mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 09:24:33 +00:00
1039 lines
21 KiB
Odin
1039 lines
21 KiB
Odin
package strings
|
|
|
|
import "core:mem"
|
|
import "core:unicode"
|
|
import "core:unicode/utf8"
|
|
|
|
clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string {
|
|
c := make([]byte, len(s)+1, allocator, loc);
|
|
copy(c, s);
|
|
c[len(s)] = 0;
|
|
return string(c[:len(s)]);
|
|
}
|
|
|
|
clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring {
|
|
c := make([]byte, len(s)+1, allocator, loc);
|
|
copy(c, s);
|
|
c[len(s)] = 0;
|
|
return cstring(&c[0]);
|
|
}
|
|
|
|
string_from_ptr :: proc(ptr: ^byte, len: int) -> string {
|
|
return transmute(string)mem.Raw_String{ptr, len};
|
|
}
|
|
|
|
ptr_from_string :: proc(str: string) -> ^byte {
|
|
d := transmute(mem.Raw_String)str;
|
|
return d.data;
|
|
}
|
|
|
|
unsafe_string_to_cstring :: proc(str: string) -> cstring {
|
|
d := transmute(mem.Raw_String)str;
|
|
return cstring(d.data);
|
|
}
|
|
|
|
// Compares two strings, returning a value representing which one comes first lexiographically.
|
|
// -1 for `a`; 1 for `b`, or 0 if they are equal.
|
|
compare :: proc(lhs, rhs: string) -> int {
|
|
return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs);
|
|
}
|
|
|
|
contains_rune :: proc(s: string, r: rune) -> int {
|
|
for c, offset in s {
|
|
if c == r do return offset;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
contains :: proc(s, substr: string) -> bool {
|
|
return index(s, substr) >= 0;
|
|
}
|
|
|
|
contains_any :: proc(s, chars: string) -> bool {
|
|
return index_any(s, chars) >= 0;
|
|
}
|
|
|
|
|
|
rune_count :: proc(s: string) -> int {
|
|
return utf8.rune_count_in_string(s);
|
|
}
|
|
|
|
|
|
equal_fold :: proc(u, v: string) -> bool {
|
|
s, t := u, v;
|
|
loop: for s != "" && t != "" {
|
|
sr, tr: rune;
|
|
if s[0] < utf8.RUNE_SELF {
|
|
sr, s = rune(s[0]), s[1:];
|
|
} else {
|
|
r, size := utf8.decode_rune_in_string(s);
|
|
sr, s = r, s[size:];
|
|
}
|
|
if t[0] < utf8.RUNE_SELF {
|
|
tr, t = rune(t[0]), t[1:];
|
|
} else {
|
|
r, size := utf8.decode_rune_in_string(t);
|
|
tr, t = r, t[size:];
|
|
}
|
|
|
|
if tr == sr { // easy case
|
|
continue loop;
|
|
}
|
|
|
|
if tr < sr {
|
|
tr, sr = sr, tr;
|
|
}
|
|
|
|
if tr < utf8.RUNE_SELF {
|
|
switch sr {
|
|
case 'A'..'Z':
|
|
if tr == (sr+'a')-'A' {
|
|
continue loop;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// TODO(bill): Unicode folding
|
|
|
|
return false;
|
|
}
|
|
|
|
return s == t;
|
|
}
|
|
|
|
has_prefix :: proc(s, prefix: string) -> bool {
|
|
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix;
|
|
}
|
|
|
|
has_suffix :: proc(s, suffix: string) -> bool {
|
|
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix;
|
|
}
|
|
|
|
|
|
join :: proc(a: []string, sep: string, allocator := context.allocator) -> string {
|
|
if len(a) == 0 {
|
|
return "";
|
|
}
|
|
|
|
n := len(sep) * (len(a) - 1);
|
|
for s in a {
|
|
n += len(s);
|
|
}
|
|
|
|
b := make([]byte, n, allocator);
|
|
i := copy(b, a[0]);
|
|
for s in a[1:] {
|
|
i += copy(b[i:], sep);
|
|
i += copy(b[i:], s);
|
|
}
|
|
return string(b);
|
|
}
|
|
|
|
concatenate :: proc(a: []string, allocator := context.allocator) -> string {
|
|
if len(a) == 0 {
|
|
return "";
|
|
}
|
|
|
|
n := 0;
|
|
for s in a {
|
|
n += len(s);
|
|
}
|
|
b := make([]byte, n, allocator);
|
|
i := 0;
|
|
for s in a {
|
|
i += copy(b[i:], s);
|
|
}
|
|
return string(b);
|
|
}
|
|
|
|
@private
|
|
_split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string {
|
|
s, n := s_, n_;
|
|
|
|
if n == 0 {
|
|
return nil;
|
|
}
|
|
|
|
if sep == "" {
|
|
l := utf8.rune_count_in_string(s);
|
|
if n < 0 || n > l {
|
|
n = l;
|
|
}
|
|
|
|
res := make([dynamic]string, n, allocator);
|
|
for i := 0; i < n-1; i += 1 {
|
|
_, w := utf8.decode_rune_in_string(s);
|
|
res[i] = s[:w];
|
|
s = s[w:];
|
|
}
|
|
if n > 0 {
|
|
res[n-1] = s;
|
|
}
|
|
return res[:];
|
|
}
|
|
|
|
if n < 0 {
|
|
n = count(s, sep) + 1;
|
|
}
|
|
|
|
res := make([dynamic]string, n, allocator);
|
|
|
|
n -= 1;
|
|
|
|
i := 0;
|
|
for ; i < n; i += 1 {
|
|
m := index(s, sep);
|
|
if m < 0 {
|
|
break;
|
|
}
|
|
res[i] = s[:m+sep_save];
|
|
s = s[m+len(sep):];
|
|
}
|
|
res[i] = s;
|
|
|
|
return res[:i+1];
|
|
}
|
|
|
|
split :: inline proc(s, sep: string, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, 0, -1, allocator);
|
|
}
|
|
|
|
split_n :: inline proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, 0, n, allocator);
|
|
}
|
|
|
|
split_after :: inline proc(s, sep: string, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, len(sep), -1, allocator);
|
|
}
|
|
|
|
split_after_n :: inline proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
|
|
return _split(s, sep, len(sep), n, allocator);
|
|
}
|
|
|
|
|
|
|
|
|
|
index_byte :: proc(s: string, c: byte) -> int {
|
|
for i := 0; i < len(s); i += 1 {
|
|
if s[i] == c do return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Returns i1 if c is not present
|
|
last_index_byte :: proc(s: string, c: byte) -> int {
|
|
for i := len(s)-1; i >= 0; i -= 1 {
|
|
if s[i] == c do return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
|
|
@private PRIME_RABIN_KARP :: 16777619;
|
|
|
|
index :: proc(s, substr: string) -> int {
|
|
hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
|
|
for i := 0; i < len(s); i += 1 {
|
|
hash = hash*PRIME_RABIN_KARP + u32(s[i]);
|
|
}
|
|
sq := u32(PRIME_RABIN_KARP);
|
|
for i := len(s); i > 0; i >>= 1 {
|
|
if (i & 1) != 0 {
|
|
pow *= sq;
|
|
}
|
|
sq *= sq;
|
|
}
|
|
return;
|
|
}
|
|
|
|
n := len(substr);
|
|
switch {
|
|
case n == 0:
|
|
return 0;
|
|
case n == 1:
|
|
return index_byte(s, substr[0]);
|
|
case n == len(s):
|
|
if s == substr {
|
|
return 0;
|
|
}
|
|
return -1;
|
|
case n > len(s):
|
|
return -1;
|
|
}
|
|
|
|
hash, pow := hash_str_rabin_karp(substr);
|
|
h: u32;
|
|
for i := 0; i < n; i += 1 {
|
|
h = h*PRIME_RABIN_KARP + u32(s[i]);
|
|
}
|
|
if h == hash && s[:n] == substr {
|
|
return 0;
|
|
}
|
|
for i := n; i < len(s); /**/ {
|
|
h *= PRIME_RABIN_KARP;
|
|
h += u32(s[i]);
|
|
h -= pow * u32(s[i-n]);
|
|
i += 1;
|
|
if h == hash && s[i-n:i] == substr {
|
|
return i - n;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
last_index :: proc(s, substr: string) -> int {
|
|
hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
|
|
for i := len(s) - 1; i >= 0; i -= 1 {
|
|
hash = hash*PRIME_RABIN_KARP + u32(s[i]);
|
|
}
|
|
sq := u32(PRIME_RABIN_KARP);
|
|
for i := len(s); i > 0; i >>= 1 {
|
|
if (i & 1) != 0 {
|
|
pow *= sq;
|
|
}
|
|
sq *= sq;
|
|
}
|
|
return;
|
|
}
|
|
|
|
n := len(substr);
|
|
switch {
|
|
case n == 0:
|
|
return len(s);
|
|
case n == 1:
|
|
return last_index_byte(s, substr[0]);
|
|
case n == len(s):
|
|
return 0 if substr == s else -1;
|
|
case n > len(s):
|
|
return -1;
|
|
}
|
|
|
|
hash, pow := hash_str_rabin_karp_reverse(substr);
|
|
last := len(s) - n;
|
|
h: u32;
|
|
for i := len(s)-1; i >= last; i -= 1 {
|
|
h = h*PRIME_RABIN_KARP + u32(s[i]);
|
|
}
|
|
if h == hash && s[last:] == substr {
|
|
return last;
|
|
}
|
|
|
|
for i := last-1; i >= 0; i -= 1 {
|
|
h *= PRIME_RABIN_KARP;
|
|
h += u32(s[i]);
|
|
h -= pow * u32(s[i+n]);
|
|
if h == hash && s[i:i+n] == substr {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
index_any :: proc(s, chars: string) -> int {
|
|
if chars == "" {
|
|
return -1;
|
|
}
|
|
|
|
// TODO(bill): Optimize
|
|
for r, i in s {
|
|
for c in chars {
|
|
if r == c {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
last_index_any :: proc(s, chars: string) -> int {
|
|
if chars == "" {
|
|
return -1;
|
|
}
|
|
|
|
for i := len(s); i > 0; {
|
|
r, w := utf8.decode_last_rune_in_string(s[:i]);
|
|
i -= w;
|
|
for c in chars {
|
|
if r == c {
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
count :: proc(s, substr: string) -> int {
|
|
if len(substr) == 0 { // special case
|
|
return rune_count(s) + 1;
|
|
}
|
|
if len(substr) == 1 {
|
|
c := substr[0];
|
|
switch len(s) {
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
return int(s[0] == c);
|
|
}
|
|
n := 0;
|
|
for i := 0; i < len(s); i += 1 {
|
|
if s[i] == c {
|
|
n += 1;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// TODO(bill): Use a non-brute for approach
|
|
n := 0;
|
|
str := s;
|
|
for {
|
|
i := index(str, substr);
|
|
if i == -1 {
|
|
return n;
|
|
}
|
|
n += 1;
|
|
str = str[i+len(substr):];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
repeat :: proc(s: string, count: int, allocator := context.allocator) -> string {
|
|
if count < 0 {
|
|
panic("strings: negative repeat count");
|
|
} else if count > 0 && (len(s)*count)/count != len(s) {
|
|
panic("strings: repeat count will cause an overflow");
|
|
}
|
|
|
|
b := make([]byte, len(s)*count, allocator);
|
|
i := copy(b, s);
|
|
for i < len(b) { // 2^N trick to reduce the need to copy
|
|
copy(b[i:], b[:i]);
|
|
i *= 2;
|
|
}
|
|
return string(b);
|
|
}
|
|
|
|
replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
|
return replace(s, old, new, -1, allocator);
|
|
}
|
|
|
|
// if n < 0, no limit on the number of replacements
|
|
replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
|
|
if old == new || n == 0 {
|
|
was_allocation = false;
|
|
output = s;
|
|
return;
|
|
}
|
|
byte_count := n;
|
|
if m := count(s, old); m == 0 {
|
|
was_allocation = false;
|
|
output = s;
|
|
return;
|
|
} else if n < 0 || m < n {
|
|
byte_count = m;
|
|
}
|
|
|
|
|
|
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator);
|
|
was_allocation = true;
|
|
|
|
w := 0;
|
|
start := 0;
|
|
for i := 0; i < byte_count; i += 1 {
|
|
j := start;
|
|
if len(old) == 0 {
|
|
if i > 0 {
|
|
_, width := utf8.decode_rune_in_string(s[start:]);
|
|
j += width;
|
|
}
|
|
} else {
|
|
j += index(s[start:], old);
|
|
}
|
|
w += copy(t[w:], s[start:j]);
|
|
w += copy(t[w:], new);
|
|
start = j + len(old);
|
|
}
|
|
w += copy(t[w:], s[start:]);
|
|
output = string(t[0:w]);
|
|
return;
|
|
}
|
|
|
|
is_ascii_space :: proc(r: rune) -> bool {
|
|
switch r {
|
|
case '\t', '\n', '\v', '\f', '\r', ' ':
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
is_space :: proc(r: rune) -> bool {
|
|
if r < 0x2000 {
|
|
switch r {
|
|
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
|
|
return true;
|
|
}
|
|
} else {
|
|
if r <= 0x200a {
|
|
return true;
|
|
}
|
|
switch r {
|
|
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
is_null :: proc(r: rune) -> bool {
|
|
return r == 0x0000;
|
|
}
|
|
|
|
index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
|
|
for r, i in s {
|
|
if p(r) == truth {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
|
|
for r, i in s {
|
|
if p(state, r) == truth {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
|
|
// TODO(bill): Probably use Rabin-Karp Search
|
|
for i := len(s); i > 0; {
|
|
r, size := utf8.decode_last_rune_in_string(s[:i]);
|
|
i -= size;
|
|
if p(r) == truth {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
|
|
// TODO(bill): Probably use Rabin-Karp Search
|
|
for i := len(s); i > 0; {
|
|
r, size := utf8.decode_last_rune_in_string(s[:i]);
|
|
i -= size;
|
|
if p(state, r) == truth {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
|
|
i := index_proc(s, p, false);
|
|
if i == -1 {
|
|
return "";
|
|
}
|
|
return s[i:];
|
|
}
|
|
|
|
|
|
index_rune :: proc(s: string, r: rune) -> int {
|
|
switch {
|
|
case 0 <= r && r < utf8.RUNE_SELF:
|
|
return index_byte(s, byte(r));
|
|
|
|
case r == utf8.RUNE_ERROR:
|
|
for c, i in s {
|
|
if c == utf8.RUNE_ERROR {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
|
|
case !utf8.valid_rune(r):
|
|
return -1;
|
|
}
|
|
|
|
b, w := utf8.encode_rune(r);
|
|
return index(s, string(b[:w]));
|
|
}
|
|
|
|
|
|
trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
|
|
i := index_proc_with_state(s, p, state, false);
|
|
if i == -1 {
|
|
return "";
|
|
}
|
|
return s[i:];
|
|
}
|
|
|
|
trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
|
|
i := last_index_proc(s, p, false);
|
|
if i >= 0 && s[i] >= utf8.RUNE_SELF {
|
|
_, w := utf8.decode_rune_in_string(s[i:]);
|
|
i += w;
|
|
} else {
|
|
i += 1;
|
|
}
|
|
return s[0:i];
|
|
}
|
|
|
|
trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
|
|
i := last_index_proc_with_state(s, p, state, false);
|
|
if i >= 0 && s[i] >= utf8.RUNE_SELF {
|
|
_, w := utf8.decode_rune_in_string(s[i:]);
|
|
i += w;
|
|
} else {
|
|
i += 1;
|
|
}
|
|
return s[0:i];
|
|
}
|
|
|
|
|
|
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
|
|
if state == nil {
|
|
return false;
|
|
}
|
|
cutset := (^string)(state)^;
|
|
for c in cutset {
|
|
if r == c {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
trim_left :: proc(s: string, cutset: string) -> string {
|
|
if s == "" || cutset == "" {
|
|
return s;
|
|
}
|
|
state := cutset;
|
|
return trim_left_proc_with_state(s, is_in_cutset, &state);
|
|
}
|
|
|
|
trim_right :: proc(s: string, cutset: string) -> string {
|
|
if s == "" || cutset == "" {
|
|
return s;
|
|
}
|
|
state := cutset;
|
|
return trim_right_proc_with_state(s, is_in_cutset, &state);
|
|
}
|
|
|
|
trim :: proc(s: string, cutset: string) -> string {
|
|
return trim_right(trim_left(s, cutset), cutset);
|
|
}
|
|
|
|
trim_left_space :: proc(s: string) -> string {
|
|
return trim_left_proc(s, is_space);
|
|
}
|
|
|
|
trim_right_space :: proc(s: string) -> string {
|
|
return trim_right_proc(s, is_space);
|
|
}
|
|
|
|
trim_space :: proc(s: string) -> string {
|
|
return trim_right_space(trim_left_space(s));
|
|
}
|
|
|
|
trim_left_null :: proc(s: string) -> string {
|
|
return trim_left_proc(s, is_null);
|
|
}
|
|
|
|
trim_right_null :: proc(s: string) -> string {
|
|
return trim_right_proc(s, is_null);
|
|
}
|
|
|
|
trim_null :: proc(s: string) -> string {
|
|
return trim_right_null(trim_left_null(s));
|
|
}
|
|
|
|
// scrub scruvs invalid utf-8 characters and replaces them with the replacement string
|
|
// Adjacent invalid bytes are only replaced once
|
|
scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string {
|
|
str := s;
|
|
b := make_builder(0, len(str), allocator);
|
|
|
|
has_error := false;
|
|
cursor := 0;
|
|
origin := str;
|
|
|
|
for len(str) > 0 {
|
|
r, w := utf8.decode_rune_in_string(str);
|
|
|
|
if r == utf8.RUNE_ERROR {
|
|
if !has_error {
|
|
has_error = true;
|
|
write_string(&b, origin[:cursor]);
|
|
}
|
|
} else if has_error {
|
|
has_error = false;
|
|
write_string(&b, replacement);
|
|
|
|
origin = origin[cursor:];
|
|
cursor = 0;
|
|
}
|
|
|
|
cursor += w;
|
|
str = str[w:];
|
|
}
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
|
|
to_lower :: proc(s: string, allocator := context.allocator) -> string {
|
|
b := make_builder(0, len(s), allocator);
|
|
for r in s {
|
|
write_rune(&b, unicode.to_lower(r));
|
|
}
|
|
return to_string(b);
|
|
}
|
|
to_upper :: proc(s: string, allocator := context.allocator) -> string {
|
|
b := make_builder(0, len(s), allocator);
|
|
for r in s {
|
|
write_rune(&b, unicode.to_upper(r));
|
|
}
|
|
return to_string(b);
|
|
}
|
|
|
|
|
|
|
|
|
|
is_delimiter :: proc(c: rune) -> bool {
|
|
return c == '-' || c == '_' || is_space(c);
|
|
}
|
|
|
|
is_separator :: proc(r: rune) -> bool {
|
|
if r <= 0x7f {
|
|
switch r {
|
|
case '0'..'9': return false;
|
|
case 'a'..'z': return false;
|
|
case 'A'..'Z': return false;
|
|
case '_': return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// TODO(bill): unicode categories
|
|
// if unicode.is_letter(r) || unicode.is_digit(r) {
|
|
// return false;
|
|
// }
|
|
|
|
return unicode.is_space(r);
|
|
}
|
|
|
|
|
|
string_case_iterator :: proc(b: ^Builder, s: string, callback: proc(b: ^Builder, prev, curr, next: rune)) {
|
|
prev, curr: rune;
|
|
for next in s {
|
|
if curr == 0 {
|
|
prev = curr;
|
|
curr = next;
|
|
continue;
|
|
}
|
|
|
|
callback(b, prev, curr, next);
|
|
|
|
prev = curr;
|
|
curr = next;
|
|
}
|
|
|
|
if len(s) > 0 {
|
|
callback(b, prev, curr, 0);
|
|
}
|
|
}
|
|
|
|
|
|
to_lower_camel_case :: to_camel_case;
|
|
to_camel_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
s := s;
|
|
s = trim_space(s);
|
|
b := make_builder(0, len(s), allocator);
|
|
|
|
string_case_iterator(&b, s, proc(b: ^Builder, prev, curr, next: rune) {
|
|
if !is_delimiter(curr) {
|
|
if is_delimiter(prev) {
|
|
write_rune(b, unicode.to_upper(curr));
|
|
} else if unicode.is_lower(prev) {
|
|
write_rune(b, curr);
|
|
} else {
|
|
write_rune(b, unicode.to_lower(curr));
|
|
}
|
|
}
|
|
});
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
to_upper_camel_case :: to_pascal_case;
|
|
to_pascal_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
s := s;
|
|
s = trim_space(s);
|
|
b := make_builder(0, len(s), allocator);
|
|
|
|
string_case_iterator(&b, s, proc(b: ^Builder, prev, curr, next: rune) {
|
|
if !is_delimiter(curr) {
|
|
if is_delimiter(prev) || prev == 0 {
|
|
write_rune(b, unicode.to_upper(curr));
|
|
} else if unicode.is_lower(prev) {
|
|
write_rune(b, curr);
|
|
} else {
|
|
write_rune(b, unicode.to_lower(curr));
|
|
}
|
|
}
|
|
});
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
to_delimiter_case :: proc(s: string, delimiter: rune, all_upper_case: bool, allocator := context.allocator) -> string {
|
|
s := s;
|
|
s = trim_space(s);
|
|
b := make_builder(0, len(s), allocator);
|
|
|
|
adjust_case := unicode.to_upper if all_upper_case else unicode.to_lower;
|
|
|
|
prev, curr: rune;
|
|
|
|
for next in s {
|
|
if is_delimiter(curr) {
|
|
if !is_delimiter(prev) {
|
|
write_rune(&b, delimiter);
|
|
}
|
|
} else if unicode.is_upper(curr) {
|
|
if unicode.is_lower(prev) || (unicode.is_upper(prev) && unicode.is_lower(next)) {
|
|
write_rune(&b, delimiter);
|
|
}
|
|
write_rune(&b, adjust_case(curr));
|
|
} else if curr != 0 {
|
|
write_rune(&b, adjust_case(curr));
|
|
}
|
|
|
|
prev = curr;
|
|
curr = next;
|
|
}
|
|
|
|
if len(s) > 0 {
|
|
if unicode.is_upper(curr) && unicode.is_lower(prev) && prev != 0 {
|
|
write_rune(&b, delimiter);
|
|
}
|
|
write_rune(&b, adjust_case(curr));
|
|
}
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
|
|
to_snake_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
return to_delimiter_case(s, '_', false, allocator);
|
|
}
|
|
|
|
to_screaming_snake_case :: to_upper_snake_case;
|
|
to_upper_snake_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
return to_delimiter_case(s, '_', true, allocator);
|
|
}
|
|
|
|
to_kebab_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
return to_delimiter_case(s, '-', false, allocator);
|
|
}
|
|
|
|
to_upper_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
return to_delimiter_case(s, '-', true, allocator);
|
|
}
|
|
|
|
to_ada_case :: proc(s: string, allocator := context.allocator) -> string {
|
|
delimiter :: '_';
|
|
|
|
s := s;
|
|
s = trim_space(s);
|
|
b := make_builder(0, len(s), allocator);
|
|
|
|
prev, curr: rune;
|
|
|
|
for next in s {
|
|
if is_delimiter(curr) {
|
|
if !is_delimiter(prev) {
|
|
write_rune(&b, delimiter);
|
|
}
|
|
} else if unicode.is_upper(curr) {
|
|
if unicode.is_lower(prev) || (unicode.is_upper(prev) && unicode.is_lower(next)) {
|
|
write_rune(&b, delimiter);
|
|
}
|
|
write_rune(&b, unicode.to_upper(curr));
|
|
} else if curr != 0 {
|
|
write_rune(&b, unicode.to_lower(curr));
|
|
}
|
|
|
|
prev = curr;
|
|
curr = next;
|
|
}
|
|
|
|
if len(s) > 0 {
|
|
if unicode.is_upper(curr) && unicode.is_lower(prev) && prev != 0 {
|
|
write_rune(&b, delimiter);
|
|
write_rune(&b, unicode.to_upper(curr));
|
|
} else {
|
|
write_rune(&b, unicode.to_lower(curr));
|
|
}
|
|
}
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
|
|
|
|
reverse :: proc(s: string, allocator := context.allocator) -> string {
|
|
str := s;
|
|
n := len(str);
|
|
buf := make([]byte, n);
|
|
i := n;
|
|
|
|
for len(str) > 0 {
|
|
_, w := utf8.decode_rune_in_string(str);
|
|
i -= w;
|
|
copy(buf[i:], str[:w]);
|
|
str = str[w:];
|
|
}
|
|
return string(buf);
|
|
}
|
|
|
|
expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string {
|
|
if tab_size <= 0 {
|
|
panic("tab size must be positive");
|
|
}
|
|
|
|
|
|
if s == "" {
|
|
return "";
|
|
}
|
|
|
|
b := make_builder(allocator);
|
|
str := s;
|
|
column: int;
|
|
|
|
for len(str) > 0 {
|
|
r, w := utf8.decode_rune_in_string(str);
|
|
|
|
if r == '\t' {
|
|
expand := tab_size - column%tab_size;
|
|
|
|
for i := 0; i < expand; i += 1 {
|
|
write_byte(&b, ' ');
|
|
}
|
|
|
|
column += expand;
|
|
} else {
|
|
if r == '\n' {
|
|
column = 0;
|
|
} else {
|
|
column += w;
|
|
}
|
|
|
|
write_rune(&b, r);
|
|
}
|
|
|
|
str = str[w:];
|
|
}
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
|
|
partition :: proc(str, sep: string) -> (head, match, tail: string) {
|
|
i := index(str, sep);
|
|
if i == -1 {
|
|
head = str;
|
|
return;
|
|
}
|
|
|
|
head = str[:i];
|
|
match = str[i:i+len(sep)];
|
|
tail = str[i+len(sep):];
|
|
return;
|
|
}
|
|
|
|
center_justify :: centre_justify; // NOTE(bill): Because Americans exist
|
|
|
|
// centre_justify returns a string with a pad string at boths sides if the str's rune length is smaller than length
|
|
centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
|
n := rune_count(str);
|
|
if n >= length || pad == "" {
|
|
return clone(str, allocator);
|
|
}
|
|
|
|
remains := length-1;
|
|
pad_len := rune_count(pad);
|
|
|
|
b := make_builder(allocator);
|
|
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad));
|
|
|
|
write_pad_string(&b, pad, pad_len, remains/2);
|
|
write_string(&b, str);
|
|
write_pad_string(&b, pad, pad_len, (remains+1)/2);
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
// left_justify returns a string with a pad string at left side if the str's rune length is smaller than length
|
|
left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
|
n := rune_count(str);
|
|
if n >= length || pad == "" {
|
|
return clone(str, allocator);
|
|
}
|
|
|
|
remains := length-1;
|
|
pad_len := rune_count(pad);
|
|
|
|
b := make_builder(allocator);
|
|
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad));
|
|
|
|
write_string(&b, str);
|
|
write_pad_string(&b, pad, pad_len, remains);
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
// right_justify returns a string with a pad string at right side if the str's rune length is smaller than length
|
|
right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
|
|
n := rune_count(str);
|
|
if n >= length || pad == "" {
|
|
return clone(str, allocator);
|
|
}
|
|
|
|
remains := length-1;
|
|
pad_len := rune_count(pad);
|
|
|
|
b := make_builder(allocator);
|
|
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad));
|
|
|
|
write_pad_string(&b, pad, pad_len, remains);
|
|
write_string(&b, str);
|
|
|
|
return to_string(b);
|
|
}
|
|
|
|
|
|
@private
|
|
write_pad_string :: proc(b: ^Builder, pad: string, pad_len, remains: int) {
|
|
repeats := remains / pad_len;
|
|
|
|
for i := 0; i < repeats; i += 1 {
|
|
write_string(b, pad);
|
|
}
|
|
|
|
n := remains % pad_len;
|
|
p := pad;
|
|
|
|
for i := 0; i < n; i += 1 {
|
|
r, w := utf8.decode_rune_in_string(p);
|
|
write_rune(b, r);
|
|
p = p[w:];
|
|
}
|
|
}
|