mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-28 17:04:34 +00:00
887 lines
28 KiB
Odin
887 lines
28 KiB
Odin
package encoding_cbor
|
|
|
|
import "base:intrinsics"
|
|
import "base:runtime"
|
|
|
|
import "core:bytes"
|
|
import "core:encoding/endian"
|
|
import "core:io"
|
|
import "core:slice"
|
|
import "core:strings"
|
|
|
|
Encoder_Flag :: enum {
|
|
// CBOR defines a tag header that also acts as a file/binary header,
|
|
// this way decoders can check the first header of the binary and see if it is CBOR.
|
|
Self_Described_CBOR,
|
|
|
|
// Integers are stored in the smallest integer type it fits.
|
|
// This involves checking each int against the max of all its smaller types.
|
|
Deterministic_Int_Size,
|
|
|
|
// Floats are stored in the smallest size float type without losing precision.
|
|
// This involves casting each float down to its smaller types and checking if it changed.
|
|
Deterministic_Float_Size,
|
|
|
|
// Sort maps by their keys in bytewise lexicographic order of their deterministic encoding.
|
|
// NOTE: In order to do this, all keys of a map have to be pre-computed, sorted, and
|
|
// then written, this involves temporary allocations for the keys and a copy of the map itself.
|
|
Deterministic_Map_Sorting,
|
|
}
|
|
|
|
Encoder_Flags :: bit_set[Encoder_Flag]
|
|
|
|
// Flags for fully deterministic output (if you are not using streaming/indeterminate length).
|
|
ENCODE_FULLY_DETERMINISTIC :: Encoder_Flags{.Deterministic_Int_Size, .Deterministic_Float_Size, .Deterministic_Map_Sorting}
|
|
|
|
// Flags for the smallest encoding output.
|
|
ENCODE_SMALL :: Encoder_Flags{.Deterministic_Int_Size, .Deterministic_Float_Size}
|
|
|
|
Encoder :: struct {
|
|
flags: Encoder_Flags,
|
|
writer: io.Writer,
|
|
temp_allocator: runtime.Allocator,
|
|
}
|
|
|
|
Decoder_Flag :: enum {
|
|
// Rejects (with an error `.Disallowed_Streaming`) when a streaming CBOR header is encountered.
|
|
Disallow_Streaming,
|
|
|
|
// Pre-allocates buffers and containers with the size that was set in the CBOR header.
|
|
// This should only be enabled when you control both ends of the encoding, if you don't,
|
|
// attackers can craft input that causes massive (`max(u64)`) byte allocations for a few bytes of
|
|
// CBOR.
|
|
Trusted_Input,
|
|
|
|
// Makes the decoder shrink of excess capacity from allocated buffers/containers before returning.
|
|
Shrink_Excess,
|
|
}
|
|
|
|
Decoder_Flags :: bit_set[Decoder_Flag]
|
|
|
|
Decoder :: struct {
|
|
// The max amount of bytes allowed to pre-allocate when `.Trusted_Input` is not set on the
|
|
// flags.
|
|
max_pre_alloc: int,
|
|
|
|
flags: Decoder_Flags,
|
|
reader: io.Reader,
|
|
}
|
|
|
|
/*
|
|
Decodes both deterministic and non-deterministic CBOR into a `Value` variant.
|
|
|
|
`Text` and `Bytes` can safely be cast to cstrings because of an added 0 byte.
|
|
|
|
Allocations are done using the given allocator,
|
|
*no* allocations are done on the `context.temp_allocator`.
|
|
|
|
A value can be (fully and recursively) deallocated using the `destroy` proc in this package.
|
|
|
|
Disable streaming/indeterminate lengths with the `.Disallow_Streaming` flag.
|
|
|
|
Shrink excess bytes in buffers and containers with the `.Shrink_Excess` flag.
|
|
|
|
Mark the input as trusted input with the `.Trusted_Input` flag, this turns off the safety feature
|
|
of not pre-allocating more than `max_pre_alloc` bytes before reading into the bytes. You should only
|
|
do this when you own both sides of the encoding and are sure there can't be malicious bytes used as
|
|
an input.
|
|
*/
|
|
decode_from :: proc {
|
|
decode_from_string,
|
|
decode_from_reader,
|
|
decode_from_decoder,
|
|
}
|
|
decode :: decode_from
|
|
|
|
// Decodes the given string as CBOR.
|
|
// See docs on the proc group `decode` for more information.
|
|
decode_from_string :: proc(s: string, flags: Decoder_Flags = {}, allocator := context.allocator, loc := #caller_location) -> (v: Value, err: Decode_Error) {
|
|
r: strings.Reader
|
|
strings.reader_init(&r, s)
|
|
return decode_from_reader(strings.reader_to_stream(&r), flags, allocator, loc)
|
|
}
|
|
|
|
// Reads a CBOR value from the given reader.
|
|
// See docs on the proc group `decode` for more information.
|
|
decode_from_reader :: proc(r: io.Reader, flags: Decoder_Flags = {}, allocator := context.allocator, loc := #caller_location) -> (v: Value, err: Decode_Error) {
|
|
return decode_from_decoder(
|
|
Decoder{ DEFAULT_MAX_PRE_ALLOC, flags, r },
|
|
allocator=allocator,
|
|
loc = loc,
|
|
)
|
|
}
|
|
|
|
// Reads a CBOR value from the given decoder.
|
|
// See docs on the proc group `decode` for more information.
|
|
decode_from_decoder :: proc(d: Decoder, allocator := context.allocator, loc := #caller_location) -> (v: Value, err: Decode_Error) {
|
|
context.allocator = allocator
|
|
|
|
d := d
|
|
|
|
if d.max_pre_alloc <= 0 {
|
|
d.max_pre_alloc = DEFAULT_MAX_PRE_ALLOC
|
|
}
|
|
|
|
v, err = _decode_from_decoder(d, {}, allocator, loc)
|
|
// Normal EOF does not exist here, we try to read the exact amount that is said to be provided.
|
|
if err == .EOF { err = .Unexpected_EOF }
|
|
return
|
|
}
|
|
|
|
_decode_from_decoder :: proc(d: Decoder, hdr: Header = Header(0), allocator := context.allocator, loc := #caller_location) -> (v: Value, err: Decode_Error) {
|
|
hdr := hdr
|
|
r := d.reader
|
|
if hdr == Header(0) { hdr = _decode_header(r) or_return }
|
|
switch hdr {
|
|
case .U8: return _decode_u8 (r)
|
|
case .U16: return _decode_u16(r)
|
|
case .U32: return _decode_u32(r)
|
|
case .U64: return _decode_u64(r)
|
|
|
|
case .Neg_U8: return Negative_U8 (_decode_u8 (r) or_return), nil
|
|
case .Neg_U16: return Negative_U16(_decode_u16(r) or_return), nil
|
|
case .Neg_U32: return Negative_U32(_decode_u32(r) or_return), nil
|
|
case .Neg_U64: return Negative_U64(_decode_u64(r) or_return), nil
|
|
|
|
case .Simple: return _decode_simple(r)
|
|
|
|
case .F16: return _decode_f16(r)
|
|
case .F32: return _decode_f32(r)
|
|
case .F64: return _decode_f64(r)
|
|
|
|
case .True: return true, nil
|
|
case .False: return false, nil
|
|
|
|
case .Nil: return Nil{}, nil
|
|
case .Undefined: return Undefined{}, nil
|
|
|
|
case .Break: return nil, .Break
|
|
}
|
|
|
|
maj, add := _header_split(hdr)
|
|
switch maj {
|
|
case .Unsigned: return _decode_tiny_u8(add)
|
|
case .Negative: return Negative_U8(_decode_tiny_u8(add) or_return), nil
|
|
case .Bytes: return _decode_bytes_ptr(d, add, .Bytes, allocator, loc)
|
|
case .Text: return _decode_text_ptr(d, add, allocator, loc)
|
|
case .Array: return _decode_array_ptr(d, add, allocator, loc)
|
|
case .Map: return _decode_map_ptr(d, add, allocator, loc)
|
|
case .Tag: return _decode_tag_ptr(d, add, allocator, loc)
|
|
case .Other: return _decode_tiny_simple(add)
|
|
case: return nil, .Bad_Major
|
|
}
|
|
}
|
|
|
|
/*
|
|
Encodes the CBOR value into a binary CBOR.
|
|
|
|
Flags can be used to control the output (mainly determinism, which coincidently affects size).
|
|
|
|
The default flags `ENCODE_SMALL` (`.Deterministic_Int_Size`, `.Deterministic_Float_Size`) will try
|
|
to put ints and floats into their smallest possible byte size without losing equality.
|
|
|
|
Adding the `.Self_Described_CBOR` flag will wrap the value in a tag that lets generic decoders know
|
|
the contents are CBOR from just reading the first byte.
|
|
|
|
Adding the `.Deterministic_Map_Sorting` flag will sort the encoded maps by the byte content of the
|
|
encoded key. This flag has a cost on performance and memory efficiency because all keys in a map
|
|
have to be precomputed, sorted and only then written to the output.
|
|
|
|
Empty flags will do nothing extra to the value.
|
|
|
|
The allocations for the `.Deterministic_Map_Sorting` flag are done using the given temp_allocator.
|
|
but are followed by the necessary `delete` and `free` calls if the allocator supports them.
|
|
This is helpful when the CBOR size is so big that you don't want to collect all the temporary
|
|
allocations until the end.
|
|
*/
|
|
encode_into :: proc {
|
|
encode_into_bytes,
|
|
encode_into_builder,
|
|
encode_into_writer,
|
|
encode_into_encoder,
|
|
}
|
|
encode :: encode_into
|
|
|
|
// Encodes the CBOR value into binary CBOR allocated on the given allocator.
|
|
// See the docs on the proc group `encode_into` for more info.
|
|
encode_into_bytes :: proc(v: Value, flags := ENCODE_SMALL, allocator := context.allocator, temp_allocator := context.temp_allocator, loc := #caller_location) -> (data: []byte, err: Encode_Error) {
|
|
b := strings.builder_make(allocator, loc) or_return
|
|
encode_into_builder(&b, v, flags, temp_allocator) or_return
|
|
return b.buf[:], nil
|
|
}
|
|
|
|
// Encodes the CBOR value into binary CBOR written to the given builder.
|
|
// See the docs on the proc group `encode_into` for more info.
|
|
encode_into_builder :: proc(b: ^strings.Builder, v: Value, flags := ENCODE_SMALL, temp_allocator := context.temp_allocator, loc := #caller_location) -> Encode_Error {
|
|
return encode_into_writer(strings.to_stream(b), v, flags, temp_allocator, loc=loc)
|
|
}
|
|
|
|
// Encodes the CBOR value into binary CBOR written to the given writer.
|
|
// See the docs on the proc group `encode_into` for more info.
|
|
encode_into_writer :: proc(w: io.Writer, v: Value, flags := ENCODE_SMALL, temp_allocator := context.temp_allocator, loc := #caller_location) -> Encode_Error {
|
|
return encode_into_encoder(Encoder{flags, w, temp_allocator}, v, loc=loc)
|
|
}
|
|
|
|
// Encodes the CBOR value into binary CBOR written to the given encoder.
|
|
// See the docs on the proc group `encode_into` for more info.
|
|
encode_into_encoder :: proc(e: Encoder, v: Value, loc := #caller_location) -> Encode_Error {
|
|
e := e
|
|
|
|
if e.temp_allocator.procedure == nil {
|
|
e.temp_allocator = context.temp_allocator
|
|
}
|
|
|
|
if .Self_Described_CBOR in e.flags {
|
|
_encode_u64(e, TAG_SELF_DESCRIBED_CBOR, .Tag) or_return
|
|
e.flags -= { .Self_Described_CBOR }
|
|
}
|
|
|
|
switch v_spec in v {
|
|
case u8: return _encode_u8(e.writer, v_spec, .Unsigned)
|
|
case u16: return _encode_u16(e, v_spec, .Unsigned)
|
|
case u32: return _encode_u32(e, v_spec, .Unsigned)
|
|
case u64: return _encode_u64(e, v_spec, .Unsigned)
|
|
case Negative_U8: return _encode_u8(e.writer, u8(v_spec), .Negative)
|
|
case Negative_U16: return _encode_u16(e, u16(v_spec), .Negative)
|
|
case Negative_U32: return _encode_u32(e, u32(v_spec), .Negative)
|
|
case Negative_U64: return _encode_u64(e, u64(v_spec), .Negative)
|
|
case ^Bytes: return _encode_bytes(e, v_spec^)
|
|
case ^Text: return _encode_text(e, v_spec^)
|
|
case ^Array: return _encode_array(e, v_spec^)
|
|
case ^Map: return _encode_map(e, v_spec^)
|
|
case ^Tag: return _encode_tag(e, v_spec^)
|
|
case Simple: return _encode_simple(e.writer, v_spec)
|
|
case f16: return _encode_f16(e.writer, v_spec)
|
|
case f32: return _encode_f32(e, v_spec)
|
|
case f64: return _encode_f64(e, v_spec)
|
|
case bool: return _encode_bool(e.writer, v_spec)
|
|
case Nil: return _encode_nil(e.writer)
|
|
case Undefined: return _encode_undefined(e.writer)
|
|
case: return nil
|
|
}
|
|
}
|
|
|
|
_decode_header :: proc(r: io.Reader) -> (hdr: Header, err: io.Error) {
|
|
hdr = Header(_decode_u8(r) or_return)
|
|
return
|
|
}
|
|
|
|
_header_split :: proc(hdr: Header) -> (Major, Add) {
|
|
return Major(u8(hdr) >> 5), Add(u8(hdr) & 0x1f)
|
|
}
|
|
|
|
_decode_u8 :: proc(r: io.Reader) -> (v: u8, err: io.Error) {
|
|
byte: [1]byte = ---
|
|
io.read_full(r, byte[:]) or_return
|
|
return byte[0], nil
|
|
}
|
|
|
|
_encode_uint :: proc {
|
|
_encode_u8,
|
|
_encode_u16,
|
|
_encode_u32,
|
|
_encode_u64,
|
|
}
|
|
|
|
_encode_u8 :: proc(w: io.Writer, v: u8, major: Major = .Unsigned) -> (err: io.Error) {
|
|
header := u8(major) << 5
|
|
if v < u8(Add.One_Byte) {
|
|
header |= v
|
|
_, err = io.write_full(w, {header})
|
|
return
|
|
}
|
|
|
|
header |= u8(Add.One_Byte)
|
|
_, err = io.write_full(w, {header, v})
|
|
return
|
|
}
|
|
|
|
_decode_tiny_u8 :: proc(additional: Add) -> (u8, Decode_Data_Error) {
|
|
if additional < .One_Byte {
|
|
return u8(additional), nil
|
|
}
|
|
|
|
return 0, .Bad_Argument
|
|
}
|
|
|
|
_decode_u16 :: proc(r: io.Reader) -> (v: u16, err: io.Error) {
|
|
bytes: [2]byte = ---
|
|
io.read_full(r, bytes[:]) or_return
|
|
return endian.unchecked_get_u16be(bytes[:]), nil
|
|
}
|
|
|
|
_encode_u16 :: proc(e: Encoder, v: u16, major: Major = .Unsigned) -> Encode_Error {
|
|
if .Deterministic_Int_Size in e.flags {
|
|
return _encode_deterministic_uint(e.writer, v, major)
|
|
}
|
|
return _encode_u16_exact(e.writer, v, major)
|
|
}
|
|
|
|
_encode_u16_exact :: proc(w: io.Writer, v: u16, major: Major = .Unsigned) -> (err: io.Error) {
|
|
bytes: [3]byte = ---
|
|
bytes[0] = (u8(major) << 5) | u8(Add.Two_Bytes)
|
|
endian.unchecked_put_u16be(bytes[1:], v)
|
|
_, err = io.write_full(w, bytes[:])
|
|
return
|
|
}
|
|
|
|
_decode_u32 :: proc(r: io.Reader) -> (v: u32, err: io.Error) {
|
|
bytes: [4]byte = ---
|
|
io.read_full(r, bytes[:]) or_return
|
|
return endian.unchecked_get_u32be(bytes[:]), nil
|
|
}
|
|
|
|
_encode_u32 :: proc(e: Encoder, v: u32, major: Major = .Unsigned) -> Encode_Error {
|
|
if .Deterministic_Int_Size in e.flags {
|
|
return _encode_deterministic_uint(e.writer, v, major)
|
|
}
|
|
return _encode_u32_exact(e.writer, v, major)
|
|
}
|
|
|
|
_encode_u32_exact :: proc(w: io.Writer, v: u32, major: Major = .Unsigned) -> (err: io.Error) {
|
|
bytes: [5]byte = ---
|
|
bytes[0] = (u8(major) << 5) | u8(Add.Four_Bytes)
|
|
endian.unchecked_put_u32be(bytes[1:], v)
|
|
_, err = io.write_full(w, bytes[:])
|
|
return
|
|
}
|
|
|
|
_decode_u64 :: proc(r: io.Reader) -> (v: u64, err: io.Error) {
|
|
bytes: [8]byte = ---
|
|
io.read_full(r, bytes[:]) or_return
|
|
return endian.unchecked_get_u64be(bytes[:]), nil
|
|
}
|
|
|
|
_encode_u64 :: proc(e: Encoder, v: u64, major: Major = .Unsigned) -> Encode_Error {
|
|
if .Deterministic_Int_Size in e.flags {
|
|
return _encode_deterministic_uint(e.writer, v, major)
|
|
}
|
|
return _encode_u64_exact(e.writer, v, major)
|
|
}
|
|
|
|
_encode_u64_exact :: proc(w: io.Writer, v: u64, major: Major = .Unsigned) -> (err: io.Error) {
|
|
bytes: [9]byte = ---
|
|
bytes[0] = (u8(major) << 5) | u8(Add.Eight_Bytes)
|
|
endian.unchecked_put_u64be(bytes[1:], v)
|
|
_, err = io.write_full(w, bytes[:])
|
|
return
|
|
}
|
|
|
|
_decode_bytes_ptr :: proc(d: Decoder, add: Add, type: Major = .Bytes, allocator := context.allocator, loc := #caller_location) -> (v: ^Bytes, err: Decode_Error) {
|
|
v = new(Bytes, allocator, loc) or_return
|
|
defer if err != nil { free(v, allocator, loc) }
|
|
|
|
v^ = _decode_bytes(d, add, type, allocator, loc) or_return
|
|
return
|
|
}
|
|
|
|
_decode_bytes :: proc(d: Decoder, add: Add, type: Major = .Bytes, allocator := context.allocator, loc := #caller_location) -> (v: Bytes, err: Decode_Error) {
|
|
context.allocator = allocator
|
|
|
|
add := add
|
|
n, scap := _decode_len_str(d, add) or_return
|
|
|
|
buf := strings.builder_make(0, scap, allocator, loc) or_return
|
|
defer if err != nil { strings.builder_destroy(&buf) }
|
|
buf_stream := strings.to_stream(&buf)
|
|
|
|
if n == -1 {
|
|
indefinite_loop: for {
|
|
header := _decode_header(d.reader) or_return
|
|
maj: Major
|
|
maj, add = _header_split(header)
|
|
#partial switch maj {
|
|
case type:
|
|
iter_n, iter_cap := _decode_len_str(d, add) or_return
|
|
if iter_n == -1 {
|
|
return nil, .Nested_Indefinite_Length
|
|
}
|
|
reserve(&buf.buf, len(buf.buf) + iter_cap) or_return
|
|
io.copy_n(buf_stream, d.reader, i64(iter_n)) or_return
|
|
|
|
case .Other:
|
|
if add != .Break { return nil, .Bad_Argument }
|
|
break indefinite_loop
|
|
|
|
case:
|
|
return nil, .Bad_Major
|
|
}
|
|
}
|
|
} else {
|
|
io.copy_n(buf_stream, d.reader, i64(n)) or_return
|
|
}
|
|
|
|
v = buf.buf[:]
|
|
|
|
// Write zero byte so this can be converted to cstring.
|
|
strings.write_byte(&buf, 0)
|
|
|
|
if .Shrink_Excess in d.flags { shrink(&buf.buf) }
|
|
return
|
|
}
|
|
|
|
_encode_bytes :: proc(e: Encoder, val: Bytes, major: Major = .Bytes) -> (err: Encode_Error) {
|
|
assert(len(val) >= 0)
|
|
_encode_u64(e, u64(len(val)), major) or_return
|
|
_, err = io.write_full(e.writer, val[:])
|
|
return
|
|
}
|
|
|
|
_decode_text_ptr :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: ^Text, err: Decode_Error) {
|
|
v = new(Text, allocator, loc) or_return
|
|
defer if err != nil { free(v) }
|
|
|
|
v^ = _decode_text(d, add, allocator, loc) or_return
|
|
return
|
|
}
|
|
|
|
_decode_text :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: Text, err: Decode_Error) {
|
|
return (Text)(_decode_bytes(d, add, .Text, allocator, loc) or_return), nil
|
|
}
|
|
|
|
_encode_text :: proc(e: Encoder, val: Text) -> Encode_Error {
|
|
return _encode_bytes(e, transmute([]byte)val, .Text)
|
|
}
|
|
|
|
_decode_array_ptr :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: ^Array, err: Decode_Error) {
|
|
v = new(Array, allocator, loc) or_return
|
|
defer if err != nil { free(v) }
|
|
|
|
v^ = _decode_array(d, add, allocator, loc) or_return
|
|
return
|
|
}
|
|
|
|
_decode_array :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: Array, err: Decode_Error) {
|
|
n, scap := _decode_len_container(d, add) or_return
|
|
array := make([dynamic]Value, 0, scap, allocator, loc) or_return
|
|
defer if err != nil {
|
|
for entry in array { destroy(entry, allocator) }
|
|
delete(array, loc)
|
|
}
|
|
|
|
for i := 0; n == -1 || i < n; i += 1 {
|
|
val, verr := _decode_from_decoder(d, {}, allocator, loc)
|
|
if n == -1 && verr == .Break {
|
|
break
|
|
} else if verr != nil {
|
|
err = verr
|
|
return
|
|
}
|
|
|
|
append(&array, val) or_return
|
|
}
|
|
|
|
if .Shrink_Excess in d.flags { shrink(&array) }
|
|
|
|
v = array[:]
|
|
return
|
|
}
|
|
|
|
_encode_array :: proc(e: Encoder, arr: Array) -> Encode_Error {
|
|
assert(len(arr) >= 0)
|
|
_encode_u64(e, u64(len(arr)), .Array)
|
|
for val in arr {
|
|
encode(e, val) or_return
|
|
}
|
|
return nil
|
|
}
|
|
|
|
_decode_map_ptr :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: ^Map, err: Decode_Error) {
|
|
v = new(Map, allocator, loc) or_return
|
|
defer if err != nil { free(v) }
|
|
|
|
v^ = _decode_map(d, add, allocator, loc) or_return
|
|
return
|
|
}
|
|
|
|
_decode_map :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: Map, err: Decode_Error) {
|
|
n, scap := _decode_len_container(d, add) or_return
|
|
items := make([dynamic]Map_Entry, 0, scap, allocator, loc) or_return
|
|
defer if err != nil {
|
|
for entry in items {
|
|
destroy(entry.key)
|
|
destroy(entry.value)
|
|
}
|
|
delete(items, loc)
|
|
}
|
|
|
|
for i := 0; n == -1 || i < n; i += 1 {
|
|
key, kerr := _decode_from_decoder(d, {}, allocator, loc)
|
|
if n == -1 && kerr == .Break {
|
|
break
|
|
} else if kerr != nil {
|
|
return nil, kerr
|
|
}
|
|
|
|
value := _decode_from_decoder(d, {}, allocator, loc) or_return
|
|
|
|
append(&items, Map_Entry{
|
|
key = key,
|
|
value = value,
|
|
}, loc) or_return
|
|
}
|
|
|
|
if .Shrink_Excess in d.flags { shrink(&items) }
|
|
|
|
v = items[:]
|
|
return
|
|
}
|
|
|
|
_encode_map :: proc(e: Encoder, m: Map) -> (err: Encode_Error) {
|
|
assert(len(m) >= 0)
|
|
_encode_u64(e, u64(len(m)), .Map) or_return
|
|
|
|
if .Deterministic_Map_Sorting not_in e.flags {
|
|
for entry in m {
|
|
encode(e, entry.key) or_return
|
|
encode(e, entry.value) or_return
|
|
}
|
|
return
|
|
}
|
|
|
|
// Deterministic_Map_Sorting needs us to sort the entries by the byte contents of the
|
|
// encoded key.
|
|
//
|
|
// This means we have to store and sort them before writing incurring extra (temporary) allocations.
|
|
|
|
Map_Entry_With_Key :: struct {
|
|
encoded_key: []byte,
|
|
entry: Map_Entry,
|
|
}
|
|
|
|
entries := make([]Map_Entry_With_Key, len(m), e.temp_allocator) or_return
|
|
defer delete(entries, e.temp_allocator)
|
|
|
|
for &entry, i in entries {
|
|
entry.entry = m[i]
|
|
|
|
buf := strings.builder_make(e.temp_allocator) or_return
|
|
|
|
ke := e
|
|
ke.writer = strings.to_stream(&buf)
|
|
|
|
encode(ke, entry.entry.key) or_return
|
|
entry.encoded_key = buf.buf[:]
|
|
}
|
|
|
|
// Sort lexicographic on the bytes of the key.
|
|
slice.sort_by_cmp(entries, proc(a, b: Map_Entry_With_Key) -> slice.Ordering {
|
|
return slice.Ordering(bytes.compare(a.encoded_key, b.encoded_key))
|
|
})
|
|
|
|
for entry in entries {
|
|
io.write_full(e.writer, entry.encoded_key) or_return
|
|
delete(entry.encoded_key, e.temp_allocator)
|
|
|
|
encode(e, entry.entry.value) or_return
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
_decode_tag_ptr :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: Value, err: Decode_Error) {
|
|
tag := _decode_tag(d, add, allocator, loc) or_return
|
|
if t, ok := tag.?; ok {
|
|
defer if err != nil { destroy(t.value) }
|
|
tp := new(Tag, allocator, loc) or_return
|
|
tp^ = t
|
|
return tp, nil
|
|
}
|
|
|
|
// no error, no tag, this was the self described CBOR tag, skip it.
|
|
return _decode_from_decoder(d, {}, allocator, loc)
|
|
}
|
|
|
|
_decode_tag :: proc(d: Decoder, add: Add, allocator := context.allocator, loc := #caller_location) -> (v: Maybe(Tag), err: Decode_Error) {
|
|
num := _decode_uint_as_u64(d.reader, add) or_return
|
|
|
|
// CBOR can be wrapped in a tag that decoders can use to see/check if the binary data is CBOR.
|
|
// We can ignore it here.
|
|
if num == TAG_SELF_DESCRIBED_CBOR {
|
|
return
|
|
}
|
|
|
|
t := Tag{
|
|
number = num,
|
|
value = _decode_from_decoder(d, {}, allocator, loc) or_return,
|
|
}
|
|
|
|
if nested, ok := t.value.(^Tag); ok {
|
|
destroy(nested)
|
|
return nil, .Nested_Tag
|
|
}
|
|
|
|
return t, nil
|
|
}
|
|
|
|
_decode_uint_as_u64 :: proc(r: io.Reader, add: Add) -> (nr: u64, err: Decode_Error) {
|
|
#partial switch add {
|
|
case .One_Byte: return u64(_decode_u8(r) or_return), nil
|
|
case .Two_Bytes: return u64(_decode_u16(r) or_return), nil
|
|
case .Four_Bytes: return u64(_decode_u32(r) or_return), nil
|
|
case .Eight_Bytes: return u64(_decode_u64(r) or_return), nil
|
|
case: return u64(_decode_tiny_u8(add) or_return), nil
|
|
}
|
|
}
|
|
|
|
_encode_tag :: proc(e: Encoder, val: Tag) -> Encode_Error {
|
|
_encode_u64(e, val.number, .Tag) or_return
|
|
return encode(e, val.value)
|
|
}
|
|
|
|
_decode_simple :: proc(r: io.Reader) -> (v: Simple, err: io.Error) {
|
|
buf: [1]byte = ---
|
|
io.read_full(r, buf[:]) or_return
|
|
return Simple(buf[0]), nil
|
|
}
|
|
|
|
_encode_simple :: proc(w: io.Writer, v: Simple) -> (err: Encode_Error) {
|
|
header := u8(Major.Other) << 5
|
|
|
|
if v < Simple(Add.False) {
|
|
header |= u8(v)
|
|
_, err = io.write_full(w, {header})
|
|
return
|
|
} else if v <= Simple(Add.Break) {
|
|
return .Invalid_Simple
|
|
}
|
|
|
|
header |= u8(Add.One_Byte)
|
|
_, err = io.write_full(w, {header, u8(v)})
|
|
return
|
|
}
|
|
|
|
_decode_tiny_simple :: proc(add: Add) -> (Simple, Decode_Data_Error) {
|
|
if add < Add.False {
|
|
return Simple(add), nil
|
|
}
|
|
|
|
return 0, .Bad_Argument
|
|
}
|
|
|
|
_decode_f16 :: proc(r: io.Reader) -> (v: f16, err: io.Error) {
|
|
bytes: [2]byte = ---
|
|
io.read_full(r, bytes[:]) or_return
|
|
n := endian.unchecked_get_u16be(bytes[:])
|
|
return transmute(f16)n, nil
|
|
}
|
|
|
|
_encode_f16 :: proc(w: io.Writer, v: f16) -> (err: io.Error) {
|
|
bytes: [3]byte = ---
|
|
bytes[0] = u8(Header.F16)
|
|
endian.unchecked_put_u16be(bytes[1:], transmute(u16)v)
|
|
_, err = io.write_full(w, bytes[:])
|
|
return
|
|
}
|
|
|
|
_decode_f32 :: proc(r: io.Reader) -> (v: f32, err: io.Error) {
|
|
bytes: [4]byte = ---
|
|
io.read_full(r, bytes[:]) or_return
|
|
n := endian.unchecked_get_u32be(bytes[:])
|
|
return transmute(f32)n, nil
|
|
}
|
|
|
|
_encode_f32 :: proc(e: Encoder, v: f32) -> io.Error {
|
|
if .Deterministic_Float_Size in e.flags {
|
|
return _encode_deterministic_float(e.writer, v)
|
|
}
|
|
return _encode_f32_exact(e.writer, v)
|
|
}
|
|
|
|
_encode_f32_exact :: proc(w: io.Writer, v: f32) -> (err: io.Error) {
|
|
bytes: [5]byte = ---
|
|
bytes[0] = u8(Header.F32)
|
|
endian.unchecked_put_u32be(bytes[1:], transmute(u32)v)
|
|
_, err = io.write_full(w, bytes[:])
|
|
return
|
|
}
|
|
|
|
_decode_f64 :: proc(r: io.Reader) -> (v: f64, err: io.Error) {
|
|
bytes: [8]byte = ---
|
|
io.read_full(r, bytes[:]) or_return
|
|
n := endian.unchecked_get_u64be(bytes[:])
|
|
return transmute(f64)n, nil
|
|
}
|
|
|
|
_encode_f64 :: proc(e: Encoder, v: f64) -> io.Error {
|
|
if .Deterministic_Float_Size in e.flags {
|
|
return _encode_deterministic_float(e.writer, v)
|
|
}
|
|
return _encode_f64_exact(e.writer, v)
|
|
}
|
|
|
|
_encode_f64_exact :: proc(w: io.Writer, v: f64) -> (err: io.Error) {
|
|
bytes: [9]byte = ---
|
|
bytes[0] = u8(Header.F64)
|
|
endian.unchecked_put_u64be(bytes[1:], transmute(u64)v)
|
|
_, err = io.write_full(w, bytes[:])
|
|
return
|
|
}
|
|
|
|
_encode_bool :: proc(w: io.Writer, v: bool) -> (err: io.Error) {
|
|
switch v {
|
|
case true: _, err = io.write_full(w, {u8(Header.True )}); return
|
|
case false: _, err = io.write_full(w, {u8(Header.False)}); return
|
|
case: unreachable()
|
|
}
|
|
}
|
|
|
|
_encode_undefined :: proc(w: io.Writer) -> io.Error {
|
|
_, err := io.write_full(w, {u8(Header.Undefined)})
|
|
return err
|
|
}
|
|
|
|
_encode_nil :: proc(w: io.Writer) -> io.Error {
|
|
_, err := io.write_full(w, {u8(Header.Nil)})
|
|
return err
|
|
}
|
|
|
|
// Streaming
|
|
|
|
encode_stream_begin :: proc(w: io.Writer, major: Major) -> (err: io.Error) {
|
|
assert(major >= Major(.Bytes) && major <= Major(.Map), "illegal stream type")
|
|
|
|
header := (u8(major) << 5) | u8(Add.Length_Unknown)
|
|
_, err = io.write_full(w, {header})
|
|
return
|
|
}
|
|
|
|
encode_stream_end :: proc(w: io.Writer) -> io.Error {
|
|
header := (u8(Major.Other) << 5) | u8(Add.Break)
|
|
_, err := io.write_full(w, {header})
|
|
return err
|
|
}
|
|
|
|
encode_stream_bytes :: _encode_bytes
|
|
encode_stream_text :: _encode_text
|
|
encode_stream_array_item :: encode
|
|
|
|
encode_stream_map_entry :: proc(e: Encoder, key: Value, val: Value) -> Encode_Error {
|
|
encode(e, key) or_return
|
|
return encode(e, val)
|
|
}
|
|
|
|
// For `Bytes` and `Text` strings: Decodes the number of items the header says follows.
|
|
// If the number is not specified -1 is returned and streaming should be initiated.
|
|
// A suitable starting capacity is also returned for a buffer that is allocated up the stack.
|
|
_decode_len_str :: proc(d: Decoder, add: Add) -> (n: int, scap: int, err: Decode_Error) {
|
|
if add == .Length_Unknown {
|
|
if .Disallow_Streaming in d.flags {
|
|
return -1, -1, .Disallowed_Streaming
|
|
}
|
|
return -1, INITIAL_STREAMED_BYTES_CAPACITY, nil
|
|
}
|
|
|
|
_n := _decode_uint_as_u64(d.reader, add) or_return
|
|
if _n > u64(max(int)) { return -1, -1, .Length_Too_Big }
|
|
n = int(_n)
|
|
|
|
scap = n + 1 // Space for zero byte.
|
|
if .Trusted_Input not_in d.flags {
|
|
scap = min(d.max_pre_alloc, scap)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// For `Array` and `Map` types: Decodes the number of items the header says follows.
|
|
// If the number is not specified -1 is returned and streaming should be initiated.
|
|
// A suitable starting capacity is also returned for a buffer that is allocated up the stack.
|
|
_decode_len_container :: proc(d: Decoder, add: Add) -> (n: int, scap: int, err: Decode_Error) {
|
|
if add == .Length_Unknown {
|
|
if .Disallow_Streaming in d.flags {
|
|
return -1, -1, .Disallowed_Streaming
|
|
}
|
|
return -1, INITIAL_STREAMED_CONTAINER_CAPACITY, nil
|
|
}
|
|
|
|
_n := _decode_uint_as_u64(d.reader, add) or_return
|
|
if _n > u64(max(int)) { return -1, -1, .Length_Too_Big }
|
|
n = int(_n)
|
|
|
|
scap = n
|
|
if .Trusted_Input not_in d.flags {
|
|
// NOTE: if this is a map it will be twice this.
|
|
scap = min(d.max_pre_alloc / size_of(Value), scap)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Deterministic encoding is (among other things) encoding all values into their smallest
|
|
// possible representation.
|
|
// See section 4 of RFC 8949.
|
|
|
|
_encode_deterministic_uint :: proc {
|
|
_encode_u8,
|
|
_encode_deterministic_u16,
|
|
_encode_deterministic_u32,
|
|
_encode_deterministic_u64,
|
|
_encode_deterministic_u128,
|
|
}
|
|
|
|
_encode_deterministic_u16 :: proc(w: io.Writer, v: u16, major: Major = .Unsigned) -> Encode_Error {
|
|
switch {
|
|
case v <= u16(max(u8)): return _encode_u8(w, u8(v), major)
|
|
case: return _encode_u16_exact(w, v, major)
|
|
}
|
|
}
|
|
|
|
_encode_deterministic_u32 :: proc(w: io.Writer, v: u32, major: Major = .Unsigned) -> Encode_Error {
|
|
switch {
|
|
case v <= u32(max(u8)): return _encode_u8(w, u8(v), major)
|
|
case v <= u32(max(u16)): return _encode_u16_exact(w, u16(v), major)
|
|
case: return _encode_u32_exact(w, u32(v), major)
|
|
}
|
|
}
|
|
|
|
_encode_deterministic_u64 :: proc(w: io.Writer, v: u64, major: Major = .Unsigned) -> Encode_Error {
|
|
switch {
|
|
case v <= u64(max(u8)): return _encode_u8(w, u8(v), major)
|
|
case v <= u64(max(u16)): return _encode_u16_exact(w, u16(v), major)
|
|
case v <= u64(max(u32)): return _encode_u32_exact(w, u32(v), major)
|
|
case: return _encode_u64_exact(w, u64(v), major)
|
|
}
|
|
}
|
|
|
|
_encode_deterministic_u128 :: proc(w: io.Writer, v: u128, major: Major = .Unsigned) -> Encode_Error {
|
|
switch {
|
|
case v <= u128(max(u8)): return _encode_u8(w, u8(v), major)
|
|
case v <= u128(max(u16)): return _encode_u16_exact(w, u16(v), major)
|
|
case v <= u128(max(u32)): return _encode_u32_exact(w, u32(v), major)
|
|
case v <= u128(max(u64)): return _encode_u64_exact(w, u64(v), major)
|
|
case: return .Int_Too_Big
|
|
}
|
|
}
|
|
|
|
_encode_deterministic_negative :: #force_inline proc(w: io.Writer, v: $T) -> Encode_Error
|
|
where T == Negative_U8 || T == Negative_U16 || T == Negative_U32 || T == Negative_U64 {
|
|
return _encode_deterministic_uint(w, v, .Negative)
|
|
}
|
|
|
|
// A Deterministic float is a float in the smallest type that stays the same after down casting.
|
|
_encode_deterministic_float :: proc {
|
|
_encode_f16,
|
|
_encode_deterministic_f32,
|
|
_encode_deterministic_f64,
|
|
}
|
|
|
|
_encode_deterministic_f32 :: proc(w: io.Writer, v: f32) -> io.Error {
|
|
if (f32(f16(v)) == v) {
|
|
return _encode_f16(w, f16(v))
|
|
}
|
|
|
|
return _encode_f32_exact(w, v)
|
|
}
|
|
|
|
_encode_deterministic_f64 :: proc(w: io.Writer, v: f64) -> io.Error {
|
|
if (f64(f16(v)) == v) {
|
|
return _encode_f16(w, f16(v))
|
|
}
|
|
|
|
if (f64(f32(v)) == v) {
|
|
return _encode_f32_exact(w, f32(v))
|
|
}
|
|
|
|
return _encode_f64_exact(w, v)
|
|
} |