Files
Odin/core/fmt.odin
2018-05-12 20:17:12 +01:00

1169 lines
28 KiB
Odin

import "core:os.odin"
import "core:mem.odin"
import "core:utf8.odin"
import "core:types.odin"
import "core:strconv.odin"
import "core:raw.odin"
_BUFFER_SIZE :: 1<<12;
String_Buffer :: distinct [dynamic]byte;
Fmt_Info :: struct {
minus: bool,
plus: bool,
space: bool,
zero: bool,
hash: bool,
width_set: bool,
prec_set: bool,
width: int,
prec: int,
indent: int,
reordered: bool,
good_arg_index: bool,
buf: ^String_Buffer,
arg: any, // Temporary
}
string_buffer_from_slice :: proc(backing: []byte) -> String_Buffer {
s := transmute(raw.Slice)backing;
d := raw.Dynamic_Array{
data = s.data,
len = 0,
cap = s.len,
allocator = nil_allocator(),
};
return transmute(String_Buffer)d;
}
to_string :: proc(buf: String_Buffer) -> string {
return string(buf[..]);
}
write_string :: proc(buf: ^String_Buffer, s: string) {
append_string(buf, s);
}
write_bytes :: proc(buf: ^String_Buffer, data: []byte) {
append(buf, ...data);
}
write_byte :: proc(buf: ^String_Buffer, data: byte) {
append(buf, data);
}
write_rune :: proc(buf: ^String_Buffer, r: rune) {
if r < utf8.RUNE_SELF {
write_byte(buf, byte(r));
return;
}
b, n := utf8.encode_rune(r);
write_bytes(buf, b[..n]);
}
write_i64 :: proc(buf: ^String_Buffer, i: i64, base: int) {
b: [129]byte;
s := strconv.append_bits(b[..], u64(i), base, true, 64, strconv.digits, 0);
write_string(buf, s);
}
fprint :: proc(fd: os.Handle, args: ...any) -> int {
data: [_BUFFER_SIZE]byte;
buf := string_buffer_from_slice(data[..]);
res := sbprint(&buf, ...args);
os.write_string(fd, res);
return len(res);
}
fprintln :: proc(fd: os.Handle, args: ...any) -> int {
data: [_BUFFER_SIZE]byte;
buf := string_buffer_from_slice(data[..]);
res := sbprintln(&buf, ...args);
os.write_string(fd, res);
return len(res);
}
fprintf :: proc(fd: os.Handle, fmt: string, args: ...any) -> int {
data: [_BUFFER_SIZE]byte;
buf := string_buffer_from_slice(data[..]);
res := sbprintf(&buf, fmt, ...args);
os.write_string(fd, res);
return len(res);
}
// print* procedures return the number of bytes written
print :: proc(args: ...any) -> int { return fprint(os.stdout, ...args); }
print_err :: proc(args: ...any) -> int { return fprint(os.stderr, ...args); }
println :: proc(args: ...any) -> int { return fprintln(os.stdout, ...args); }
println_err :: proc(args: ...any) -> int { return fprintln(os.stderr, ...args); }
printf :: proc(fmt: string, args: ...any) -> int { return fprintf(os.stdout, fmt, ...args); }
printf_err :: proc(fmt: string, args: ...any) -> int { return fprintf(os.stderr, fmt, ...args); }
// aprint* procedures return a string that was allocated with the current context
// They must be freed accordingly
aprint :: proc(args: ...any) -> string {
buf := String_Buffer(make([dynamic]byte));
sbprint(&buf, ...args);
return to_string(buf);
}
aprintln :: proc(args: ...any) -> string {
buf := String_Buffer(make([dynamic]byte));
sbprintln(&buf, ...args);
return to_string(buf);
}
aprintf :: proc(fmt: string, args: ...any) -> string {
buf := String_Buffer(make([dynamic]byte));
sbprintf(&buf, fmt, ...args);
return to_string(buf);
}
// bprint* procedures return a string using a buffer from an array
bprint :: proc(buf: []byte, args: ...any) -> string {
sb := string_buffer_from_slice(buf[0..len(buf)]);
return sbprint(&sb, ...args);
}
bprintln :: proc(buf: []byte, args: ...any) -> string {
sb := string_buffer_from_slice(buf[0..len(buf)]);
return sbprintln(&sb, ...args);
}
bprintf :: proc(buf: []byte, fmt: string, args: ...any) -> string {
sb := string_buffer_from_slice(buf[0..len(buf)]);
return sbprintf(&sb, fmt, ...args);
}
fprint_type :: proc(fd: os.Handle, info: ^Type_Info) {
data: [_BUFFER_SIZE]byte;
buf := string_buffer_from_slice(data[..]);
write_type(&buf, info);
os.write(fd, buf[..]);
}
write_typeid :: proc(buf: ^String_Buffer, id: typeid) {
write_type(buf, type_info_of(id));
}
write_type :: proc(buf: ^String_Buffer, ti: ^Type_Info) {
if ti == nil {
write_string(buf, "nil");
return;
}
switch info in ti.variant {
case Type_Info_Named:
write_string(buf, info.name);
case Type_Info_Integer:
a := any{typeid = typeid_of(ti)};
switch _ in a {
case int: write_string(buf, "int");
case uint: write_string(buf, "uint");
case uintptr: write_string(buf, "uintptr");
case:
write_byte(buf, info.signed ? 'i' : 'u');
write_i64(buf, i64(8*ti.size), 10);
}
case Type_Info_Rune:
write_string(buf, "rune");
case Type_Info_Float:
write_byte(buf, 'f');
write_i64(buf, i64(8*ti.size), 10);
case Type_Info_Complex:
write_string(buf, "complex");
write_i64(buf, i64(8*ti.size), 10);
case Type_Info_String:
if info.is_cstring {
write_string(buf, "cstring");
} else {
write_string(buf, "string");
}
case Type_Info_Boolean:
a := any{typeid = typeid_of(ti)};
switch _ in a {
case bool: write_string(buf, "bool");
case:
write_byte(buf, 'b');
write_i64(buf, i64(8*ti.size), 10);
}
case Type_Info_Any:
write_string(buf, "any");
case Type_Info_Type_Id:
write_string(buf, "typeid");
case Type_Info_Pointer:
if info.elem == nil {
write_string(buf, "rawptr");
} else {
write_string(buf, "^");
write_type(buf, info.elem);
}
case Type_Info_Procedure:
write_string(buf, "proc");
if info.params == nil {
write_string(buf, "()");
} else {
t := info.params.variant.(Type_Info_Tuple);
write_string(buf, "(");
for t, i in t.types {
if i > 0 do write_string(buf, ", ");
write_type(buf, t);
}
write_string(buf, ")");
}
if info.results != nil {
write_string(buf, " -> ");
write_type(buf, info.results);
}
case Type_Info_Tuple:
count := len(info.names);
if count != 1 do write_string(buf, "(");
for name, i in info.names {
if i > 0 do write_string(buf, ", ");
t := info.types[i];
if len(name) > 0 {
write_string(buf, name);
write_string(buf, ": ");
}
write_type(buf, t);
}
if count != 1 do write_string(buf, ")");
case Type_Info_Array:
write_string(buf, "[");
write_i64(buf, i64(info.count), 10);
write_string(buf, "]");
write_type(buf, info.elem);
case Type_Info_Dynamic_Array:
write_string(buf, "[dynamic]");
write_type(buf, info.elem);
case Type_Info_Slice:
write_string(buf, "[]");
write_type(buf, info.elem);
case Type_Info_Map:
write_string(buf, "map[");
write_type(buf, info.key);
write_byte(buf, ']');
write_type(buf, info.value);
case Type_Info_Struct:
write_string(buf, "struct ");
if info.is_packed do write_string(buf, "#packed ");
if info.is_raw_union do write_string(buf, "#raw_union ");
if info.custom_align {
write_string(buf, "#align ");
write_i64(buf, i64(ti.align), 10);
write_byte(buf, ' ');
}
write_byte(buf, '{');
for name, i in info.names {
if i > 0 do write_string(buf, ", ");
write_string(buf, name);
write_string(buf, ": ");
write_type(buf, info.types[i]);
}
write_byte(buf, '}');
case Type_Info_Union:
write_string(buf, "union {");
for variant, i in info.variants {
if i > 0 do write_string(buf, ", ");
write_type(buf, variant);
}
write_string(buf, "}");
case Type_Info_Enum:
write_string(buf, "enum ");
write_type(buf, info.base);
if info.is_export do write_string(buf, " #export");
write_string(buf, " {");
for name, i in info.names {
if i > 0 do write_string(buf, ", ");
write_string(buf, name);
}
write_string(buf, "}");
case Type_Info_Bit_Field:
write_string(buf, "bit_field ");
if ti.align != 1 {
write_string(buf, "#align ");
write_i64(buf, i64(ti.align), 10);
write_rune(buf, ' ');
}
write_string(buf, " {");
for name, i in info.names {
if i > 0 do write_string(buf, ", ");
write_string(buf, name);
write_string(buf, ": ");
write_i64(buf, i64(info.bits[i]), 10);
}
write_string(buf, "}");
}
}
_parse_int :: proc(s: string, offset: int) -> (result: int, new_offset: int, ok: bool) {
is_digit :: inline proc(r: byte) -> bool { return '0' <= r && r <= '9' }
new_offset = offset;
for new_offset <= len(s) {
c := s[new_offset];
if !is_digit(c) do break;
new_offset += 1;
result *= 10;
result += int(c)-'0';
}
ok = new_offset > offset;
return;
}
_arg_number :: proc(fi: ^Fmt_Info, arg_index: int, format: string, offset, arg_count: int) -> (index, new_offset: int, ok: bool) {
parse_arg_number :: proc(format: string) -> (int, int, bool) {
if len(format) < 3 do return 0, 1, false;
for i in 1...len(format) {
if format[i] == ']' {
width, new_index, ok := _parse_int(format, 1);
if !ok || new_index != i {
return 0, i+1, false;
}
return width-1, i+1, true;
}
}
return 0, 1, false;
}
if len(format) <= offset || format[offset] != '[' {
return arg_index, offset, false;
}
fi.reordered = true;
width: int;
index, width, ok = parse_arg_number(format[offset..]);
if ok && 0 <= index && index < arg_count {
return index, offset+width, true;
}
fi.good_arg_index = false;
return arg_index, offset+width, false;
}
int_from_arg :: proc(args: []any, arg_index: int) -> (int, int, bool) {
num := 0;
new_arg_index := arg_index;
ok := true;
if arg_index < len(args) {
arg := args[arg_index];
arg.typeid = typeid_base(arg.typeid);
switch i in arg {
case int: num = i;
case i8: num = int(i);
case i16: num = int(i);
case i32: num = int(i);
case i64: num = int(i);
case u8: num = int(i);
case u16: num = int(i);
case u32: num = int(i);
case u64: num = int(i);
case:
ok = false;
}
}
return num, new_arg_index, ok;
}
fmt_bad_verb :: proc(using fi: ^Fmt_Info, verb: rune) {
assert(verb != 'v');
write_string(buf, "%!");
write_rune(buf, verb);
write_byte(buf, '(');
if arg.typeid != nil {
write_typeid(buf, arg.typeid);
write_byte(buf, '=');
fmt_value(fi, arg, 'v');
} else {
write_string(buf, "<nil>");
}
write_byte(buf, ')');
}
fmt_bool :: proc(using fi: ^Fmt_Info, b: bool, verb: rune) {
switch verb {
case 't', 'v':
write_string(buf, b ? "true" : "false");
case:
fmt_bad_verb(fi, verb);
}
}
fmt_write_padding :: proc(fi: ^Fmt_Info, width: int) {
if width <= 0 do return;
pad_byte: byte = '0';
if fi.space do pad_byte = ' ';
for _ in 0..width {
write_byte(fi.buf, pad_byte);
}
}
_fmt_int :: proc(fi: ^Fmt_Info, u: u64, base: int, is_signed: bool, bit_size: int, digits: string) {
_, neg := strconv.is_integer_negative(u, is_signed, bit_size);
BUF_SIZE :: 256;
if fi.width_set || fi.prec_set {
width := fi.width + fi.prec + 3; // 3 extra bytes for sign and prefix
if width > BUF_SIZE {
// TODO(bill):????
panic("_fmt_int: buffer overrun. Width and precision too big");
}
}
prec := 0;
if fi.prec_set {
prec = fi.prec;
if prec == 0 && u == 0 {
prev_zero := fi.zero;
fi.zero = false;
fmt_write_padding(fi, fi.width);
fi.zero = prev_zero;
return;
}
} else if fi.zero && fi.width_set {
prec = fi.width;
if neg || fi.plus || fi.space {
// There needs to be space for the "sign"
prec -= 1;
}
}
switch base {
case 2, 8, 10, 12, 16:
break;
case:
panic("_fmt_int: unknown base, whoops");
}
buf: [256]byte;
start := 0;
flags: strconv.Int_Flag;
if fi.hash && !fi.zero do flags |= strconv.Int_Flag.Prefix;
if fi.plus do flags |= strconv.Int_Flag.Plus;
if fi.space do flags |= strconv.Int_Flag.Space;
s := strconv.append_bits(buf[start..], u, base, is_signed, bit_size, digits, flags);
if fi.hash && fi.zero {
c: byte = 0;
switch base {
case 2: c = 'b';
case 8: c = 'o';
case 12: c = 'z';
case 16: c = 'x';
}
if c != 0 {
write_byte(fi.buf, '0');
write_byte(fi.buf, c);
}
}
prev_zero := fi.zero;
defer fi.zero = prev_zero;
fi.zero = false;
_pad(fi, s);
}
__DIGITS_LOWER := "0123456789abcdefx";
__DIGITS_UPPER := "0123456789ABCDEFX";
fmt_rune :: proc(fi: ^Fmt_Info, r: rune, verb: rune) {
switch verb {
case 'c', 'r', 'v':
write_rune(fi.buf, r);
case:
fmt_int(fi, u64(r), false, 32, verb);
}
}
fmt_int :: proc(fi: ^Fmt_Info, u: u64, is_signed: bool, bit_size: int, verb: rune) {
switch verb {
case 'v': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER);
case 'b': _fmt_int(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER);
case 'o': _fmt_int(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER);
case 'd': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER);
case 'z': _fmt_int(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER);
case 'x': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER);
case 'X': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER);
case 'c', 'r':
fmt_rune(fi, rune(u), verb);
case 'U':
r := rune(u);
if r < 0 || r > utf8.MAX_RUNE {
fmt_bad_verb(fi, verb);
} else {
write_string(fi.buf, "U+");
_fmt_int(fi, u, 16, false, bit_size, __DIGITS_UPPER);
}
case:
fmt_bad_verb(fi, verb);
}
}
_pad :: proc(fi: ^Fmt_Info, s: string) {
if !fi.width_set {
write_string(fi.buf, s);
return;
}
width := fi.width - utf8.rune_count_from_string(s);
if fi.minus { // right pad
write_string(fi.buf, s);
fmt_write_padding(fi, width);
} else { // left pad
fmt_write_padding(fi, width);
write_string(fi.buf, s);
}
}
fmt_float :: proc(fi: ^Fmt_Info, v: f64, bit_size: int, verb: rune) {
switch verb {
// case 'e', 'E', 'f', 'F', 'g', 'G', 'v':
// case 'f', 'F', 'v':
case 'f', 'F', 'v':
prec: int = 3;
if fi.prec_set do prec = fi.prec;
buf: [386]byte;
str := strconv.append_float(buf[1..], v, 'f', prec, bit_size);
str = string(buf[...len(str)]);
if str[1] == '+' || str[1] == '-' {
str = str[1..];
} else {
str[0] = '+';
}
if fi.space && !fi.plus && str[0] == '+' {
str[0] = ' ';
}
if len(str) > 1 && str[1] == 'N' && str[1] == 'I' {
write_string(fi.buf, str);
return;
}
if fi.plus || str[0] != '+' {
if fi.zero && fi.width_set && fi.width > len(str) {
write_byte(fi.buf, str[0]);
fmt_write_padding(fi, fi.width - len(str));
write_string(fi.buf, str[1..]);
} else {
_pad(fi, str);
}
} else {
_pad(fi, str[1..]);
}
case:
fmt_bad_verb(fi, verb);
}
}
fmt_string :: proc(fi: ^Fmt_Info, s: string, verb: rune) {
switch verb {
case 's', 'v':
write_string(fi.buf, s);
case 'x', 'X':
space := fi.space;
fi.space = false;
defer fi.space = space;
for i in 0..len(s) {
if i > 0 && space do write_byte(fi.buf, ' ');
char_set := __DIGITS_UPPER;
if verb == 'x' do char_set = __DIGITS_LOWER;
_fmt_int(fi, u64(s[i]), 16, false, 8, char_set);
}
case:
fmt_bad_verb(fi, verb);
}
}
fmt_cstring :: proc(fi: ^Fmt_Info, s: cstring, verb: rune) {
fmt_string(fi, string(s), verb);
}
fmt_pointer :: proc(fi: ^Fmt_Info, p: rawptr, verb: rune) {
switch verb {
case 'p', 'v':
u := u64(uintptr(p));
if !fi.hash || verb == 'v' {
write_string(fi.buf, "0x");
}
_fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER);
case:
fmt_bad_verb(fi, verb);
}
}
enum_value_to_string :: proc(v: any) -> (string, bool) {
v.typeid = typeid_base(v.typeid);
type_info := type_info_of(v.typeid);
switch e in type_info.variant {
case: return "", false;
case Type_Info_Enum:
get_str :: proc(i: $T, e: Type_Info_Enum) -> (string, bool) {
if types.is_string(e.base) {
for val, idx in e.values {
if v, ok := val.(T); ok && v == i {
return e.names[idx], true;
}
}
} else if len(e.values) == 0 {
return "", true;
} else {
for val, idx in e.values {
if v, ok := val.(T); ok && v == i {
return e.names[idx], true;
}
}
}
return "", false;
}
a := any{v.data, typeid_of(type_info_base(e.base))};
switch v in a {
case rune: return get_str(v, e);
case i8: return get_str(v, e);
case i16: return get_str(v, e);
case i32: return get_str(v, e);
case i64: return get_str(v, e);
case int: return get_str(v, e);
case u8: return get_str(v, e);
case u16: return get_str(v, e);
case u32: return get_str(v, e);
case u64: return get_str(v, e);
case uint: return get_str(v, e);
case uintptr: return get_str(v, e);
case f32: return get_str(v, e);
case f64: return get_str(v, e);
}
}
return "", false;
}
string_to_enum_value :: proc(T: type, s: string) -> (T, bool) {
ti := type_info_base(type_info_of(T));
if e, ok := ti.variant.(Type_Info_Enum); ok {
for str, idx in e.names {
if s == str {
// NOTE(bill): Unsafe cast
ptr := cast(^T)&e.values[idx];
return ptr^, true;
}
}
}
return T{}, false;
}
fmt_enum :: proc(fi: ^Fmt_Info, v: any, verb: rune) {
if v.typeid == nil || v.data == nil {
write_string(fi.buf, "<nil>");
return;
}
type_info := type_info_of(v.typeid);
switch e in type_info.variant {
case: fmt_bad_verb(fi, verb);
case Type_Info_Enum:
switch verb {
case: fmt_bad_verb(fi, verb);
case 'd', 'f':
fmt_arg(fi, any{v.data, typeid_of(type_info_base(e.base))}, verb);
case 's', 'v':
str, ok := enum_value_to_string(v);
if !ok do str = "!%(BAD ENUM VALUE)";
write_string(fi.buf, str);
}
}
}
fmt_value :: proc(fi: ^Fmt_Info, v: any, verb: rune) {
if v.data == nil || v.typeid == nil {
write_string(fi.buf, "<nil>");
return;
}
type_info := type_info_of(v.typeid);
switch info in type_info.variant {
case Type_Info_Named:
switch b in info.base.variant {
case Type_Info_Struct:
if verb != 'v' {
fmt_bad_verb(fi, verb);
return;
}
if b.is_raw_union {
write_string(fi.buf, info.name);
write_string(fi.buf, "{}");
return;
};
write_string(fi.buf, info.name);
write_byte(fi.buf, '{');
hash := fi.hash; defer fi.hash = hash;
indent := fi.indent; defer fi.indent -= 1;
fi.hash = false;
fi.indent += 1;
if hash do write_byte(fi.buf, '\n');
for _, i in b.names {
if !hash && i > 0 do write_string(fi.buf, ", ");
if hash do for in 0..fi.indent do write_byte(fi.buf, '\t');
write_string(fi.buf, b.names[i]);
write_string(fi.buf, " = ");
if t := b.types[i]; types.is_any(t) {
write_string(fi.buf, "any{}");
} else {
data := rawptr(uintptr(v.data) + b.offsets[i]);
fmt_arg(fi, any{data, typeid_of(t)}, 'v');
}
if hash do write_string(fi.buf, ",\n");
}
if hash do for in 0..indent do write_byte(fi.buf, '\t');
write_byte(fi.buf, '}');
case:
fmt_value(fi, any{v.data, typeid_of(info.base)}, verb);
}
case Type_Info_Boolean: fmt_arg(fi, v, verb);
case Type_Info_Integer: fmt_arg(fi, v, verb);
case Type_Info_Rune: fmt_arg(fi, v, verb);
case Type_Info_Float: fmt_arg(fi, v, verb);
case Type_Info_Complex: fmt_arg(fi, v, verb);
case Type_Info_String: fmt_arg(fi, v, verb);
case Type_Info_Pointer:
if v.typeid == typeid_of(^Type_Info) {
write_type(fi.buf, (^^Type_Info)(v.data)^);
} else {
fmt_pointer(fi, (^rawptr)(v.data)^, verb);
}
case Type_Info_Array:
write_byte(fi.buf, '[');
defer write_byte(fi.buf, ']');
for i in 0..info.count {
if i > 0 do write_string(fi.buf, ", ");
data := uintptr(v.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), typeid_of(info.elem)}, verb);
}
case Type_Info_Dynamic_Array:
write_byte(fi.buf, '[');
defer write_byte(fi.buf, ']');
array := cast(^raw.Dynamic_Array)v.data;
for i in 0..array.len {
if i > 0 do write_string(fi.buf, ", ");
data := uintptr(array.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), typeid_of(info.elem)}, verb);
}
case Type_Info_Slice:
write_byte(fi.buf, '[');
defer write_byte(fi.buf, ']');
slice := cast(^raw.Slice)v.data;
for i in 0..slice.len {
if i > 0 do write_string(fi.buf, ", ");
data := uintptr(slice.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), typeid_of(info.elem)}, verb);
}
case Type_Info_Map:
if verb != 'v' {
fmt_bad_verb(fi, verb);
return;
}
write_string(fi.buf, "map[");
defer write_byte(fi.buf, ']');
m := (^raw.Map)(v.data);
if m != nil {
assert(info.generated_struct != nil);
entries := &m.entries;
gs := type_info_base(info.generated_struct).variant.(Type_Info_Struct);
ed := type_info_base(gs.types[1]).variant.(Type_Info_Dynamic_Array);
entry_type := ed.elem.variant.(Type_Info_Struct);
entry_size := ed.elem_size;
for i in 0..entries.len {
if i > 0 do write_string(fi.buf, ", ");
data := uintptr(entries.data) + uintptr(i*entry_size);
header := cast(^__Map_Entry_Header)data;
if types.is_string(info.key) {
write_string(fi.buf, header.key.str);
} else {
fi := Fmt_Info{buf = fi.buf};
fmt_arg(&fi, any{rawptr(&header.key.hash), typeid_of(info.key)}, 'v');
}
write_string(fi.buf, "=");
value := data + entry_type.offsets[2];
fmt_arg(fi, any{rawptr(value), typeid_of(info.value)}, 'v');
}
}
case Type_Info_Struct:
if info.is_raw_union {
write_string(fi.buf, "(raw_union)");
return;
}
write_byte(fi.buf, '{');
defer write_byte(fi.buf, '}');
fi.indent += 1; defer fi.indent -= 1;
hash := fi.hash; defer fi.hash = hash;
fi.hash = false;
if hash do write_byte(fi.buf, '\n');
for _, i in info.names {
if !hash && i > 0 do write_string(fi.buf, ", ");
if hash {
for in 0..fi.indent {
write_byte(fi.buf, '\t');
}
}
write_string(fi.buf, info.names[i]);
write_string(fi.buf, " = ");
if t := info.types[i]; types.is_any(t) {
write_string(fi.buf, "any{}");
} else {
data := uintptr(v.data) + info.offsets[i];
fmt_arg(fi, any{rawptr(data), typeid_of(t)}, 'v');
}
if hash do write_string(fi.buf, ",\n");
}
case Type_Info_Union:
tag_ptr := uintptr(v.data) + info.tag_offset;
tag_any := any{rawptr(tag_ptr), typeid_of(info.tag_type)};
tag: i64 = -1;
switch i in tag_any {
case u8: tag = i64(i);
case i8: tag = i64(i);
case u16: tag = i64(i);
case i16: tag = i64(i);
case u32: tag = i64(i);
case i32: tag = i64(i);
case u64: tag = i64(i);
case i64: tag = i64(i);
case: panic("Invalid union tag type");
}
if v.data == nil || tag == 0 {
write_string(fi.buf, "nil");
} else {
id := typeid_of(info.variants[tag-1]);
fmt_arg(fi, any{v.data, id}, verb);
}
case Type_Info_Enum:
fmt_enum(fi, v, verb);
case Type_Info_Procedure:
ptr := (^rawptr)(v.data)^;
if ptr == nil {
write_string(fi.buf, "nil");
} else {
write_typeid(fi.buf, v.typeid);
write_string(fi.buf, " @ ");
fmt_pointer(fi, ptr, 'p');
}
case Type_Info_Type_Id:
id := (^typeid)(v.data)^;
write_typeid(fi.buf, id);
}
}
fmt_complex :: proc(fi: ^Fmt_Info, c: complex128, bits: int, verb: rune) {
switch verb {
case 'f', 'F', 'v':
r, i := real(c), imag(c);
fmt_float(fi, r, bits/2, verb);
if !fi.plus && i >= 0 {
write_rune(fi.buf, '+');
}
fmt_float(fi, i, bits/2, verb);
write_rune(fi.buf, 'i');
case:
fmt_bad_verb(fi, verb);
return;
}
}
fmt_arg :: proc(fi: ^Fmt_Info, arg: any, verb: rune) {
if arg == nil {
write_string(fi.buf, "<nil>");
return;
}
fi.arg = arg;
if verb == 'T' {
ti := type_info_of(arg.typeid);
switch a in arg {
case ^Type_Info: ti = a;
}
write_type(fi.buf, ti);
return;
}
base_arg := arg;
base_arg.typeid = typeid_base(base_arg.typeid);
switch a in base_arg {
case bool: fmt_bool(fi, bool(a), verb);
case b8: fmt_bool(fi, bool(a), verb);
case b16: fmt_bool(fi, bool(a), verb);
case b32: fmt_bool(fi, bool(a), verb);
case b64: fmt_bool(fi, bool(a), verb);
case any: fmt_arg(fi, a, verb);
case rune: fmt_rune(fi, a, verb);
case f32: fmt_float(fi, f64(a), 32, verb);
case f64: fmt_float(fi, a, 64, verb);
case complex64: fmt_complex(fi, complex128(a), 64, verb);
case complex128: fmt_complex(fi, a, 128, verb);
case i8: fmt_int(fi, u64(a), true, 8, verb);
case u8: fmt_int(fi, u64(a), false, 8, verb);
case i16: fmt_int(fi, u64(a), true, 16, verb);
case u16: fmt_int(fi, u64(a), false, 16, verb);
case i32: fmt_int(fi, u64(a), true, 32, verb);
case u32: fmt_int(fi, u64(a), false, 32, verb);
case i64: fmt_int(fi, u64(a), true, 64, verb);
case u64: fmt_int(fi, u64(a), false, 64, verb);
case int: fmt_int(fi, u64(a), true, 8*size_of(int), verb);
case uint: fmt_int(fi, u64(a), false, 8*size_of(uint), verb);
case uintptr: fmt_int(fi, u64(a), false, 8*size_of(uintptr), verb);
case string: fmt_string(fi, a, verb);
case cstring: fmt_cstring(fi, a, verb);
case typeid: write_typeid(fi.buf, a);
case: fmt_value(fi, arg, verb);
}
}
sbprint :: proc(buf: ^String_Buffer, args: ...any) -> string {
fi: Fmt_Info;
prev_string := false;
fi.buf = buf;
for arg, i in args {
is_string := arg != nil && types.is_string(type_info_of(arg.typeid));
if i > 0 && !is_string && !prev_string {
write_byte(buf, ' ');
}
fmt_value(&fi, args[i], 'v');
prev_string = is_string;
}
return to_string(buf^);
}
sbprintln :: proc(buf: ^String_Buffer, args: ...any) -> string {
fi: Fmt_Info;
fi.buf = buf;
for _, i in args {
if i > 0 do write_byte(buf, ' ');
fmt_value(&fi, args[i], 'v');
}
write_byte(buf, '\n');
return to_string(buf^);
}
sbprintf :: proc(b: ^String_Buffer, fmt: string, args: ...any) -> string {
fi: Fmt_Info;
arg_index: int = 0;
end := len(fmt);
was_prev_index := false;
loop: for i := 0; i < end; /**/ {
fi = Fmt_Info{buf = b, good_arg_index = true};
prev_i := i;
for i < end && fmt[i] != '%' {
i += 1;
}
if i > prev_i {
write_string(b, fmt[prev_i..i]);
}
if i >= end {
break loop;
}
// Process a "verb"
i += 1;
prefix_loop: for ; i < end; i += 1 {
switch fmt[i] {
case '+':
fi.plus = true;
case '-':
fi.minus = true;
fi.zero = false;
case ' ':
fi.space = true;
case '#':
fi.hash = true;
case '0':
fi.zero = !fi.minus;
case:
break prefix_loop;
}
}
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
// Width
if i < end && fmt[i] == '*' {
i += 1;
fi.width, arg_index, fi.width_set = int_from_arg(args, arg_index);
if !fi.width_set {
write_string(b, "%!(BAD WIDTH)");
}
if fi.width < 0 {
fi.width = -fi.width;
fi.minus = true;
fi.zero = false;
}
was_prev_index = false;
} else {
fi.width, i, fi.width_set = _parse_int(fmt, i);
if was_prev_index && fi.width_set { // %[6]2d
fi.good_arg_index = false;
}
}
// Precision
if i < end && fmt[i] == '.' {
i += 1;
if was_prev_index { // %[6].2d
fi.good_arg_index = false;
}
if i < end && fmt[i] == '*' {
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
i += 1;
fi.prec, arg_index, fi.prec_set = int_from_arg(args, arg_index);
if fi.prec < 0 {
fi.prec = 0;
fi.prec_set = false;
}
if !fi.prec_set {
write_string(fi.buf, "%!(BAD PRECISION)");
}
was_prev_index = false;
} else {
fi.prec, i, fi.prec_set = _parse_int(fmt, i);
if !fi.prec_set {
// fi.prec_set = true;
// fi.prec = 0;
}
}
}
if !was_prev_index {
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
}
if i >= end {
write_string(b, "%!(NO VERB)");
break loop;
}
verb, w := utf8.decode_rune_from_string(fmt[i..]);
i += w;
switch {
case verb == '%':
write_byte(b, '%');
case !fi.good_arg_index:
write_string(b, "%!(BAD ARGUMENT NUMBER)");
case arg_index >= len(args):
write_string(b, "%!(MISSING ARGUMENT)");
case:
fmt_arg(&fi, args[arg_index], verb);
arg_index += 1;
}
}
if !fi.reordered && arg_index < len(args) {
write_string(b, "%!(EXTRA ");
for arg, index in args[arg_index..] {
if index > 0 do write_string(b, ", ");
if arg == nil do write_string(b, "<nil>");
else do fmt_arg(&fi, args[index], 'v');
}
write_string(b, ")");
}
return to_string(b^);
}