Files
Odin/src/llvm_backend_general.cpp

2963 lines
92 KiB
C++

void lb_add_debug_local_variable(lbProcedure *p, LLVMValueRef ptr, Type *type, Token const &token);
gb_global Entity *lb_global_type_info_data_entity = {};
gb_global lbAddr lb_global_type_info_member_types = {};
gb_global lbAddr lb_global_type_info_member_names = {};
gb_global lbAddr lb_global_type_info_member_offsets = {};
gb_global lbAddr lb_global_type_info_member_usings = {};
gb_global lbAddr lb_global_type_info_member_tags = {};
gb_global isize lb_global_type_info_data_index = 0;
gb_global isize lb_global_type_info_member_types_index = 0;
gb_global isize lb_global_type_info_member_names_index = 0;
gb_global isize lb_global_type_info_member_offsets_index = 0;
gb_global isize lb_global_type_info_member_usings_index = 0;
gb_global isize lb_global_type_info_member_tags_index = 0;
void lb_init_module(lbModule *m, Checker *c) {
m->info = &c->info;
gbString module_name = gb_string_make(heap_allocator(), "odin_package");
if (m->pkg) {
module_name = gb_string_appendc(module_name, "-");
module_name = gb_string_append_length(module_name, m->pkg->name.text, m->pkg->name.len);
} else if (USE_SEPARATE_MODULES) {
module_name = gb_string_appendc(module_name, "-builtin");
}
m->ctx = LLVMContextCreate();
m->mod = LLVMModuleCreateWithNameInContext(module_name ? module_name : "odin_package", m->ctx);
// m->debug_builder = nullptr;
if (build_context.ODIN_DEBUG) {
enum {DEBUG_METADATA_VERSION = 3};
LLVMMetadataRef debug_ref = LLVMValueAsMetadata(LLVMConstInt(LLVMInt32TypeInContext(m->ctx), DEBUG_METADATA_VERSION, true));
LLVMAddModuleFlag(m->mod, LLVMModuleFlagBehaviorWarning, "Debug Info Version", 18, debug_ref);
switch (build_context.metrics.os) {
case TargetOs_windows:
LLVMAddModuleFlag(m->mod,
LLVMModuleFlagBehaviorWarning,
"CodeView", 8,
LLVMValueAsMetadata(LLVMConstInt(LLVMInt32TypeInContext(m->ctx), 1, true)));
break;
case TargetOs_darwin:
// NOTE(bill): Darwin only supports DWARF2 (that I know of)
LLVMAddModuleFlag(m->mod,
LLVMModuleFlagBehaviorWarning,
"Dwarf Version", 13,
LLVMValueAsMetadata(LLVMConstInt(LLVMInt32TypeInContext(m->ctx), 2, true)));
break;
}
m->debug_builder = LLVMCreateDIBuilder(m->mod);
}
gbAllocator a = heap_allocator();
map_init(&m->types, a);
map_init(&m->func_raw_types, a);
map_init(&m->struct_field_remapping, a);
map_init(&m->values, a);
map_init(&m->soa_values, a);
string_map_init(&m->members, a);
map_init(&m->procedure_values, a);
string_map_init(&m->procedures, a);
string_map_init(&m->const_strings, a);
map_init(&m->function_type_map, a);
map_init(&m->equal_procs, a);
map_init(&m->hasher_procs, a);
array_init(&m->procedures_to_generate, a, 0, 1024);
array_init(&m->missing_procedures_to_check, a, 0, 16);
map_init(&m->debug_values, a);
array_init(&m->debug_incomplete_types, a, 0, 1024);
string_map_init(&m->objc_classes, a);
string_map_init(&m->objc_selectors, a);
map_init(&m->map_header_table_map, a, 0);
}
bool lb_init_generator(lbGenerator *gen, Checker *c) {
if (global_error_collector.count != 0) {
return false;
}
isize tc = c->parser->total_token_count;
if (tc < 2) {
return false;
}
String init_fullpath = c->parser->init_fullpath;
if (build_context.out_filepath.len == 0) {
gen->output_name = remove_directory_from_path(init_fullpath);
gen->output_name = remove_extension_from_path(gen->output_name);
gen->output_name = string_trim_whitespace(gen->output_name);
if (gen->output_name.len == 0) {
gen->output_name = c->info.init_scope->pkg->name;
}
gen->output_base = gen->output_name;
} else {
gen->output_name = build_context.out_filepath;
gen->output_name = string_trim_whitespace(gen->output_name);
if (gen->output_name.len == 0) {
gen->output_name = c->info.init_scope->pkg->name;
}
isize pos = string_extension_position(gen->output_name);
if (pos < 0) {
gen->output_base = gen->output_name;
} else {
gen->output_base = substring(gen->output_name, 0, pos);
}
}
gbAllocator ha = heap_allocator();
array_init(&gen->output_object_paths, ha);
array_init(&gen->output_temp_paths, ha);
gen->output_base = path_to_full_path(ha, gen->output_base);
gbString output_file_path = gb_string_make_length(ha, gen->output_base.text, gen->output_base.len);
output_file_path = gb_string_appendc(output_file_path, ".obj");
defer (gb_string_free(output_file_path));
gen->info = &c->info;
map_init(&gen->modules, permanent_allocator(), gen->info->packages.entries.count*2);
map_init(&gen->modules_through_ctx, permanent_allocator(), gen->info->packages.entries.count*2);
map_init(&gen->anonymous_proc_lits, heap_allocator(), 1024);
mutex_init(&gen->foreign_mutex);
array_init(&gen->foreign_libraries, heap_allocator(), 0, 1024);
ptr_set_init(&gen->foreign_libraries_set, heap_allocator(), 1024);
if (USE_SEPARATE_MODULES) {
for_array(i, gen->info->packages.entries) {
AstPackage *pkg = gen->info->packages.entries[i].value;
auto m = gb_alloc_item(permanent_allocator(), lbModule);
m->pkg = pkg;
m->gen = gen;
map_set(&gen->modules, pkg, m);
lb_init_module(m, c);
}
}
gen->default_module.gen = gen;
map_set(&gen->modules, cast(AstPackage *)nullptr, &gen->default_module);
lb_init_module(&gen->default_module, c);
for_array(i, gen->modules.entries) {
lbModule *m = gen->modules.entries[i].value;
LLVMContextRef ctx = LLVMGetModuleContext(m->mod);
map_set(&gen->modules_through_ctx, ctx, m);
}
return true;
}
lbValue lb_global_type_info_data_ptr(lbModule *m) {
lbValue v = lb_find_value_from_entity(m, lb_global_type_info_data_entity);
return v;
}
struct lbLoopData {
lbAddr idx_addr;
lbValue idx;
lbBlock *body;
lbBlock *done;
lbBlock *loop;
};
struct lbCompoundLitElemTempData {
Ast * expr;
lbValue value;
i64 elem_index;
i64 elem_length;
lbValue gep;
};
lbLoopData lb_loop_start(lbProcedure *p, isize count, Type *index_type=t_i32) {
lbLoopData data = {};
lbValue max = lb_const_int(p->module, t_int, count);
data.idx_addr = lb_add_local_generated(p, index_type, true);
data.body = lb_create_block(p, "loop.body");
data.done = lb_create_block(p, "loop.done");
data.loop = lb_create_block(p, "loop.loop");
lb_emit_jump(p, data.loop);
lb_start_block(p, data.loop);
data.idx = lb_addr_load(p, data.idx_addr);
lbValue cond = lb_emit_comp(p, Token_Lt, data.idx, max);
lb_emit_if(p, cond, data.body, data.done);
lb_start_block(p, data.body);
return data;
}
void lb_loop_end(lbProcedure *p, lbLoopData const &data) {
if (data.idx_addr.addr.value != nullptr) {
lb_emit_increment(p, data.idx_addr.addr);
lb_emit_jump(p, data.loop);
lb_start_block(p, data.done);
}
}
void lb_make_global_private_const(LLVMValueRef global_data) {
LLVMSetLinkage(global_data, LLVMPrivateLinkage);
LLVMSetUnnamedAddress(global_data, LLVMGlobalUnnamedAddr);
LLVMSetGlobalConstant(global_data, true);
}
void lb_make_global_private_const(lbAddr const &addr) {
lb_make_global_private_const(addr.addr.value);
}
// This emits a GEP at 0, index
lbValue lb_emit_epi(lbProcedure *p, lbValue const &value, isize index) {
GB_ASSERT(is_type_pointer(value.type));
Type *type = type_deref(value.type);
LLVMValueRef indices[2] = {
LLVMConstInt(lb_type(p->module, t_int), 0, false),
LLVMConstInt(lb_type(p->module, t_int), cast(unsigned long long)index, false),
};
LLVMTypeRef llvm_type = lb_type(p->module, type);
lbValue res = {};
Type *ptr = base_array_type(type);
res.type = alloc_type_pointer(ptr);
if (LLVMIsConstant(value.value)) {
res.value = LLVMConstGEP2(llvm_type, value.value, indices, gb_count_of(indices));
} else {
res.value = LLVMBuildGEP2(p->builder, llvm_type, value.value, indices, gb_count_of(indices), "");
}
return res;
}
// This emits a GEP at 0, index
lbValue lb_emit_epi(lbModule *m, lbValue const &value, isize index) {
GB_ASSERT(is_type_pointer(value.type));
GB_ASSERT(LLVMIsConstant(value.value));
Type *type = type_deref(value.type);
LLVMValueRef indices[2] = {
LLVMConstInt(lb_type(m, t_int), 0, false),
LLVMConstInt(lb_type(m, t_int), cast(unsigned long long)index, false),
};
lbValue res = {};
Type *ptr = base_array_type(type);
res.type = alloc_type_pointer(ptr);
res.value = LLVMConstGEP2(lb_type(m, type), value.value, indices, gb_count_of(indices));
return res;
}
LLVMValueRef llvm_zero(lbModule *m) {
return LLVMConstInt(lb_type(m, t_int), 0, false);
}
LLVMValueRef llvm_zero32(lbModule *m) {
return LLVMConstInt(lb_type(m, t_i32), 0, false);
}
LLVMValueRef llvm_one(lbModule *m) {
return LLVMConstInt(lb_type(m, t_i32), 1, false);
}
LLVMValueRef llvm_alloca(lbProcedure *p, LLVMTypeRef llvm_type, isize alignment, char const *name) {
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMValueRef val = LLVMBuildAlloca(p->builder, llvm_type, name);
LLVMSetAlignment(val, cast(unsigned int)alignment);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
return val;
}
lbValue lb_zero(lbModule *m, Type *t) {
lbValue v = {};
v.value = LLVMConstInt(lb_type(m, t), 0, false);
v.type = t;
return v;
}
LLVMValueRef llvm_cstring(lbModule *m, String const &str) {
lbValue v = lb_find_or_add_entity_string(m, str);
unsigned indices[1] = {0};
return LLVMConstExtractValue(v.value, indices, gb_count_of(indices));
}
bool lb_is_instr_terminating(LLVMValueRef instr) {
if (instr != nullptr) {
LLVMOpcode op = LLVMGetInstructionOpcode(instr);
switch (op) {
case LLVMRet:
case LLVMBr:
case LLVMSwitch:
case LLVMIndirectBr:
case LLVMInvoke:
case LLVMUnreachable:
case LLVMCallBr:
return true;
}
}
return false;
}
lbModule *lb_pkg_module(lbGenerator *gen, AstPackage *pkg) {
auto *found = map_get(&gen->modules, pkg);
if (found) {
return *found;
}
return &gen->default_module;
}
lbAddr lb_addr(lbValue addr) {
lbAddr v = {lbAddr_Default, addr};
if (addr.type != nullptr && is_type_relative_pointer(type_deref(addr.type))) {
GB_ASSERT(is_type_pointer(addr.type));
v.kind = lbAddr_RelativePointer;
} else if (addr.type != nullptr && is_type_relative_slice(type_deref(addr.type))) {
GB_ASSERT(is_type_pointer(addr.type));
v.kind = lbAddr_RelativeSlice;
}
return v;
}
lbAddr lb_addr_map(lbValue addr, lbValue map_key, Type *map_type, Type *map_result) {
GB_ASSERT(is_type_pointer(addr.type));
Type *mt = type_deref(addr.type);
GB_ASSERT(is_type_map(mt));
lbAddr v = {lbAddr_Map, addr};
v.map.key = map_key;
v.map.type = map_type;
v.map.result = map_result;
return v;
}
lbAddr lb_addr_soa_variable(lbValue addr, lbValue index, Ast *index_expr) {
lbAddr v = {lbAddr_SoaVariable, addr};
v.soa.index = index;
v.soa.index_expr = index_expr;
return v;
}
lbAddr lb_addr_swizzle(lbValue addr, Type *array_type, u8 swizzle_count, u8 swizzle_indices[4]) {
GB_ASSERT(is_type_array(array_type));
GB_ASSERT(1 < swizzle_count && swizzle_count <= 4);
lbAddr v = {lbAddr_Swizzle, addr};
v.swizzle.type = array_type;
v.swizzle.count = swizzle_count;
gb_memmove(v.swizzle.indices, swizzle_indices, swizzle_count);
return v;
}
lbAddr lb_addr_swizzle_large(lbValue addr, Type *array_type, Slice<i32> const &swizzle_indices) {
GB_ASSERT_MSG(is_type_array(array_type), "%s", type_to_string(array_type));
lbAddr v = {lbAddr_SwizzleLarge, addr};
v.swizzle_large.type = array_type;
v.swizzle_large.indices = swizzle_indices;
return v;
}
Type *lb_addr_type(lbAddr const &addr) {
if (addr.addr.value == nullptr) {
return nullptr;
}
switch (addr.kind) {
case lbAddr_Map:
{
Type *t = base_type(addr.map.type);
GB_ASSERT(is_type_map(t));
return t->Map.value;
}
case lbAddr_Swizzle:
return addr.swizzle.type;
case lbAddr_SwizzleLarge:
return addr.swizzle_large.type;
case lbAddr_Context:
if (addr.ctx.sel.index.count > 0) {
Type *t = t_context;
for_array(i, addr.ctx.sel.index) {
GB_ASSERT(is_type_struct(t));
t = base_type(t)->Struct.fields[addr.ctx.sel.index[i]]->type;
}
return t;
}
break;
}
return type_deref(addr.addr.type);
}
lbValue lb_addr_get_ptr(lbProcedure *p, lbAddr const &addr) {
if (addr.addr.value == nullptr) {
GB_PANIC("Illegal addr -> nullptr");
return {};
}
switch (addr.kind) {
case lbAddr_Map:
return lb_internal_dynamic_map_get_ptr(p, addr.addr, addr.map.key);
case lbAddr_RelativePointer: {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativePointer);
lbValue ptr = lb_emit_conv(p, addr.addr, t_uintptr);
lbValue offset = lb_emit_conv(p, ptr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_load(p, offset);
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, t_uintptr);
lbValue absolute_ptr = lb_emit_arith(p, Token_Add, ptr, offset, t_uintptr);
absolute_ptr = lb_emit_conv(p, absolute_ptr, rel_ptr->RelativePointer.pointer_type);
lbValue cond = lb_emit_comp(p, Token_CmpEq, offset, lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer));
// NOTE(bill): nil check
lbValue nil_ptr = lb_const_nil(p->module, rel_ptr->RelativePointer.pointer_type);
lbValue final_ptr = lb_emit_select(p, cond, nil_ptr, absolute_ptr);
return final_ptr;
}
case lbAddr_SoaVariable:
// TODO(bill): FIX THIS HACK
return lb_address_from_load(p, lb_addr_load(p, addr));
case lbAddr_Context:
GB_PANIC("lbAddr_Context should be handled elsewhere");
break;
case lbAddr_Swizzle:
case lbAddr_SwizzleLarge:
// TOOD(bill): is this good enough logic?
break;
}
return addr.addr;
}
lbValue lb_build_addr_ptr(lbProcedure *p, Ast *expr) {
lbAddr addr = lb_build_addr(p, expr);
return lb_addr_get_ptr(p, addr);
}
void lb_emit_bounds_check(lbProcedure *p, Token token, lbValue index, lbValue len) {
if (build_context.no_bounds_check) {
return;
}
if ((p->state_flags & StateFlag_no_bounds_check) != 0) {
return;
}
index = lb_emit_conv(p, index, t_int);
len = lb_emit_conv(p, len, t_int);
lbValue file = lb_find_or_add_entity_string(p->module, get_file_path_string(token.pos.file_id));
lbValue line = lb_const_int(p->module, t_i32, token.pos.line);
lbValue column = lb_const_int(p->module, t_i32, token.pos.column);
auto args = array_make<lbValue>(permanent_allocator(), 5);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = index;
args[4] = len;
lb_emit_runtime_call(p, "bounds_check_error", args);
}
void lb_emit_matrix_bounds_check(lbProcedure *p, Token token, lbValue row_index, lbValue column_index, lbValue row_count, lbValue column_count) {
if (build_context.no_bounds_check) {
return;
}
if ((p->state_flags & StateFlag_no_bounds_check) != 0) {
return;
}
row_index = lb_emit_conv(p, row_index, t_int);
column_index = lb_emit_conv(p, column_index, t_int);
row_count = lb_emit_conv(p, row_count, t_int);
column_count = lb_emit_conv(p, column_count, t_int);
lbValue file = lb_find_or_add_entity_string(p->module, get_file_path_string(token.pos.file_id));
lbValue line = lb_const_int(p->module, t_i32, token.pos.line);
lbValue column = lb_const_int(p->module, t_i32, token.pos.column);
auto args = array_make<lbValue>(permanent_allocator(), 7);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = row_index;
args[4] = column_index;
args[5] = row_count;
args[6] = column_count;
lb_emit_runtime_call(p, "matrix_bounds_check_error", args);
}
void lb_emit_multi_pointer_slice_bounds_check(lbProcedure *p, Token token, lbValue low, lbValue high) {
if (build_context.no_bounds_check) {
return;
}
if ((p->state_flags & StateFlag_no_bounds_check) != 0) {
return;
}
low = lb_emit_conv(p, low, t_int);
high = lb_emit_conv(p, high, t_int);
lbValue file = lb_find_or_add_entity_string(p->module, get_file_path_string(token.pos.file_id));
lbValue line = lb_const_int(p->module, t_i32, token.pos.line);
lbValue column = lb_const_int(p->module, t_i32, token.pos.column);
auto args = array_make<lbValue>(permanent_allocator(), 5);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = low;
args[4] = high;
lb_emit_runtime_call(p, "multi_pointer_slice_expr_error", args);
}
void lb_emit_slice_bounds_check(lbProcedure *p, Token token, lbValue low, lbValue high, lbValue len, bool lower_value_used) {
if (build_context.no_bounds_check) {
return;
}
if ((p->state_flags & StateFlag_no_bounds_check) != 0) {
return;
}
lbValue file = lb_find_or_add_entity_string(p->module, get_file_path_string(token.pos.file_id));
lbValue line = lb_const_int(p->module, t_i32, token.pos.line);
lbValue column = lb_const_int(p->module, t_i32, token.pos.column);
high = lb_emit_conv(p, high, t_int);
if (!lower_value_used) {
auto args = array_make<lbValue>(permanent_allocator(), 5);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = high;
args[4] = len;
lb_emit_runtime_call(p, "slice_expr_error_hi", args);
} else {
// No need to convert unless used
low = lb_emit_conv(p, low, t_int);
auto args = array_make<lbValue>(permanent_allocator(), 6);
args[0] = file;
args[1] = line;
args[2] = column;
args[3] = low;
args[4] = high;
args[5] = len;
lb_emit_runtime_call(p, "slice_expr_error_lo_hi", args);
}
}
unsigned lb_try_get_alignment(LLVMValueRef addr_ptr, unsigned default_alignment) {
if (LLVMIsAGlobalValue(addr_ptr) || LLVMIsAAllocaInst(addr_ptr) || LLVMIsALoadInst(addr_ptr)) {
return LLVMGetAlignment(addr_ptr);
}
return default_alignment;
}
bool lb_try_update_alignment(LLVMValueRef addr_ptr, unsigned alignment) {
if (LLVMIsAGlobalValue(addr_ptr) || LLVMIsAAllocaInst(addr_ptr) || LLVMIsALoadInst(addr_ptr)) {
if (LLVMGetAlignment(addr_ptr) < alignment) {
if (LLVMIsAAllocaInst(addr_ptr) || LLVMIsAGlobalValue(addr_ptr)) {
LLVMSetAlignment(addr_ptr, alignment);
}
}
return LLVMGetAlignment(addr_ptr) >= alignment;
}
return false;
}
bool lb_try_update_alignment(lbValue ptr, unsigned alignment) {
return lb_try_update_alignment(ptr.value, alignment);
}
bool lb_can_try_to_inline_array_arith(Type *t) {
return type_size_of(t) <= build_context.max_simd_align;
}
bool lb_try_vector_cast(lbModule *m, lbValue ptr, LLVMTypeRef *vector_type_) {
Type *array_type = base_type(type_deref(ptr.type));
GB_ASSERT(is_type_array_like(array_type));
i64 count = get_array_type_count(array_type);
Type *elem_type = base_array_type(array_type);
// TODO(bill): Determine what is the correct limit for doing vector arithmetic
if (lb_can_try_to_inline_array_arith(array_type) &&
is_type_valid_vector_elem(elem_type)) {
// Try to treat it like a vector if possible
bool possible = false;
LLVMTypeRef vector_type = LLVMVectorType(lb_type(m, elem_type), cast(unsigned)count);
unsigned vector_alignment = cast(unsigned)lb_alignof(vector_type);
LLVMValueRef addr_ptr = ptr.value;
if (LLVMIsAAllocaInst(addr_ptr) || LLVMIsAGlobalValue(addr_ptr)) {
unsigned alignment = LLVMGetAlignment(addr_ptr);
alignment = gb_max(alignment, vector_alignment);
possible = true;
LLVMSetAlignment(addr_ptr, alignment);
} else if (LLVMIsALoadInst(addr_ptr)) {
unsigned alignment = LLVMGetAlignment(addr_ptr);
possible = alignment >= vector_alignment;
}
// NOTE: Due to alignment requirements, if the pointer is not correctly aligned
// then it cannot be treated as a vector
if (possible) {
if (vector_type_) *vector_type_ =vector_type;
return true;
}
}
return false;
}
void lb_addr_store(lbProcedure *p, lbAddr addr, lbValue value) {
if (addr.addr.value == nullptr) {
return;
}
GB_ASSERT(value.type != nullptr);
if (is_type_untyped_undef(value.type)) {
Type *t = lb_addr_type(addr);
value.type = t;
value.value = LLVMGetUndef(lb_type(p->module, t));
} else if (is_type_untyped_nil(value.type)) {
Type *t = lb_addr_type(addr);
value.type = t;
value.value = LLVMConstNull(lb_type(p->module, t));
}
if (addr.kind == lbAddr_RelativePointer && addr.relative.deref) {
addr = lb_addr(lb_address_from_load(p, lb_addr_load(p, addr)));
}
if (addr.kind == lbAddr_RelativePointer) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativePointer);
value = lb_emit_conv(p, value, rel_ptr->RelativePointer.pointer_type);
GB_ASSERT(is_type_pointer(addr.addr.type));
lbValue ptr = lb_emit_conv(p, addr.addr, t_uintptr);
lbValue val_ptr = lb_emit_conv(p, value, t_uintptr);
lbValue offset = {};
offset.value = LLVMBuildSub(p->builder, val_ptr.value, ptr.value, "");
offset.type = t_uintptr;
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, rel_ptr->RelativePointer.base_integer);
lbValue offset_ptr = lb_emit_conv(p, addr.addr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_select(p,
lb_emit_comp(p, Token_CmpEq, val_ptr, lb_const_nil(p->module, t_uintptr)),
lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer),
offset
);
LLVMBuildStore(p->builder, offset.value, offset_ptr.value);
return;
} else if (addr.kind == lbAddr_RelativeSlice) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativeSlice);
value = lb_emit_conv(p, value, rel_ptr->RelativeSlice.slice_type);
GB_ASSERT(is_type_pointer(addr.addr.type));
lbValue ptr = lb_emit_conv(p, lb_emit_struct_ep(p, addr.addr, 0), t_uintptr);
lbValue val_ptr = lb_emit_conv(p, lb_slice_elem(p, value), t_uintptr);
lbValue offset = {};
offset.value = LLVMBuildSub(p->builder, val_ptr.value, ptr.value, "");
offset.type = t_uintptr;
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, rel_ptr->RelativePointer.base_integer);
lbValue offset_ptr = lb_emit_conv(p, addr.addr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_select(p,
lb_emit_comp(p, Token_CmpEq, val_ptr, lb_const_nil(p->module, t_uintptr)),
lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer),
offset
);
LLVMBuildStore(p->builder, offset.value, offset_ptr.value);
lbValue len = lb_slice_len(p, value);
len = lb_emit_conv(p, len, rel_ptr->RelativePointer.base_integer);
lbValue len_ptr = lb_emit_struct_ep(p, addr.addr, 1);
LLVMBuildStore(p->builder, len.value, len_ptr.value);
return;
} else if (addr.kind == lbAddr_Map) {
lb_insert_dynamic_map_key_and_value(p, addr.addr, addr.map.type, addr.map.key, value, p->curr_stmt);
return;
} else if (addr.kind == lbAddr_Context) {
lbAddr old_addr = lb_find_or_generate_context_ptr(p);
// IMPORTANT NOTE(bill, 2021-04-22): reuse unused 'context' variables to minimize stack usage
// This has to be done manually since the optimizer cannot determine when this is possible
bool create_new = true;
for_array(i, p->context_stack) {
lbContextData *ctx_data = &p->context_stack[i];
if (ctx_data->ctx.addr.value == old_addr.addr.value) {
if (ctx_data->uses > 0) {
create_new = true;
} else if (p->scope_index > ctx_data->scope_index) {
create_new = true;
} else {
// gb_printf_err("%.*s (curr:%td) (ctx:%td) (uses:%td)\n", LIT(p->name), p->scope_index, ctx_data->scope_index, ctx_data->uses);
create_new = false;
}
break;
}
}
lbValue next = {};
if (create_new) {
lbValue old = lb_addr_load(p, old_addr);
lbAddr next_addr = lb_add_local_generated(p, t_context, true);
lb_addr_store(p, next_addr, old);
lb_push_context_onto_stack(p, next_addr);
next = next_addr.addr;
} else {
next = old_addr.addr;
}
if (addr.ctx.sel.index.count > 0) {
lbValue lhs = lb_emit_deep_field_gep(p, next, addr.ctx.sel);
lbValue rhs = lb_emit_conv(p, value, type_deref(lhs.type));
lb_emit_store(p, lhs, rhs);
} else {
lbValue lhs = next;
lbValue rhs = lb_emit_conv(p, value, lb_addr_type(addr));
lb_emit_store(p, lhs, rhs);
}
return;
} else if (addr.kind == lbAddr_SoaVariable) {
Type *t = type_deref(addr.addr.type);
t = base_type(t);
GB_ASSERT(t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None);
Type *elem_type = t->Struct.soa_elem;
value = lb_emit_conv(p, value, elem_type);
elem_type = base_type(elem_type);
lbValue index = addr.soa.index;
if (!lb_is_const(index) || t->Struct.soa_kind != StructSoa_Fixed) {
Type *t = base_type(type_deref(addr.addr.type));
GB_ASSERT(t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None);
lbValue len = lb_soa_struct_len(p, addr.addr);
if (addr.soa.index_expr != nullptr) {
lb_emit_bounds_check(p, ast_token(addr.soa.index_expr), index, len);
}
}
isize field_count = 0;
switch (elem_type->kind) {
case Type_Struct:
field_count = elem_type->Struct.fields.count;
break;
case Type_Array:
field_count = cast(isize)elem_type->Array.count;
break;
}
for (isize i = 0; i < field_count; i++) {
lbValue dst = lb_emit_struct_ep(p, addr.addr, cast(i32)i);
lbValue src = lb_emit_struct_ev(p, value, cast(i32)i);
if (t->Struct.soa_kind == StructSoa_Fixed) {
dst = lb_emit_array_ep(p, dst, index);
lb_emit_store(p, dst, src);
} else {
lbValue field = lb_emit_load(p, dst);
dst = lb_emit_ptr_offset(p, field, index);
lb_emit_store(p, dst, src);
}
}
return;
} else if (addr.kind == lbAddr_Swizzle) {
GB_ASSERT(addr.swizzle.count <= 4);
GB_ASSERT(value.value != nullptr);
value = lb_emit_conv(p, value, lb_addr_type(addr));
lbValue dst = lb_addr_get_ptr(p, addr);
lbValue src = lb_address_from_load_or_generate_local(p, value);
{
lbValue src_ptrs[4] = {};
lbValue src_loads[4] = {};
lbValue dst_ptrs[4] = {};
for (u8 i = 0; i < addr.swizzle.count; i++) {
src_ptrs[i] = lb_emit_array_epi(p, src, i);
}
for (u8 i = 0; i < addr.swizzle.count; i++) {
dst_ptrs[i] = lb_emit_array_epi(p, dst, addr.swizzle.indices[i]);
}
for (u8 i = 0; i < addr.swizzle.count; i++) {
src_loads[i] = lb_emit_load(p, src_ptrs[i]);
}
for (u8 i = 0; i < addr.swizzle.count; i++) {
lb_emit_store(p, dst_ptrs[i], src_loads[i]);
}
}
return;
} else if (addr.kind == lbAddr_SwizzleLarge) {
GB_ASSERT(value.value != nullptr);
value = lb_emit_conv(p, value, lb_addr_type(addr));
lbValue dst = lb_addr_get_ptr(p, addr);
lbValue src = lb_address_from_load_or_generate_local(p, value);
for_array(i, addr.swizzle_large.indices) {
lbValue src_ptr = lb_emit_array_epi(p, src, i);
lbValue dst_ptr = lb_emit_array_epi(p, dst, addr.swizzle_large.indices[i]);
lbValue src_load = lb_emit_load(p, src_ptr);
lb_emit_store(p, dst_ptr, src_load);
}
return;
}
GB_ASSERT(value.value != nullptr);
value = lb_emit_conv(p, value, lb_addr_type(addr));
// if (lb_is_const_or_global(value)) {
// // NOTE(bill): Just bypass the actual storage and set the initializer
// if (LLVMGetValueKind(addr.addr.value) == LLVMGlobalVariableValueKind) {
// LLVMValueRef dst = addr.addr.value;
// LLVMValueRef src = value.value;
// LLVMSetInitializer(dst, src);
// return;
// }
// }
lb_emit_store(p, addr.addr, value);
}
void lb_const_store(lbValue ptr, lbValue value) {
GB_ASSERT(lb_is_const(ptr));
GB_ASSERT(lb_is_const(value));
GB_ASSERT(is_type_pointer(ptr.type));
LLVMSetInitializer(ptr.value, value.value);
}
bool lb_is_type_proc_recursive(Type *t) {
for (;;) {
if (t == nullptr) {
return false;
}
switch (t->kind) {
case Type_Named:
t = t->Named.base;
break;
case Type_Pointer:
t = t->Pointer.elem;
break;
case Type_Proc:
return true;
default:
return false;
}
}
}
void lb_emit_store(lbProcedure *p, lbValue ptr, lbValue value) {
GB_ASSERT(value.value != nullptr);
Type *a = type_deref(ptr.type);
if (LLVMIsNull(value.value)) {
LLVMTypeRef src_t = llvm_addr_type(p->module, ptr);
if (is_type_proc(a)) {
LLVMTypeRef rawptr_type = lb_type(p->module, t_rawptr);
LLVMTypeRef rawptr_ptr_type = LLVMPointerType(rawptr_type, 0);
LLVMBuildStore(p->builder, LLVMConstNull(rawptr_type), LLVMBuildBitCast(p->builder, ptr.value, rawptr_ptr_type, ""));
} else if (lb_sizeof(src_t) <= lb_max_zero_init_size()) {
LLVMBuildStore(p->builder, LLVMConstNull(src_t), ptr.value);
} else {
lb_mem_zero_ptr(p, ptr.value, a, 1);
}
return;
}
if (is_type_boolean(a)) {
// NOTE(bill): There are multiple sized booleans, thus force a conversion (if necessarily)
value = lb_emit_conv(p, value, a);
}
Type *ca = core_type(a);
if (ca->kind == Type_Basic) {
GB_ASSERT_MSG(are_types_identical(ca, core_type(value.type)), "%s != %s", type_to_string(a), type_to_string(value.type));
}
enum {MAX_STORE_SIZE = 64};
if (lb_sizeof(LLVMTypeOf(value.value)) > MAX_STORE_SIZE) {
if (LLVMIsALoadInst(value.value)) {
LLVMValueRef dst_ptr = ptr.value;
LLVMValueRef src_ptr_original = LLVMGetOperand(value.value, 0);
LLVMValueRef src_ptr = LLVMBuildPointerCast(p->builder, src_ptr_original, LLVMTypeOf(dst_ptr), "");
LLVMBuildMemMove(p->builder,
dst_ptr, lb_try_get_alignment(dst_ptr, 1),
src_ptr, lb_try_get_alignment(src_ptr_original, 1),
LLVMConstInt(LLVMInt64TypeInContext(p->module->ctx), lb_sizeof(LLVMTypeOf(value.value)), false));
return;
} else if (LLVMIsConstant(value.value)) {
lbAddr addr = lb_add_global_generated(p->module, value.type, value, nullptr);
lb_make_global_private_const(addr);
LLVMValueRef dst_ptr = ptr.value;
LLVMValueRef src_ptr = addr.addr.value;
src_ptr = LLVMBuildPointerCast(p->builder, src_ptr, LLVMTypeOf(dst_ptr), "");
LLVMBuildMemMove(p->builder,
dst_ptr, lb_try_get_alignment(dst_ptr, 1),
src_ptr, lb_try_get_alignment(src_ptr, 1),
LLVMConstInt(LLVMInt64TypeInContext(p->module->ctx), lb_sizeof(LLVMTypeOf(value.value)), false));
return;
}
}
if (lb_is_type_proc_recursive(a)) {
// NOTE(bill, 2020-11-11): Because of certain LLVM rules, a procedure value may be
// stored as regular pointer with no procedure information
LLVMTypeRef rawptr_type = lb_type(p->module, t_rawptr);
LLVMTypeRef rawptr_ptr_type = LLVMPointerType(rawptr_type, 0);
LLVMBuildStore(p->builder,
LLVMBuildPointerCast(p->builder, value.value, rawptr_type, ""),
LLVMBuildPointerCast(p->builder, ptr.value, rawptr_ptr_type, ""));
} else {
Type *ca = core_type(a);
if (ca->kind == Type_Basic || ca->kind == Type_Proc) {
GB_ASSERT_MSG(are_types_identical(ca, core_type(value.type)), "%s != %s", type_to_string(a), type_to_string(value.type));
} else {
GB_ASSERT_MSG(are_types_identical(a, value.type), "%s != %s", type_to_string(a), type_to_string(value.type));
}
LLVMBuildStore(p->builder, value.value, ptr.value);
}
}
LLVMTypeRef llvm_addr_type(lbModule *module, lbValue addr_val) {
return lb_type(module, type_deref(addr_val.type));
}
lbValue lb_emit_load(lbProcedure *p, lbValue value) {
GB_ASSERT(value.value != nullptr);
if (is_type_multi_pointer(value.type)) {
Type *vt = base_type(value.type);
GB_ASSERT(vt->kind == Type_MultiPointer);
Type *t = vt->MultiPointer.elem;
LLVMValueRef v = LLVMBuildLoad2(p->builder, lb_type(p->module, t), value.value, "");
return lbValue{v, t};
} else if (is_type_soa_pointer(value.type)) {
lbValue ptr = lb_emit_struct_ev(p, value, 0);
lbValue idx = lb_emit_struct_ev(p, value, 1);
lbAddr addr = lb_addr_soa_variable(ptr, idx, nullptr);
return lb_addr_load(p, addr);
}
GB_ASSERT(is_type_pointer(value.type));
Type *t = type_deref(value.type);
LLVMValueRef v = LLVMBuildLoad2(p->builder, lb_type(p->module, t), value.value, "");
return lbValue{v, t};
}
lbValue lb_addr_load(lbProcedure *p, lbAddr const &addr) {
GB_ASSERT(addr.addr.value != nullptr);
if (addr.kind == lbAddr_RelativePointer) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativePointer);
lbValue ptr = lb_emit_conv(p, addr.addr, t_uintptr);
lbValue offset = lb_emit_conv(p, ptr, alloc_type_pointer(rel_ptr->RelativePointer.base_integer));
offset = lb_emit_load(p, offset);
if (!is_type_unsigned(rel_ptr->RelativePointer.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, t_uintptr);
lbValue absolute_ptr = lb_emit_arith(p, Token_Add, ptr, offset, t_uintptr);
absolute_ptr = lb_emit_conv(p, absolute_ptr, rel_ptr->RelativePointer.pointer_type);
lbValue cond = lb_emit_comp(p, Token_CmpEq, offset, lb_const_nil(p->module, rel_ptr->RelativePointer.base_integer));
// NOTE(bill): nil check
lbValue nil_ptr = lb_const_nil(p->module, rel_ptr->RelativePointer.pointer_type);
lbValue final_ptr = {};
final_ptr.type = absolute_ptr.type;
final_ptr.value = LLVMBuildSelect(p->builder, cond.value, nil_ptr.value, absolute_ptr.value, "");
return lb_emit_load(p, final_ptr);
} else if (addr.kind == lbAddr_RelativeSlice) {
Type *rel_ptr = base_type(lb_addr_type(addr));
GB_ASSERT(rel_ptr->kind == Type_RelativeSlice);
lbValue offset_ptr = lb_emit_struct_ep(p, addr.addr, 0);
lbValue ptr = lb_emit_conv(p, offset_ptr, t_uintptr);
lbValue offset = lb_emit_load(p, offset_ptr);
if (!is_type_unsigned(rel_ptr->RelativeSlice.base_integer)) {
offset = lb_emit_conv(p, offset, t_i64);
}
offset = lb_emit_conv(p, offset, t_uintptr);
lbValue absolute_ptr = lb_emit_arith(p, Token_Add, ptr, offset, t_uintptr);
Type *slice_type = base_type(rel_ptr->RelativeSlice.slice_type);
GB_ASSERT(rel_ptr->RelativeSlice.slice_type->kind == Type_Slice);
Type *slice_elem = slice_type->Slice.elem;
Type *slice_elem_ptr = alloc_type_pointer(slice_elem);
absolute_ptr = lb_emit_conv(p, absolute_ptr, slice_elem_ptr);
lbValue cond = lb_emit_comp(p, Token_CmpEq, offset, lb_const_nil(p->module, rel_ptr->RelativeSlice.base_integer));
// NOTE(bill): nil check
lbValue nil_ptr = lb_const_nil(p->module, slice_elem_ptr);
lbValue data = {};
data.type = absolute_ptr.type;
data.value = LLVMBuildSelect(p->builder, cond.value, nil_ptr.value, absolute_ptr.value, "");
lbValue len = lb_emit_load(p, lb_emit_struct_ep(p, addr.addr, 1));
len = lb_emit_conv(p, len, t_int);
lbAddr slice = lb_add_local_generated(p, slice_type, false);
lb_fill_slice(p, slice, data, len);
return lb_addr_load(p, slice);
} else if (addr.kind == lbAddr_Map) {
Type *map_type = base_type(type_deref(addr.addr.type));
GB_ASSERT(map_type->kind == Type_Map);
lbAddr v = lb_add_local_generated(p, map_type->Map.lookup_result_type, true);
lbValue ptr = lb_internal_dynamic_map_get_ptr(p, addr.addr, addr.map.key);
lbValue ok = lb_emit_conv(p, lb_emit_comp_against_nil(p, Token_NotEq, ptr), t_bool);
lb_emit_store(p, lb_emit_struct_ep(p, v.addr, 1), ok);
lbBlock *then = lb_create_block(p, "map.get.then");
lbBlock *done = lb_create_block(p, "map.get.done");
lb_emit_if(p, ok, then, done);
lb_start_block(p, then);
{
// TODO(bill): mem copy it instead?
lbValue gep0 = lb_emit_struct_ep(p, v.addr, 0);
lbValue value = lb_emit_conv(p, ptr, gep0.type);
lb_emit_store(p, gep0, lb_emit_load(p, value));
}
lb_emit_jump(p, done);
lb_start_block(p, done);
if (is_type_tuple(addr.map.result)) {
return lb_addr_load(p, v);
} else {
lbValue single = lb_emit_struct_ep(p, v.addr, 0);
return lb_emit_load(p, single);
}
} else if (addr.kind == lbAddr_Context) {
lbValue a = addr.addr;
for_array(i, p->context_stack) {
lbContextData *ctx_data = &p->context_stack[i];
if (ctx_data->ctx.addr.value == a.value) {
ctx_data->uses += 1;
break;
}
}
a.value = LLVMBuildPointerCast(p->builder, a.value, lb_type(p->module, t_context_ptr), "");
if (addr.ctx.sel.index.count > 0) {
lbValue b = lb_emit_deep_field_gep(p, a, addr.ctx.sel);
return lb_emit_load(p, b);
} else {
return lb_emit_load(p, a);
}
} else if (addr.kind == lbAddr_SoaVariable) {
Type *t = type_deref(addr.addr.type);
t = base_type(t);
GB_ASSERT(t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None);
Type *elem = t->Struct.soa_elem;
lbValue len = {};
if (t->Struct.soa_kind == StructSoa_Fixed) {
len = lb_const_int(p->module, t_int, t->Struct.soa_count);
} else {
lbValue v = lb_emit_load(p, addr.addr);
len = lb_soa_struct_len(p, v);
}
lbAddr res = lb_add_local_generated(p, elem, true);
if (addr.soa.index_expr != nullptr && (!lb_is_const(addr.soa.index) || t->Struct.soa_kind != StructSoa_Fixed)) {
lb_emit_bounds_check(p, ast_token(addr.soa.index_expr), addr.soa.index, len);
}
if (t->Struct.soa_kind == StructSoa_Fixed) {
for_array(i, t->Struct.fields) {
Entity *field = t->Struct.fields[i];
Type *base_type = field->type;
GB_ASSERT(base_type->kind == Type_Array);
lbValue dst = lb_emit_struct_ep(p, res.addr, cast(i32)i);
lbValue src_ptr = lb_emit_struct_ep(p, addr.addr, cast(i32)i);
src_ptr = lb_emit_array_ep(p, src_ptr, addr.soa.index);
lbValue src = lb_emit_load(p, src_ptr);
lb_emit_store(p, dst, src);
}
} else {
isize field_count = t->Struct.fields.count;
if (t->Struct.soa_kind == StructSoa_Slice) {
field_count -= 1;
} else if (t->Struct.soa_kind == StructSoa_Dynamic) {
field_count -= 3;
}
for (isize i = 0; i < field_count; i++) {
Entity *field = t->Struct.fields[i];
Type *base_type = field->type;
GB_ASSERT(base_type->kind == Type_Pointer);
lbValue dst = lb_emit_struct_ep(p, res.addr, cast(i32)i);
lbValue src_ptr = lb_emit_struct_ep(p, addr.addr, cast(i32)i);
lbValue src = lb_emit_load(p, src_ptr);
src = lb_emit_ptr_offset(p, src, addr.soa.index);
src = lb_emit_load(p, src);
lb_emit_store(p, dst, src);
}
}
return lb_addr_load(p, res);
} else if (addr.kind == lbAddr_Swizzle) {
Type *array_type = base_type(addr.swizzle.type);
GB_ASSERT(array_type->kind == Type_Array);
unsigned res_align = cast(unsigned)type_align_of(addr.swizzle.type);
static u8 const ordered_indices[4] = {0, 1, 2, 3};
if (gb_memcompare(ordered_indices, addr.swizzle.indices, addr.swizzle.count) == 0) {
if (lb_try_update_alignment(addr.addr, res_align)) {
Type *pt = alloc_type_pointer(addr.swizzle.type);
lbValue res = {};
res.value = LLVMBuildPointerCast(p->builder, addr.addr.value, lb_type(p->module, pt), "");
res.type = pt;
return lb_emit_load(p, res);
}
}
lbAddr res = lb_add_local_generated(p, addr.swizzle.type, false);
lbValue ptr = lb_addr_get_ptr(p, res);
GB_ASSERT(is_type_pointer(ptr.type));
LLVMTypeRef vector_type = nullptr;
if (lb_try_vector_cast(p->module, addr.addr, &vector_type)) {
LLVMSetAlignment(res.addr.value, cast(unsigned)lb_alignof(vector_type));
LLVMValueRef vp = LLVMBuildPointerCast(p->builder, addr.addr.value, LLVMPointerType(vector_type, 0), "");
LLVMValueRef v = LLVMBuildLoad2(p->builder, vector_type, vp, "");
LLVMValueRef scalars[4] = {};
for (u8 i = 0; i < addr.swizzle.count; i++) {
scalars[i] = LLVMConstInt(lb_type(p->module, t_u32), addr.swizzle.indices[i], false);
}
LLVMValueRef mask = LLVMConstVector(scalars, addr.swizzle.count);
LLVMValueRef sv = llvm_basic_shuffle(p, v, mask);
LLVMValueRef dst = LLVMBuildPointerCast(p->builder, ptr.value, LLVMPointerType(LLVMTypeOf(sv), 0), "");
LLVMBuildStore(p->builder, sv, dst);
} else {
for (u8 i = 0; i < addr.swizzle.count; i++) {
u8 index = addr.swizzle.indices[i];
lbValue dst = lb_emit_array_epi(p, ptr, i);
lbValue src = lb_emit_array_epi(p, addr.addr, index);
lb_emit_store(p, dst, lb_emit_load(p, src));
}
}
return lb_addr_load(p, res);
} else if (addr.kind == lbAddr_SwizzleLarge) {
Type *array_type = base_type(addr.swizzle_large.type);
GB_ASSERT(array_type->kind == Type_Array);
unsigned res_align = cast(unsigned)type_align_of(addr.swizzle_large.type);
gb_unused(res_align);
lbAddr res = lb_add_local_generated(p, addr.swizzle_large.type, false);
lbValue ptr = lb_addr_get_ptr(p, res);
GB_ASSERT(is_type_pointer(ptr.type));
for_array(i, addr.swizzle_large.indices) {
i32 index = addr.swizzle_large.indices[i];
lbValue dst = lb_emit_array_epi(p, ptr, i);
lbValue src = lb_emit_array_epi(p, addr.addr, index);
lb_emit_store(p, dst, lb_emit_load(p, src));
}
return lb_addr_load(p, res);
}
if (is_type_proc(addr.addr.type)) {
return addr.addr;
}
return lb_emit_load(p, addr.addr);
}
lbValue lb_const_union_tag(lbModule *m, Type *u, Type *v) {
return lb_const_value(m, union_tag_type(u), exact_value_i64(union_variant_index(u, v)));
}
lbValue lb_emit_union_tag_ptr(lbProcedure *p, lbValue u) {
Type *t = u.type;
GB_ASSERT_MSG(is_type_pointer(t) &&
is_type_union(type_deref(t)), "%s", type_to_string(t));
Type *ut = type_deref(t);
GB_ASSERT(!is_type_union_maybe_pointer_original_alignment(ut));
GB_ASSERT(!is_type_union_maybe_pointer(ut));
GB_ASSERT(type_size_of(ut) > 0);
Type *tag_type = union_tag_type(ut);
LLVMTypeRef uvt = llvm_addr_type(p->module, u);
unsigned element_count = LLVMCountStructElementTypes(uvt);
GB_ASSERT_MSG(element_count >= 2, "element_count=%u (%s) != (%s)", element_count, type_to_string(ut), LLVMPrintTypeToString(uvt));
lbValue tag_ptr = {};
tag_ptr.value = LLVMBuildStructGEP2(p->builder, uvt, u.value, 1, "");
tag_ptr.type = alloc_type_pointer(tag_type);
return tag_ptr;
}
lbValue lb_emit_union_tag_value(lbProcedure *p, lbValue u) {
lbValue ptr = lb_address_from_load_or_generate_local(p, u);
lbValue tag_ptr = lb_emit_union_tag_ptr(p, ptr);
return lb_emit_load(p, tag_ptr);
}
void lb_emit_store_union_variant_tag(lbProcedure *p, lbValue parent, Type *variant_type) {
Type *t = type_deref(parent.type);
if (is_type_union_maybe_pointer(t) || type_size_of(t) == 0) {
// No tag needed!
} else {
lbValue tag_ptr = lb_emit_union_tag_ptr(p, parent);
lb_emit_store(p, tag_ptr, lb_const_union_tag(p->module, t, variant_type));
}
}
void lb_emit_store_union_variant(lbProcedure *p, lbValue parent, lbValue variant, Type *variant_type) {
Type *pt = base_type(type_deref(parent.type));
GB_ASSERT(pt->kind == Type_Union);
if (pt->Union.kind == UnionType_shared_nil) {
lbBlock *if_nil = lb_create_block(p, "shared_nil.if_nil");
lbBlock *if_not_nil = lb_create_block(p, "shared_nil.if_not_nil");
lbBlock *done = lb_create_block(p, "shared_nil.done");
lbValue cond_is_nil = lb_emit_comp_against_nil(p, Token_CmpEq, variant);
lb_emit_if(p, cond_is_nil, if_nil, if_not_nil);
lb_start_block(p, if_nil);
lb_emit_store(p, parent, lb_const_nil(p->module, type_deref(parent.type)));
lb_emit_jump(p, done);
lb_start_block(p, if_not_nil);
lbValue underlying = lb_emit_conv(p, parent, alloc_type_pointer(variant_type));
lb_emit_store(p, underlying, variant);
lb_emit_store_union_variant_tag(p, parent, variant_type);
lb_emit_jump(p, done);
lb_start_block(p, done);
} else {
lbValue underlying = lb_emit_conv(p, parent, alloc_type_pointer(variant_type));
lb_emit_store(p, underlying, variant);
lb_emit_store_union_variant_tag(p, parent, variant_type);
}
}
void lb_clone_struct_type(LLVMTypeRef dst, LLVMTypeRef src) {
unsigned field_count = LLVMCountStructElementTypes(src);
LLVMTypeRef *fields = gb_alloc_array(temporary_allocator(), LLVMTypeRef, field_count);
LLVMGetStructElementTypes(src, fields);
LLVMStructSetBody(dst, fields, field_count, LLVMIsPackedStruct(src));
}
LLVMTypeRef lb_alignment_prefix_type_hack(lbModule *m, i64 alignment) {
switch (alignment) {
case 1:
return LLVMArrayType(lb_type(m, t_u8), 0);
case 2:
return LLVMArrayType(lb_type(m, t_u16), 0);
case 4:
return LLVMArrayType(lb_type(m, t_u32), 0);
case 8:
return LLVMArrayType(lb_type(m, t_u64), 0);
default: case 16:
return LLVMArrayType(LLVMVectorType(lb_type(m, t_u32), 4), 0);
}
}
String lb_mangle_name(lbModule *m, Entity *e) {
String name = e->token.string;
AstPackage *pkg = e->pkg;
GB_ASSERT_MSG(pkg != nullptr, "Missing package for '%.*s'", LIT(name));
String pkgn = pkg->name;
GB_ASSERT(!rune_is_digit(pkgn[0]));
if (pkgn == "llvm") {
pkgn = str_lit("llvm$");
}
isize max_len = pkgn.len + 1 + name.len + 1;
bool require_suffix_id = is_type_polymorphic(e->type, true);
if ((e->scope->flags & (ScopeFlag_File | ScopeFlag_Pkg)) == 0) {
require_suffix_id = true;
} else if (is_blank_ident(e->token)) {
require_suffix_id = true;
}if (e->flags & EntityFlag_NotExported) {
require_suffix_id = true;
}
if (require_suffix_id) {
max_len += 21;
}
char *new_name = gb_alloc_array(permanent_allocator(), char, max_len);
isize new_name_len = gb_snprintf(
new_name, max_len,
"%.*s.%.*s", LIT(pkgn), LIT(name)
);
if (require_suffix_id) {
char *str = new_name + new_name_len-1;
isize len = max_len-new_name_len;
isize extra = gb_snprintf(str, len, "-%llu", cast(unsigned long long)e->id);
new_name_len += extra-1;
}
String mangled_name = make_string((u8 const *)new_name, new_name_len-1);
return mangled_name;
}
String lb_set_nested_type_name_ir_mangled_name(Entity *e, lbProcedure *p) {
// NOTE(bill, 2020-03-08): A polymorphic procedure may take a nested type declaration
// and as a result, the declaration does not have time to determine what it should be
GB_ASSERT(e != nullptr && e->kind == Entity_TypeName);
if (e->TypeName.ir_mangled_name.len != 0) {
return e->TypeName.ir_mangled_name;
}
GB_ASSERT((e->scope->flags & ScopeFlag_File) == 0);
if (p == nullptr) {
Entity *proc = nullptr;
if (e->parent_proc_decl != nullptr) {
proc = e->parent_proc_decl->entity;
} else {
Scope *scope = e->scope;
while (scope != nullptr && (scope->flags & ScopeFlag_Proc) == 0) {
scope = scope->parent;
}
GB_ASSERT(scope != nullptr);
GB_ASSERT(scope->flags & ScopeFlag_Proc);
proc = scope->procedure_entity;
}
GB_ASSERT(proc->kind == Entity_Procedure);
if (proc->code_gen_procedure != nullptr) {
p = proc->code_gen_procedure;
}
}
// NOTE(bill): Generate a new name
// parent_proc.name-guid
String ts_name = e->token.string;
if (p != nullptr) {
isize name_len = p->name.len + 1 + ts_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(permanent_allocator(), char, name_len);
u32 guid = ++p->module->nested_type_name_guid;
name_len = gb_snprintf(name_text, name_len, "%.*s.%.*s-%u", LIT(p->name), LIT(ts_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
e->TypeName.ir_mangled_name = name;
return name;
} else {
// NOTE(bill): a nested type be required before its parameter procedure exists. Just give it a temp name for now
isize name_len = 9 + 1 + ts_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(permanent_allocator(), char, name_len);
static u32 guid = 0;
guid += 1;
name_len = gb_snprintf(name_text, name_len, "_internal.%.*s-%u", LIT(ts_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
e->TypeName.ir_mangled_name = name;
return name;
}
}
String lb_get_entity_name(lbModule *m, Entity *e, String default_name) {
if (e != nullptr && e->kind == Entity_TypeName && e->TypeName.ir_mangled_name.len != 0) {
return e->TypeName.ir_mangled_name;
}
GB_ASSERT(e != nullptr);
if (e->pkg == nullptr) {
return e->token.string;
}
if (e->kind == Entity_TypeName && (e->scope->flags & ScopeFlag_File) == 0) {
return lb_set_nested_type_name_ir_mangled_name(e, nullptr);
}
String name = {};
bool no_name_mangle = false;
if (e->kind == Entity_Variable) {
bool is_foreign = e->Variable.is_foreign;
bool is_export = e->Variable.is_export;
no_name_mangle = e->Variable.link_name.len > 0 || is_foreign || is_export;
if (e->Variable.link_name.len > 0) {
return e->Variable.link_name;
}
} else if (e->kind == Entity_Procedure && e->Procedure.link_name.len > 0) {
return e->Procedure.link_name;
} else if (e->kind == Entity_Procedure && e->Procedure.is_export) {
no_name_mangle = true;
}
if (!no_name_mangle) {
name = lb_mangle_name(m, e);
}
if (name.len == 0) {
name = e->token.string;
}
if (e->kind == Entity_TypeName) {
e->TypeName.ir_mangled_name = name;
} else if (e->kind == Entity_Procedure) {
e->Procedure.link_name = name;
}
return name;
}
LLVMTypeRef lb_type_internal_for_procedures_raw(lbModule *m, Type *type) {
Type *original_type = type;
type = base_type(original_type);
GB_ASSERT(type->kind == Type_Proc);
LLVMTypeRef *found = map_get(&m->func_raw_types, type);
if (found) {
return *found;
}
unsigned param_count = 0;
if (type->Proc.calling_convention == ProcCC_Odin) {
param_count += 1;
}
if (type->Proc.param_count != 0) {
GB_ASSERT(type->Proc.params->kind == Type_Tuple);
for_array(i, type->Proc.params->Tuple.variables) {
Entity *e = type->Proc.params->Tuple.variables[i];
if (e->kind != Entity_Variable) {
continue;
}
if (e->flags & EntityFlag_CVarArg) {
continue;
}
param_count += 1;
}
}
m->internal_type_level += 1;
defer (m->internal_type_level -= 1);
LLVMTypeRef ret = nullptr;
LLVMTypeRef *params = gb_alloc_array(permanent_allocator(), LLVMTypeRef, param_count);
bool *params_by_ptr = gb_alloc_array(permanent_allocator(), bool, param_count);
if (type->Proc.result_count != 0) {
Type *single_ret = reduce_tuple_to_single_type(type->Proc.results);
ret = lb_type(m, single_ret);
if (ret != nullptr) {
if (is_type_boolean(single_ret) &&
is_calling_convention_none(type->Proc.calling_convention) &&
type_size_of(single_ret) <= 1) {
ret = LLVMInt1TypeInContext(m->ctx);
}
}
}
unsigned param_index = 0;
if (type->Proc.param_count != 0) {
GB_ASSERT(type->Proc.params->kind == Type_Tuple);
for_array(i, type->Proc.params->Tuple.variables) {
Entity *e = type->Proc.params->Tuple.variables[i];
if (e->kind != Entity_Variable) {
continue;
}
if (e->flags & EntityFlag_CVarArg) {
continue;
}
Type *e_type = reduce_tuple_to_single_type(e->type);
bool param_is_by_ptr = false;
LLVMTypeRef param_type = nullptr;
if (e->flags & EntityFlag_ByPtr) {
// it will become a pointer afterwards by making it indirect
param_type = lb_type(m, e_type);
param_is_by_ptr = true;
} else if (is_type_boolean(e_type) &&
type_size_of(e_type) <= 1) {
param_type = LLVMInt1TypeInContext(m->ctx);
} else {
if (is_type_proc(e_type)) {
param_type = lb_type(m, t_rawptr);
} else {
param_type = lb_type(m, e_type);
}
}
params_by_ptr[param_index] = param_is_by_ptr;
params[param_index++] = param_type;
}
}
if (param_index < param_count) {
params[param_index++] = lb_type(m, t_rawptr);
}
GB_ASSERT(param_index == param_count);
lbFunctionType *ft = lb_get_abi_info(m->ctx, params, param_count, ret, ret != nullptr, type->Proc.calling_convention);
{
for_array(j, ft->args) {
auto arg = ft->args[j];
GB_ASSERT_MSG(LLVMGetTypeContext(arg.type) == ft->ctx,
"\n\t%s %td/%td"
"\n\tArgTypeCtx: %p\n\tCurrentCtx: %p\n\tGlobalCtx: %p",
LLVMPrintTypeToString(arg.type),
j, ft->args.count,
LLVMGetTypeContext(arg.type), ft->ctx, LLVMGetGlobalContext());
}
GB_ASSERT_MSG(LLVMGetTypeContext(ft->ret.type) == ft->ctx,
"\n\t%s"
"\n\tRetTypeCtx: %p\n\tCurrentCtx: %p\n\tGlobalCtx: %p",
LLVMPrintTypeToString(ft->ret.type),
LLVMGetTypeContext(ft->ret.type), ft->ctx, LLVMGetGlobalContext());
}
for_array(j, ft->args) {
if (params_by_ptr[j]) {
// NOTE(bill): The parameter needs to be passed "indirectly", override it
ft->args[j].kind = lbArg_Indirect;
}
}
map_set(&m->function_type_map, type, ft);
LLVMTypeRef new_abi_fn_type = lb_function_type_to_llvm_raw(ft, type->Proc.c_vararg);
GB_ASSERT_MSG(LLVMGetTypeContext(new_abi_fn_type) == m->ctx,
"\n\tFuncTypeCtx: %p\n\tCurrentCtx: %p\n\tGlobalCtx: %p",
LLVMGetTypeContext(new_abi_fn_type), m->ctx, LLVMGetGlobalContext());
map_set(&m->func_raw_types, type, new_abi_fn_type);
return new_abi_fn_type;
}
LLVMTypeRef lb_type_internal(lbModule *m, Type *type) {
LLVMContextRef ctx = m->ctx;
i64 size = type_size_of(type); // Check size
gb_unused(size);
GB_ASSERT(type != t_invalid);
switch (type->kind) {
case Type_Basic:
switch (type->Basic.kind) {
case Basic_llvm_bool: return LLVMInt1TypeInContext(ctx);
case Basic_bool: return LLVMInt8TypeInContext(ctx);
case Basic_b8: return LLVMInt8TypeInContext(ctx);
case Basic_b16: return LLVMInt16TypeInContext(ctx);
case Basic_b32: return LLVMInt32TypeInContext(ctx);
case Basic_b64: return LLVMInt64TypeInContext(ctx);
case Basic_i8: return LLVMInt8TypeInContext(ctx);
case Basic_u8: return LLVMInt8TypeInContext(ctx);
case Basic_i16: return LLVMInt16TypeInContext(ctx);
case Basic_u16: return LLVMInt16TypeInContext(ctx);
case Basic_i32: return LLVMInt32TypeInContext(ctx);
case Basic_u32: return LLVMInt32TypeInContext(ctx);
case Basic_i64: return LLVMInt64TypeInContext(ctx);
case Basic_u64: return LLVMInt64TypeInContext(ctx);
case Basic_i128: return LLVMInt128TypeInContext(ctx);
case Basic_u128: return LLVMInt128TypeInContext(ctx);
case Basic_rune: return LLVMInt32TypeInContext(ctx);
case Basic_f16: return LLVMHalfTypeInContext(ctx);
case Basic_f32: return LLVMFloatTypeInContext(ctx);
case Basic_f64: return LLVMDoubleTypeInContext(ctx);
case Basic_f16le: return LLVMHalfTypeInContext(ctx);
case Basic_f32le: return LLVMFloatTypeInContext(ctx);
case Basic_f64le: return LLVMDoubleTypeInContext(ctx);
case Basic_f16be: return LLVMHalfTypeInContext(ctx);
case Basic_f32be: return LLVMFloatTypeInContext(ctx);
case Basic_f64be: return LLVMDoubleTypeInContext(ctx);
case Basic_complex32:
{
char const *name = "..complex32";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_f16),
lb_type(m, t_f16),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_complex64:
{
char const *name = "..complex64";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_f32),
lb_type(m, t_f32),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_complex128:
{
char const *name = "..complex128";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_f64),
lb_type(m, t_f64),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_quaternion64:
{
char const *name = "..quaternion64";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[4] = {
lb_type(m, t_f16),
lb_type(m, t_f16),
lb_type(m, t_f16),
lb_type(m, t_f16),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_quaternion128:
{
char const *name = "..quaternion128";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[4] = {
lb_type(m, t_f32),
lb_type(m, t_f32),
lb_type(m, t_f32),
lb_type(m, t_f32),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_quaternion256:
{
char const *name = "..quaternion256";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[4] = {
lb_type(m, t_f64),
lb_type(m, t_f64),
lb_type(m, t_f64),
lb_type(m, t_f64),
};
LLVMStructSetBody(type, fields, 4, false);
return type;
}
case Basic_int: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
case Basic_uint: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
case Basic_uintptr: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
case Basic_rawptr: return LLVMPointerType(LLVMInt8TypeInContext(ctx), 0);
case Basic_string:
{
char const *name = "..string";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(m, t_u8), 0),
lb_type(m, t_int),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_cstring: return LLVMPointerType(LLVMInt8TypeInContext(ctx), 0);
case Basic_any:
{
char const *name = "..any";
LLVMTypeRef type = LLVMGetTypeByName(m->mod, name);
if (type != nullptr) {
return type;
}
type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef fields[2] = {
lb_type(m, t_rawptr),
lb_type(m, t_typeid),
};
LLVMStructSetBody(type, fields, 2, false);
return type;
}
case Basic_typeid: return LLVMIntTypeInContext(m->ctx, 8*cast(unsigned)build_context.word_size);
// Endian Specific Types
case Basic_i16le: return LLVMInt16TypeInContext(ctx);
case Basic_u16le: return LLVMInt16TypeInContext(ctx);
case Basic_i32le: return LLVMInt32TypeInContext(ctx);
case Basic_u32le: return LLVMInt32TypeInContext(ctx);
case Basic_i64le: return LLVMInt64TypeInContext(ctx);
case Basic_u64le: return LLVMInt64TypeInContext(ctx);
case Basic_i128le: return LLVMInt128TypeInContext(ctx);
case Basic_u128le: return LLVMInt128TypeInContext(ctx);
case Basic_i16be: return LLVMInt16TypeInContext(ctx);
case Basic_u16be: return LLVMInt16TypeInContext(ctx);
case Basic_i32be: return LLVMInt32TypeInContext(ctx);
case Basic_u32be: return LLVMInt32TypeInContext(ctx);
case Basic_i64be: return LLVMInt64TypeInContext(ctx);
case Basic_u64be: return LLVMInt64TypeInContext(ctx);
case Basic_i128be: return LLVMInt128TypeInContext(ctx);
case Basic_u128be: return LLVMInt128TypeInContext(ctx);
// Untyped types
case Basic_UntypedBool: GB_PANIC("Basic_UntypedBool"); break;
case Basic_UntypedInteger: GB_PANIC("Basic_UntypedInteger"); break;
case Basic_UntypedFloat: GB_PANIC("Basic_UntypedFloat"); break;
case Basic_UntypedComplex: GB_PANIC("Basic_UntypedComplex"); break;
case Basic_UntypedQuaternion: GB_PANIC("Basic_UntypedQuaternion"); break;
case Basic_UntypedString: GB_PANIC("Basic_UntypedString"); break;
case Basic_UntypedRune: GB_PANIC("Basic_UntypedRune"); break;
case Basic_UntypedNil: GB_PANIC("Basic_UntypedNil"); break;
case Basic_UntypedUndef: GB_PANIC("Basic_UntypedUndef"); break;
}
break;
case Type_Named:
{
Type *base = base_type(type->Named.base);
switch (base->kind) {
case Type_Basic:
return lb_type_internal(m, base);
case Type_Named:
case Type_Generic:
GB_PANIC("INVALID TYPE");
break;
case Type_Pointer:
case Type_Array:
case Type_EnumeratedArray:
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
case Type_Enum:
case Type_BitSet:
case Type_SimdVector:
return lb_type_internal(m, base);
// TODO(bill): Deal with this correctly. Can this be named?
case Type_Proc:
return lb_type_internal(m, base);
case Type_Tuple:
return lb_type_internal(m, base);
}
LLVMTypeRef *found = map_get(&m->types, base);
if (found) {
LLVMTypeKind kind = LLVMGetTypeKind(*found);
if (kind == LLVMStructTypeKind) {
char const *name = alloc_cstring(permanent_allocator(), lb_get_entity_name(m, type->Named.type_name));
LLVMTypeRef llvm_type = LLVMGetTypeByName(m->mod, name);
if (llvm_type != nullptr) {
return llvm_type;
}
llvm_type = LLVMStructCreateNamed(ctx, name);
LLVMTypeRef found_val = *found;
map_set(&m->types, type, llvm_type);
lb_clone_struct_type(llvm_type, found_val);
return llvm_type;
}
}
switch (base->kind) {
case Type_Struct:
case Type_Union:
{
char const *name = alloc_cstring(permanent_allocator(), lb_get_entity_name(m, type->Named.type_name));
LLVMTypeRef llvm_type = LLVMGetTypeByName(m->mod, name);
if (llvm_type != nullptr) {
return llvm_type;
}
llvm_type = LLVMStructCreateNamed(ctx, name);
map_set(&m->types, type, llvm_type);
lb_clone_struct_type(llvm_type, lb_type(m, base));
return llvm_type;
}
}
return lb_type_internal(m, base);
}
case Type_Pointer:
return LLVMPointerType(lb_type(m, type->Pointer.elem), 0);
case Type_MultiPointer:
return LLVMPointerType(lb_type(m, type->Pointer.elem), 0);
case Type_Array: {
m->internal_type_level += 1;
LLVMTypeRef t = LLVMArrayType(lb_type(m, type->Array.elem), cast(unsigned)type->Array.count);
m->internal_type_level -= 1;
return t;
}
case Type_EnumeratedArray: {
m->internal_type_level += 1;
LLVMTypeRef t = LLVMArrayType(lb_type(m, type->EnumeratedArray.elem), cast(unsigned)type->EnumeratedArray.count);
m->internal_type_level -= 1;
return t;
}
case Type_Slice:
{
LLVMTypeRef fields[2] = {
LLVMPointerType(lb_type(m, type->Slice.elem), 0), // data
lb_type(m, t_int), // len
};
return LLVMStructTypeInContext(ctx, fields, 2, false);
}
break;
case Type_DynamicArray:
{
LLVMTypeRef fields[4] = {
LLVMPointerType(lb_type(m, type->DynamicArray.elem), 0), // data
lb_type(m, t_int), // len
lb_type(m, t_int), // cap
lb_type(m, t_allocator), // allocator
};
return LLVMStructTypeInContext(ctx, fields, 4, false);
}
break;
case Type_Map:
init_map_internal_types(type);
{
Type *internal_type = type->Map.internal_type;
GB_ASSERT(internal_type->kind == Type_Struct);
m->internal_type_level -= 1;
defer (m->internal_type_level += 1);
unsigned field_count = cast(unsigned)(internal_type->Struct.fields.count);
GB_ASSERT(field_count == 2);
LLVMTypeRef *fields = gb_alloc_array(temporary_allocator(), LLVMTypeRef, field_count);
LLVMTypeRef entries_fields[] = {
lb_type(m, t_rawptr), // data
lb_type(m, t_int), // len
lb_type(m, t_int), // cap
lb_type(m, t_allocator), // allocator
};
fields[0] = lb_type(m, internal_type->Struct.fields[0]->type);
fields[1] = LLVMStructTypeInContext(ctx, entries_fields, gb_count_of(entries_fields), false);
{ // Add this to simplify things
lbStructFieldRemapping entries_field_remapping = {};
slice_init(&entries_field_remapping, permanent_allocator(), gb_count_of(entries_fields));
for_array(i, entries_field_remapping) {
entries_field_remapping[i] = cast(i32)i;
}
map_set(&m->struct_field_remapping, cast(void *)fields[1], entries_field_remapping);
}
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
case Type_Struct:
{
type_set_offsets(type);
i64 full_type_size = type_size_of(type);
i64 full_type_align = type_align_of(type);
GB_ASSERT(full_type_size % full_type_align == 0);
if (type->Struct.is_raw_union) {
lbStructFieldRemapping field_remapping = {};
slice_init(&field_remapping, permanent_allocator(), 1);
LLVMTypeRef fields[1] = {};
fields[0] = lb_type_padding_filler(m, full_type_size, full_type_align);
field_remapping[0] = 0;
LLVMTypeRef struct_type = LLVMStructTypeInContext(ctx, fields, gb_count_of(fields), false);
map_set(&m->struct_field_remapping, cast(void *)struct_type, field_remapping);
map_set(&m->struct_field_remapping, cast(void *)type, field_remapping);
return struct_type;
}
lbStructFieldRemapping field_remapping = {};
slice_init(&field_remapping, permanent_allocator(), type->Struct.fields.count);
m->internal_type_level += 1;
defer (m->internal_type_level -= 1);
auto fields = array_make<LLVMTypeRef>(temporary_allocator(), 0, type->Struct.fields.count*2 + 2);
if (are_struct_fields_reordered(type)) {
// NOTE(bill, 2021-10-02): Minor hack to enforce `llvm_const_named_struct` usage correctly
LLVMTypeRef padding_type = lb_type_padding_filler(m, 0, type_align_of(type));
array_add(&fields, padding_type);
}
i64 padding_offset = 0;
for (i32 field_index : struct_fields_index_by_increasing_offset(temporary_allocator(), type)) {
Entity *field = type->Struct.fields[field_index];
i64 padding = type->Struct.offsets[field_index] - padding_offset;
if (padding != 0) {
LLVMTypeRef padding_type = lb_type_padding_filler(m, padding, type_align_of(field->type));
array_add(&fields, padding_type);
}
field_remapping[field_index] = cast(i32)fields.count;
array_add(&fields, lb_type(m, field->type));
if (!type->Struct.is_packed) {
padding_offset = align_formula(padding_offset, type_align_of(field->type));
}
padding_offset += type_size_of(field->type);
}
i64 end_padding = full_type_size-padding_offset;
if (end_padding > 0) {
array_add(&fields, lb_type_padding_filler(m, end_padding, 1));
}
for_array(i, fields) {
GB_ASSERT(fields[i] != nullptr);
}
LLVMTypeRef struct_type = LLVMStructTypeInContext(ctx, fields.data, cast(unsigned)fields.count, type->Struct.is_packed);
map_set(&m->struct_field_remapping, cast(void *)struct_type, field_remapping);
map_set(&m->struct_field_remapping, cast(void *)type, field_remapping);
#if 0
GB_ASSERT_MSG(lb_sizeof(struct_type) == full_type_size,
"(%lld) %s vs (%lld) %s",
cast(long long)lb_sizeof(struct_type), LLVMPrintTypeToString(struct_type),
cast(long long)full_type_size, type_to_string(type));
#endif
return struct_type;
}
break;
case Type_Union:
if (type->Union.variants.count == 0) {
return LLVMStructTypeInContext(ctx, nullptr, 0, false);
} else {
// NOTE(bill): The zero size array is used to fix the alignment used in a structure as
// LLVM takes the first element's alignment as the entire alignment (like C)
i64 align = type_align_of(type);
i64 size = type_size_of(type);
gb_unused(size);
if (is_type_union_maybe_pointer_original_alignment(type)) {
LLVMTypeRef fields[] = {lb_type(m, type->Union.variants[0])};
return LLVMStructTypeInContext(ctx, fields, gb_count_of(fields), false);
}
unsigned block_size = cast(unsigned)type->Union.variant_block_size;
auto fields = array_make<LLVMTypeRef>(temporary_allocator(), 0, 3);
if (is_type_union_maybe_pointer(type)) {
LLVMTypeRef variant = lb_type(m, type->Union.variants[0]);
array_add(&fields, variant);
} else {
LLVMTypeRef block_type = lb_type_padding_filler(m, block_size, align);
LLVMTypeRef tag_type = lb_type(m, union_tag_type(type));
array_add(&fields, block_type);
array_add(&fields, tag_type);
i64 used_size = lb_sizeof(block_type) + lb_sizeof(tag_type);
i64 padding = size - used_size;
if (padding > 0) {
LLVMTypeRef padding_type = lb_type_padding_filler(m, padding, align);
array_add(&fields, padding_type);
}
}
return LLVMStructTypeInContext(ctx, fields.data, cast(unsigned)fields.count, false);
}
break;
case Type_Enum:
return lb_type(m, base_enum_type(type));
case Type_Tuple:
if (type->Tuple.variables.count == 1) {
return lb_type(m, type->Tuple.variables[0]->type);
} else {
m->internal_type_level += 1;
defer (m->internal_type_level -= 1);
unsigned field_count = cast(unsigned)(type->Tuple.variables.count);
LLVMTypeRef *fields = gb_alloc_array(temporary_allocator(), LLVMTypeRef, field_count);
for_array(i, type->Tuple.variables) {
Entity *field = type->Tuple.variables[i];
LLVMTypeRef param_type = nullptr;
param_type = lb_type(m, field->type);
fields[i] = param_type;
}
return LLVMStructTypeInContext(ctx, fields, field_count, type->Tuple.is_packed);
}
case Type_Proc:
{
LLVMTypeRef proc_raw_type = lb_type_internal_for_procedures_raw(m, type);
gb_unused(proc_raw_type);
return LLVMPointerType(LLVMIntTypeInContext(m->ctx, 8), 0);
}
break;
case Type_BitSet:
{
Type *ut = bit_set_to_int(type);
return lb_type(m, ut);
}
case Type_SimdVector:
return LLVMVectorType(lb_type(m, type->SimdVector.elem), cast(unsigned)type->SimdVector.count);
case Type_RelativePointer:
return lb_type_internal(m, type->RelativePointer.base_integer);
case Type_RelativeSlice:
{
LLVMTypeRef base_integer = lb_type_internal(m, type->RelativeSlice.base_integer);
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(permanent_allocator(), LLVMTypeRef, field_count);
fields[0] = base_integer;
fields[1] = base_integer;
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
case Type_Matrix:
{
i64 size = type_size_of(type);
i64 elem_size = type_size_of(type->Matrix.elem);
GB_ASSERT(elem_size > 0);
i64 elem_count = size/elem_size;
GB_ASSERT_MSG(elem_count > 0, "%s", type_to_string(type));
m->internal_type_level -= 1;
LLVMTypeRef elem = lb_type(m, type->Matrix.elem);
LLVMTypeRef t = LLVMArrayType(elem, cast(unsigned)elem_count);
m->internal_type_level += 1;
return t;
}
case Type_SoaPointer:
{
unsigned field_count = 2;
LLVMTypeRef *fields = gb_alloc_array(permanent_allocator(), LLVMTypeRef, field_count);
fields[0] = LLVMPointerType(lb_type(m, type->Pointer.elem), 0);
fields[1] = LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size);
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
}
GB_PANIC("Invalid type %s", type_to_string(type));
return LLVMInt32TypeInContext(ctx);
}
LLVMTypeRef lb_type(lbModule *m, Type *type) {
type = default_type(type);
LLVMTypeRef *found = map_get(&m->types, type);
if (found) {
return *found;
}
LLVMTypeRef llvm_type = nullptr;
m->internal_type_level += 1;
llvm_type = lb_type_internal(m, type);
m->internal_type_level -= 1;
if (m->internal_type_level == 0) {
map_set(&m->types, type, llvm_type);
}
return llvm_type;
}
lbFunctionType *lb_get_function_type(lbModule *m, lbProcedure *p, Type *pt) {
lbFunctionType **ft_found = nullptr;
ft_found = map_get(&m->function_type_map, pt);
if (!ft_found) {
LLVMTypeRef llvm_proc_type = lb_type(p->module, pt);
gb_unused(llvm_proc_type);
ft_found = map_get(&m->function_type_map, pt);
}
GB_ASSERT(ft_found != nullptr);
return *ft_found;
}
void lb_ensure_abi_function_type(lbModule *m, lbProcedure *p) {
if (p->abi_function_type != nullptr) {
return;
}
lbFunctionType **ft_found = map_get(&m->function_type_map, p->type);
if (ft_found == nullptr) {
LLVMTypeRef llvm_proc_type = lb_type(p->module, p->type);
gb_unused(llvm_proc_type);
ft_found = map_get(&m->function_type_map, p->type);
}
GB_ASSERT(ft_found != nullptr);
p->abi_function_type = *ft_found;
GB_ASSERT(p->abi_function_type != nullptr);
}
void lb_add_entity(lbModule *m, Entity *e, lbValue val) {
if (e != nullptr) {
map_set(&m->values, e, val);
}
}
void lb_add_member(lbModule *m, String const &name, lbValue val) {
if (name.len > 0) {
string_map_set(&m->members, name, val);
}
}
void lb_add_member(lbModule *m, StringHashKey const &key, lbValue val) {
string_map_set(&m->members, key, val);
}
void lb_add_procedure_value(lbModule *m, lbProcedure *p) {
if (p->entity != nullptr) {
map_set(&m->procedure_values, p->value, p->entity);
}
string_map_set(&m->procedures, p->name, p);
}
LLVMAttributeRef lb_create_enum_attribute_with_type(LLVMContextRef ctx, char const *name, LLVMTypeRef type) {
unsigned kind = 0;
String s = make_string_c(name);
#if ODIN_LLVM_MINIMUM_VERSION_12
kind = LLVMGetEnumAttributeKindForName(name, s.len);
GB_ASSERT_MSG(kind != 0, "unknown attribute: %s", name);
return LLVMCreateTypeAttribute(ctx, kind, type);
#else
// NOTE(2021-02-25, bill); All this attributes require a type associated with them
// and the current LLVM C API does not expose this functionality yet.
// It is better to ignore the attributes for the time being
if (s == "byval") {
// return nullptr;
} else if (s == "byref") {
return nullptr;
} else if (s == "preallocated") {
return nullptr;
} else if (s == "sret") {
// return nullptr;
}
kind = LLVMGetEnumAttributeKindForName(name, s.len);
GB_ASSERT_MSG(kind != 0, "unknown attribute: %s", name);
return LLVMCreateEnumAttribute(ctx, kind, 0);
#endif
}
LLVMAttributeRef lb_create_enum_attribute(LLVMContextRef ctx, char const *name, u64 value) {
String s = make_string_c(name);
// NOTE(2021-02-25, bill); All this attributes require a type associated with them
// and the current LLVM C API does not expose this functionality yet.
// It is better to ignore the attributes for the time being
if (s == "byval") {
GB_PANIC("lb_create_enum_attribute_with_type should be used for %s", name);
} else if (s == "byref") {
GB_PANIC("lb_create_enum_attribute_with_type should be used for %s", name);
} else if (s == "preallocated") {
GB_PANIC("lb_create_enum_attribute_with_type should be used for %s", name);
} else if (s == "sret") {
GB_PANIC("lb_create_enum_attribute_with_type should be used for %s", name);
}
unsigned kind = LLVMGetEnumAttributeKindForName(name, s.len);
GB_ASSERT_MSG(kind != 0, "unknown attribute: %s", name);
return LLVMCreateEnumAttribute(ctx, kind, value);
}
void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name, u64 value) {
LLVMAttributeRef attr = lb_create_enum_attribute(p->module->ctx, name, value);
GB_ASSERT(attr != nullptr);
LLVMAddAttributeAtIndex(p->value, cast(unsigned)index, attr);
}
void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name) {
lb_add_proc_attribute_at_index(p, index, name, 0);
}
void lb_add_attribute_to_proc(lbModule *m, LLVMValueRef proc_value, char const *name, u64 value=0) {
LLVMAddAttributeAtIndex(proc_value, LLVMAttributeIndex_FunctionIndex, lb_create_enum_attribute(m->ctx, name, value));
}
void lb_add_edge(lbBlock *from, lbBlock *to) {
LLVMValueRef instr = LLVMGetLastInstruction(from->block);
if (instr == nullptr || !LLVMIsATerminatorInst(instr)) {
array_add(&from->succs, to);
array_add(&to->preds, from);
}
}
lbBlock *lb_create_block(lbProcedure *p, char const *name, bool append) {
lbBlock *b = gb_alloc_item(permanent_allocator(), lbBlock);
b->block = LLVMCreateBasicBlockInContext(p->module->ctx, name);
b->appended = false;
if (append) {
b->appended = true;
LLVMAppendExistingBasicBlock(p->value, b->block);
}
b->scope = p->curr_scope;
b->scope_index = p->scope_index;
b->preds.allocator = heap_allocator();
b->succs.allocator = heap_allocator();
array_add(&p->blocks, b);
return b;
}
void lb_emit_jump(lbProcedure *p, lbBlock *target_block) {
if (p->curr_block == nullptr) {
return;
}
LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block);
if (last_instr != nullptr && LLVMIsATerminatorInst(last_instr)) {
return;
}
lb_add_edge(p->curr_block, target_block);
LLVMBuildBr(p->builder, target_block->block);
p->curr_block = nullptr;
}
void lb_emit_if(lbProcedure *p, lbValue cond, lbBlock *true_block, lbBlock *false_block) {
lbBlock *b = p->curr_block;
if (b == nullptr) {
return;
}
LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block);
if (last_instr != nullptr && LLVMIsATerminatorInst(last_instr)) {
return;
}
lb_add_edge(b, true_block);
lb_add_edge(b, false_block);
LLVMValueRef cv = cond.value;
cv = LLVMBuildTruncOrBitCast(p->builder, cv, lb_type(p->module, t_llvm_bool), "");
LLVMBuildCondBr(p->builder, cv, true_block->block, false_block->block);
}
gb_inline LLVMTypeRef OdinLLVMGetInternalElementType(LLVMTypeRef type) {
return LLVMGetElementType(type);
}
LLVMTypeRef OdinLLVMGetArrayElementType(LLVMTypeRef type) {
GB_ASSERT(lb_is_type_kind(type, LLVMArrayTypeKind));
return OdinLLVMGetInternalElementType(type);
}
LLVMTypeRef OdinLLVMGetVectorElementType(LLVMTypeRef type) {
GB_ASSERT(lb_is_type_kind(type, LLVMVectorTypeKind));
return OdinLLVMGetInternalElementType(type);
}
LLVMValueRef OdinLLVMBuildTransmute(lbProcedure *p, LLVMValueRef val, LLVMTypeRef dst_type) {
LLVMContextRef ctx = p->module->ctx;
LLVMTypeRef src_type = LLVMTypeOf(val);
if (src_type == dst_type) {
return val;
}
i64 src_size = lb_sizeof(src_type);
i64 dst_size = lb_sizeof(dst_type);
i64 src_align = lb_alignof(src_type);
i64 dst_align = lb_alignof(dst_type);
if (LLVMIsALoadInst(val)) {
src_align = gb_min(src_align, LLVMGetAlignment(val));
}
LLVMTypeKind src_kind = LLVMGetTypeKind(src_type);
LLVMTypeKind dst_kind = LLVMGetTypeKind(dst_type);
if (dst_type == LLVMInt1TypeInContext(ctx)) {
GB_ASSERT(lb_is_type_kind(src_type, LLVMIntegerTypeKind));
return LLVMBuildICmp(p->builder, LLVMIntNE, val, LLVMConstNull(src_type), "");
} else if (src_type == LLVMInt1TypeInContext(ctx)) {
GB_ASSERT(lb_is_type_kind(src_type, LLVMIntegerTypeKind));
return LLVMBuildZExtOrBitCast(p->builder, val, dst_type, "");
}
if (src_size != dst_size) {
if ((lb_is_type_kind(src_type, LLVMVectorTypeKind) ^ lb_is_type_kind(dst_type, LLVMVectorTypeKind))) {
// Okay
} else {
goto general_end;
}
}
if (src_kind == dst_kind) {
if (src_kind == LLVMPointerTypeKind) {
return LLVMBuildPointerCast(p->builder, val, dst_type, "");
} else if (src_kind == LLVMArrayTypeKind) {
// ignore
} else if (src_kind != LLVMStructTypeKind) {
return LLVMBuildBitCast(p->builder, val, dst_type, "");
}
} else {
if (src_kind == LLVMPointerTypeKind && dst_kind == LLVMIntegerTypeKind) {
return LLVMBuildPtrToInt(p->builder, val, dst_type, "");
} else if (src_kind == LLVMIntegerTypeKind && dst_kind == LLVMPointerTypeKind) {
return LLVMBuildIntToPtr(p->builder, val, dst_type, "");
}
}
general_end:;
// make the alignment big if necessary
if (LLVMIsALoadInst(val) && src_align < dst_align) {
LLVMValueRef val_ptr = LLVMGetOperand(val, 0);
if (LLVMGetInstructionOpcode(val_ptr) == LLVMAlloca) {
src_align = gb_max(LLVMGetAlignment(val_ptr), dst_align);
LLVMSetAlignment(val_ptr, cast(unsigned)src_align);
}
}
src_size = align_formula(src_size, src_align);
dst_size = align_formula(dst_size, dst_align);
if (LLVMIsALoadInst(val) && (src_size >= dst_size && src_align >= dst_align)) {
LLVMValueRef val_ptr = LLVMGetOperand(val, 0);
val_ptr = LLVMBuildPointerCast(p->builder, val_ptr, LLVMPointerType(dst_type, 0), "");
LLVMValueRef loaded_val = LLVMBuildLoad2(p->builder, dst_type, val_ptr, "");
// LLVMSetAlignment(loaded_val, gb_min(src_align, dst_align));
return loaded_val;
} else {
GB_ASSERT(p->decl_block != p->curr_block);
i64 max_align = gb_max(lb_alignof(src_type), lb_alignof(dst_type));
max_align = gb_max(max_align, 4);
LLVMValueRef ptr = llvm_alloca(p, dst_type, max_align);
LLVMValueRef nptr = LLVMBuildPointerCast(p->builder, ptr, LLVMPointerType(src_type, 0), "");
LLVMBuildStore(p->builder, val, nptr);
return LLVMBuildLoad2(p->builder, dst_type, ptr, "");
}
}
LLVMValueRef lb_find_or_add_entity_string_ptr(lbModule *m, String const &str) {
StringHashKey key = string_hash_string(str);
LLVMValueRef *found = string_map_get(&m->const_strings, key);
if (found != nullptr) {
return *found;
} else {
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef data = LLVMConstStringInContext(m->ctx,
cast(char const *)str.text,
cast(unsigned)str.len,
false);
isize max_len = 7+8+1;
char *name = gb_alloc_array(permanent_allocator(), char, max_len);
u32 id = m->gen->global_array_index.fetch_add(1);
isize len = gb_snprintf(name, max_len, "csbs$%x", id);
len -= 1;
LLVMTypeRef type = LLVMTypeOf(data);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, type, name);
LLVMSetInitializer(global_data, data);
lb_make_global_private_const(global_data);
LLVMSetAlignment(global_data, 1);
LLVMValueRef ptr = LLVMConstInBoundsGEP2(type, global_data, indices, 2);
string_map_set(&m->const_strings, key, ptr);
return ptr;
}
}
lbValue lb_find_or_add_entity_string(lbModule *m, String const &str) {
LLVMValueRef ptr = nullptr;
if (str.len != 0) {
ptr = lb_find_or_add_entity_string_ptr(m, str);
} else {
ptr = LLVMConstNull(lb_type(m, t_u8_ptr));
}
LLVMValueRef str_len = LLVMConstInt(lb_type(m, t_int), str.len, true);
LLVMValueRef values[2] = {ptr, str_len};
lbValue res = {};
res.value = llvm_const_named_struct(m, t_string, values, 2);
res.type = t_string;
return res;
}
lbValue lb_find_or_add_entity_string_byte_slice(lbModule *m, String const &str) {
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef data = LLVMConstStringInContext(m->ctx,
cast(char const *)str.text,
cast(unsigned)str.len,
false);
char *name = nullptr;
{
isize max_len = 7+8+1;
name = gb_alloc_array(permanent_allocator(), char, max_len);
u32 id = m->gen->global_array_index.fetch_add(1);
isize len = gb_snprintf(name, max_len, "csbs$%x", id);
len -= 1;
}
LLVMTypeRef type = LLVMTypeOf(data);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, type, name);
LLVMSetInitializer(global_data, data);
lb_make_global_private_const(global_data);
LLVMSetAlignment(global_data, 1);
LLVMValueRef ptr = nullptr;
if (str.len != 0) {
ptr = LLVMConstInBoundsGEP2(type, global_data, indices, 2);
} else {
ptr = LLVMConstNull(lb_type(m, t_u8_ptr));
}
LLVMValueRef len = LLVMConstInt(lb_type(m, t_int), str.len, true);
LLVMValueRef values[2] = {ptr, len};
lbValue res = {};
res.value = llvm_const_named_struct(m, t_u8_slice, values, 2);
res.type = t_u8_slice;
return res;
}
lbValue lb_find_or_add_entity_string_byte_slice_with_type(lbModule *m, String const &str, Type *slice_type) {
GB_ASSERT(is_type_slice(slice_type));
LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
LLVMValueRef data = LLVMConstStringInContext(m->ctx,
cast(char const *)str.text,
cast(unsigned)str.len,
false);
char *name = nullptr;
{
isize max_len = 7+8+1;
name = gb_alloc_array(permanent_allocator(), char, max_len);
u32 id = m->gen->global_array_index.fetch_add(1);
isize len = gb_snprintf(name, max_len, "csbs$%x", id);
len -= 1;
}
LLVMTypeRef type = LLVMTypeOf(data);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, type, name);
LLVMSetInitializer(global_data, data);
lb_make_global_private_const(global_data);
LLVMSetAlignment(global_data, 1);
i64 data_len = str.len;
LLVMValueRef ptr = nullptr;
if (data_len != 0) {
ptr = LLVMConstInBoundsGEP2(type, global_data, indices, 2);
} else {
ptr = LLVMConstNull(lb_type(m, t_u8_ptr));
}
if (!is_type_u8_slice(slice_type)) {
Type *bt = base_type(slice_type);
Type *elem = bt->Slice.elem;
i64 sz = type_size_of(elem);
GB_ASSERT(sz > 0);
ptr = LLVMConstPointerCast(ptr, lb_type(m, alloc_type_pointer(elem)));
data_len /= sz;
}
LLVMValueRef len = LLVMConstInt(lb_type(m, t_int), data_len, true);
LLVMValueRef values[2] = {ptr, len};
lbValue res = {};
res.value = llvm_const_named_struct(m, slice_type, values, 2);
res.type = slice_type;
return res;
}
lbValue lb_find_ident(lbProcedure *p, lbModule *m, Entity *e, Ast *expr) {
if (e->flags & EntityFlag_Param) {
// NOTE(bill): Bypass the stack copied variable for
// direct parameters as there is no need for the direct load
auto *found = map_get(&p->direct_parameters, e);
if (found) {
return *found;
}
}
auto *found = map_get(&m->values, e);
if (found) {
auto v = *found;
// NOTE(bill): This is because pointers are already pointers in LLVM
if (is_type_proc(v.type)) {
return v;
}
return lb_emit_load(p, v);
} else if (e != nullptr && e->kind == Entity_Variable) {
return lb_addr_load(p, lb_build_addr(p, expr));
}
if (e->kind == Entity_Procedure) {
return lb_find_procedure_value_from_entity(m, e);
}
if (USE_SEPARATE_MODULES) {
lbModule *other_module = lb_pkg_module(m->gen, e->pkg);
if (other_module != m) {
String name = lb_get_entity_name(other_module, e);
lb_set_entity_from_other_modules_linkage_correctly(other_module, e, name);
lbValue g = {};
g.value = LLVMAddGlobal(m->mod, lb_type(m, e->type), alloc_cstring(permanent_allocator(), name));
g.type = alloc_type_pointer(e->type);
LLVMSetLinkage(g.value, LLVMExternalLinkage);
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
return lb_emit_load(p, g);
}
}
String pkg = {};
if (e->pkg) {
pkg = e->pkg->name;
}
gb_printf_err("Error in: %s\n", token_pos_to_string(ast_token(expr).pos));
GB_PANIC("nullptr value for expression from identifier: %.*s.%.*s (%p) : %s @ %p", LIT(pkg), LIT(e->token.string), e, type_to_string(e->type), expr);
return {};
}
lbValue lb_find_procedure_value_from_entity(lbModule *m, Entity *e) {
GB_ASSERT(is_type_proc(e->type));
e = strip_entity_wrapping(e);
GB_ASSERT(e != nullptr);
auto *found = map_get(&m->values, e);
if (found) {
return *found;
}
bool ignore_body = false;
lbModule *other_module = m;
if (USE_SEPARATE_MODULES) {
other_module = lb_pkg_module(m->gen, e->pkg);
}
if (other_module == m) {
debugf("Missing Procedure (lb_find_procedure_value_from_entity): %.*s\n", LIT(e->token.string));
}
ignore_body = other_module != m;
lbProcedure *missing_proc = lb_create_procedure(m, e, ignore_body);
if (!ignore_body) {
array_add(&m->missing_procedures_to_check, missing_proc);
}
found = map_get(&m->values, e);
if (found) {
return *found;
}
GB_PANIC("Error in: %s, missing procedure %.*s\n", token_pos_to_string(e->token.pos), LIT(e->token.string));
return {};
}
lbAddr lb_add_global_generated(lbModule *m, Type *type, lbValue value, Entity **entity_) {
GB_ASSERT(type != nullptr);
type = default_type(type);
isize max_len = 7+8+1;
u8 *str = cast(u8 *)gb_alloc_array(permanent_allocator(), u8, max_len);
u32 id = m->gen->global_generated_index.fetch_add(1);
isize len = gb_snprintf(cast(char *)str, max_len, "ggv$%x", id);
String name = make_string(str, len-1);
Scope *scope = nullptr;
Entity *e = alloc_entity_variable(scope, make_token_ident(name), type);
lbValue g = {};
g.type = alloc_type_pointer(type);
g.value = LLVMAddGlobal(m->mod, lb_type(m, type), cast(char const *)str);
if (value.value != nullptr) {
GB_ASSERT_MSG(LLVMIsConstant(value.value), LLVMPrintValueToString(value.value));
LLVMSetInitializer(g.value, value.value);
} else {
LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, type)));
}
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
if (entity_) *entity_ = e;
return lb_addr(g);
}
lbValue lb_find_runtime_value(lbModule *m, String const &name) {
AstPackage *p = m->info->runtime_package;
Entity *e = scope_lookup_current(p->scope, name);
return lb_find_value_from_entity(m, e);
}
lbValue lb_find_package_value(lbModule *m, String const &pkg, String const &name) {
Entity *e = find_entity_in_pkg(m->info, pkg, name);
return lb_find_value_from_entity(m, e);
}
lbValue lb_generate_local_array(lbProcedure *p, Type *elem_type, i64 count, bool zero_init) {
lbAddr addr = lb_add_local_generated(p, alloc_type_array(elem_type, count), zero_init);
return lb_addr_get_ptr(p, addr);
}
lbValue lb_find_value_from_entity(lbModule *m, Entity *e) {
e = strip_entity_wrapping(e);
GB_ASSERT(e != nullptr);
GB_ASSERT(e->token.string != "_");
if (e->kind == Entity_Procedure) {
return lb_find_procedure_value_from_entity(m, e);
}
auto *found = map_get(&m->values, e);
if (found) {
return *found;
}
if (USE_SEPARATE_MODULES) {
lbModule *other_module = lb_pkg_module(m->gen, e->pkg);
// TODO(bill): correct this logic
bool is_external = other_module != m;
if (!is_external) {
if (e->code_gen_module != nullptr) {
other_module = e->code_gen_module;
} else {
other_module = nullptr;
}
is_external = other_module != m;
}
if (is_external) {
String name = lb_get_entity_name(other_module, e);
lbValue g = {};
g.value = LLVMAddGlobal(m->mod, lb_type(m, e->type), alloc_cstring(permanent_allocator(), name));
g.type = alloc_type_pointer(e->type);
lb_add_entity(m, e, g);
lb_add_member(m, name, g);
LLVMSetLinkage(g.value, LLVMExternalLinkage);
lb_set_entity_from_other_modules_linkage_correctly(other_module, e, name);
// LLVMSetLinkage(other_g.value, LLVMExternalLinkage);
if (e->Variable.thread_local_model != "") {
LLVMSetThreadLocal(g.value, true);
String m = e->Variable.thread_local_model;
LLVMThreadLocalMode mode = LLVMGeneralDynamicTLSModel;
if (m == "default") {
mode = LLVMGeneralDynamicTLSModel;
} else if (m == "localdynamic") {
mode = LLVMLocalDynamicTLSModel;
} else if (m == "initialexec") {
mode = LLVMInitialExecTLSModel;
} else if (m == "localexec") {
mode = LLVMLocalExecTLSModel;
} else {
GB_PANIC("Unhandled thread local mode %.*s", LIT(m));
}
LLVMSetThreadLocalMode(g.value, mode);
}
return g;
}
}
GB_PANIC("\n\tError in: %s, missing value '%.*s'\n", token_pos_to_string(e->token.pos), LIT(e->token.string));
return {};
}
lbValue lb_generate_global_array(lbModule *m, Type *elem_type, i64 count, String prefix, i64 id) {
Token token = {Token_Ident};
isize name_len = prefix.len + 1 + 20;
auto suffix_id = cast(unsigned long long)id;
char *text = gb_alloc_array(permanent_allocator(), char, name_len+1);
gb_snprintf(text, name_len,
"%.*s-%llu", LIT(prefix), suffix_id);
text[name_len] = 0;
String s = make_string_c(text);
Type *t = alloc_type_array(elem_type, count);
lbValue g = {};
g.value = LLVMAddGlobal(m->mod, lb_type(m, t), text);
g.type = alloc_type_pointer(t);
LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, t)));
LLVMSetLinkage(g.value, LLVMPrivateLinkage);
LLVMSetUnnamedAddress(g.value, LLVMGlobalUnnamedAddr);
string_map_set(&m->members, s, g);
return g;
}
lbValue lb_build_cond(lbProcedure *p, Ast *cond, lbBlock *true_block, lbBlock *false_block) {
GB_ASSERT(cond != nullptr);
GB_ASSERT(true_block != nullptr);
GB_ASSERT(false_block != nullptr);
// Use to signal not to do compile time short circuit for consts
lbValue no_comptime_short_circuit = {};
switch (cond->kind) {
case_ast_node(pe, ParenExpr, cond);
return lb_build_cond(p, pe->expr, true_block, false_block);
case_end;
case_ast_node(ue, UnaryExpr, cond);
if (ue->op.kind == Token_Not) {
lbValue cond_val = lb_build_cond(p, ue->expr, false_block, true_block);
if (cond_val.value && LLVMIsConstant(cond_val.value)) {
return lb_const_bool(p->module, cond_val.type, LLVMConstIntGetZExtValue(cond_val.value) == 0);
}
return no_comptime_short_circuit;
}
case_end;
case_ast_node(be, BinaryExpr, cond);
if (be->op.kind == Token_CmpAnd) {
lbBlock *block = lb_create_block(p, "cmp.and");
lb_build_cond(p, be->left, block, false_block);
lb_start_block(p, block);
lb_build_cond(p, be->right, true_block, false_block);
return no_comptime_short_circuit;
} else if (be->op.kind == Token_CmpOr) {
lbBlock *block = lb_create_block(p, "cmp.or");
lb_build_cond(p, be->left, true_block, block);
lb_start_block(p, block);
lb_build_cond(p, be->right, true_block, false_block);
return no_comptime_short_circuit;
}
case_end;
}
lbValue v = {};
if (lb_is_expr_untyped_const(cond)) {
v = lb_expr_untyped_const_to_typed(p->module, cond, t_llvm_bool);
} else {
v = lb_build_expr(p, cond);
}
v = lb_emit_conv(p, v, t_llvm_bool);
lb_emit_if(p, v, true_block, false_block);
return v;
}
lbAddr lb_add_local(lbProcedure *p, Type *type, Entity *e, bool zero_init, i32 param_index, bool force_no_init) {
GB_ASSERT(p->decl_block != p->curr_block);
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
char const *name = "";
if (e != nullptr) {
// name = alloc_cstring(permanent_allocator(), e->token.string);
}
LLVMTypeRef llvm_type = lb_type(p->module, type);
unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(llvm_type));
if (is_type_matrix(type)) {
alignment *= 2; // NOTE(bill): Just in case
}
LLVMValueRef ptr = llvm_alloca(p, llvm_type, alignment, name);
if (!zero_init && !force_no_init) {
// If there is any padding of any kind, just zero init regardless of zero_init parameter
LLVMTypeKind kind = LLVMGetTypeKind(llvm_type);
if (kind == LLVMArrayTypeKind) {
kind = LLVMGetTypeKind(lb_type(p->module, core_array_type(type)));
}
if (kind == LLVMStructTypeKind) {
i64 sz = type_size_of(type);
if (type_size_of_struct_pretend_is_packed(type) != sz) {
zero_init = true;
}
}
}
lbValue val = {};
val.value = ptr;
val.type = alloc_type_pointer(type);
if (e != nullptr) {
lb_add_entity(p->module, e, val);
lb_add_debug_local_variable(p, ptr, type, e->token);
}
if (zero_init) {
lb_mem_zero_ptr(p, ptr, type, alignment);
}
return lb_addr(val);
}
lbAddr lb_add_local_generated(lbProcedure *p, Type *type, bool zero_init) {
return lb_add_local(p, type, nullptr, zero_init);
}
lbAddr lb_add_local_generated_temp(lbProcedure *p, Type *type, i64 min_alignment) {
lbAddr res = lb_add_local(p, type, nullptr, false, 0, true);
lb_try_update_alignment(res.addr, cast(unsigned)min_alignment);
return res;
}
void lb_set_linkage_from_entity_flags(lbModule *m, LLVMValueRef value, u64 flags) {
if (flags & EntityFlag_CustomLinkage_Internal) {
LLVMSetLinkage(value, LLVMInternalLinkage);
} else if (flags & EntityFlag_CustomLinkage_Strong) {
LLVMSetLinkage(value, LLVMExternalLinkage);
} else if (flags & EntityFlag_CustomLinkage_Weak) {
LLVMSetLinkage(value, LLVMExternalWeakLinkage);
} else if (flags & EntityFlag_CustomLinkage_LinkOnce) {
LLVMSetLinkage(value, LLVMLinkOnceAnyLinkage);
}
}