Files
Odin/core/bytes/bytes.odin
2024-08-19 15:50:42 -07:00

1475 lines
31 KiB
Odin

package bytes
import "base:intrinsics"
import "core:mem"
import "core:simd"
import "core:unicode"
import "core:unicode/utf8"
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
@(private)
SCANNER_INDICES_256 : simd.u8x32 : {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
}
@(private)
SCANNER_SENTINEL_MAX_256: simd.u8x32 : u8(0x00)
@(private)
SCANNER_SENTINEL_MIN_256: simd.u8x32 : u8(0xff)
@(private)
SIMD_REG_SIZE_256 :: 32
}
@(private)
SCANNER_INDICES_128 : simd.u8x16 : {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
}
@(private)
SCANNER_SENTINEL_MAX_128: simd.u8x16 : u8(0x00)
@(private)
SCANNER_SENTINEL_MIN_128: simd.u8x16 : u8(0xff)
@(private)
SIMD_REG_SIZE_128 :: 16
clone :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> []byte {
c := make([]byte, len(s), allocator, loc)
copy(c, s)
return c[:len(s)]
}
clone_safe :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: mem.Allocator_Error) {
c := make([]byte, len(s), allocator, loc) or_return
copy(c, s)
return c[:len(s)], nil
}
ptr_from_slice :: ptr_from_bytes
ptr_from_bytes :: proc(str: []byte) -> ^byte {
d := transmute(mem.Raw_String)str
return d.data
}
truncate_to_byte :: proc(str: []byte, b: byte) -> []byte {
n := index_byte(str, b)
if n < 0 {
n = len(str)
}
return str[:n]
}
truncate_to_rune :: proc(str: []byte, r: rune) -> []byte {
n := index_rune(str, r)
if n < 0 {
n = len(str)
}
return str[:n]
}
// Compares two strings, returning a value representing which one comes first lexiographically.
// -1 for `a`; 1 for `b`, or 0 if they are equal.
compare :: proc(lhs, rhs: []byte) -> int {
return mem.compare(lhs, rhs)
}
contains_rune :: proc(s: []byte, r: rune) -> int {
for c, offset in string(s) {
if c == r {
return offset
}
}
return -1
}
contains :: proc(s, substr: []byte) -> bool {
return index(s, substr) >= 0
}
contains_any :: proc(s, chars: []byte) -> bool {
return index_any(s, chars) >= 0
}
rune_count :: proc(s: []byte) -> int {
return utf8.rune_count(s)
}
equal :: proc(a, b: []byte) -> bool {
return string(a) == string(b)
}
equal_fold :: proc(u, v: []byte) -> bool {
s, t := string(u), string(v)
loop: for s != "" && t != "" {
sr, tr: rune
if s[0] < utf8.RUNE_SELF {
sr, s = rune(s[0]), s[1:]
} else {
r, size := utf8.decode_rune_in_string(s)
sr, s = r, s[size:]
}
if t[0] < utf8.RUNE_SELF {
tr, t = rune(t[0]), t[1:]
} else {
r, size := utf8.decode_rune_in_string(t)
tr, t = r, t[size:]
}
if tr == sr { // easy case
continue loop
}
if tr < sr {
tr, sr = sr, tr
}
if tr < utf8.RUNE_SELF {
switch sr {
case 'A'..='Z':
if tr == (sr+'a')-'A' {
continue loop
}
}
return false
}
// TODO(bill): Unicode folding
return false
}
return s == t
}
has_prefix :: proc(s, prefix: []byte) -> bool {
return len(s) >= len(prefix) && string(s[0:len(prefix)]) == string(prefix)
}
has_suffix :: proc(s, suffix: []byte) -> bool {
return len(s) >= len(suffix) && string(s[len(s)-len(suffix):]) == string(suffix)
}
join :: proc(a: [][]byte, sep: []byte, allocator := context.allocator) -> []byte {
if len(a) == 0 {
return nil
}
n := len(sep) * (len(a) - 1)
for s in a {
n += len(s)
}
b := make([]byte, n, allocator)
i := copy(b, a[0])
for s in a[1:] {
i += copy(b[i:], sep)
i += copy(b[i:], s)
}
return b
}
join_safe :: proc(a: [][]byte, sep: []byte, allocator := context.allocator) -> (data: []byte, err: mem.Allocator_Error) {
if len(a) == 0 {
return nil, nil
}
n := len(sep) * (len(a) - 1)
for s in a {
n += len(s)
}
b := make([]byte, n, allocator) or_return
i := copy(b, a[0])
for s in a[1:] {
i += copy(b[i:], sep)
i += copy(b[i:], s)
}
return b, nil
}
concatenate :: proc(a: [][]byte, allocator := context.allocator) -> []byte {
if len(a) == 0 {
return nil
}
n := 0
for s in a {
n += len(s)
}
b := make([]byte, n, allocator)
i := 0
for s in a {
i += copy(b[i:], s)
}
return b
}
concatenate_safe :: proc(a: [][]byte, allocator := context.allocator) -> (data: []byte, err: mem.Allocator_Error) {
if len(a) == 0 {
return nil, nil
}
n := 0
for s in a {
n += len(s)
}
b := make([]byte, n, allocator) or_return
i := 0
for s in a {
i += copy(b[i:], s)
}
return b, nil
}
@private
_split :: proc(s, sep: []byte, sep_save, n: int, allocator := context.allocator) -> [][]byte {
s, n := s, n
if n == 0 {
return nil
}
if sep == nil {
l := utf8.rune_count(s)
if n < 0 || n > l {
n = l
}
res := make([dynamic][]byte, n, allocator)
for i := 0; i < n-1; i += 1 {
_, w := utf8.decode_rune(s)
res[i] = s[:w]
s = s[w:]
}
if n > 0 {
res[n-1] = s
}
return res[:]
}
if n < 0 {
n = count(s, sep) + 1
}
res := make([dynamic][]byte, n, allocator)
n -= 1
i := 0
for ; i < n; i += 1 {
m := index(s, sep)
if m < 0 {
break
}
res[i] = s[:m+sep_save]
s = s[m+len(sep):]
}
res[i] = s
return res[:i+1]
}
split :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte {
return _split(s, sep, 0, -1, allocator)
}
split_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte {
return _split(s, sep, 0, n, allocator)
}
split_after :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte {
return _split(s, sep, len(sep), -1, allocator)
}
split_after_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte {
return _split(s, sep, len(sep), n, allocator)
}
@private
_split_iterator :: proc(s: ^[]byte, sep: []byte, sep_save: int) -> (res: []byte, ok: bool) {
if len(sep) == 0 {
res = s[:]
ok = true
s^ = s[len(s):]
return
}
m := index(s^, sep)
if m < 0 {
// not found
res = s[:]
ok = len(res) != 0
s^ = s[len(s):]
} else {
res = s[:m+sep_save]
ok = true
s^ = s[m+len(sep):]
}
return
}
split_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) {
return _split_iterator(s, sep, 0)
}
split_after_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) {
return _split_iterator(s, sep, len(sep))
}
/*
Scan a slice of bytes for a specific byte.
This procedure safely handles slices of any length, including empty slices.
Inputs:
- data: A slice of bytes.
- c: The byte to search for.
Returns:
- index: The index of the byte `c`, or -1 if it was not found.
*/
index_byte :: proc(s: []byte, c: byte) -> (index: int) #no_bounds_check {
i, l := 0, len(s)
// Guard against small strings. On modern systems, it is ALWAYS
// worth vectorizing assuming there is a hardware vector unit, and
// the data size is large enough.
if l < SIMD_REG_SIZE_128 {
for /**/; i < l; i += 1 {
if s[i] == c {
return i
}
}
return -1
}
c_vec: simd.u8x16 = c
when !simd.IS_EMULATED {
// Note: While this is something that could also logically take
// advantage of AVX512, the various downclocking and power
// consumption related woes make premature to have a dedicated
// code path.
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
c_vec_256: simd.u8x32 = c
s_vecs: [4]simd.u8x32 = ---
c_vecs: [4]simd.u8x32 = ---
m_vec: [4]u8 = ---
// Scan 128-byte chunks, using 256-bit SIMD.
for nr_blocks := l / (4 * SIMD_REG_SIZE_256); nr_blocks > 0; nr_blocks -= 1 {
#unroll for j in 0..<4 {
s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:]))
c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256)
m_vec[j] = simd.reduce_or(c_vecs[j])
}
if m_vec[0] | m_vec[1] | m_vec[2] | m_vec[3] > 0 {
#unroll for j in 0..<4 {
if m_vec[j] > 0 {
sel := simd.select(c_vecs[j], SCANNER_INDICES_256, SCANNER_SENTINEL_MIN_256)
off := simd.reduce_min(sel)
return i + j * SIMD_REG_SIZE_256 + int(off)
}
}
}
i += 4 * SIMD_REG_SIZE_256
}
// Scan 64-byte chunks, using 256-bit SIMD.
for nr_blocks := (l - i) / (2 * SIMD_REG_SIZE_256); nr_blocks > 0; nr_blocks -= 1 {
#unroll for j in 0..<2 {
s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:]))
c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256)
m_vec[j] = simd.reduce_or(c_vecs[j])
}
if m_vec[0] | m_vec[1] > 0 {
#unroll for j in 0..<2 {
if m_vec[j] > 0 {
sel := simd.select(c_vecs[j], SCANNER_INDICES_256, SCANNER_SENTINEL_MIN_256)
off := simd.reduce_min(sel)
return i + j * SIMD_REG_SIZE_256 + int(off)
}
}
}
i += 2 * SIMD_REG_SIZE_256
}
} else {
s_vecs: [4]simd.u8x16 = ---
c_vecs: [4]simd.u8x16 = ---
m_vecs: [4]u8 = ---
// Scan 64-byte chunks, using 128-bit SIMD.
for nr_blocks := l / (4 * SIMD_REG_SIZE_128); nr_blocks > 0; nr_blocks -= 1 {
#unroll for j in 0..<4 {
s_vecs[j]= intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i+j*SIMD_REG_SIZE_128:]))
c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec)
m_vecs[j] = simd.reduce_or(c_vecs[j])
}
if m_vecs[0] | m_vecs[1] | m_vecs[2] | m_vecs[3] > 0 {
#unroll for j in 0..<4 {
if m_vecs[j] > 0 {
sel := simd.select(c_vecs[j], SCANNER_INDICES_128, SCANNER_SENTINEL_MIN_128)
off := simd.reduce_min(sel)
return i + j * SIMD_REG_SIZE_128 + int(off)
}
}
}
i += 4 * SIMD_REG_SIZE_128
}
}
}
// Scan the remaining SIMD register sized chunks.
//
// Apparently LLVM does ok with 128-bit SWAR, so this path is also taken
// on potato targets. Scanning more at a time when LLVM is emulating SIMD
// likely does not buy much, as all that does is increase GP register
// pressure.
for nr_blocks := (l - i) / SIMD_REG_SIZE_128; nr_blocks > 0; nr_blocks -= 1 {
s0 := intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i:]))
c0 := simd.lanes_eq(s0, c_vec)
if simd.reduce_or(c0) > 0 {
sel := simd.select(c0, SCANNER_INDICES_128, SCANNER_SENTINEL_MIN_128)
off := simd.reduce_min(sel)
return i + int(off)
}
i += SIMD_REG_SIZE_128
}
// Scan serially for the remainder.
for /**/; i < l; i += 1 {
if s[i] == c {
return i
}
}
return -1
}
/*
Scan a slice of bytes for a specific byte, starting from the end and working
backwards to the start.
This procedure safely handles slices of any length, including empty slices.
Inputs:
- data: A slice of bytes.
- c: The byte to search for.
Returns:
- index: The index of the byte `c`, or -1 if it was not found.
*/
last_index_byte :: proc(s: []byte, c: byte) -> int #no_bounds_check {
i := len(s)
// Guard against small strings. On modern systems, it is ALWAYS
// worth vectorizing assuming there is a hardware vector unit, and
// the data size is large enough.
if i < SIMD_REG_SIZE_128 {
if i > 0 { // Handle s == nil.
for /**/; i >= 0; i -= 1 {
if s[i] == c {
return i
}
}
}
return -1
}
c_vec: simd.u8x16 = c
when !simd.IS_EMULATED {
// Note: While this is something that could also logically take
// advantage of AVX512, the various downclocking and power
// consumption related woes make premature to have a dedicated
// code path.
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
c_vec_256: simd.u8x32 = c
s_vecs: [4]simd.u8x32 = ---
c_vecs: [4]simd.u8x32 = ---
m_vec: [4]u8 = ---
// Scan 128-byte chunks, using 256-bit SIMD.
for i >= 4 * SIMD_REG_SIZE_256 {
i -= 4 * SIMD_REG_SIZE_256
#unroll for j in 0..<4 {
s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:]))
c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256)
m_vec[j] = simd.reduce_or(c_vecs[j])
}
if m_vec[0] | m_vec[1] | m_vec[2] | m_vec[3] > 0 {
#unroll for j in 0..<4 {
if m_vec[3-j] > 0 {
sel := simd.select(c_vecs[3-j], SCANNER_INDICES_256, SCANNER_SENTINEL_MAX_256)
off := simd.reduce_max(sel)
return i + (3-j) * SIMD_REG_SIZE_256 + int(off)
}
}
}
}
// Scan 64-byte chunks, using 256-bit SIMD.
for i >= 2 * SIMD_REG_SIZE_256 {
i -= 2 * SIMD_REG_SIZE_256
#unroll for j in 0..<2 {
s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x32)raw_data(s[i+j*SIMD_REG_SIZE_256:]))
c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec_256)
m_vec[j] = simd.reduce_or(c_vecs[j])
}
if m_vec[0] | m_vec[1] > 0 {
#unroll for j in 0..<2 {
if m_vec[1-j] > 0 {
sel := simd.select(c_vecs[1-j], SCANNER_INDICES_256, SCANNER_SENTINEL_MAX_256)
off := simd.reduce_max(sel)
return i + (1-j) * SIMD_REG_SIZE_256 + int(off)
}
}
}
}
} else {
s_vecs: [4]simd.u8x16 = ---
c_vecs: [4]simd.u8x16 = ---
m_vecs: [4]u8 = ---
// Scan 64-byte chunks, using 128-bit SIMD.
for i >= 4 * SIMD_REG_SIZE_128 {
i -= 4 * SIMD_REG_SIZE_128
#unroll for j in 0..<4 {
s_vecs[j] = intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i+j*SIMD_REG_SIZE_128:]))
c_vecs[j] = simd.lanes_eq(s_vecs[j], c_vec)
m_vecs[j] = simd.reduce_or(c_vecs[j])
}
if m_vecs[0] | m_vecs[1] | m_vecs[2] | m_vecs[3] > 0 {
#unroll for j in 0..<4 {
if m_vecs[3-j] > 0 {
sel := simd.select(c_vecs[3-j], SCANNER_INDICES_128, SCANNER_SENTINEL_MAX_128)
off := simd.reduce_max(sel)
return i + (3-j) * SIMD_REG_SIZE_128 + int(off)
}
}
}
}
}
}
// Scan the remaining SIMD register sized chunks.
//
// Apparently LLVM does ok with 128-bit SWAR, so this path is also taken
// on potato targets. Scanning more at a time when LLVM is emulating SIMD
// likely does not buy much, as all that does is increase GP register
// pressure.
for i >= SIMD_REG_SIZE_128 {
i -= SIMD_REG_SIZE_128
s0 := intrinsics.unaligned_load(cast(^simd.u8x16)raw_data(s[i:]))
c0 := simd.lanes_eq(s0, c_vec)
if simd.reduce_or(c0) > 0 {
sel := simd.select(c0, SCANNER_INDICES_128, SCANNER_SENTINEL_MAX_128)
off := simd.reduce_max(sel)
return i + int(off)
}
}
// Scan serially for the remainder.
for i > 0 {
i -= 1
if s[i] == c {
return i
}
}
return -1
}
@private PRIME_RABIN_KARP :: 16777619
index :: proc(s, substr: []byte) -> int {
hash_str_rabin_karp :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) {
for i := 0; i < len(s); i += 1 {
hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
pow *= sq
}
sq *= sq
}
return
}
n := len(substr)
switch {
case n == 0:
return 0
case n == 1:
return index_byte(s, substr[0])
case n == len(s):
if string(s) == string(substr) {
return 0
}
return -1
case n > len(s):
return -1
}
hash, pow := hash_str_rabin_karp(substr)
h: u32
for i := 0; i < n; i += 1 {
h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && string(s[:n]) == string(substr) {
return 0
}
for i := n; i < len(s); /**/ {
h *= PRIME_RABIN_KARP
h += u32(s[i])
h -= pow * u32(s[i-n])
i += 1
if h == hash && string(s[i-n:i]) == string(substr) {
return i - n
}
}
return -1
}
last_index :: proc(s, substr: []byte) -> int {
hash_str_rabin_karp_reverse :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) {
for i := len(s) - 1; i >= 0; i -= 1 {
hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
pow *= sq
}
sq *= sq
}
return
}
n := len(substr)
switch {
case n == 0:
return len(s)
case n == 1:
return last_index_byte(s, substr[0])
case n == len(s):
return 0 if string(substr) == string(s) else -1
case n > len(s):
return -1
}
hash, pow := hash_str_rabin_karp_reverse(substr)
last := len(s) - n
h: u32
for i := len(s)-1; i >= last; i -= 1 {
h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && string(s[last:]) == string(substr) {
return last
}
for i := last-1; i >= 0; i -= 1 {
h *= PRIME_RABIN_KARP
h += u32(s[i])
h -= pow * u32(s[i+n])
if h == hash && string(s[i:i+n]) == string(substr) {
return i
}
}
return -1
}
index_any :: proc(s, chars: []byte) -> int {
if chars == nil {
return -1
}
// TODO(bill): Optimize
for r, i in s {
for c in chars {
if r == c {
return i
}
}
}
return -1
}
last_index_any :: proc(s, chars: []byte) -> int {
if chars == nil {
return -1
}
for i := len(s); i > 0; {
r, w := utf8.decode_last_rune(s[:i])
i -= w
for c in string(chars) {
if r == c {
return i
}
}
}
return -1
}
count :: proc(s, substr: []byte) -> int {
if len(substr) == 0 { // special case
return rune_count(s) + 1
}
if len(substr) == 1 {
c := substr[0]
switch len(s) {
case 0:
return 0
case 1:
return int(s[0] == c)
}
n := 0
for i := 0; i < len(s); i += 1 {
if s[i] == c {
n += 1
}
}
return n
}
// TODO(bill): Use a non-brute for approach
n := 0
str := s
for {
i := index(str, substr)
if i == -1 {
return n
}
n += 1
str = str[i+len(substr):]
}
return n
}
repeat :: proc(s: []byte, count: int, allocator := context.allocator) -> []byte {
if count < 0 {
panic("bytes: negative repeat count")
} else if count > 0 && (len(s)*count)/count != len(s) {
panic("bytes: repeat count will cause an overflow")
}
b := make([]byte, len(s)*count, allocator)
i := copy(b, s)
for i < len(b) { // 2^N trick to reduce the need to copy
copy(b[i:], b[:i])
i *= 2
}
return b
}
replace_all :: proc(s, old, new: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
return replace(s, old, new, -1, allocator)
}
// if n < 0, no limit on the number of replacements
replace :: proc(s, old, new: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
if string(old) == string(new) || n == 0 {
was_allocation = false
output = s
return
}
byte_count := n
if m := count(s, old); m == 0 {
was_allocation = false
output = s
return
} else if n < 0 || m < n {
byte_count = m
}
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
was_allocation = true
w := 0
start := 0
for i := 0; i < byte_count; i += 1 {
j := start
if len(old) == 0 {
if i > 0 {
_, width := utf8.decode_rune(s[start:])
j += width
}
} else {
j += index(s[start:], old)
}
w += copy(t[w:], s[start:j])
w += copy(t[w:], new)
start = j + len(old)
}
w += copy(t[w:], s[start:])
output = t[0:w]
return
}
remove :: proc(s, key: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
return replace(s, key, {}, n, allocator)
}
remove_all :: proc(s, key: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
return remove(s, key, -1, allocator)
}
@(private) _ascii_space := [256]u8{'\t' = 1, '\n' = 1, '\v' = 1, '\f' = 1, '\r' = 1, ' ' = 1}
is_ascii_space :: proc(r: rune) -> bool {
if r < utf8.RUNE_SELF {
return _ascii_space[u8(r)] != 0
}
return false
}
is_space :: proc(r: rune) -> bool {
if r < 0x2000 {
switch r {
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
return true
}
} else {
if r <= 0x200a {
return true
}
switch r {
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
return true
}
}
return false
}
is_null :: proc(r: rune) -> bool {
return r == 0x0000
}
index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int {
for r, i in string(s) {
if p(r) == truth {
return i
}
}
return -1
}
index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
for r, i in string(s) {
if p(state, r) == truth {
return i
}
}
return -1
}
last_index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
r, size := utf8.decode_last_rune(s[:i])
i -= size
if p(r) == truth {
return i
}
}
return -1
}
last_index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
r, size := utf8.decode_last_rune(s[:i])
i -= size
if p(state, r) == truth {
return i
}
}
return -1
}
trim_left_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte {
i := index_proc(s, p, false)
if i == -1 {
return nil
}
return s[i:]
}
index_rune :: proc(s: []byte, r: rune) -> int {
switch {
case u32(r) < utf8.RUNE_SELF:
return index_byte(s, byte(r))
case r == utf8.RUNE_ERROR:
for c, i in string(s) {
if c == utf8.RUNE_ERROR {
return i
}
}
return -1
case !utf8.valid_rune(r):
return -1
}
b, w := utf8.encode_rune(r)
return index(s, b[:w])
}
trim_left_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte {
i := index_proc_with_state(s, p, state, false)
if i == -1 {
return nil
}
return s[i:]
}
trim_right_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte {
i := last_index_proc(s, p, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
_, w := utf8.decode_rune(s[i:])
i += w
} else {
i += 1
}
return s[0:i]
}
trim_right_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte {
i := last_index_proc_with_state(s, p, state, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
_, w := utf8.decode_rune(s[i:])
i += w
} else {
i += 1
}
return s[0:i]
}
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
if state == nil {
return false
}
cutset := (^string)(state)^
for c in cutset {
if r == c {
return true
}
}
return false
}
trim_left :: proc(s: []byte, cutset: []byte) -> []byte {
if s == nil || cutset == nil {
return s
}
state := cutset
return trim_left_proc_with_state(s, is_in_cutset, &state)
}
trim_right :: proc(s: []byte, cutset: []byte) -> []byte {
if s == nil || cutset == nil {
return s
}
state := cutset
return trim_right_proc_with_state(s, is_in_cutset, &state)
}
trim :: proc(s: []byte, cutset: []byte) -> []byte {
return trim_right(trim_left(s, cutset), cutset)
}
trim_left_space :: proc(s: []byte) -> []byte {
return trim_left_proc(s, is_space)
}
trim_right_space :: proc(s: []byte) -> []byte {
return trim_right_proc(s, is_space)
}
trim_space :: proc(s: []byte) -> []byte {
return trim_right_space(trim_left_space(s))
}
trim_left_null :: proc(s: []byte) -> []byte {
return trim_left_proc(s, is_null)
}
trim_right_null :: proc(s: []byte) -> []byte {
return trim_right_proc(s, is_null)
}
trim_null :: proc(s: []byte) -> []byte {
return trim_right_null(trim_left_null(s))
}
trim_prefix :: proc(s, prefix: []byte) -> []byte {
if has_prefix(s, prefix) {
return s[len(prefix):]
}
return s
}
trim_suffix :: proc(s, suffix: []byte) -> []byte {
if has_suffix(s, suffix) {
return s[:len(s)-len(suffix)]
}
return s
}
split_multi :: proc(s: []byte, substrs: [][]byte, skip_empty := false, allocator := context.allocator) -> [][]byte #no_bounds_check {
if s == nil || len(substrs) <= 0 {
return nil
}
sublen := len(substrs[0])
for substr in substrs[1:] {
sublen = min(sublen, len(substr))
}
shared := len(s) - sublen
if shared <= 0 {
return nil
}
// number, index, last
n, i, l := 0, 0, 0
// count results
first_pass: for i <= shared {
for substr in substrs {
if string(s[i:i+sublen]) == string(substr) {
if !skip_empty || i - l > 0 {
n += 1
}
i += sublen
l = i
continue first_pass
}
}
_, skip := utf8.decode_rune(s[i:])
i += skip
}
if !skip_empty || len(s) - l > 0 {
n += 1
}
if n < 1 {
// no results
return nil
}
buf := make([][]byte, n, allocator)
n, i, l = 0, 0, 0
// slice results
second_pass: for i <= shared {
for substr in substrs {
if string(s[i:i+sublen]) == string(substr) {
if !skip_empty || i - l > 0 {
buf[n] = s[l:i]
n += 1
}
i += sublen
l = i
continue second_pass
}
}
_, skip := utf8.decode_rune(s[i:])
i += skip
}
if !skip_empty || len(s) - l > 0 {
buf[n] = s[l:]
}
return buf
}
split_multi_iterator :: proc(s: ^[]byte, substrs: [][]byte, skip_empty := false) -> ([]byte, bool) #no_bounds_check {
if s == nil || s^ == nil || len(substrs) <= 0 {
return nil, false
}
sublen := len(substrs[0])
for substr in substrs[1:] {
sublen = min(sublen, len(substr))
}
shared := len(s) - sublen
if shared <= 0 {
return nil, false
}
// index, last
i, l := 0, 0
loop: for i <= shared {
for substr in substrs {
if string(s[i:i+sublen]) == string(substr) {
if !skip_empty || i - l > 0 {
res := s[l:i]
s^ = s[i:]
return res, true
}
i += sublen
l = i
continue loop
}
}
_, skip := utf8.decode_rune(s[i:])
i += skip
}
if !skip_empty || len(s) - l > 0 {
res := s[l:]
s^ = s[len(s):]
return res, true
}
return nil, false
}
// Scrubs invalid utf-8 characters and replaces them with the replacement string
// Adjacent invalid bytes are only replaced once
scrub :: proc(s: []byte, replacement: []byte, allocator := context.allocator) -> []byte {
str := s
b: Buffer
buffer_init_allocator(&b, 0, len(s), allocator)
has_error := false
cursor := 0
origin := str
for len(str) > 0 {
r, w := utf8.decode_rune(str)
if r == utf8.RUNE_ERROR {
if !has_error {
has_error = true
buffer_write(&b, origin[:cursor])
}
} else if has_error {
has_error = false
buffer_write(&b, replacement)
origin = origin[cursor:]
cursor = 0
}
cursor += w
str = str[w:]
}
return buffer_to_bytes(&b)
}
reverse :: proc(s: []byte, allocator := context.allocator) -> []byte {
str := s
n := len(str)
buf := make([]byte, n)
i := n
for len(str) > 0 {
_, w := utf8.decode_rune(str)
i -= w
copy(buf[i:], str[:w])
str = str[w:]
}
return buf
}
expand_tabs :: proc(s: []byte, tab_size: int, allocator := context.allocator) -> []byte {
if tab_size <= 0 {
panic("tab size must be positive")
}
if s == nil {
return nil
}
b: Buffer
buffer_init_allocator(&b, 0, len(s), allocator)
str := s
column: int
for len(str) > 0 {
r, w := utf8.decode_rune(str)
if r == '\t' {
expand := tab_size - column%tab_size
for i := 0; i < expand; i += 1 {
buffer_write_byte(&b, ' ')
}
column += expand
} else {
if r == '\n' {
column = 0
} else {
column += w
}
buffer_write_rune(&b, r)
}
str = str[w:]
}
return buffer_to_bytes(&b)
}
partition :: proc(str, sep: []byte) -> (head, match, tail: []byte) {
i := index(str, sep)
if i == -1 {
head = str
return
}
head = str[:i]
match = str[i:i+len(sep)]
tail = str[i+len(sep):]
return
}
center_justify :: centre_justify // NOTE(bill): Because Americans exist
// centre_justify returns a byte slice with a pad byte slice at boths sides if the str's rune length is smaller than length
centre_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte {
n := rune_count(str)
if n >= length || pad == nil {
return clone(str, allocator)
}
remains := length-1
pad_len := rune_count(pad)
b: Buffer
buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator)
write_pad_string(&b, pad, pad_len, remains/2)
buffer_write(&b, str)
write_pad_string(&b, pad, pad_len, (remains+1)/2)
return buffer_to_bytes(&b)
}
// left_justify returns a byte slice with a pad byte slice at left side if the str's rune length is smaller than length
left_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte {
n := rune_count(str)
if n >= length || pad == nil {
return clone(str, allocator)
}
remains := length-1
pad_len := rune_count(pad)
b: Buffer
buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator)
buffer_write(&b, str)
write_pad_string(&b, pad, pad_len, remains)
return buffer_to_bytes(&b)
}
// right_justify returns a byte slice with a pad byte slice at right side if the str's rune length is smaller than length
right_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte {
n := rune_count(str)
if n >= length || pad == nil {
return clone(str, allocator)
}
remains := length-1
pad_len := rune_count(pad)
b: Buffer
buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator)
write_pad_string(&b, pad, pad_len, remains)
buffer_write(&b, str)
return buffer_to_bytes(&b)
}
@private
write_pad_string :: proc(b: ^Buffer, pad: []byte, pad_len, remains: int) {
repeats := remains / pad_len
for i := 0; i < repeats; i += 1 {
buffer_write(b, pad)
}
n := remains % pad_len
p := pad
for i := 0; i < n; i += 1 {
r, width := utf8.decode_rune(p)
buffer_write_rune(b, r)
p = p[width:]
}
}
// fields splits the byte slice s around each instance of one or more consecutive white space character, defined by unicode.is_space
// returning a slice of subslices of s or an empty slice if s only contains white space
fields :: proc(s: []byte, allocator := context.allocator) -> [][]byte #no_bounds_check {
n := 0
was_space := 1
set_bits := u8(0)
// check to see
for i in 0..<len(s) {
r := s[i]
set_bits |= r
is_space := int(_ascii_space[r])
n += was_space & ~is_space
was_space = is_space
}
if set_bits >= utf8.RUNE_SELF {
return fields_proc(s, unicode.is_space, allocator)
}
if n == 0 {
return nil
}
a := make([][]byte, n, allocator)
na := 0
field_start := 0
i := 0
for i < len(s) && _ascii_space[s[i]] != 0 {
i += 1
}
field_start = i
for i < len(s) {
if _ascii_space[s[i]] == 0 {
i += 1
continue
}
a[na] = s[field_start : i]
na += 1
i += 1
for i < len(s) && _ascii_space[s[i]] != 0 {
i += 1
}
field_start = i
}
if field_start < len(s) {
a[na] = s[field_start:]
}
return a
}
// fields_proc splits the byte slice s at each run of unicode code points `ch` satisfying f(ch)
// returns a slice of subslices of s
// If all code points in s satisfy f(ch) or string is empty, an empty slice is returned
//
// fields_proc makes no guarantee about the order in which it calls f(ch)
// it assumes that `f` always returns the same value for a given ch
fields_proc :: proc(s: []byte, f: proc(rune) -> bool, allocator := context.allocator) -> [][]byte #no_bounds_check {
subslices := make([dynamic][]byte, 0, 32, allocator)
start, end := -1, -1
for r, offset in string(s) {
end = offset
if f(r) {
if start >= 0 {
append(&subslices, s[start : end])
// -1 could be used, but just speed it up through bitwise not
// gotta love 2's complement
start = ~start
}
} else {
if start < 0 {
start = end
}
}
}
if start >= 0 {
append(&subslices, s[start : len(s)])
}
return subslices[:]
}
// alias returns true iff a and b have a non-zero length, and any part of
// a overlaps with b.
alias :: proc "contextless" (a, b: []byte) -> bool {
a_len, b_len := len(a), len(b)
if a_len == 0 || b_len == 0 {
return false
}
a_start, b_start := uintptr(raw_data(a)), uintptr(raw_data(b))
a_end, b_end := a_start + uintptr(a_len-1), b_start + uintptr(b_len-1)
return a_start <= b_end && b_start <= a_end
}
// alias_inexactly returns true iff a and b have a non-zero length,
// the base pointer of a and b are NOT equal, and any part of a overlaps
// with b (ie: `alias(a, b)` with an exception that returns false for
// `a == b`, `b = a[:len(a)-69]` and similar conditions).
alias_inexactly :: proc "contextless" (a, b: []byte) -> bool {
if raw_data(a) == raw_data(b) {
return false
}
return alias(a, b)
}