Files
Odin/core/encoding/json/parser.odin
2024-06-02 14:47:08 -04:00

484 lines
10 KiB
Odin

package encoding_json
import "core:mem"
import "core:unicode/utf8"
import "core:unicode/utf16"
import "core:strconv"
Parser :: struct {
tok: Tokenizer,
prev_token: Token,
curr_token: Token,
spec: Specification,
allocator: mem.Allocator,
parse_integers: bool,
}
make_parser :: proc(data: []byte, spec := DEFAULT_SPECIFICATION, parse_integers := false, allocator := context.allocator) -> Parser {
return make_parser_from_string(string(data), spec, parse_integers, allocator)
}
make_parser_from_string :: proc(data: string, spec := DEFAULT_SPECIFICATION, parse_integers := false, allocator := context.allocator) -> Parser {
p: Parser
p.tok = make_tokenizer(data, spec, parse_integers)
p.spec = spec
p.allocator = allocator
assert(p.allocator.procedure != nil)
advance_token(&p)
return p
}
parse :: proc(data: []byte, spec := DEFAULT_SPECIFICATION, parse_integers := false, allocator := context.allocator, loc := #caller_location) -> (Value, Error) {
return parse_string(string(data), spec, parse_integers, allocator, loc)
}
parse_string :: proc(data: string, spec := DEFAULT_SPECIFICATION, parse_integers := false, allocator := context.allocator, loc := #caller_location) -> (Value, Error) {
context.allocator = allocator
p := make_parser_from_string(data, spec, parse_integers, allocator)
switch p.spec {
case .JSON:
return parse_object(&p, loc)
case .JSON5:
return parse_value(&p, loc)
case .SJSON:
#partial switch p.curr_token.kind {
case .Ident, .String:
return parse_object_body(&p, .EOF, loc)
}
return parse_value(&p, loc)
}
return parse_object(&p, loc)
}
token_end_pos :: proc(tok: Token) -> Pos {
end := tok.pos
end.offset += len(tok.text)
return end
}
advance_token :: proc(p: ^Parser) -> (Token, Error) {
err: Error
p.prev_token = p.curr_token
p.curr_token, err = get_token(&p.tok)
return p.prev_token, err
}
allow_token :: proc(p: ^Parser, kind: Token_Kind) -> bool {
if p.curr_token.kind == kind {
advance_token(p)
return true
}
return false
}
expect_token :: proc(p: ^Parser, kind: Token_Kind) -> Error {
prev := p.curr_token
advance_token(p)
if prev.kind == kind {
return nil
}
return .Unexpected_Token
}
parse_colon :: proc(p: ^Parser) -> (err: Error) {
colon_err := expect_token(p, .Colon)
if colon_err == nil {
return nil
}
return .Expected_Colon_After_Key
}
parse_comma :: proc(p: ^Parser) -> (do_break: bool) {
switch p.spec {
case .JSON5, .MJSON:
if allow_token(p, .Comma) {
return false
}
return false
case .JSON:
if !allow_token(p, .Comma) {
return true
}
}
return false
}
parse_value :: proc(p: ^Parser, loc := #caller_location) -> (value: Value, err: Error) {
err = .None
token := p.curr_token
#partial switch token.kind {
case .Null:
advance_token(p)
value = Null{}
return
case .False:
advance_token(p)
value = Boolean(false)
return
case .True:
advance_token(p)
value = Boolean(true)
return
case .Integer:
advance_token(p)
i, _ := strconv.parse_i64(token.text)
value = Integer(i)
return
case .Float:
advance_token(p)
f, _ := strconv.parse_f64(token.text)
value = Float(f)
return
case .Ident:
if p.spec == .MJSON {
advance_token(p)
return string(token.text), nil
}
case .String:
advance_token(p)
return unquote_string(token, p.spec, p.allocator, loc)
case .Open_Brace:
return parse_object(p, loc)
case .Open_Bracket:
return parse_array(p, loc)
case:
if p.spec != .JSON {
switch {
case allow_token(p, .Infinity):
inf: u64 = 0x7ff0000000000000
if token.text[0] == '-' {
inf = 0xfff0000000000000
}
value = transmute(f64)inf
return
case allow_token(p, .NaN):
nan: u64 = 0x7ff7ffffffffffff
if token.text[0] == '-' {
nan = 0xfff7ffffffffffff
}
value = transmute(f64)nan
return
}
}
}
err = .Unexpected_Token
advance_token(p)
return
}
parse_array :: proc(p: ^Parser, loc := #caller_location) -> (value: Value, err: Error) {
err = .None
expect_token(p, .Open_Bracket) or_return
array: Array
array.allocator = p.allocator
defer if err != nil {
for elem in array {
destroy_value(elem, loc=loc)
}
delete(array, loc)
}
for p.curr_token.kind != .Close_Bracket {
elem := parse_value(p, loc) or_return
append(&array, elem, loc)
if parse_comma(p) {
break
}
}
expect_token(p, .Close_Bracket) or_return
value = array
return
}
@(private)
bytes_make :: proc(size, alignment: int, allocator: mem.Allocator, loc := #caller_location) -> (bytes: []byte, err: Error) {
b, berr := mem.alloc_bytes(size, alignment, allocator, loc)
if berr != nil {
if berr == .Out_Of_Memory {
err = .Out_Of_Memory
} else {
err = .Invalid_Allocator
}
}
bytes = b
return
}
clone_string :: proc(s: string, allocator: mem.Allocator, loc := #caller_location) -> (str: string, err: Error) {
n := len(s)
b := bytes_make(n+1, 1, allocator, loc) or_return
copy(b, s)
if len(b) > n {
b[n] = 0
str = string(b[:n])
}
return
}
parse_object_key :: proc(p: ^Parser, key_allocator: mem.Allocator, loc := #caller_location) -> (key: string, err: Error) {
tok := p.curr_token
if p.spec != .JSON {
if allow_token(p, .Ident) {
return clone_string(tok.text, key_allocator, loc)
}
}
if tok_err := expect_token(p, .String); tok_err != nil {
err = .Expected_String_For_Object_Key
return
}
return unquote_string(tok, p.spec, key_allocator, loc)
}
parse_object_body :: proc(p: ^Parser, end_token: Token_Kind, loc := #caller_location) -> (obj: Object, err: Error) {
obj = make(Object, allocator=p.allocator, loc=loc)
defer if err != nil {
for key, elem in obj {
delete(key, p.allocator, loc)
destroy_value(elem, loc=loc)
}
delete(obj, loc)
}
for p.curr_token.kind != end_token {
key := parse_object_key(p, p.allocator, loc) or_return
parse_colon(p) or_return
elem := parse_value(p, loc) or_return
if key in obj {
err = .Duplicate_Object_Key
delete(key, p.allocator, loc)
return
}
// NOTE(gonz): There are code paths for which this traversal ends up
// inserting empty key/values into the object and for those we do not
// want to allocate anything
if key != "" {
reserve_error := reserve(&obj, len(obj) + 1, loc)
if reserve_error == mem.Allocator_Error.Out_Of_Memory {
return nil, .Out_Of_Memory
}
obj[key] = elem
}
if parse_comma(p) {
break
}
}
return obj, .None
}
parse_object :: proc(p: ^Parser, loc := #caller_location) -> (value: Value, err: Error) {
expect_token(p, .Open_Brace) or_return
obj := parse_object_body(p, .Close_Brace, loc) or_return
expect_token(p, .Close_Brace) or_return
return obj, .None
}
// IMPORTANT NOTE(bill): unquote_string assumes a mostly valid string
unquote_string :: proc(token: Token, spec: Specification, allocator := context.allocator, loc := #caller_location) -> (value: string, err: Error) {
get_u2_rune :: proc(s: string) -> rune {
if len(s) < 4 || s[0] != '\\' || s[1] != 'x' {
return -1
}
r: rune
for c in s[2:4] {
x: rune
switch c {
case '0'..='9': x = c - '0'
case 'a'..='f': x = c - 'a' + 10
case 'A'..='F': x = c - 'A' + 10
case: return -1
}
r = r*16 + x
}
return r
}
get_u4_rune :: proc(s: string) -> rune {
if len(s) < 6 || s[0] != '\\' || s[1] != 'u' {
return -1
}
r: rune
for c in s[2:6] {
x: rune
switch c {
case '0'..='9': x = c - '0'
case 'a'..='f': x = c - 'a' + 10
case 'A'..='F': x = c - 'A' + 10
case: return -1
}
r = r*16 + x
}
return r
}
if token.kind != .String {
return "", nil
}
s := token.text
if len(s) <= 2 {
return "", nil
}
quote := s[0]
if s[0] != s[len(s)-1] {
// Invalid string
return "", nil
}
s = s[1:len(s)-1]
i := 0
for i < len(s) {
c := s[i]
if c == '\\' || c == quote || c < ' ' {
break
}
if c < utf8.RUNE_SELF {
i += 1
continue
}
r, w := utf8.decode_rune_in_string(s[i:])
if r == utf8.RUNE_ERROR && w == 1 {
break
}
i += w
}
if i == len(s) {
return clone_string(s, allocator, loc)
}
b := bytes_make(len(s) + 2*utf8.UTF_MAX, 1, allocator) or_return
w := copy(b, s[0:i])
if len(b) == 0 && allocator.data == nil {
// `unmarshal_count_array` calls us with a nil allocator
return string(b[:w]), nil
}
loop: for i < len(s) {
c := s[i]
switch {
case c == '\\':
i += 1
if i >= len(s) {
break loop
}
switch s[i] {
case: break loop
case '"', '\'', '\\', '/':
b[w] = s[i]
i += 1
w += 1
case 'b':
b[w] = '\b'
i += 1
w += 1
case 'f':
b[w] = '\f'
i += 1
w += 1
case 'r':
b[w] = '\r'
i += 1
w += 1
case 't':
b[w] = '\t'
i += 1
w += 1
case 'n':
b[w] = '\n'
i += 1
w += 1
case 'u':
i -= 1 // Include the \u in the check for sanity sake
r := get_u4_rune(s[i:])
if r < 0 {
break loop
}
i += 6
// If this is a surrogate pair, decode as such by taking the next rune too.
if r >= utf8.SURROGATE_MIN && r <= utf8.SURROGATE_HIGH_MAX && len(s) > i + 2 && s[i:i+2] == "\\u" {
r2 := get_u4_rune(s[i:])
if r2 >= utf8.SURROGATE_LOW_MIN && r2 <= utf8.SURROGATE_MAX {
i += 6
r = utf16.decode_surrogate_pair(r, r2)
}
}
buf, buf_width := utf8.encode_rune(r)
copy(b[w:], buf[:buf_width])
w += buf_width
case '0':
if spec != .JSON {
b[w] = '\x00'
i += 1
w += 1
} else {
break loop
}
case 'v':
if spec != .JSON {
b[w] = '\v'
i += 1
w += 1
} else {
break loop
}
case 'x':
if spec != .JSON {
i -= 1 // Include the \x in the check for sanity sake
r := get_u2_rune(s[i:])
if r < 0 {
break loop
}
i += 4
buf, buf_width := utf8.encode_rune(r)
copy(b[w:], buf[:buf_width])
w += buf_width
} else {
break loop
}
}
case c == quote, c < ' ':
break loop
case c < utf8.RUNE_SELF:
b[w] = c
i += 1
w += 1
case:
r, width := utf8.decode_rune_in_string(s[i:])
i += width
buf, buf_width := utf8.encode_rune(r)
assert(buf_width <= width)
copy(b[w:], buf[:buf_width])
w += buf_width
}
}
return string(b[:w]), nil
}