntypedPointer:
break;
default:
convert_untyped_error(c, operand, target_type);
return;
}
break;
default:
convert_untyped_error(c, operand, target_type);
return;
}
operand->type = target_type;
}
b32 check_index_value(Checker *c, AstNode *index_value, i64 max_count, i64 *value) {
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, index_value);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
convert_to_typed(c, &operand, t_int);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
if (!is_type_integer(get_enum_base_type(operand.type))) {
gbString expr_str = expr_to_string(operand.expr);
error(&c->error_collector, ast_node_token(operand.expr),
"Index `%s` must be an integer", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (operand.mode == Addressing_Constant) {
if (max_count >= 0) { // NOTE(bill): Do array bound checking
i64 i = exact_value_to_integer(operand.value).value_integer;
if (i < 0) {
gbString expr_str = expr_to_string(operand.expr);
error(&c->error_collector, ast_node_token(operand.expr),
"Index `%s` cannot be a negative value", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (value) *value = i;
if (i >= max_count) {
gbString expr_str = expr_to_string(operand.expr);
error(&c->error_collector, ast_node_token(operand.expr),
"Index `%s` is out of bounds range [0, %lld)", expr_str, max_count);
gb_string_free(expr_str);
return false;
}
return true;
}
}
// NOTE(bill): It's alright :D
if (value) *value = -1;
return true;
}
Entity *lookup_field(Type *type, AstNode *field_node, isize *index = NULL) {
GB_ASSERT(type != NULL);
GB_ASSERT(field_node->kind == AstNode_Ident);
type = get_base_type(type);
if (type->kind == Type_Pointer)
type = get_base_type(type->pointer.elem);
ast_node(i, Ident, field_node);
String field_str = i->token.string;
switch (type->kind) {
case Type_Structure:
for (isize i = 0; i < type->structure.field_count; i++) {
Entity *f = type->structure.fields[i];
GB_ASSERT(f->kind == Entity_Variable && f->Variable.is_field);
String str = f->token.string;
if (are_strings_equal(field_str, str)) {
if (index) *index = i;
return f;
}
}
break;
case Type_Enumeration:
for (isize i = 0; i < type->enumeration.field_count; i++) {
Entity *f = type->enumeration.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
String str = f->token.string;
if (are_strings_equal(field_str, str)) {
if (index) *index = i;
return f;
}
}
break;
break;
// TODO(bill): Other types and extra "hidden" fields (e.g. introspection stuff)
// TODO(bill): Allow for access of field through index? e.g. `x.3` will get member of index 3
// Or is this only suitable if tuples are first-class?
}
return NULL;
}
void check_selector(Checker *c, Operand *operand, AstNode *node) {
GB_ASSERT(node->kind == AstNode_SelectorExpr);
ast_node(se, SelectorExpr, node);
AstNode *op_expr = se->expr;
AstNode *selector = se->selector;
if (selector) {
Entity *entity = lookup_field(operand->type, selector);
if (entity == NULL) {
gbString op_str = expr_to_string(op_expr);
gbString sel_str = expr_to_string(selector);
defer (gb_string_free(op_str));
defer (gb_string_free(sel_str));
error(&c->error_collector, ast_node_token(op_expr), "`%s` has no field `%s`", op_str, sel_str);
operand->mode = Addressing_Invalid;
operand->expr = node;
return;
}
add_entity_use(&c->info, selector, entity);
if (is_type_enum(operand->type)) {
operand->type = entity->type;
operand->expr = node;
operand->mode = Addressing_Constant;
operand->value = entity->Constant.value;
} else {
operand->type = entity->type;
operand->expr = node;
if (operand->mode != Addressing_Variable)
operand->mode = Addressing_Value;
}
} else {
operand->mode = Addressing_Invalid;
operand->expr = node;
}
}
b32 check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
BuiltinProc *bp = &builtin_procs[id];
{
char *err = NULL;
if (ce->arg_list_count < bp->arg_count)
err = "Too few";
if (ce->arg_list_count > bp->arg_count && !bp->variadic)
err = "Too many";
if (err) {
ast_node(proc, Ident, ce->proc);
error(&c->error_collector, ce->close, "`%s` arguments for `%.*s`, expected %td, got %td",
err, LIT(proc->token.string),
bp->arg_count, ce->arg_list_count);
return false;
}
}
switch (id) {
case BuiltinProc_size_of:
case BuiltinProc_align_of:
case BuiltinProc_offset_of:
// NOTE(bill): The first arg is a Type, this will be checked case by case
break;
default:
check_multi_expr(c, operand, ce->arg_list);
}
switch (id) {
case BuiltinProc_size_of: {
// size_of :: proc(Type)
Type *type = check_type(c, ce->arg_list);
if (!type) {
error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `size_of`");
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, type));
operand->type = t_int;
} break;
case BuiltinProc_size_of_val:
// size_of_val :: proc(val)
check_assignment(c, operand, NULL, make_string("argument of `size_of`"));
if (operand->mode == Addressing_Invalid)
return false;
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, operand->type));
operand->type = t_int;
break;
case BuiltinProc_align_of: {
// align_of :: proc(Type)
Type *type = check_type(c, ce->arg_list);
if (!type) {
error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `align_of`");
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, type));
operand->type = t_int;
} break;
case BuiltinProc_align_of_val:
// align_of_val :: proc(val)
check_assignment(c, operand, NULL, make_string("argument of `align_of`"));
if (operand->mode == Addressing_Invalid)
return false;
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, operand->type));
operand->type = t_int;
break;
case BuiltinProc_offset_of: {
// offset_val :: proc(Type, field)
Type *type = get_base_type(check_type(c, ce->arg_list));
AstNode *field_arg = unparen_expr(ce->arg_list->next);
if (type) {
if (type->kind != Type_Structure) {
error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a structure type for `offset_of`");
return false;
}
if (field_arg == NULL ||
field_arg->kind != AstNode_Ident) {
error(&c->error_collector, ast_node_token(field_arg), "Expected an identifier for field argument");
return false;
}
}
isize index = 0;
Entity *entity = lookup_field(type, field_arg, &index);
if (entity == NULL) {
ast_node(arg, Ident, field_arg);
gbString type_str = type_to_string(type);
error(&c->error_collector, ast_node_token(ce->arg_list),
"`%s` has no field named `%.*s`", type_str, LIT(arg->token.string));
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_offset_of(c->sizes, c->allocator, type, index));
operand->type = t_int;
} break;
case BuiltinProc_offset_of_val: {
// offset_val :: proc(val)
AstNode *arg = unparen_expr(ce->arg_list);
if (arg->kind != AstNode_SelectorExpr) {
gbString str = expr_to_string(arg);
error(&c->error_collector, ast_node_token(arg), "`%s` is not a selector expression", str);
return false;
}
ast_node(s, SelectorExpr, arg);
check_expr(c, operand, s->expr);
if (operand->mode == Addressing_Invalid)
return false;
Type *type = operand->type;
if (get_base_type(type)->kind == Type_Pointer) {
Type *p = get_base_type(type);
if (get_base_type(p)->kind == Type_Structure)
type = p->pointer.elem;
}
isize index = 0;
Entity *entity = lookup_field(type, s->selector, &index);
if (entity == NULL) {
ast_node(i, Ident, s->selector);
gbString type_str = type_to_string(type);
error(&c->error_collector, ast_node_token(arg),
"`%s` has no field named `%.*s`", type_str, LIT(i->token.string));
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_offset_of(c->sizes, c->allocator, type, index));
operand->type = t_int;
} break;
case BuiltinProc_static_assert:
// static_assert :: proc(cond: bool)
if (operand->mode != Addressing_Constant ||
!is_type_boolean(operand->type)) {
gbString str = expr_to_string(ce->arg_list);
defer (gb_string_free(str));
error(&c->error_collector, ast_node_token(call),
"`%s` is not a constant boolean", str);
return false;
}
if (!operand->value.value_bool) {
gbString str = expr_to_string(ce->arg_list);
defer (gb_string_free(str));
error(&c->error_collector, ast_node_token(call),
"Static assertion: `%s`", str);
return true;
}
break;
// TODO(bill): Should these be procedures and are their names appropriate?
case BuiltinProc_len:
case BuiltinProc_cap: {
Type *t = get_base_type(operand->type);
AddressingMode mode = Addressing_Invalid;
ExactValue value = {};
switch (t->kind) {
case Type_Basic:
if (id == BuiltinProc_len) {
if (is_type_string(t)) {
if (operand->mode == Addressing_Constant) {
mode = Addressing_Constant;
value = make_exact_value_integer(operand->value.value_string);
} else {
mode = Addressing_Value;
}
}
}
break;
case Type_Array:
mode = Addressing_Constant;
value = make_exact_value_integer(t->array.count);
break;
case Type_Vector:
mode = Addressing_Constant;
value = make_exact_value_integer(t->vector.count);
break;
case Type_Slice:
mode = Addressing_Value;
break;
}
if (mode == Addressing_Invalid) {
gbString str = expr_to_string(operand->expr);
error(&c->error_collector, ast_node_token(operand->expr),
"Invalid expression `%s` for `%.*s`",
str, LIT(bp->name));
gb_string_free(str);
return false;
}
operand->mode = mode;
operand->type = t_int;
operand->value = value;
} break;
case BuiltinProc_copy: {
// copy :: proc(x, y: []Type) -> int
Type *dest_type = NULL, *src_type = NULL;
Type *d = get_base_type(operand->type);
if (d->kind == Type_Slice)
dest_type = d->slice.elem;
Operand op = {};
check_expr(c, &op, ce->arg_list->next);
if (op.mode == Addressing_Invalid)
return false;
Type *s = get_base_type(op.type);
if (s->kind == Type_Slice)
src_type = s->slice.elem;
if (dest_type == NULL || src_type == NULL) {
error(&c->error_collector, ast_node_token(call), "`copy` only expects slices as arguments");
return false;
}
if (!are_types_identical(dest_type, src_type)) {
gbString d_arg = expr_to_string(ce->arg_list);
gbString s_arg = expr_to_string(ce->arg_list->next);
gbString d_str = type_to_string(dest_type);
gbString s_str = type_to_string(src_type);
defer (gb_string_free(d_arg));
defer (gb_string_free(s_arg));
defer (gb_string_free(d_str));
defer (gb_string_free(s_str));
error(&c->error_collector, ast_node_token(call),
"Arguments to `copy`, %s, %s, have different elem types: %s vs %s",
d_arg, s_arg, d_str, s_str);
return false;
}
operand->type = t_int; // Returns number of elems copied
operand->mode = Addressing_Value;
} break;
case BuiltinProc_append: {
// append :: proc(x : ^[]Type, y : Type) -> bool
Type *x_type = NULL, *y_type = NULL;
x_type = get_base_type(operand->type);
Operand op = {};
check_expr(c, &op, ce->arg_list->next);
if (op.mode == Addressing_Invalid)
return false;
y_type = get_base_type(op.type);
if (!(is_type_pointer(x_type) && is_type_slice(x_type->pointer.elem))) {
error(&c->error_collector, ast_node_token(call), "First argument to `append` must be a pointer to a slice");
return false;
}
Type *elem_type = x_type->pointer.elem->slice.elem;
if (!check_is_assignable_to(c, &op, elem_type)) {
gbString d_arg = expr_to_string(ce->arg_list);
gbString s_arg = expr_to_string(ce->arg_list->next);
gbString d_str = type_to_string(elem_type);
gbString s_str = type_to_string(y_type);
defer (gb_string_free(d_arg));
defer (gb_string_free(s_arg));
defer (gb_string_free(d_str));
defer (gb_string_free(s_str));
error(&c->error_collector, ast_node_token(call),
"Arguments to `append`, %s, %s, have different element types: %s vs %s",
d_arg, s_arg, d_str, s_str);
return false;
}
operand->type = t_bool; // Returns if it was successful
operand->mode = Addressing_Value;
} break;
case BuiltinProc_swizzle: {
// swizzle :: proc(v: {N}T, T...) -> {M}T
Type *vector_type = get_base_type(operand->type);
if (!is_type_vector(vector_type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error(&c->error_collector, ast_node_token(call),
"You can only `swizzle` a vector, got `%s`",
type_str);
return false;
}
isize max_count = vector_type->vector.count;
isize arg_count = 0;
for (AstNode *arg = ce->arg_list->next; arg != NULL; arg = arg->next) {
Operand op = {};
check_expr(c, &op, arg);
if (op.mode == Addressing_Invalid)
return false;
Type *arg_type = get_base_type(op.type);
if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) {
error(&c->error_collector, ast_node_token(op.expr), "Indices to `swizzle` must be constant integers");
return false;
}
if (op.value.value_integer < 0) {
error(&c->error_collector, ast_node_token(op.expr), "Negative `swizzle` index");
return false;
}
if (max_count <= op.value.value_integer) {
error(&c->error_collector, ast_node_token(op.expr), "`swizzle` index exceeds vector length");
return false;
}
arg_count++;
}
if (arg_count > max_count) {
error(&c->error_collector, ast_node_token(call), "Too many `swizzle` indices, %td > %td", arg_count, max_count);
return false;
}
Type *elem_type = vector_type->vector.elem;
operand->type = make_type_vector(c->allocator, elem_type, arg_count);
operand->mode = Addressing_Value;
} break;
}
return true;
}
void check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) {
GB_ASSERT(call->kind == AstNode_CallExpr);
GB_ASSERT(proc_type->kind == Type_Proc);
ast_node(ce, CallExpr, call);
isize error_code = 0;
isize param_index = 0;
isize param_count = 0;
if (proc_type->proc.params)
param_count = proc_type->proc.params->tuple.variable_count;
if (ce->arg_list_count == 0 && param_count == 0)
return;
if (ce->arg_list_count > param_count) {
error_code = +1;
} else {
Entity **sig_params = proc_type->proc.params->tuple.variables;
AstNode *call_arg = ce->arg_list;
for (; call_arg != NULL; call_arg = call_arg->next) {
check_multi_expr(c, operand, call_arg);
if (operand->mode == Addressing_Invalid)
continue;
if (operand->type->kind != Type_Tuple) {
check_not_tuple(c, operand);
check_assignment(c, operand, sig_params[param_index]->type, make_string("argument"));
param_index++;
} else {
auto *tuple = &operand->type->tuple;
isize i = 0;
for (;
i < tuple->variable_count && param_index < param_count;
i++, param_index++) {
Entity *e = tuple->variables[i];
operand->type = e->type;
operand->mode = Addressing_Value;
check_not_tuple(c, operand);
check_assignment(c, operand, sig_params[param_index]->type, make_string("argument"));
}
if (i < tuple->variable_count && param_index == param_count) {
error_code = +1;
break;
}
}
if (param_index >= param_count)
break;
}
if (param_index < param_count) {
error_code = -1;
} else if (call_arg != NULL && call_arg->next != NULL) {
error_code = +1;
}
}
if (error_code != 0) {
char *err_fmt = "";
if (error_code < 0) {
err_fmt = "Too few arguments for `%s`, expected %td arguments";
} else {
err_fmt = "Too many arguments for `%s`, expected %td arguments";
}
gbString proc_str = expr_to_string(ce->proc);
error(&c->error_collector, ast_node_token(call), err_fmt, proc_str, param_count);
gb_string_free(proc_str);
operand->mode = Addressing_Invalid;
}
}
ExpressionKind check_call_expr(Checker *c, Operand *operand, AstNode *call) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
check_expr_or_type(c, operand, ce->proc);
if (operand->mode == Addressing_Invalid) {
for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next)
check_expr_base(c, operand, arg);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expression_Statement;
}
if (operand->mode == Addressing_Builtin) {
i32 id = operand->builtin_id;
if (!check_builtin_procedure(c, operand, call, id))
operand->mode = Addressing_Invalid;
operand->expr = call;
return builtin_procs[id].kind;
}
Type *proc_type = get_base_type(operand->type);
if (proc_type == NULL || proc_type->kind != Type_Proc) {
AstNode *e = operand->expr;
gbString str = expr_to_string(e);
defer (gb_string_free(str));
error(&c->error_collector, ast_node_token(e), "Cannot call a non-procedure: `%s`", str);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expression_Statement;
}
check_call_arguments(c, operand, proc_type, call);
auto *proc = &proc_type->proc;
if (proc->result_count == 0) {
operand->mode = Addressing_NoValue;
} else if (proc->result_count == 1) {
operand->mode = Addressing_Value;
operand->type = proc->results->tuple.variables[0]->type;
} else {
operand->mode = Addressing_Value;
operand->type = proc->results;
}
operand->expr = call;
return Expression_Statement;
}
void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) {
check_expr_base(c, o, e, t);
check_not_tuple(c, o);
char *err_str = NULL;
switch (o->mode) {
case Addressing_NoValue:
err_str = "used as a value";
break;
case Addressing_Type:
err_str = "is not an expression";
break;
case Addressing_Builtin:
err_str = "must be called";
break;
}
if (err_str != NULL) {
gbString str = expr_to_string(e);
defer (gb_string_free(str));
error(&c->error_collector, ast_node_token(e), "`%s` %s", str, err_str);
o->mode = Addressing_Invalid;
}
}
ExpressionKind check__expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExpressionKind kind = Expression_Statement;
o->mode = Addressing_Invalid;
o->type = t_invalid;
switch (node->kind) {
case_ast_node(be, BadExpr, node)
goto error;
case_end;
case_ast_node(i, Ident, node);
check_identifier(c, o, node, type_hint);
case_end;
case_ast_node(bl, BasicLit, node);
Type *t = t_invalid;
switch (bl->kind) {
case Token_Integer: t = t_untyped_integer; break;
case Token_Float: t = t_untyped_float; break;
case Token_String: t = t_untyped_string; break;
case Token_Rune: t = t_untyped_rune; break;
default: GB_PANIC("Unknown literal"); break;
}
o->mode = Addressing_Constant;
o->type = t;
o->value = make_exact_value_from_basic_literal(*bl);
case_end;
case_ast_node(pl, ProcLit, node);
auto curr_context = c->context;
c->context.scope = c->global_scope;
check_open_scope(c, pl->type);
c->context.decl = make_declaration_info(c->allocator, c->context.scope);
defer ({
check_close_scope(c);
c->context = curr_context;
});
Type *proc_type = check_type(c, pl->type);
if (proc_type != NULL) {
check_proc_body(c, empty_token, c->context.decl, proc_type, pl->body);
o->mode = Addressing_Value;
o->type = proc_type;
} else {
gbString str = expr_to_string(node);
error(&c->error_collector, ast_node_token(node), "Invalid procedure literal `%s`", str);
gb_string_free(str);
goto error;
}
case_end;
case_ast_node(cl, CompoundLit, node);
Type *type = type_hint;
b32 ellipsis_array = false;
if (cl->type != NULL) {
type = NULL;
// [..]Type
if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) {
if (cl->type->ArrayType.count->kind == AstNode_Ellipsis) {
type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1);
ellipsis_array = true;
}
}
if (type == NULL) {
type = check_type(c, cl->type);
}
}
if (type == NULL) {
error(&c->error_collector, ast_node_token(node), "Missing type in compound literal");
goto error;
}
Type *t = get_base_type(type);
switch (t->kind) {
case Type_Structure: {
if (cl->elem_count == 0)
break; // NOTE(bill): No need to init
{ // Checker values
AstNode *elem = cl->elem_list;
isize field_count = t->structure.field_count;
if (elem->kind == AstNode_FieldValue) {
b32 *fields_visited = gb_alloc_array(c->allocator, b32, field_count);
for (;
elem != NULL;
elem = elem->next) {
if (elem->kind != AstNode_FieldValue) {
error(&c->error_collector, ast_node_token(elem),
"Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
ast_node(kv, FieldValue, elem);
if (kv->field->kind != AstNode_Ident) {
gbString expr_str = expr_to_string(kv->field);
defer (gb_string_free(expr_str));
error(&c->error_collector, ast_node_token(elem),
"Invalid field name `%s` in structure literal", expr_str);
continue;
}
String name = kv->field->Ident.token.string;
isize index = 0;
Entity *e = lookup_field(type, kv->field, &index);
if (e == NULL) {
error(&c->error_collector, ast_node_token(elem),
"Unknown field `%.*s` in structure literal", LIT(name));
continue;
}
Entity *field = t->structure.fields[index];
add_entity_use(&c->info, kv->field, field);
if (fields_visited[index]) {
error(&c->error_collector, ast_node_token(elem),
"Duplicate field `%.*s` in structure literal", LIT(name));
continue;
}
fields_visited[index] = true;
check_expr(c, o, kv->value);
check_assignment(c, o, field->type, make_string("structure literal"));
}
} else {
isize index = 0;
for (;
elem != NULL;
elem = elem->next, index++) {
if (elem->kind == AstNode_FieldValue) {
error(&c->error_collector, ast_node_token(elem),
"Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
Entity *field = t->structure.fields[index];
check_expr(c, o, elem);
if (index >= field_count) {
error(&c->error_collector, ast_node_token(o->expr), "Too many values in structure literal, expected %td", field_count);
break;
}
check_assignment(c, o, field->type, make_string("structure literal"));
}
if (cl->elem_count < field_count) {
error(&c->error_collector, cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elem_count);
}
}
}
} break;
case Type_Slice:
case Type_Array:
case Type_Vector:
{
Type *elem_type = NULL;
String context_name = {};
if (t->kind == Type_Slice) {
elem_type = t->slice.elem;
context_name = make_string("slice literal");
} else if (t->kind == Type_Vector) {
elem_type = t->vector.elem;
context_name = make_string("vector literal");
} else {
elem_type = t->array.elem;
context_name = make_string("array literal");
}
i64 index = 0;
i64 max = 0;
for (AstNode *elem = cl->elem_list; elem != NULL; elem = elem->next, index++) {
AstNode *e = elem;
if (e->kind == AstNode_FieldValue) {
error(&c->error_collector, ast_node_token(e),
"`field = value` is only allowed in structure literals");
continue;
}
if (t->kind == Type_Array &&
t->array.count >= 0 &&
index >= t->array.count) {
error(&c->error_collector, ast_node_token(elem), "Index %lld is out of bounds (>= %lld) for array literal", index, t->array.count);
}
if (t->kind == Type_Vector &&
t->vector.count >= 0 &&
index >= t->vector.count) {
error(&c->error_collector, ast_node_token(elem), "Index %lld is out of bounds (>= %lld) for vector literal", index, t->vector.count);
}
Operand o = {};
check_expr_with_type_hint(c, &o, e, elem_type);
check_assignment(c, &o, elem_type, context_name);
}
if (max < index)
max = index;
if (t->kind == Type_Vector) {
if (t->vector.count > 1 && gb_is_between(index, 2, t->vector.count-1)) {
error(&c->error_collector, ast_node_token(cl->elem_list),
"Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->vector.count, index);
}
}
if (t->kind == Type_Array && ellipsis_array) {
t->array.count = max;
}
} break;
default: {
gbString str = type_to_string(type);
error(&c->error_collector, ast_node_token(node), "Invalid compound literal type `%s`", str);
gb_string_free(str);
goto error;
} break;
}
o->mode = Addressing_Value;
o->type = type;
case_end;
case_ast_node(pe, ParenExpr, node);
kind = check_expr_base(c, o, pe->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(te, TagExpr, node);
// TODO(bill): Tag expressions
error(&c->error_collector, ast_node_token(node), "Tag expressions are not supported yet");
kind = check_expr_base(c, o, te->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(ue, UnaryExpr, node);
check_expr(c, o, ue->expr);
if (o->mode == Addressing_Invalid)
goto error;
check_unary_expr(c, o, ue->op, node);
if (o->mode == Addressing_Invalid)
goto error;
case_end;
case_ast_node(be, BinaryExpr, node);
check_binary_expr(c, o, node);
if (o->mode == Addressing_Invalid)
goto error;
case_end;
case_ast_node(se, SelectorExpr, node);
check_expr_base(c, o, se->expr);
check_selector(c, o, node);
case_end;
case_ast_node(ie, IndexExpr, node);
check_expr(c, o, ie->expr);
if (o->mode == Addressing_Invalid)
goto error;
b32 valid = false;
i64 max_count = -1;
Type *t = get_base_type(o->type);
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
valid = true;
if (o->mode == Addressing_Constant) {
max_count = o->value.value_string.len;
}
if (o->mode != Addressing_Variable)
o->mode = Addressing_Value;
o->type = t_u8;
}
break;
case Type_Array:
valid = true;
max_count = t->array.count;
if (o->mode != Addressing_Variable)
o->mode = Addressing_Value;
o->type = t->array.elem;
break;
case Type_Vector:
valid = true;
max_count = t->vector.count;
if (o->mode != Addressing_Variable)
o->mode = Addressing_Value;
o->type = t->vector.elem;
break;
case Type_Slice:
valid = true;
o->type = t->slice.elem;
o->mode = Addressing_Variable;
break;
case Type_Pointer:
valid = true;
o->mode = Addressing_Variable;
o->type = get_base_type(t->pointer.elem);
break;
}
if (!valid) {
gbString str = expr_to_string(o->expr);
error(&c->error_collector, ast_node_token(o->expr), "Cannot index `%s`", str);
gb_string_free(str);
goto error;
}
if (ie->index == NULL) {
gbString str = expr_to_string(o->expr);
error(&c->error_collector, ast_node_token(o->expr), "Missing index for `%s`", str);
gb_string_free(str);
goto error;
}
check_index_value(c, ie->index, max_count, NULL);
case_end;
case_ast_node(se, SliceExpr, node);
check_expr(c, o, se->expr);
if (o->mode == Addressing_Invalid)
goto error;
b32 valid = false;
i64 max_count = -1;
Type *t = get_base_type(o->type);
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
valid = true;
if (o->mode == Addressing_Constant) {
max_count = o->value.value_string.len;
}
o->type = t_string;
o->mode = Addressing_Value;
}
break;
case Type_Array:
valid = true;
max_count = t->array.count;
if (o->mode != Addressing_Variable) {
gbString str = expr_to_string(node);
error(&c->error_collector, ast_node_token(node), "Cannot slice array `%s`, value is not addressable", str);
gb_string_free(str);
goto error;
}
o->type = make_type_slice(c->allocator, t->array.elem);
o->mode = Addressing_Value;
break;
case Type_Slice:
valid = true;
o->mode = Addressing_Value;
break;
case Type_Pointer:
valid = true;
o->type = make_type_slice(c->allocator, get_base_type(t->pointer.elem));
o->mode = Addressing_Value;
break;
}
if (!valid) {
gbString str = expr_to_string(o->expr);
error(&c->error_collector, ast_node_token(o->expr), "Cannot slice `%s`", str);
gb_string_free(str);
goto error;
}
i64 indices[3] = {};
AstNode *nodes[3] = {se->low, se->high, se->max};
for (isize i = 0; i < gb_count_of(nodes); i++) {
i64 index = max_count;
if (nodes[i] != NULL) {
i64 capacity = -1;
if (max_count >= 0)
capacity = max_count;
i64 j = 0;
if (check_index_value(c, nodes[i], capacity, &j)) {
index = j;
}
} else if (i == 0) {
index = 0;
}
indices[i] = index;
}
for (isize i = 0; i < gb_count_of(indices); i++) {
i64 a = indices[i];
for (isize j = i+1; j < gb_count_of(indices); j++) {
i64 b = indices[j];
if (a > b && b >= 0) {
error(&c->error_collector, se->close, "Invalid slice indices: [%td > %td]", a, b);
}
}
}
case_end;
case_ast_node(ce, CallExpr, node);
return check_call_expr(c, o, node);
case_end;
case_ast_node(de, DerefExpr, node);
check_expr_or_type(c, o, de->expr);
if (o->mode == Addressing_Invalid) {
goto error;
} else {
Type *t = get_base_type(o->type);
if (t->kind == Type_Pointer) {
o->mode = Addressing_Variable;
o->type = t->pointer.elem;
} else {
gbString str = expr_to_string(o->expr);
error(&c->error_collector, ast_node_token(o->expr), "Cannot dereference `%s`", str);
gb_string_free(str);
goto error;
}
}
case_end;
case AstNode_ProcType:
case AstNode_PointerType:
case AstNode_ArrayType:
case AstNode_VectorType:
case AstNode_StructType:
o->mode = Addressing_Type;
o->type = check_type(c, node);
break;
}
kind = Expression_Expression;
o->expr = node;
return kind;
error:
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
ExpressionKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExpressionKind kind = check__expr_base(c, o, node, type_hint);
Type *type = NULL;
ExactValue value = {ExactValue_Invalid};
switch (o->mode) {
case Addressing_Invalid:
type = t_invalid;
break;
case Addressing_NoValue:
type = NULL;
break;
case Addressing_Constant:
type = o->type;
value = o->value;
break;
default:
type = o->type;
break;
}
if (type != NULL && is_type_untyped(type)) {
add_untyped(&c->info, node, false, o->mode, type, value);
} else {
add_type_and_value(&c->info, node, o->mode, type, value);
}
return kind;
}
void check_multi_expr(Checker *c, Operand *o, AstNode *e) {
gbString err_str = NULL;
defer (gb_string_free(err_str));
check_expr_base(c, o, e);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` used as value", err_str);
break;
case Addressing_Type:
err_str = expr_to_string(e);
error(&c->error_collector, ast_node_token(e), "`%s` is not an expression", err_str);
break;
}
o->mode = Addressing_Invalid;
}
void check_not_tuple(Checker *c, Operand *o) {
if (o->mode == Addressing_Value) {
// NOTE(bill): Tuples are not first class thus never named
if (o->type->kind == Type_Tuple) {
isize count = o->type->tuple.variable_count;
GB_ASSERT(count != 1);
error(&c->error_collector, ast_node_token(o->expr),
"%td-valued tuple found where single value expected", count);
o->mode = Addressing_Invalid;
}
}
}
void check_expr(Checker *c, Operand *o, AstNode *e) {
check_multi_expr(c, o, e);
check_not_tuple(c, o);
}
void check_expr_or_type(Checker *c, Operand *o, AstNode *e) {
check_expr_base(c, o, e);
check_not_tuple(c, o);
if (o->mode == Addressing_NoValue) {
AstNode *e = o->expr;
gbString str = expr_to_string(e);
defer (gb_string_free(str));
error(&c->error_collector, ast_node_token(e),
"`%s` used as value or type", str);
o->mode = Addressing_Invalid;
}
}
gbString write_expr_to_string(gbString str, AstNode *node);
gbString write_field_list_to_string(gbString str, AstNode *field_list, char *sep) {
isize i = 0;
for (AstNode *field = field_list; field != NULL; field = field->next) {
ast_node(f, Field, field);
if (i > 0)
str = gb_string_appendc(str, sep);
isize j = 0;
for (AstNode *name = f->name_list; name != NULL; name = name->next) {
if (j > 0)
str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, name);
j++;
}
str = gb_string_appendc(str, ": ");
str = write_expr_to_string(str, f->type);
i++;
}
return str;
}
gbString string_append_token(gbString str, Token token) {
if (token.string.len > 0)
return gb_string_append_length(str, token.string.text, token.string.len);
return str;
}
gbString write_expr_to_string(gbString str, AstNode *node) {
if (node == NULL)
return str;
if (is_ast_node_stmt(node)) {
GB_ASSERT("stmt passed to write_expr_to_string");
}
switch (node->kind) {
default:
str = gb_string_appendc(str, "(BadExpr)");
break;
case_ast_node(i, Ident, node);
str = string_append_token(str, i->token);
case_end;
case_ast_node(bl, BasicLit, node);
str = string_append_token(str, *bl);
case_end;
case_ast_node(pl, ProcLit, node);
str = write_expr_to_string(str, pl->type);
case_end;
case_ast_node(cl, CompoundLit, node);
str = gb_string_appendc(str, "(");
str = write_expr_to_string(str, cl->type);
str = gb_string_appendc(str, " lit)");
case_end;
case_ast_node(te, TagExpr, node);
str = gb_string_appendc(str, "#");
str = string_append_token(str, te->name);
str = write_expr_to_string(str, te->expr);
case_end;
case_ast_node(ue, UnaryExpr, node);
str = string_append_token(str, ue->op);
str = write_expr_to_string(str, ue->expr);
case_end;
case_ast_node(be, BinaryExpr, node);
str = write_expr_to_string(str, be->left);
str = gb_string_appendc(str, " ");
str = string_append_token(str, be->op);
str = gb_string_appendc(str, " ");
str = write_expr_to_string(str, be->right);
case_end;
case_ast_node(pe, ParenExpr, node);
str = gb_string_appendc(str, "(");
str = write_expr_to_string(str, pe->expr);
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(se, SelectorExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_appendc(str, ".");
str = write_expr_to_string(str, se->selector);
case_end;
case_ast_node(ie, IndexExpr, node);
str = write_expr_to_string(str, ie->expr);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, ie->index);
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(se, SliceExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, se->low);
str = gb_string_appendc(str, ":");
str = write_expr_to_string(str, se->high);
if (se->triple_indexed) {
str = gb_string_appendc(str, ":");
str = write_expr_to_string(str, se->max);
}
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(e, Ellipsis, node);
str = gb_string_appendc(str, "..");
case_end;
case_ast_node(fv, FieldValue, node);
str = write_expr_to_string(str, fv->field);
str = gb_string_appendc(str, " = ");
str = write_expr_to_string(str, fv->value);
case_end;
case_ast_node(pt, PointerType, node);
str = gb_string_appendc(str, "^");
str = write_expr_to_string(str, pt->type);
case_end;
case_ast_node(at, ArrayType, node);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, at->count);
str = gb_string_appendc(str, "]");
str = write_expr_to_string(str, at->elem);
case_end;
case_ast_node(vt, VectorType, node);
str = gb_string_appendc(str, "{");
str = write_expr_to_string(str, vt->count);
str = gb_string_appendc(str, "}");
str = write_expr_to_string(str, vt->elem);
case_end;
case_ast_node(ce, CallExpr, node);
str = write_expr_to_string(str, ce->proc);
str = gb_string_appendc(str, "(");
isize i = 0;
for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, arg);
i++;
}
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(pt, ProcType, node);
str = gb_string_appendc(str, "proc(");
str = write_field_list_to_string(str, pt->param_list, ", ");
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(st, StructType, node);
str = gb_string_appendc(str, "struct{");
str = write_field_list_to_string(str, st->field_list, ", ");
str = gb_string_appendc(str, "}");
case_end;
}
return str;
}
gbString expr_to_string(AstNode *expression) {
return write_expr_to_string(gb_string_make(gb_heap_allocator(), ""), expression);
}